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A method for evaluating the energy flow confidence level in vibrating systems with
randomly perturbed parameters is presented. The energy flow is predicted in terms of the
mobilities of resonant subsystems or by the solution of the velocity wave field for non-
resonant subsystems. The statistical moments of the energy flow are calculated by a
perturbation technique and a confidence factor is defined as the ratio between mean and
standard deviation. The properties of the confidence factor are investigated by a theoretical
analysis as a function of frequency. Three cases are studied to compare the confidence
factor obtained theoretically with a prediction provided by a Monte-Carlo simulation.
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1. INTRODUCTION

In studying high-frequency dynamic problems, two main difficulties must be considered.
First, because of the small wavelengths involved, a large number of degrees of freedom is
required to describe the field appropriately; second, inherent uncertainties of any of the
physical, geometrical or joint parameters imply unpredictable (random) behaviours. The
deterministic methods of analysis, such as finite element or boundary element methods, are
not capable, in general, of overcoming such shortcomings. In fact, the large number of
degrees of freedom makes the computational burden very heavy and, generally, not very
accurate; moreover, a deterministic approach is not appropriate to analyse a problem that
is so sensitive to small variations of the system parameters associated to the physical
model. On the contrary, statistical energy methods are quite efficient for overcoming both
the mentioned difficulties. On one hand the large set of degrees of freedom is simply
replaced by few energy values; on the other hand, a more relevant statistical description of
any parametrical uncertainty is considered [1].

For its intrinsic capacity of accounting for average quantities such as coupling loss
factors and modal densities that depend on the area (length, volume) of the vibrating
system, rather than on its geometrical details, the statistical energy analysis (SEA) is
expected to be a statistical approach describing the average response of a population
instead of the single sample response [1–6]. However, SEA only partially uses the strength
of the statistical approaches. In fact, it only provides information on the first-order
moments related to the energy of the system, but does not deal with the dispersion
0888–3270/03/+$30.00/0 # 2003 Elsevier Science Ltd. All rights reserved.
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information and does not provide any standard deviation of the results, although people
involved with SEA recognise that this method is much more reliable at high frequencies
and/or for systems with a high modal overlap. Actually, an attempt to estimate the
dispersion information and the confidence in the results is given by Lyon [5]. However, his
developments refer to a particular problem: he assumes that the natural frequencies occur
randomly with a Poisson distribution and uses this probability density function to
calculate the variance of the solution [5, 7]. This model holds only if very particular
conditions are met, e.g. a constant modal density.

Aim of this paper is to provide the confidence levels for the energy and the energy flow
between coupled structure under more general statistical conditions, i.e. when uncertainty
exists in the physical parameters of the system. The analysis provides the statistics of the
energies of the two coupled subsystems as well as of the energy flow between them. The
analysis is not directly addressed to SEA applications. In fact, the space and frequency
mean is not considered, whereas the statistical moments of the energy flow are calculated
only considering a random population of similar systems. Moreover, this stochastic
population is built by imposing a random perturbation only on some physical parameters
of the studied sytems. However, this can be thought as a starting point for more general
developments.

In particular, the following points are developed. Under the hypothesis of a small
perturbation, the statistics of the energy flows among the systems are determined in closed
form, whatever the probability density functions of the process. On the basis of this result,
the characteristic trend of the energy flow dispersions are predicted for different strengths
of coupling. To verify the obtained results a Monte-Carlo numerical simulation is
performed on a significant number of realizations [8].

2. ENERGY FLOW ANALYSIS BETWEEN COUPLED DYNAMIC SYSTEMS

The goal of this paper is to study the mean and standard deviation of the vibrational
energy flowing through dynamic systems having random characteristic parameters. To
achieve this result the ratio between the mean and standard deviation of the energy flow,
hereafter called confidence factor fc, is examined in detail, as a tool able to quantify the
uncertainty of the energy flow prediction. The expression ‘dynamic system’ indicates, in
this paper, two possible kinds of system: resonators and wave guides.

The study is first addressed to the analysis of two multi-modal resonators coupled
together by a joint having random stiffness. We will prove that the confidence factor
presents two different frequency trends, separated by a transition frequency. Below the
transition frequency the systems exhibits a modal behaviour; beyond it the effect of modes
is negligible and the system is more appropriately described by a non-resonant wave guide.

The analysis is developed through the following three steps:

* calculation of the velocities and associated forces field,
* calculation of the energy flow depending on the random parameters of the system,
* study of the confidence factor.
A perturbation technique enables the calculation of the mean and standard of the

energy flow deviation in terms of the random parameter of the system. Since the
confidence factor is frequency dependent, the behaviour in the high-frequency range is
studied by the limit:

lim
o!1

fc:
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The following systems are considered:

1. resonator–joint with random stiffness–resonator
2. wave guide with random Young modulus
3. finite continuous system with random Young’s modulus
4. wave guide with random Young modulus coupled with a resonator
5. wave guide–joint with random stiffness–wave guide.
Here we refer the resonator to a finite contiuous dynamic system. The analysis refers to a
population with random physical parameters.

Since the analysis is similar for all the cases considered, we develop in detail the
resonator–random joint–resonator system only while for the other cases, their relevant
characteristics are presented and discussed.

3. ENERGY FLOW ANALYSIS BETWEEN TWO COUPLED RESONATORS WITH
A RANDOM PERTURBATION ON THE JOINT PARAMETERS

Consider two resonators I and II (Fig. 1). Subsystem I is excited by a harmonic point
force f1ðtÞ ¼ F1e

jot (applied at point 1) and coupled to subsystem II by a linear massless
joint III connecting the two resonators between points 2 and 3.

The general expression of the time-average power at the generic point i is

Pi ¼ 1
2
RefFiV

*
i g ð1Þ

where Fi and Vi are the phasor of the force applied at i and the velocity phasor at the same
point, respectively, and ‘*’ denotes complex conjugate [1]. Since the joint is massless, the
coupling between I and II implies the continuity condition

F2 ¼ F3: ð2Þ

The mobility relationships for system I are

v1 ¼ M11F1 �M12F2

v2 ¼ M21F1 �M22F2: ð3Þ

The mobility relationship for system II is

v3 ¼ M33F3 ð4Þ

and finally the additional mobility equation holds:

v2 ¼ F2ðM33 þ MIIIÞ: ð5Þ
Figure 1. Resonator–random joint–resonator.
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It is obtained considering the serial connection between III and II, where

MIII ¼
oðZþ jÞ

kGðZ2 þ 1Þ

kG being the joint stiffness and Z the loss factor.
The set of conditions (2)–(5) can be regarded as a system of five linear equations to be

solved in terms of the five unknowns v1, v2, v3, F2, F3, supposing that the external force F1

and the whole set of mobilities Mij ði; j ¼ 1; 2Þ, M33 and MIII are known. Once the system is
solved, the powers P2 and P3 take the form

P3 ¼
1

2
RefF3V

*
3 g ¼

1

2

jM21F1j2

jM33 þ M22 þ MIIIj2
RefM *

33g ð6Þ

P2 ¼
1

2
RefF2V

*
2 g ¼ �

1

2

jM21F1j2

jM33 þM22 þ MIIIj2
RefM *

33 þ MIIIg: ð7Þ

It would be noted that equations (6) and (7) provide P2 negative and P3 positive
consistently with the fact that P2 is a power leaving system I, while P3 is a power entering
system II. Finally the power dissipated in the joint is:

PJdiss ¼ �ðP2 þ P3Þ:

Assuming Z � 1, the term Z2 in MIII can be neglected and equations (6) and (7)
become

P3 ¼
1

2

jM21F1j2

jM33 þM22 þ oðZþ jÞ=kGj2
RefM *

33g ð8Þ

P2 ¼ �
1

2

jM21F1j2

jM33 þ M22 þ oðZþ jÞ=kGj2
RefM *

33 þ oðZþ jÞ=kGg: ð9Þ

Let us now assume a random variability of the joint characteristics, and analyse its effect
on the transmitted power.

In this analysis kG is a random parameter defined as

kG ¼ kG0
ð1þ xÞ ð10Þ

where kG0
is the reference deterministic stiffness and x is a dimensionless random variable.

For the sake of simplicity, we introduce the following quantities:

m ¼ jM21F1j2 a ¼ mRefM *
33g; b ¼ RefM33g þRefM22g; ð11Þ

g ¼ ImfM33g þ ImfM22g; d ¼ b2 þ g2

A ¼ 2 1þ
oðbZþ gÞ

kG0
d

� �
; B ¼ 1þ

o2

k2
G0
d
þ

2oðbZþ gÞ
kG0

d
ð12Þ

so that P3 and P2 can be written as

P3 ¼
a
2d

x2 þ 2x þ 1

x2 þ Ax þ B
ð13Þ

P2 ¼ �P3 �
mZo
2kG0

d
x þ 1

x2 þ Ax þ B
: ð14Þ
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These expressions explicitly provide the dependency of the transmitted powers on the
random perturbation x that is necessary for the development of the power statistics.

4. STATISTICS OF THE ENERGY FLOW

The statistical moments of the energy flow can be determined once the probability
density function (p.d.f.) of x, pðxÞ, is assigned. On the basis of equations (8) and (9) mean
and variance of the power can be determined as

EfPn
i ðxÞg ¼

Z 1

�1
pðxÞ Pn

i ðxÞ dx; n ¼ 1; 2; i ¼ 2; 3: ð15Þ

Although for special forms of p.d.f. it is possible to calculate mean and variance in closed
form, in general this chance is denied.

In this paper, we analyse small variation of the random parameters. When x is small, a
series expansion of equations (13) and (14) can be performed, so that the statistical
moments of the energy flow can be determined for any p.d.f. in closed form [9, 10].

Expanding equations (13) and (14) in power series up to the first order around x ¼ 0, we
have

Pi ’ Pi jx¼0þ
@Pi

@x

����
x¼0

x; i ¼ 2; 3

provided that @Pi @xjx¼0 exists and it is finite (see later on).
Thus, the energy flows can be written as

P3 ’ C30 þ C31x

P2 ’ C20 þ C21x ð16Þ

where

C30 ¼
a

2Bd
; C31 ¼

að2B � AÞ
2B2d

:

C20 ¼ �
kG0

aþ mZo
2kG0

Bd
; C21 ¼

kG0
aðA � 2BÞ þ ZmoðA� BÞ

2kG0
B2d

:
ð17Þ

Consequently the first two statistical moments of P2 and P3 are

mP3
¼ C30 ; s2

P3
¼ C2

31
s2

x

mP2
¼ C20 ; s2

P2
¼ C2

21
s2

x:
ð18Þ

These results deserve some comments. The chance of obtaining equations (16) is related to
the existence of @Pi=@xjx¼0, i.e. to the regularity of PiðxÞ. In the following, before accepting
results and conclusions derived from equation (16), a preliminary check on C31 and C21 is
made to be sure that these functions behave sufficiently well around x ¼ 0. Nevertheless,
theoretical considerations on the legitimate use of equation (16) can be stressed in general
(see Appendix C).

Although a first-order Taylor expansion is used, that is valid under the assumption of
small perturbations, the analysis allows quite general conclusions. In fact, equations (18)
are valid whatever the p.d.f. of x. Moreover, s2

P3
and s2

P2
are explicitly related to s2

x, i.e. to
the dispersion of the joint stiffness. In this way the coefficients C31 and C21 play the role of
amplification or attenuation factors of the joint dispersion. Since they depend on o as
indicated by equation (17), some important properties of sP3

and sP2
, when varying the

frequency, can be predicted following the analysis outlined in the next sections.
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5. DEFINITION OF A CONFIDENCE FACTOR

To understand whether the mean may well represent the behaviour of the energy flow, a
confidence factor can be defined as

fc ¼
m

s

��� ���: ð19Þ

This is the inverse of the normalised standard deviation. The confidence factor controls the
width of the dispersion band around the mean value. A high value of the confidence factor
corresponds to a narrow dispersion around the mean while a low value implies a large
dispersion of data around the mean.

A meaningful analytical expression of the confidence factor can be found in the case of
the linearised analysis previously developed. From equations (18) and (19), one has

fc3 ¼
mP3

sP3

����
���� ¼ C30

C31

����
���� 1

sx

����
����; fc2 ¼

mP2

sP2

����
���� ¼ C20

C21

����
���� 1

sx

����
����: ð20Þ

The confidence factors (20) are the crucial elements discussed in this paper. They provide
the sought relationships between the power confidence factor and the variance of the
random stiffness. Although C30 , C31 , C20 , C21 are complicated functions of the mobilities
and the system parameters, interesting conclusions can be drawn on the basis of equation
(20) by performing:

* an asymptotic frequency analysis;
* a near-by resonance analysis;
* a coupling strength analysis.

The following section develops these points. Before doing this, it is convenient to rewrite
equations (20) by expressing explicitly the dependence on kG0

:

fc3 ¼
k2
G0
dþ 2kG0

oðbZþ gÞ þ o2

2kG0
oðbZþ gÞ þ 2o2

�����
����� 1

sx

����
����

fc2 ¼
ðkG0

aþ ZmoÞðk2
G0
dþ 2kG0

oðbZþ gÞ þ o2Þ

k2
G0
oð2abZþ 2ag� ZmdÞ þ 2kG0

ao2 þ Zmo3

�����
����� 1

sx

����
����: ð21Þ

6. ANALYSIS OF THE CONFIDENCE FACTOR

An asymptotic analysis can be developed to provide the limit values of fc3 and fc2 when
o tends to infinity: they provide the trend of the power data dispersion as the frequency
increases.

First, an asymptotic analysis of the confidence factors in equation (21) is performed.
Table 1 summarises the main results, while the calculations are reported in Appendix A.
Thus, it can be proved that

lim
o!1

fc3 ¼
1

2

1

sx

����
����; lim

o!1
fc2 ¼

1

sx

����
����: ð22Þ
Table 1

Asymptotic trend for quantities appearing in equations (11)

Quantity RefMg ImfMg jMj b g d a m

Tend to zero as 1=o 1=o 1=o 1=o 1=o 1=o2 1=o3 1=o2
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Equations (22) provide a useful information for a complete statistical analysis of the
energy flow.

It must be noticed that the difference between the two factors can be attributed to the
joint’s loss factor Z. In fact, when Z is equal to zero both factors assume the same value
j1=2sxj, P3 being equal to P2. In the case of a damped joint, P3 is not equal to P2 and the
confidence factor of P2 is larger than the one related to P3.

The analysis of equations (20) reveals that C30 , C31 , C20 , C21 depend on the mobilities of
the uncoupled systems I and II. Since the mobilities have a peak in correspondence to any
resonance frequency, it is suggested that the confidence factors fc3 and fc2 present critical
values in correspondence to any of the resonance frequencies onI

and onII
of I and II,

respectively. If the dampings of I and II are not too high, very large values of Mij are
expected when o tends to on. Since the analysis is performed in a frequency range close to
the studied eigenfrequencies, the contribution of the other modes of a multi-degree-of-
freedom system can be neglected at least when the modal overlap is sufficiently low. By
putting EI ¼ o2 � o2

nI
and EII ¼ o2 � o2

nII
, the behaviour of the terms appearing in

equation (21) are summarised in Tables 2 and 3 for o2 ! o2
nI

and o2 ! o2
nII
, respectively.

By these results it follows that fc3 ðonÞ tends to infinity for any natural frequency on of I
and II. On the contrary, the confidence factor fc2 ðonÞ tends to infinity for any natural
frequency on of II, while, in correspondence of the natural frequencies of I, a finite value
of fc2 is obtained.

The presence of the mentioned critical points provides, close to the resonance of either I
or II, a large amplification of the confidence factors of the power flow, i.e. the dispersion
on the results is low. This effect, on the basis of the developed asymptotic analysis, tends to
be cancelled when the frequency increases, leading to the ‘stationary’ (non-oscillatory)
trend expressed by equations (22).

Therefore, there are two different frequency regions where the confidence factors
present different behaviours: the first one is rather oscillatory, while the second
one is almost uniform. These two different trends are related to the value of kG0

.
Considering equations (21), it is apparent that, when both the following conditions hold
for fc3 :

o2
4k2

G0
dþ 2kG0

oðbZþ gÞ

2o2
42kG0

oðbZþ gÞ ð23Þ
Table 2

Behaviour of quantities appearing in equations (11) for o2 ! o2
nI
, i.e. EI ! 0

Quantity b g d m a

Tends to 1=E2I EI 1=E4I 1=E4I 1=E4I

Table 3

Behaviour of quantities appearing in equations (11) for o2 ! o2
nII

, i.e. EII ! 0

Quantity b g d m a

Tends to 1=E2II EII 1=E4II Finite value 1=E2II
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and for fc2

Zmo3
4ðkG0

aþ ZmoÞ k2
G0
dþ 2kG0

oðbZþ gÞ
h i

þ kG0
ao2

Zmo3
42kG0ao2 þ k2

G0
oð2abZþ 2ag� ZmdÞ ð24Þ

then we obtain

fc3 ’
o2

2o2

����
���� 1

sx

����
���� ¼ 1

2

1

sx

����
����

and

fc2 ’
Zmo3

Zmo3

����
���� 1

sx

����
���� ¼ 1

sx

����
����:

As we can see the confidence factors tend to become constant and equal to the asymptotic
value given in equation (22).

The conditions (23) and (24) help in defining the two frequency ranges separating the
oscillatory from the non-oscillatory regions. In order to estimate these values, a non-
dimensional mobility expression is required.

Choosing the non-dimensional form for the eigenfrequencies, *oon ¼ on=o, the mobility
of a modal system can be written as follows:

Mij ¼
w

mTo

X
n

jnðziÞjnðzjÞ

*oo2
nZþ jð1� *oo2

nÞ

where j is the eigenfunction, mT is the mass of the system and w is a constant: its value is
w ¼ 2 for one-dimensional structures (beams) and w ¼ 4 for two-dimensional structures
(plates). Equation (11) can be rewritten in a non-dimensional way as

*bb ¼
mTo
w

b; *gg ¼
mTo
w

g; *dd ¼
mTo
w

d ð25Þ

so that equations (23) and (24) become

o2
4

w2kG0

mT

kG0

mTo2
*ddþ *bbZþ *gg

� 	

2o2
4

w2kG0

mT
ð *bbZþ *ggÞ ð26Þ

and

Zo3
4 ðkG0

w
mTo

Ref *MM33g þ ZoÞ k2
G0

w2

m2
To2

*ddþ 2kG0
o

w
mTo

ð *bbZþ *ggÞ
� �

þ kG0
o2 w

mTo
Ref *MM33g ð27Þ

Zo3
42kG0

o2 w
mTo

Ref *MM33g þ k2
G0
o

w2

m2
To2

2 *bbZRef *MM33g þ 2*gg� Z*dd

 �

:

Since the mobility has a peak at resonance, it is possible to maximise the non-dimensional
quantities. At resonance, *oo is equal to unity and the value of the eigenvector product,
jnðxiÞjnðxjÞ can be maximised by substituting the unit value; therefore, the maxima of the
non-dimensional quantities are

*MM ’
1

Z
; Ref *MMg ’

1

Z
; Imf *MMg ’ 0; *bb ’

2

Z
; *gg ’ 0; *dd ’

4

Z2
: ð28Þ
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Substituting equation (28) into equations (26) and (27), one has

o4 �
2w2kG0

mT
o2 �

4w2k2
G0

m2
TZ2

40

o2
4

w2kG0

mT
ð29Þ

and

Zo6 �
4kG0

w
mT

þ
kG0

w
mTZ

� 	
o4 �

8k2
G0
w2

m2
TZ

o2 �
4k3

G0
w3

m3
TZ3

40

Zo4 �
2kG0

w
mTZ

o2
40: ð30Þ

Since Z � 1, the first equation in equation (29) has the following two solutions:

o2 ¼ 
2wkG0

mTZ

but the second one restricts the frequency range of the asymptotic (non-oscillatory)
behaviour of fc3 to the following value:

o2
4

2wkG0

mTZ
ð31Þ

For the second equation (30), the following condition can be written:

o2
4

2wkG0

mTZ2
ð32Þ

while the first equation (30), with Z � 1, becomes

o2
� 3

�
kG0

w
mTZ2

o2
� 2

�
8k2

G0
w2

m2
TZ2

o2 �
4k3

G0
w3

m3
TZ6

40 ð33Þ

whose solution yields

o2
4

wkG0

2mTZ2
: ð34Þ

Comparing equation (34) with equation (32) it is obvious that the last condition can
provide a reference frequency separating the oscillatory and non-oscillatory regions of the
confidence factor fc2 . Moreover, this transition frequency has a lower value for fc3 .

7. ANALYSIS OF OTHER RESONANT AND NON-RESONANT SYSTEMS

In this section, the other three dynamic systems indicated in Section 2 are briefly
described and the behaviour of their confidence factors is presented. Calculations are
developed in detail in Appendix B.

7.1. WAVE GUIDE WITH RANDOM YOUNG MODULUS

The longitudinal wave field displacement of the uniform infinite rod, shown in Fig. 2, is
given by

wðz; tÞ ¼ Wejðot�kzÞ: ð35Þ

The longitudinal force in the rod is given by

Nðz; tÞ ¼ ES
@w

@z
ð36Þ



0 0 

w 
-∞ ∞

ζ

Figure 2. The wave guide.
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S being the cross-sectional area of the rod. The energy flow at abscissa z ¼ %zz is determined
by

P ¼
1

2
Re N ’ww*f gjz¼%zz ð37Þ

that, by the equations (35) and (36), becomes

P ¼ �
1

2
So2

ffiffiffiffiffiffiffi
rE

p
Wj j2: ð38Þ

It is assumed that Young’s modulus of the rod is random, i.e. E ¼ E0ð1þ xÞ, E0 being the
reference value, and x a non-dimensional random variable. By a perturbation technique,
mean, standard deviation and confidence factor of the power flow are calculated. In
particular for fc we have

fc ¼
Pjx¼0

@P=@E
��
x¼0

E0

�����
����� 1

sx

����
����: ð39Þ

By substituting equation (38) into equation (39), the confidence factor appears to be a
constant function not depending on frequency, i.e.

fc ¼ 2
1

sx

����
����: ð40Þ

7.2. RESONATOR WITH RANDOM YOUNG MODULUS

The system considered is a finite continuous system exited at an arbitrary point by a
force F1. Its Young’s modulus is a random variable, E ¼ E0ð1þ xÞ and the system
mobility has the general expression

Mqr ¼ oY
X

n

jnðzqÞjnðzrÞ
o2

nZþ jðo2 � o2
nÞ

ð41Þ

Y being a coefficient depending on the system parameters. The energy flow is

P ¼
1

2
jF j2RefM * g ð42Þ

and the confidence factor is evaluated by a perturbation technique to yield

fc ¼
RefMgjx¼0

@RefMg=@on @on=@E
��
x¼0

E0

�����
����� 1

sx

����
����: ð43Þ

In this case, the system being modal, the confidence factor is frequency dependent, but the
asymptotic analysis shows that fc tends to a constant value, given by

lim
o!1

fc ¼
1

sx

����
����: ð44Þ



0 ζ 

wi 
-∞

wr 

M(ω) 

Figure 3. Wave guide with random Young’s modulus coupled with a resonator.
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7.3. WAVE GUIDE WITH RANDOM YOUNG MODULUS COUPLED WITH A RESONATOR

Fig. 3 shows a semi-infinite rod connected with a resonator. The wave field on the guide
consists of a pair of waves, incident and reflected, i.e. expressed by

wi ¼ Wiejðot�kzÞ; wr ¼ WrejðotþkzÞ: ð45Þ

The total displacement field is w ¼ wi þ wr, and the complex reflection coefficient is
defined as: r ¼ Wr=Wi.

The forces N in the wave guide are given by:

Ni ¼ ES
@wi

@z
; Nr ¼ ES

@wr

@z
; N ¼ Ni þ Nr ð46Þ

and the energy flow at the origin of the reference frame is

P ¼
1

2
Re N ’ww*f gjz¼0¼

1

2
S

ffiffiffiffiffiffiffi
Er

p
o2 Wi

�� ��2 1� jrj2
� 

: ð47Þ

fc is computed again by a perturbation technique. In Appendix B the full development is
presented. The confidence factor is frequency dependent, because a resonator is included
in the system. The behaviour of the mobility for o ! 1 is reported in Table 1. Thus, it
can be proved that

lim
o!1

fc ¼
1

sx

����
����: ð48Þ

7.4. WAVE GUIDE–JOINT WITH RANDOM STIFFNESS–WAVE GUIDE

Two equal semi-infinite, uniform, rods are connected as shown in Fig. 4. The joint has a
random stiffness: kG ¼ kG0

ð1þ xÞ. An incoming incident wave wi
1 propagates along rod 1

towards the origin. A reflected wave wr
1 is generated in rod 1 at the joint location ðz1 ¼ 0Þ

and a wave wt
2 is transmitted along rod 2. With the reference frame of Fig. 4, the three

waves can be expressed by

wi
1 ¼ Wi

1e
jðotþk1z1Þ; wr

1 ¼ Wr
1e

jðot�k1z1Þ wt
2 ¼ Wt

2e
jðot�k2z2Þ: ð49Þ

The reflection and the transmission coefficients are, respectively:

r ¼
Wr

1

Wi
1

; t ¼
Wt

2

Wi
1

: ð50Þ

Their values are calculated from the equilibrium conditions:

N1jz1¼0¼ N2jz2¼0; kð1þ jZÞðw1 þ w2Þjz1;2¼0¼ �N2jz2¼0 ð51Þ
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t 

ζ2 ζ1 

w1
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r 
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 kG(1+jη) ∞ ∞

Figure 4. Wave guide–random joint–wave guide.
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so that one has, for the above coefficients

r ¼
½kGð1þ BÞ � ouZ�2 þ o2u2 � 2BkG½kGð1þ BÞ � ouZ� þ j2kGoBu

½kGð1þ BÞ � ouZ�2 þ o2u2
ð52Þ

t ¼ �
2kG½kGð1þ BÞ � ouZ� þ j2kou

½kGð1þ BÞ � ouZ�2 þ o2u2
ð53Þ

where the coefficient B, u and c are, respectively:

B ¼
S2

ffiffiffiffiffiffiffiffiffiffi
E2r2

p
S1

ffiffiffiffiffiffiffiffiffiffi
E1r1

p ; u ¼
S2

ffiffiffiffiffiffiffiffiffiffi
E2r2

p
1þ Z2

; c ¼ uðZþ jÞ: ð54Þ

The energy flows calculated at z1 ¼ 0 and z2 ¼ 0 are, respectively:

P1 ¼
1

2
Re N1 ’ww

*
1

� ���
z1¼0

¼
1

2
o2S1

ffiffiffiffiffiffiffiffiffiffi
E1r1

p
Wi

1

�� ��2 1� jrj2
� 

ð55Þ

P2 ¼
1

2
Re N2 ’ww

*
2

� ���
z2¼0

¼
1

2
o2S2

ffiffiffiffiffiffiffiffiffiffi
E2r2

p
Wi

2

�� ��2jtj2: ð56Þ

Finally, the confidence factors obtained by the perturbation technique, are:

fc1 ¼
P1jx¼0

@P1=@kG

��
x¼0

kG0

�����
����� 1

sx

����
����; fc2 ¼

P2jx¼0

@P2=@kG

��
x¼0

kG0

�����
����� 1

sx

����
����: ð57Þ

A mathematical manipulation of the confidence factors shows that fc2 decays
monotonically with the frequency, until it reaches the constant value

fc2 ¼
1

2

1

sx

����
����: ð58Þ

The confidence factor fc1 depends on the frequency like a singular-modal resonator,
because two waves, incident and reflected, propagate along rod 1 and interfere. The
asymptotic value reached by fc1 is given by

lim
o!1

fc1 ¼
1

sx

����
����: ð59Þ

Table 4 summarises the obtained asymptotic behaviours of the confidence factors.

8. NUMERICAL RESULTS

In this section, numerical results obtained by a Monte-Carlo simulation are performed
to validate the theoretical results.

Let us examine three numerical examples related to two coupled resonators. The study
of these systems is interesting because it shows the trend of the confidence factor for three
systems with different modal density functions.



Table 4

Confidence factors for o ! 1

Constant
value

Asymptotic
value

Random w. g. fc ¼ j2=sxj
Random r. fc ! j1=sxj
Random w. g.–r. fc ! j1=sxj
w. g.–random j.–w. g. fc1 ! j1=sxj fc2 ! j1=ð2sxÞj
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The first system consists of two coupled beams: bending waves are considered, where the
modal density varies as 1=

ffiffiffiffi
o

p
.

The second system analysed consists of two coupled plates. Also in this case bending
waves are studied. The modal density is independent of frequency.

The third system is a cylindrical thin shell coupled with a transversely flexural plate. An
analytical expression for the modal density of this mechanical system does not exist, but it
is possible to use, as an approximate value, the modal density of a thin pipe. This increases
as

ffiffiffiffi
o

p
until a particular frequency, given by the following equation, is reached [2]:

o ¼
1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rð1� n2Þ

s
:

Beyond this frequency the modal density is constant.
These three systems have a joint random stiffness defined by equation (10). A Gaussian

probability density function is chosen for the random variable x, with zero mean and
standard deviation sx ¼ 0:05.

8.1. BEAM–JOINT WITH RANDOM STIFFNESS–BEAM SYSTEM

Two transversely vibrating supported beams are coupled together through a non-
conservative joint as described in Fig. 5. The mobilities appearing in equations (6) and (7)
are given by

M12 ¼
2o

rISILI

X
n

jInðz1ÞjInðz2Þ
ZIo

2
In þ jðo2 � o2

InÞ

M22 ¼
2o

rISILI

X
n

jInðz2Þ
2

ZIo
2
In þ jðo2 � o2

InÞ

M33 ¼
2o

rIISIILII

X
n

jIInðx3Þ
2

ZIIo
2
IIn þ jðo2 � o2

IInÞ
: ð60Þ

Subscripts I and II denote the first and second beam, respectively. The expressions of the
eigenfunctions, wavenumbers and natural frequencies are, respectively:

jn ¼ sin
npz
L

� 	
; kn ¼

np
L
; on ¼ k2

n

ffiffiffiffiffiffiffiffi
EI

rA

s
ð61Þ

where I is the section second moment of area and S is the area of the cross-section.
The values of the physical parameters of the system are reported in Table 5.
The first beam is excited by a harmonic point force acting at z1 ¼ 0:3 m and its

amplitude is F1 ¼ 1 N. The joint is connected between the point of the first beam at
z2 ¼ 0:7 m and the point of the second beam at x3 ¼ 0:4 m.



ξ

ξ3
II

I

ζ
ζ2

ζ1

F1

  kG(1+jη)

Figure 5. Two coupled beams.

Table 5

Physical parameters of the two beams

E (Pa) r (kgm3) h (m) L (m) I (m4) Z

First beam 2:1� 1011 7800 0.01 1.5 8:3� 10�10 0.01
Second beam 2:1� 1011 7800 0.005 2.5 5:2� 10�11 0.01

3 

ξ II 

ξ II 

II 

 

  kG(1+jη)   

F1 

2 
I 
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ξ I 

ξ I 

Figure 6. Two coupled plates
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The analysis presented here is aimed to verify the theoretical conclusions drawn in
Section 5. In particular, Monte-Carlo numerical simulations are performed to emphasise
the behaviour of the confidence factor at high frequencies under different strength
coupling conditions, and close to resonance.

Simulations corresponding to two values of kG0
are considered, that are representative

of two different strength conditions. The first value, 1000 N=m, is an order of magnitude
less than the static stiffness of the beams, while the second, 10 000 N=m, has the same order
of magnitude.

In Fig. 8, the case of low strength coupling, 1000 N=m, is shown. The confidence factor
fc2 of the two power flows, obtained by using the analytical expressions given in equations



2 

F1

1

y 

x 

z 

3

kG(1+jη) 

Figure 7. Plate coupled with a sector}908}of a cylindrical shell.

Figure 8. Confidence factor fc2 of the beam–joint with random stiffness–beam system, kG0
¼ 1000N=m; }},

analytical solution; -.-.-.-.-., Monte-Carlo solution.
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(21) and a Monte-Carlo simulation, is plotted vs circular frequency. Two different trends
of the confidence factors are observed: in the frequency range 0–15 000 quite strong
oscillations of the curves appear, while, beyond this range, a stabilisation of fc2 occurs, i.e.
the asymptotic behaviour is reached as predicted by equations (25), i.e.: j1=sxj ¼ 20.

Fig. 9 shows the confidence factor fc3 . Also in this figure the analytical expression and
the Monte-Carlo simulation are plotted for kG0

¼ 1000 N=m. In this case the non-
oscillatory trend starts from 1000 rad=s and the asymptotic behaviour predicted by
equations (25) is reached: 1=ð2sxÞ

�� �� ¼ 10.
A more accurate analysis of the curves in the range 0–350Hz of the oscillations

presented in Figs 10 and 11, shows that the peaks are located in correspondence with the



Figure 9. Confidence factor fc3 of the beam–joint with random stiffness–beam system, kG0
¼ 1000N=m; }}

analytical solution; -.-.-.-.-., Monte-Carlo solution.

Figure 10. Confidence factor fc2 of the beam–joint with random stiffness–beam system, kG0
¼ 1000N=m; }}

analytical solution; -.-.-.-.-., Monte-Carlo solution.
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Figure 11. Confidence factor fc3 of the beam–joint with random stiffness–beam system, kG0
¼ 1000N=m; }}

analytical solution; -.-.-.-.-., Monte-Carlo solution.

Table 6

First six natural frequencies of the two beams

o1 o2 o3 o4 o5 o6

First beam 65 262 589 1048 1637 2358
Second beam 12 47 106 189 295 425
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natural frequencies of the two subsystem I and II. The first six natural frequencies of the
two subsystems are listed in Table 6.

In Fig. 12 and 13 the confidence factors fc2 and fc3 , are plotted following the pattern of
Figs 8 and 9. The reference stiffness is equal to 10 000 N=m. The curves of Fig. 12 show a
decrease of the amplitude of oscillation, but in the frequency range examined no
asymptotic behaviour is observed. The confidence factor fc3 plotted in Figure 13 shows an
asymptotic trend beyond 4000 rad/s and the value predicted in equation (25) is reached:
1=ð2sxÞ
�� �� ¼ 10.

An asymptotic value is reached also in the Monte-Carlo approach, although it differs
slightly from the value predicted by the theoretical analysis. This difference can be
explained by the use of a finite number of realizations in the Monte-Carlo method (200
realizations). The transition frequencies between the oscillatory and the non-oscillatory
frequency region can be calculated by the conditions (31) and (32). Table 7 shows the
values of the transition frequencies for both values of kG0

.
The confidence factors plotted in Figs 8, 9, 12 and 13 agree sufficiently well with the

results shown in Table 7.



Figure 12. Confidence factor fc2 of the beam–joint with random stiffness–beam system, kG0
¼ 10 000N=m:

}} analytical solution, -.-.-.-.-., Monte-Carlo solution.

Figure 13. Confidence factor fc3 of the beam–joint with random stiffness–beam system, kG0
¼ 10 000N=m:

}} analytical solution; -.-.-.-.-., Monte-Carlo solution.
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Table 7

Onset of asymptotic trend for two coupled beams

kG0
¼ 1000N/m kG0

¼ 10 000N/m

For fc2 o > 5000 o > 16000
For fc3 o > 500 o > 1600
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It is clear that in the first case the asymptotic (non-oscillatory) behaviour is reached
faster than in the second case. Moreover, the amplitude of oscillations of the confidence
factors are larger in the second case. This confirms the theoretical prediction stated in
Section 5.

8.2. PLATE–JOINT WITH RANDOM STIFFNESS–PLATE SYSTEM

The second case analysed consists of two bending rectangular plates simply supported
along the four edges and coupled together through a non-conservative joint (Fig. 6).
Mobilities are determined as

M12 ¼
4o

rIhISI

X
n;m

jInmðz1; x1ÞjInðz2; x2Þ
ZIo

2
Inm þ jðo2 � o2

InmÞ

M22 ¼
4o

rIhISI

X
n;m

jInmðz2; x2Þ
2

ZIo
2
Inm þ jðo2 � o2

InmÞ

M33 ¼
4o

rIIhIISII

X
n;m

jIInmðz3; x3Þ
2

ZIIo
2
IInm þ jðo2 � o2

IInmÞ
: ð62Þ

SI and SII, hI and hII are the plate surface areas, and the thickness of each plate,
respectively. The mode shapes, wavenumbers and natural frequencies are given by

jnm ¼ sin
npz
Lz

� 	
sin

npz
Lx

� 	
; knm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np
Lz

� 	2

þ
mp
Lx

� 	2
s

ð63Þ

onm ¼ k2
nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

12rð1� n2Þ

s
:

The first plate is excited by a harmonic force acting at (z1 ¼ 0:1 and 0:15 m) and its
amplitude is F1 ¼ 1 N. The joint connects the point (z2 ¼ 0:45 and 0:3 m) of the first plate
with the point (z3 ¼ 0:23 and 0:34 m) of the second plate. The physical parameters of the
system are given in Table 8.

As in the previous case, two different values of the reference stiffness are used to account
for different coupling conditions: kG0

¼ 1000 N=m and kG0
¼ 10 000 N=m. Figures 14 and

15 show the confidence factors fc2 and fc3 , for kG0
¼ 1000 N=m. By analysing these figures

one can observe (Fig. 14) that the asymptotic value, fc2 ¼ 20, is reached beyond 10 000
rad=s while fc3 assumes the asymptotic value 10 beyond 1000 rad=s, as predicted by the
theoretical expressions (Fig. 15).

Figures 16 and 17 show the confidence factors for kG0
¼ 10 000 N=m. The confidence

factor fc2 shows a decrease of the oscillation amplitudes and it tends to the predicted
asymptotic value 20. The confidence factor fc3 reaches the asymptotic value 10 beyond
3000 rad=s.



Table 8

Physical parameters of the two plates

E (Pa) r (kgm3) n h (m) Lz (m) Lx (m) Z

First plate 2:1� 1011 7800 0.28 0.002 1.0 1.0 0.01
Second plate 2:1� 1011 7800 0.28 0.0025 1.5 1.0 0.01

Figure 14. Confidence factor fc2 of the plate–joint with random stiffness–plate system, kG0
¼ 1000N=m: }},

analytical solution; -.-.-.-.-., Monte-Carlo solution.
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In Table 9 the values of the transition frequencies calculated by equations (31) and (32)
are reported. The results obtained by the Monte-Carlo simulation agree sufficiently well
with those of Table 9 and with the theoretical statement of Section 5.

8.3. SHELL–JOINT WITH RANDOM STIFFNESS–PLATE SYSTEM

In a third numerical case the coupling of two two-dimensional structures is considered.
Figure 7 shows the model: a sector}908}of a cylindrical shell is connected to a plate by

a hysteretic-elastic joint. In Table 10 the values of the physical parameters are reported.
The shell and the plate are simply supported along all the sides. The shell is forced at point
1 (x ¼ 0:55 m, y ¼ 1 m, z ¼ 0:11 m) with a harmonic force, F1, directed along the z-axis
and amplitude 1 N. The joint connects point 2 (x ¼ 0:55 m, y ¼ 0:2 m, z ¼ 0:11 m) of the
shell and point 3 (x ¼ 0:55 m, y ¼ 0:2 m, z ¼ 0 m) of the plate.

The mobilities M12, M22, M33 are determined numerically by a finite element method.
One hundred and fifty eigenvalues are calculated for the shell (o1 ¼ 779 rad=s,
o150 ¼ 7052 rad=s) and for the plate (o1 ¼ 75 rad/s, o150 ¼ 8453 rad=s). The mobilities
are directly calculated as the ratio between the velocity, provided by the numerical solution



Figure 15. Confidence factor fc3 of the plate–joint with random stiffness–plate system, kG0
¼ 1000N=m; }}

analytical solution; -.-.-.-.-., Monte-Carlo solution.

Figure 16. Confidence factor fc2 of the plate–joint with random stiffness–plate system, kG0
¼ 10 000N=m;

}}, analytical solution; -.-.-.-.-., Monte-Carlo solution.
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Figure 17. Confidence factor fc3 of the plate–joint with random stiffness–plate system, kG0
¼ 10 000N=m;

}} analytical solution; -.-.-.-.-., Monte-Carlo solution.

Table 9

Onset of asymptotic trend for two coupled plates

kG0
¼ 1000N/m kG0

¼ 10 000N/m

For fc2 o > 1300 o > 4200
For fc3 o > 130 o > 420

Table 10

Physical parameters for the shell-plate case

E (Pa) r (kgm3) h (m) L1 (m) L2 (m) L3 (m) R (m) Z

Shell 2:1� 1011 7800 0.0015 1.2 0.7 0.01
Plate 2:1� 1011 7800 0.0015 0.7 0.9 0.01
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of the finite element model, and the force:

MijðoÞ ¼
viðoÞ
FjðoÞ

: ð64Þ

The value of the joint characteristic, kG0
, is equal to 1000 N=m.

The power flows and their statistics are calculated using the numerical values by means
of Equations (64),(13), (14) and (20).



Figure 18. Confidence factor fc2 of the shell–joint with random stiffness–plate system, kG0
¼ 1000N=m; }},

analytical solution; -.-.-.-.-., Monte-Carlo solution.
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Figures 18 and 19 show the confidence factors plotted vs frequency. Also in this case it is
possible to see the two different frequency regions. In the region between 0 and 1100 Hz
the confidence factor fc2 presents an oscillatory behaviour. Beyond 600 Hz , the oscillatory
amplitude is very narrow around the value 20 predicted in equation (22). The oscillatory
frequency region of the confidence factor fc3 is observed between 0 and 300 Hz, while in the
non-oscillatory region the asymptotic value is equal to 10: also in this case equations (22)
predict the correct value.

Under conditions (31) and (32) of this numerical example, the constant w has not got a
defined value. In fact, w ¼ 4 is correct only for two coupled plates, but it is unknown for a
shell. However, using also in this case w ¼ 4, the graphics of the confidence factors, plotted
in Figs 16 and 17, show that this value estimates well the effective condition. The transition
frequencies are shown in Table 11.

9. REMARKS AND CONCLUSIONS

The present work is aimed to provide a better theoretical understanding of the statistical
reliability of an energy flow analysis when random uncertainties in the parameters of the
vibrating system are involved. It is expected that this approach adds some important
information on the energy flow confidence, that may be used for further developments
related to SEA.

An isolated wave guide shows a constant confidence factor, fc ¼ 2=s, which is independent
of frequency. The statistics of the power flow are the same at low and high frequency.

If two wave guides are coupled and an incident and a reflected wave propagate along the
first one, while only a transmitted wave propagates along the second one, the confidence
factor associated with the first wave guide shows a behaviour like that of a single-mode
resonator. In a first frequency range the confidence factor presents two peaks, a minimum



Figure 19. Confidence factor fc3 of the shell–joint with random stiffness–plate system, kG0
¼ 1000N=m; }},

analytical solution; -.-.-.-.-., Monte-Carlo solution.

Table 11

Onset of asymptotic trend for the shell-plate case

kG0
¼ 1000N/m

For fc2 o > 2000
For fc3 o > 200
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and a maximum, respectively; after these peaks the curve tends monotonically to a limit
value. The interference between the incident and the reflected waves causes this behaviour
in the low-frequency range. In the second wave guide only a single wave propagates and
the confidence factors tends monotonically to a constant trend without showing any peak.

When coupling two resonators, a transition frequency appears and an asymptotic limit
of the confidence factor exists. The following conclusions can be drawn:

* the greater the coupling the more the asymptotic trend is displaced towards high-
frequency values;

* as the coupling strength increases, larger fluctuations of the confidence factor are
observed;

* the confidence factor presents peaks in correspondence with the resonances of the
two uncoupled subsystems.

It seems clear that any dynamic system, resonator or wave guide, shows an asymptotic
constant value of the confidence factor. Before the transition frequency the confidence
factor of resonators and coupled wave guides shows a highly oscillating behaviour.
Beyond the transition frequency these systems show the same trend of the infinite system.

Although the present analysis is not directly related to SEA and refers to general
statistical properties of the energy flows, nevertheless a link with some SEA statements can
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be stressed. In fact, the statistics here considered are based on an ensemble average, related
to a random joint perturbation, directly performed on an exact expression of the
transmitted power flow. This seems not to be the case of SEA, where no statistical
moments are formally computed on the energy flow, although occasionally some
arguments are developed to account for the randomness of the parameters. Rather, SEA
performs explicitly spectral averages on the response of the system subjected to a random
excitation. Thus, the results obtained in this paper cannot be transferred directly to SEA.

It is generally recognized that SEA provides a more reliable estimate of the system
response for weak coupling and high modal overlap. With these premises it seems
reasonable to relate to SEA the asymptotic results here determined. More precisely:

* in the low-frequency region the confidence factor is highly oscillating, implying that
the energy flow mean value is not significantly representative of the analysed
population at low frequency, but at high frequency only;

* since a weak coupling stabilizes the confidence factor, in that the asymptotic trend is
displaced towards the lower frequencies as stated in section 4, the energy flow mean
value is more reliable for weak coupling conditions.
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APPENDIX A

Let us study the behaviour of the mobility for o ! 1. A general expression of the
mobility is

Mqr ¼ oY
X

n

jnðzqÞjnðzrÞ
o2

nZþ jðo2 � o2
nÞ

where Y is a coefficient depending on the system parameter. Let us separate the real and
the imaginary parts of the mobility:

RefMqrg ¼ Y
X

n

jnðzqÞjnðzrÞ
oo2

nZ

o4
nZ2 þ ðo2 � o2

nÞ
2

ImfMqrg ¼ �Y
X

n

jnðzqÞjnðzrÞ
oðo2 � o2

nÞ

o4
nZ2 þ ðo2 � o2

nÞ
2
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When considering the previous values of the real and imaginary parts for o ! 1, we must
include the natural frequencies tendency to 1 to guarantee the convergence of the series.

Therefore, by writing explicitly some terms of the series one has

RefMqrg ¼ Y j1ðzqÞj1ðzrÞ
oo2

1Z

o4
1Z

2 þ ðo2 � o2
1Þ

2
þ � � �

"

þ jnðzqÞjnðzrÞ
oo2

nZ

o4
nZ2 þ ðo2 � o2

nÞ
2
þ � � �

þjNðzqÞjNðzrÞ
oo2

NZ

o4
NZ2 þ ðo2 � o2

NÞ
2

#

ImfMqrg ¼ �Y j1ðzqÞj1ðzrÞ
oðo2 � o2

1Þ

o4
1Z

2 þ ðo2 � o2
1Þ

2
þ � � �

"

þ jnðzqÞjnðzrÞ
oðo2 � o2

nÞ

o4
nZ2 þ ðo2 � o2

nÞ
2
þ � � �

þjNðzqÞjNðzrÞ
oðo2 � o2

NÞ

o4
NZ2 þ ðo2 � o2

NÞ
2

#
:

When o and oN ! 1, the previous relationships become:

RefMqrg ¼ Y j1ðzqÞj1ðzrÞ
1

o3
þ � � �jnðzqÞjnðzrÞ

1

o3
þ � � �jNðzqÞjNðzrÞ

1

o

� �

ImfMqrg ¼ �Y j1ðzqÞj1ðzrÞ
1

o
þ � � �jnðzqÞjnðzrÞ

1

o
þ � � �jNðzqÞjNðzrÞ

0

o3

� �
:

It is then obvious than both the real and the imaginary part tend to zero as 1=o so that the
modulus of the mobility also tends to zero as 1=o.

APPENDIX B

B.1. WAVE GUIDE WITH RANDOM YOUNG’S MODULUS

Energy flow is calculated as follows [see equation (37)]:

P ¼
1

2
Re �joS

ffiffiffiffiffiffiffi
Er

p
We�jkzejot


 �
�joW * ejkze�jot
� n o

¼ �
1

2
So2

ffiffiffiffiffiffiffi
rE

p
jW j2:

The confidence factor [see equation (39)] is

fc ¼
�1

2
So2

ffiffiffiffiffiffiffiffi
E0r

p
jW j2

�1
4 So

2
ffiffiffiffi
r
E0

q
jW j2E0

�������
�������

1

sx

����
����:

This is a constant value as indicated in equation (40).
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B.2. RESONATOR WITH RANDOM YOUNG MODULUS

For the sake of simplicity, the calculus is developed by considering a transversely
vibrating beam. By equations (41)–(43), the confidence factor can be written as

fc ¼
oY

P
n jnðzqÞjnðzrÞo

2
n0Z=ðo

2 � o2
n0Þ

2

oY
P

n jnðzqÞjnðzrÞ½2Zon0ðo2 þ o2
n0Þ=ðo

2 � o2
n0Þ

3�ð1=2Þðnp=LÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðI=E0rSÞ

p
E0

�����
����� 1

sx

����
����:

By simplifying, one obtains

fc ¼

P
n jnðzqÞjnðzrÞo

2
n0Z=ðo

2 � o2
n0Þ

2P
n jnðzqÞjnðzrÞ½Zon0ðo2 þ o2

n0Þ=ðo
2 � o2

n0Þ
3�on0

�����
����� 1

sx

����
����:

As o ! 1 the confidence factor behaves as indicated in equation (44).

B.3. WAVE GUIDE WITH RANDOM YOUNG’S MODULUS COUPLED WITH A RESONATOR

From equations (45) and (46) and the definition of a reflection coefficient, the mobility
at z ¼ 0 can be calculated as

M0 ¼
’ww

N

����
z¼0

¼
joðWi þ WrÞejot

joS
ffiffiffiffiffiffiffi
Er

p
ðWi �WrÞejot

�����
z¼0

¼
1þ r

S
ffiffiffiffiffiffiffi
Er

p
ð1� rÞ

and the reflection coefficient is

r ¼ �
1� S

ffiffiffiffiffiffiffi
Er

p
M0

1þ S
ffiffiffiffiffiffiffi
Er

p
M0

:

By using the following relationships

a ¼ �1þ S
ffiffiffiffiffiffiffi
Er

p
RefM0g; b ¼ 1þ S

ffiffiffiffiffiffiffi
Er

p
RefM0g; g ¼ S

ffiffiffiffiffiffiffi
Er

p
ImfM0g

the modulus squared of the reflection coefficient [see equation (47)] is

jrj2 ¼
abþ g2
� 2þ b� að Þ2g2

b2 þ g2
� 2

while the confidence factor becomes

fc ¼

ffiffiffiffiffiffiffi
Er

p
1þ S2Er ImfM0g

2 þRefM0g
2

� 
þ 2RefM0gS

ffiffiffiffiffiffiffi
Er

p� 
RefM0gSErþ

ffiffiffiffiffiffiffi
Er

p
�����

����� 1

sx

����
����:

B.4. WAVE GUIDE–JOINT WITH RANDOM STIFFNESS–WAVE GUIDE

Figure 20 shows the behaviours of the two confidence factors of equations (57). The test
case is: two equal semi-infinite rods (E1 ¼ E2 ¼ 2:1� 1011 Pa, r1 ¼ r2 ¼ 7800 kg m3,
S1 ¼ S2 ¼ 1� 10�4 m2, kG0 ¼ 1000 N=m, Z ¼ 0:01, sx ¼ 0:05). The values predicted by
equations (58) and (59) are reached.

APPENDIX C

Let us consider the equations of the powers P2 and P3 represented in the simpler
form

P3 ¼
a
2d

N3ðxÞ
DðxÞ

; P2 ¼ �P3 �
mZo
2kG0

d
N2ðxÞ
DðxÞ
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with obvious meaning of symbols. Their derivatives are

@P3

@x
¼

a
2d

N 0
3D � N3D

0

D
;

@P2

@x
¼ �

@P3

@x
�

mZo
2kG0

d
N 0

2D �N2D
0

D
:

Thus in order to perform a series expansion, it is necessary that

@Pi

@x

����
x¼0

51; i ¼ 2; 3:

Since d=0, it implies

DðxÞjx¼0=0

or explicitly

k2
G0
w2

mo2
ð *bb

2
þ *gg2Þ þ o2

=2
kG0

w
m

ð *bbZþ *ggÞ: ðC1Þ

Let us introduce the associated inequality

k2
G0
w2

mo2
ð *bb

2
þ *gg2Þ þ o2 > 2

kG0
w

m
ð *bbZþ *ggÞ ðC2Þ

that implies, necessarily, condition (65).
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We are interested to determine a frequency range in which inequality (66) is satisfied. To
this aim, considering: the following condition:

*bb ¼ Ref *MM33g þRef *MM22g ðC3Þ

let us modify inequality (66) as follows:

k2
G0
w2

mo2
ð *bb

2
þ *gg2Þ þ o2 > 2

kG0
w

m
ðj *bbjZþ j*ggjÞ > 2

kG0
w

m
ð *bbZþ *ggÞ: ðC4Þ

Considering that

Ref *MMijg ¼
X

n

fnifnj *oo
2
nZ

*oo4
nZ2 þ ð1� *oo2

nÞ
2

the highest value of each contribution in the previous sum is found in correspondence of
the associated resonance. Therefore,

Ref *MMijg4
X

n

fnifnj

Z

����
����4X

n

jfnijjfnj j

Z
4

X
n

A

Z

where A ¼ maxff2
nig. If NðoÞ is the total number of modes within the frequency band

½0;o�, one has

Ref *MMijg4
X

n

NðoÞA
Z

Thus, considering equation (67), it follows:

04j *bbj4
NIIðoÞAII

ZII
þ

NIðoÞAI

ZI
: ðC5Þ

By proceeding in a similar way for *gg, one obtains

04j*ggj4oBIZIðoÞ þ oBIIZIIðoÞ: ðC6Þ

The condition

k2
G0
w2

mo2
ð *bb

2
þ *gg2ÞMIN þ o2 > 2

kG0
w

m
ðj *bbjZþ j*ggjÞMAX ðC7Þ

implies equation (C7). Thus, the following relationship is obtained:

o2 > 2
kG0

w
m

AIIZ
ZII

Z o

0

nIIðnÞ dnþ
AIZ
ZI

Z o

0

nIðnÞdnþ BIIonII þ BIonI

� �
and choosing nðoÞ ¼ aom, it becomes

o2 > 2
kG0

w
m

AIIZ
ZII

aIIomIIþ1

mII þ 1
þ

AIZ
ZI

aIomIþ1

mI þ 1
þ BIIomIþ1 þ BIomII þ 1

� �
For the following cases we have

* longitudinal beam: m ¼ 0
* flexural beam: m ¼ �1=2
* flexural plate: m ¼ 0

so that for these structures the trend of the right-hand side in the last equation increases
less than o2. As o ! 1 the condition is verified.
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