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Several energy-based methods to approach noise and vibro-acoustic problems are
actually under development. These techniques provide a chance of describing the vibro-
acoustic behaviour of complex systems by the energies of a limited number of sub-
components. This process is the base of one of the most acknowledged methods in this
field, i.e. the statistical energy analysis (SEA). However, SEA invokes only the first law of
thermodynamics, i.e. the energy conservation principle. On the contrary, it seems that the
formulation of a complete theory of energy transmission among oscillators would claim
also for the second principle of thermodynamics. Such direction of investigation, via the
entropy concept, is developed in this paper leading to a theoretical energy flow analysis to
predict the energy exchanged among complex systems. Some classical SEA results are
obtained as a special case of a more general approach.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The concept of entropy was originally developed by Clausius in the classical theory of
Thermodynamics [1]. In that frame entropy is defined in terms of exchanged heat and
system temperature along a thermodynamic transformation. The development of
Statistical Thermodynamics provided further insights into this concept leading to the
Boltzmann definition of entropy [2–4]. It involves the macro- and micro-states of a general
system of particles and provides an important generalisation of the entropy concept that
goes beyond the limits of the physical context in which it was originally developed.

This paper is focused on the implication of the use of the second principle of
thermodynamics in the energy analysis of mechanical oscillators. The problem is of
practical importance. It is a matter of fact that very popular methods in this field, such as
statistical energy analysis (SEA) [5–7], try to state an analogy between energy flow in
mechanical systems and heat flow in thermal problems. Moreover, the energy conservation
principle, i.e. the first law of thermodynamics, is used to provide the balance equations
of the system’s components. It is natural to wonder whether the second law of
thermodynamics expressed by the entropy concept, finds a place in this context. A chance
in this sense is here provided by introducing the entropy of a general resonator. This leads
to the definition of an associated thermodynamic temperature that would have an
important role in mechanical energy transfer.

It is revealing that some conclusions which are part of the bases of SEA, are here
obtained starting from a new point of view about the power flow, i.e. by using an entropy
formulation, that, at least apparently, nothing shares with the known approach to SEA.

This fact could open unexpected perspectives in power flow analysis showing new
potentialities for energy methods.
0888–3270/02/+$35.00/0 # 2002 Elsevier Science Ltd. All rights reserved.



A. CARCATERRA906
2. FORMULATION OF AN ENTROPY-BASED POWER FLOW APPROACH

It is here considered useful to give a general feeling of the proposed approach, focusing
on the methodological aspects and on its innovative contents, rather than providing a
rigorous mathematical formulation that, at least initially, is not intuitive. Formal
arguments, related to the definition of entropy and its properties, are provided in the next
sections.

It is well known that a quantitative formulation of the second principle of
thermodynamics can pass through the concept of entropy. One of the most important
results of classical and statistical thermodynamics is the well-known Boltzmann’s
inequality:

dH=dt � 0 ð1Þ

where H is the entropy of an isolated system subjected to a thermodynamic
transformation and t is the time (the symbol H is here used following the original
notation of Boltzmann). Equation (1) simply states that the entropy of an isolated system
never decreases.

At the beginning one could be discouraged in attempting this way of approaching the
power flow analysis between mechanical resonators. In fact, entropy is a complex
quantity, whose physical meaning seems sometimes shifty even when it is met in the frame
of classical thermodynamics. Nevertheless, such an operation is possible and fruitful.

To be convinced that this point of view deserves to be investigated, let us show,
momentarily intuitively, how equation (1) plays a crucial role in the problem of energy
transmission.

Suppose that we are able to define an entropy H for a mechanical N-dof resonator, and
assume that for such a system an entropy equation (1) holds. Moreover, let us admit that
H exhibits an additive property, i.e. the entropy of a composite system is just the sum of
the individual entropy of each component.

Consider two resonators R1 and R2 whose total energy and entropy are E1, H1 and E2,
H2, respectively (these can be elemental oscillators as well as complex resonators). When
the resonators, initially separated, are coupled together and the obtained global system is
left to itself, an energy transfer takes place. On the basis of the previous considerations, the
following information to study the power flow between R1 and R2 can be used:

(a) energy conservation: dE1=dtþ dE2=dt ¼ 0
(b) Boltzmann’s inequality: dH=dt � 0
(c) additive entropy property: H ¼ H1 þH2

By combining (b) and (c) one has

dH1

dt
þ

dH2

dt
� 0 )

dH1

dE1

dE1

dt
þ

dH2

dE2

dE2

dt
� 0

and using equation (a):

dH1

dE1
�

dH2

dE2

� �
’WW � 0; ’WW ¼

dE1

dt
¼ �

dE2

dt
ð2Þ

where ’WW denotes the energy flow.
Equation (2) is a direct consequence of the Boltzmann inequality and of the energy

conservation principle and expresses a relevant property of the quantity in brackets. In
fact, the previous inequality states that the power flow direction (i.e. the sign of ’WW)
depends on the sign of the difference between the entropy rates of the two resonators.
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More precisely:

dH1=dE1 > dH2=dE2 ) ’WW > 0

dH1=dE15dH2=dE2 ) ’WW50:

In the first case the resonator R1 increases its energy [see equation (2)] and a net energy
flows from R2 to R1, the converse being valid in the second case. Thus, it is natural to
assume the quantity dH=dE as a measure of the tendency of the system to absorb external
energy, and, consequently, it is also natural to assume the inverse of it as the system’s
tendency to release its energy. This last quantity is the thermodynamic temperature T of
the system. Thus:

1=T ¼ dH=dE: ð3Þ

With this definition of T , one can assert that energy flows from the resonator having the
higher temperature to the one having the lower temperature.

Thus, a rational and strict definition of temperature is obtained by equation (3).
The previous relationship is a key point of the present approach. In this equation three

fundamental quantities are involved: energy, temperature and entropy. This point of view
has a direct implication in the study of the power flow between resonators. Since, as stated
by equations (2) and (3), T controls the power flow, the simplest way to express the power
flow between R1 and R2 is by the linear relationship:

’WW / ðT2 � T1Þ ) ’WW /
1

dH1=dE1
�

1

dH2=dE2

� �
: ð4Þ

This can be thought as a Taylor series of the power flow up to the first order in terms of the
thermodynamic temperature difference.

Equations (3) and (4) suggest a new insight into the power flow analysis of mechanical
resonators. However, it must be noticed that, when trying to develop the entropy analysis
of mechanical resonators, the obtained results do not coincide completely with those of
classical thermodynamics, as clarified in Section 3.

The missing point is still the introduction of the resonator entropy to which the
following section is addressed.

3. ENTROPY OF MECHANICAL RESONATORS

An attempt to introduce entropy in vibro-acoustics has been recently made in [8], where
both the Boltzmann [1–4] and the Shannon entropy [9] have been introduced for a
mechanical resonator. A more general entropy concept for mechanical oscillators, derived
by revisiting the Khinchin mathematical theory of Thermodynamics [10], is proposed in
this paper.

The entropy concept illustrated in the following needs the introduction of some new
elements: system and sub-system definitions, macro- and micro-states of a system and the
related structure and generating functions.

By these bases a function H for mechanical resonators is built satisfying the
requirements stated in the previous section. H is here called entropy of the resonator.

3.1. SUB-SYSTEMS, MACRO- AND MICRO-STATES, O AND F FUNCTIONS

Let us consider a dynamical system R whose state variables are represented by xðtÞ; ’xxðtÞ.
These vectors give a complete information on the actual state of the system and when their
value is known at t ¼ t0 they suffice to predict the system time history for any t > t0.
Moreover, in the following, only conservative systems are considered characterised by an
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invariant total energy E, i.e. ’EEðx; ’xxÞ ¼ 0. This property is valid provided that the system is
isolated, i.e. it is left to itself, and the internal dissipation effects are absent or negligible.

While the energy E defines global properties of the system and partial information on its
actual state, the vectors x; ’xx on the contrary give detailed and complete information. Let
us distinguish between the micro-states of the system, associated with all the possible
values of the couple x; ’xx and the system macro-states associated with the value of a global
function depending on x; ’xx, e.g. E. It is clear that infinite different states x; ’xx can lead to
the same value of E. In other words infinite micro-states can be associated to a single
macro-state. For example, it is obvious that the elemental spring–mass oscillator can have
the same energy level for different combinations of x; ’xx, i.e. of its position (related to the
potential elastic energy) and its velocity (related to the kinetic energy).

The space G defined by the variables xi; ’xxi (components of x; ’xx for i ¼ 1;N) is called
phase space.

The infinite micro-states associated with a given energy level E0 (macro-state) are
determined simply by imposing the constraint:

Eðx; ’xxÞ ¼ E0:

This equation defines a hyper-surface S belonging to G. Looking at Fig. 1, the ellipsoidal
surface S associated to the macro-state energy is represented (for the simple case N ¼ 1) in
Fig. 1. The points on it are system’s micro-states, while the whole set of points on it is the
macro-state associated to the given energy level. When a certain energy level E
characterizes the macro-state of R at t ¼ 0, then for any t > 0 the micro-states are
constrained over the surface S of G and the point P of co-ordinates x1;x2; . . . ;xN ; ’xx1;
’xx2; . . . ; ’xxN describes a trajectory lying on S.
Let us now introduce the energy decomposition of R into two sub-systems R1 and R2

(being the following considerations still valid for an arbitrary number of sub-systems).
R1 and R2 are defined sub-systems of R if the sum of their energies E1 and E2 equals the

energy of R and if E1 and E2 depend on two sets of variables that have an empty
intersection and whose union provides the set of variables of R.

Introducing the state vectors v, v1 and v2 of R, R1 and R2, respectively, the previous
statement takes the concise form:

EðvÞ ¼ E1ðv1Þ þ E2ðv2Þ; v ¼ v1 þ v2

v ¼ fx; ’xxgT ¼ fx1;x2; ’xx1; ’xx2g
T ; v1 ¼ fx1; 0; ’xx1; 0g

T ; v2 ¼ f0;x2; 0; ’xx2g
T :

For a general choice of the state variables, this decomposability property is not trivial at
all, even for simple linear systems. In fact it is well known that

EðvÞ ¼ E1ðv1Þ þ E2ðv2Þ þ E12ðv1; v2Þ
V(E)

0),( EE =xx

x

x

�

Figure 1. Volume V and surface S in the phase space single-dof system.
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the third term being on the right-hand side the mixed energy contribution. This happens
typically when x; ’xx represent physical co-ordinates of the resonator, e.g. displacement
and velocity of oscillating physical masses belonging to R. In this case the
system decomposability in energy sub-systems is not strictly possible. However, in some
cases, the mixed energy term is negligible in comparison with the other energy
contributions, i.e.

E1 >> E12; E2 >> E12:

This condition is briefly indicated in the following as weak coupling condition.
When x; ’xx as well as x1; ’xx1 and x2; ’xx2 are physical co-ordinates, R1 and R2 can be also

identified as physical parts of R. In such a case the energy decomposability expresses an
approximate property only, holding under the hypothesis of weak coupling.

However, a chance of choosing the state variable allowing for an exact energy
decomposability exists. This can be done at least when considering the special case of
linear systems, when x is the vector of the normal co-ordinates of R.

In this case the energy expression does not contain mixed terms, i.e. it is simply the sum
of the energies related to each normal co-ordinate (modal energies). In this way any
arbitrary decomposition, obtained by groups of modal co-ordinates, leads to a set of
energy sub-systems in the sense specified by the previous definition. Note that, when using
modal co-ordinates, the sub-systems are not necessarily physical parts of R but they are
modes or groups of modes of R.

Let us now introduce the structure function and the generating function.
The equal energy surface S wraps the volume VS. The micro-states with energy E

belong to S so that the set of micro-states x; ’xx having energy E05E fall inside the volume
wrapped by S. The measure of this volume can be simply introduced as follows:

VðEÞ ¼
Z
VS

dx1dx2 . . . dxNd ’xx1d ’xx2 . . . d ’xxN

that is a function of the considered energy level E, since S is the energy surface associated
to E. Let us consider the function OðEÞ obtained by deriving VðEÞ with respect to the
energy E, i.e.

OðEÞ ¼
dV

dE
:

This is named structure function of R. Although this definition is self-contained, a more
physical interpretation of it is given in Appendix A, where it is shown that the structure
function provides a measure of the number of micro-states associated to a given energy
level.

We are now in the position of introducing the fundamental composition property of the
structure function. Let us consider the decomposition of R in terms of two energy sub-
systems R1 and R2 whose structure functions are O1ðE1Þ and O2ðE2Þ, respectively. The
goal is the determination of the structure function OðEÞ of R in terms of the structure
functions of the two energy sub-systems R1 and R2. It is not too difficult to demonstrate
(see [10] or, following a different approach, Appendix B) that the composition rule is
provided by

OðEÞ ¼
Z þ1

�1
O1ðE1ÞO2ðE � E1Þ dE1 ¼ O1 *O2:

This result represents the structure function of a composite resonator in terms of
convolution between the structure functions of its energy sub-systems.
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Taking the Laplace transform of the previous equation, the composition rule
simplifies as

FðsÞ ¼ F1ðsÞF2ðsÞ

where FðsÞ is referred as the generating function of R. These conclusions hold when R1 and
R2 are sub-systems of R, i.e. if they are weakly coupled or are modal groups of R.

The composition rule is the key to provide the two properties of entropy shown in
Section 3.4.

3.2. ENTROPY OF A MECHANICAL OSCILLATOR AND ITS TEMPERATURE

In this section the definition of entropy and its implications concerning the derivation of
the resonator temperature is illustrated.

Let us consider the function f ðs;EÞ defined as follows:

f ðs;EÞ ¼ log esEFðsÞ
� �

associated to a given energy level E of R. Consider f ðs;EÞ as a function of the Laplace
variable s only, while E is regarded momentarily as a simple parameter. Let us search for a
relative minimum of f ðs;EÞ. The value s ¼ s for which such a minimum holds, is simply
determined as follows:

@f

@s
¼

1

esEFðsÞ
½EesEFðsÞ þ esEF0ðsÞ� ¼ 0 i:e: E ¼ �

F0ðsÞ
FðsÞ

����
s¼s

: ð5Þ

This equation defines the value of s that keeps the wished minimum and it is also clear that
it depends on the energy value E, i.e. s ¼ sðEÞ. When considering f ðsðEÞ;EÞ, i.e. the
minimum value of f , a function of the energy E only is obtained.

This is the Khinchin entropy HðEÞ of R. Note that by the definition of entropy, any
constant value can be added to H without modifing the value of s and equation (5). Thus
entropy is

HðEÞ ¼ log½esEFðsÞ� þ const s being the solution of
F0ðsÞ
FðsÞ

¼ �E:

HðEÞ so defined satisfies the two fundamental requirements outlined in Section 2, i.e. the
Boltzmann’s inequality and the addition property, that will be illustrated later in Section
3.4.

On the contrary, here it is useful to stress some important physical implications of the
stated definition.

The basic question to which the entropy expression allows to answer is what kind of
dependency exists between the thermodynamic temperature T and the energy E. After
simple mathematics and by definition (3), one has

dH

dE
¼

ds
dE

E þ sþ
F0ðsÞ
FðsÞ

ds
dE

¼ s and s ¼
1

T
:

This equation provides the chance of deriving a basic result. In fact, because of the
relationship between s and E given by the second of equation (5), one can write

F0ð1=TÞ
Fð1=TÞ

¼ �E: ð6Þ

The focal point of the present work in centred around this equation. The quantity that
actually controls the power flow, accordingly with the analysis developed in Section 2, is T
and it is a function of the system energy E. Equation (6) provides implicitly the
relationship between these two variables.
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Thus a formal procedure to determine the expression of the thermodynamic
temperature, and to derive a well founded power flow analysis is established as
follows:

(a) calculate the volume V defined in Section 3.1;
(b) determine the structure function O ¼ dV=dE;
(c) calculate the generating function F by the Laplace transform of O;
(d) solve equation (6) with respect to T.

This approach is applied in Section 4 to derive a basic result concerning the power flow
between N-dof linear resonators.

3.3. ENTROPY PROPERTIES OF MECHANICAL RESONATORS

Let us consider two initially separated resonators R1 and R2 characterised by an initial
condition of absence of any energy interaction (adiabatic point), i.e. ’EE1ð0Þ ¼ 0; ’EE2ð0Þ ¼ 0,
E1 and E2 being their respective energies. The entropy related to each resonator is
expressed by:

H1ðE1Þ ¼ log½es1E1F1ðs1Þ� s1 being the solution of
F0

1ðs1Þ
F1ðs1Þ

¼ �E1

H2ðE2Þ ¼ log½es2E2F2ðs2Þ� s2 being the solution of
F0

2ðs2Þ
F2ðs2Þ

¼ �E2 ð7Þ

Let us now couple the two resonators so that R1 and R2 can be considered two
energy sub-systems of the global resonator R obtained by their connection. The
coupling produces an energy exchange between R1 and R2. The entropy HðEÞ of
R is

HðEÞ ¼ log½esEFðsÞ� s being the solution of
F0ðsÞ
FðsÞ

¼ �E

Since R1 and R2 are sub-systems of R it follows E ¼ E1 þ E2 and F ¼ F1F2. Therefore,

HðEÞ ¼ log esðE1þE2ÞF1ðsÞF2ðsÞ
� �

¼ log esE1F1ðsÞ
� �

þ log esE2F2ðsÞ
� �

where the two determined contributions on the right-hand side are smaller than H1

and H2, respectively. The entropy definition indeed states that H1 and H2 are the
minimum of the functions log esE1F1ðsÞ

� �
; log esE2F2ðsÞ

� �
kept for s ¼ s1 and s ¼ s2,

respectively. Therefore, it follows that when evaluating the previous functions for s ¼ s,
one has

H ¼ log esE1F1ðsÞ
� �

þ log esE2F2ðsÞ
� �

� H1 þH2: ð8Þ

This result states: when coupling two resonators R1 and R2, such that they are sub-
systems of the obtained composite resonator R, the entropy of R is always greater than or
equal to the sum of the individual entropy of R1 and R2 before the coupling. This is the
entropy inequality property. Now the addition property is illustrated.

Preliminarily we introduce the concept of thermodynamic equilibrium between
resonators: two coupled resonators R1 and R2 are in thermodynamic equilibrium if s1 ¼
s2 (equilibrium point), i.e., accordingly with the definition given in the previous section,
when they have the same thermodynamic temperature T .

Let us consider two coupled energy sub-systems in thermodynamic equilibrium that
form the composite resonator R characterised by the quantities E;H;s;F.



A. CARCATERRA912
Due to the equilibrium it is: s1 ¼ s2 ¼ s* . If the respective energies of R1 and R2 after
the coupling are E *

1 ;E
*
2 , one has:

E *
1 ¼ �

F0
1ðs* Þ

F1ðs* Þ
; E *

2 ¼ �
F0

2ðs* Þ
F2ðs* Þ

E *
1 þ E *

2 ¼ �
F0

1ðs* Þ
F1ðs* Þ

�
F0

2ðs* Þ
F2ðs* Þ

¼ �
ðd=ds* Þ½F1ðs* ÞF2ðs* Þ�

F1ðs* ÞF2ðs* Þ
:

Since the two resonators are energy sub-systems of R, then E ¼ E *
1 þ E *

2 and FðsÞ ¼
F1ðsÞF2ðsÞ and, from the previous written equation, follows that s ¼ s* . Then the
entropy of R is

HðEÞ ¼ log½esEFðsÞ� ¼ log es * E *
1 F1ðs* Þ

j k
þ log es * E *

2 F2ðs* Þ
j k

¼ H *
1 þH *

2 : ð9Þ

This equation reads: the entropy of a composite resonator equals the sum of the entropy of
its energy sub-systems when they are in thermodynamic equilibrium.

By combining equations (8) and (9) the following inequality is obtained:

H *
1 þH *

2 � H1 þH2 ) DH1 þ DH2 � 0 ) DH � 0 ð9aÞ

i.e. an entropy increase is expected when passing from an adiabatic (A) to an equilibrium
(E) point of the resonators (call it A ) E transition).

When considering an elemental energy exchange dE and the time dt (of course always
positive) this energy transfer takes, it follows dH=dt � 0, that corresponds to the
relationship named in Section 2 Boltzmann’s inequality. This implies that the equivalence
between equations (9a) and (1) is allowed only if the states A and E are close enough.
When this requirements is not satisfied, the entropy inequality holds only in the
incremental form stated by equation (9a) but not in the differential fashion given by
equation (1). This means that an increasing average trend of the mechanical entropy is
certainly expected along any finite time interval Dt, as demonstrated by equation (9a), but
the instantaneous entropy rate dH=dt is not necessarily always positive.

However, a correct interpretation of equation (9a) needs further comments. Equation
(9a) has been obtained assuming that the system is proceeding towards the equilibrium
point, i.e. the considered process is the A ) E transition. Nevertheless, in the frame of our
analysis, no reason induces to exclude transitions of the type E ) A. It is a matter of fact
that, e.g. for mechanical resonators exhibiting free oscillations periodicity, a periodic
entropy is expected; thus a periodic sequence of transitions fA ) E ) A . . .g is also
expected. In this case the entropy property reads:

DHA)E � 0; DHE)A � 0 ð9bÞ

clearly derived by equation (9a). It means that, for mechanical systems, E ) A transitions
can be also observed implying an entropy decrease. The previous fact has a physical
implication: when mechanical oscillators are coupled a positive energy flow from the
resonator having lower energy to the one having higher energy can be observed (transition
E ) A with DHE)A � 0).

Considering the arguments presented in Section 2 and equations (9b), equation (2) takes
the two-fold form:

dH1

dE1
�

dH2

dE2

� �
’WW � 0 along A ) E;

dH1

dE1
�

dH2

dE2

� �
’WW � 0 along E ) A:

However, again it can be concluded that the entropy rate vs energy is the quantity
controlling the energy flow in both the considered cases. Rather, the difference between the
transition A ) E and the transition E ) A, is related to the way the entropy rate controls
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the energy flow. A simple solution to this problem consists in changing the sign
of the right-hand side of equation (3) when considering a E ) A transition, i.e.
1=T ¼ �dH=dE.

However, it must be noticed that although the periodicity in the free response of a linear
mechanical resonator is possible and depending on the values of its natural frequencies, it
is intuitive that, in general, as the number N of modes increases, the chance of a periodic
free response tends to be lost, or in other words, the probability to observe a periodicity
decreases. In particular as N tends to infinity, i.e. for complex resonators, the response
tends to be non-periodic (i.e. the probability of a periodic response tends to zero). Thus,
for resonators complex enough, the periodic sequence transition A ) E ) A . . . is not
actually observed, it being replaced by a single infinitely long A ) E transition. Thus, the
energy process considered by inequality (9a) can be thought as an A ) E transition in
which the equilibrium point is reached after an infinitely long time. It means that in the
present approach, the hypothesis of complex resonator equipped with a large number of
modes is implicitly accepted and a E ) A transition becomes largely improbable. Under
these conditions, taking the form (9a) only is legitimate. This is what happens in Statistical
Thermodynamics that deals with systems characterised by a great number of degrees of
freedom (e.g. the atomic lattice).

A final remark concerns the absence of external forces in the previous analysis. It
can be stated that if we accept that the constitutive relationship [see equations (4)
and (11)] providing the energy flow expression depends only on the state variables of the
resonators but not explicitly on the driving force, this expression can be determined
irrespective of the nature of the force acting on the system. This intrinsic nature of the
constitutive relationship is highly reasonable and common to many fields of physics such
as elasticity, fluid-dynamics, electro-dynamics, etc. Thus, the analysis of energy sharing
between freely interacting oscillators developed in the previous sections provides a
constitutive relationship [see equation (11)] that should be still valid even in the forced
case.

4. ENTROPY ANALYSIS OF ENERGY FLOW BETWEEN N-DOF RESONATORS

The aim of the present section is to apply the outlined entropy methodology to the
analysis of the energy exchange between two very general systems leading to a simple
equation expressing the energy flow between them.

Consider an N-dof linear resonators whose kinetic and potential energies are
T and U, respectively. The procedure given at the end of Section 3.2, consisting of the
steps (a)–(d), is applied to determine the thermodynamic temperature of the resonator in a
fashion similar to that used in [10] to derive the statistical theory of the ideal monatomic
gas.

Let us start with step (a). The equal energy surface S, associated with the energy level E,
is represented in the phase space G by the equation

1
2
’qqT ’qqþ 1

2
qTLq� E ¼ 0; being T ¼ 1

2
’qqT ’qq; U ¼ 1

2
qTLq ð10Þ

where q is the vector of the normal co-ordinates of the resonator and K the diagonal
eigenvalues matrix. It must be underlined that the energy of the resonator has been
assumed to be dependent only on the state variables of the resonators itself. No mixed
energy terms are considered, thus implicitly assuming a weak interaction of the considered
system with others.

The first of equations (10) represents an ellipsoid in G, whose semi-axes lengths are
easily determined. In fact, the intersections of this ellipsoid with the qi and ’qqi axes are given
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by solving the previous equation by setting to zero the whole set of co-ordinates except
one, i.e.

1
2
q2i li ¼ E; qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2E=li

p
1
2
’qq2i ¼ E; ’qqi ¼

ffiffiffiffiffiffi
2E

p
i ¼ 1; . . . ;N

where N is the number of the degrees of freedom and also the number of modes.
Since the volume V of an ellipsoid, of given semi-axes qi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2E=li

p
and ’qqi ¼

ffiffiffiffiffiffi
2E

p
, is

simply proportional to the products of all the semi-axis lengths, one has

V ¼ Að2EÞN=2 ð2EÞ
N=2QN

i¼1 li
¼ 2NA

ENQN
i¼1 li

A being a proportionality constant that does not play any role in the following.
Following steps (b) and (c), the structure function O and the associated generating

function F(s) are:

O ¼
dV

dE
¼ 2NA

NEN�1QN
i¼1 li

; FðsÞ ¼ 2NA
NQN
i¼1 li

ðN � 1Þ!
sN

¼ 2NA
N!QN
i¼1 li

1

sN
:

Finally, step (d), leading to the evaluation of the thermodynamic temperature of the
resonator, is achieved by equation (6), i.e.

F0ðsÞ
FðsÞ

����
s¼s¼1=T

¼ �E;) �
N

s

����
s¼s¼1=T

¼ �E ) T ¼
E

N
:

This is a key result of this paper: the thermodynamic temperature of a linear system is
proportional to the average modal energy E=N. Thus, accordingly with equation (4), the
power flow between two resonators R1 and R2, can be expressed by

’WW /
E1

N1
�

E2

N2

� �
: ð11Þ

As mentioned before, a hypothesis of weak coupling has been implicitely assumed, since
mixed energy terms in equations (10) have been neglected.

In this way, a demonstration of one of the most important results of SEA is provided on
the basis of the entropy concept.

5. A NUMERICAL EXAMPLE

To check the result expressed by inequality (9a), that is the founding element of the
entropy approach, a numerical analysis of the entropy time history of a two-dof linear
system is here presented.

The system consists of two identical oscillators with mass m ¼ 1 kg and stiffness
k ¼ 1N/m (Fig. 2). They initially vibrate separately and no energy interaction takes
place, i.e. ’EE1ð0Þ ¼ 0 and ’EE2ð0Þ ¼ 0 (adiabatic point A). Moreover, they initially have
different energies, e.g. E1ð0Þ ¼ E0 and E2ð0Þ ¼ 0, and at t ¼ 0 they are coupled by a
spring of constant k ¼ 0:1N/m (weak coupling). Thus inequality (9) should predict
that the maximum entropy is reached when the resonators find the equilibrium
point E1 ¼ E2 ¼ E0=2, producing a net energy transfer. When considering the
results of Sections 3 and 4 with N ¼ 1, the expressions for each of the two resonators



Figure 2. Illustration of the coupling of the two resonators.
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Figure 3. Energy of the two resonators proceeding towards the equilibrium point.
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follow:

FðsÞ ¼
2ffiffiffiffiffiffiffi
mk

p 1

s
; s ¼

1

T
; T ¼ E

FðEÞ ¼
2ffiffiffiffiffiffiffi
mk

p E; HðEÞ ¼ 1þ log
2ffiffiffiffiffiffiffi
mk

p E

 !
þ const:

By letting the arbitrary constant equal to �1� logðE0=
ffiffiffiffiffiffiffi
mk

p
Þ, the right-hand side of

inequality (9a) reads:

H1 þH2 ¼ log
4E1E2

E2
0

� �
:

One can just verify that H1 þH2 ! �1 at the adiabatic point, while at the equilibrium
point H *

1 þH *
2 ¼ 0, simply confirming inequality (9a).

In Fig. 3 the time history of both the dimensionless energies E1=E0 and E2=E0 is given
vs the dimensionless time 2pt

ffiffiffiffiffiffiffiffiffi
k=m

p
during the interval leading from the initial adiabatic
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point to the first equilibrium condition (obvious numerical reasons suggest to let E1ð0Þ ¼
ð1� aÞE0 and E2ð0Þ ¼ aE0, a ¼ 10�8 instead of zero E1ð0Þ ¼ E0, E2ð0Þ ¼ 0). In Fig. 4 the
time history of H1 þH2 clearly shows the increasing trend predicted by (9a). Finally
in Fig. 5 the entropy rate ’HH is given, it being positive until the condition of energy
equilibrium is reached.
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However, in Section 3 it has been specified that beside the A ) E transition, the E ) A
transition can also be observed for mechanical resonators. Thus investigating a larger time
scale, sequential transitions {A ) E ) A . . .} are discovered, as shown in Fig. 6, where the
upper curves represent the energies of the two resonators, while the lower curve is the total
entropy of the system obeying inequalities (9a) and (9b).

6. CONCLUSIONS

In this paper a suitable entropy-based formulation of power flow analysis between
mechanical resonators is presented, accounting both for the first and the second principle
of thermodynamics. This analysis allows a rational approach to the problem of energy
sharing in mechanical systems. The systematic application of the proposed methodology
to the case of linear weakly coupled multi-dof resonators leads to a general demonstration
of one of the basic statement of SEA. However, the entropy approach seems to have the
chance of interesting generalisations to a wider class of resonators such as non-linear
systems. In fact the linearity of elastic forces is not claimed by this approach and even in
this case the thermodynamic temperature should be obtained following the procedure
given in Section 3.2.
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APPENDIX A

OðEÞ is actually related to a suitable measure of the set of micro-states associated with a
given energy level. The following considerations show how the function OðEÞ keeps this
information.

Let us introduce a small energy band BE centred around the value E i.e.
BE � ½E � DE=2;E þ DE=2�. The two energy levels E � DE=2;E þ DE=2 define two
energy surfaces S� and Sþ, respectively. The gap volume VSð�;þÞ enclosed between S� and
Sþ, contains the set of micro-states whose energy E 0 is:

E � DE=25E05E þ DE=2:

Thus, when varying the energy level E (being the bandwidth definitely assigned), the
set of micro-states trapped between S� and Sþ varies too. In this way a
correspondence between the macro-states defined by E and the micro-states contained
inside VSð�;þÞ is established. These are the micro-states corresponding to the small energy
band BE located around E, or more simply associated to E itself, once the bandwidth is
assigned.

Again a natural way to introduce the measure of this set of micro-states can be obtained
by the measure Vð�;þÞ of VSð�;þÞ. This can be evaluated by the difference between the
volumes contained inside the surfaces Sþ and S� respectively, i.e.

Vð�;þÞ ¼ VðE þ DE=2Þ � VðE � DE=2Þ:

Thus,

Vð�;þÞ ¼
VðE þ DE=2Þ � VðE � DE=2Þ

DE
�

dV

dE
DE ¼ OðEÞDE

is valid for a bandwidth small enough.
Since the bandwidth is constant, the previous relationship legitimate the conclusion that

the structure function OðEÞ provides a measure of the set of micro-states associated to a
small energy band around E.

This measure can be further specified by introducing the concept of number of
states. If the whole phase space G is partitioned into small cells of constant
volume DG ¼ Dx1;Dx2; . . . ;DxN ;D ’xx1;D ’xx2; . . . ;D ’xxN and all the micro-states belonging
to the same cell are considered equivalent (i.e. they are actually the same micro-state),
then a finite number NS of micro-states (or cells) fall inside the volume VSð�;þÞ. More



ENERGY FLOW BETWEEN MECHANICAL RESONATORS 919
precisely

NS ¼
Vð�;þÞ

DG
¼ O

DE
DG

:

Of course, DG as well DE are arbitrary yet small. However, the ratio DE=DG is a
proportionality constant (i.e. it does not depend on E) between NS and the structure
function O. This fact justifies the interpretation of the structure function as the number of
micro-states having energy in the small band BE , or, more simply, associated to the energy
level E, once the bandwidth is assigned.

This result is useful to prove the convolution property of O given in Appendix B.

APPENDIX B

Let us assign the energy E of R; since R1 and R2 are energy decompositions of R, then:

E ¼ E1ðv1Þ þ E2ðv2Þ ) E2ðv2Þ ¼ E � E1ðv1Þ:

It means that once E is assigned, the energies E1 and E2 cannot vary arbitrarily, because
E1 þ E2 ¼ E and the obvious constraints E15E;E25E hold. These requirements are
satisfied by varying in an arbitrary fashion E1 in the range ½0;E� and computing
consequently E2 as E2 ¼ E � E1. Thus for any given energy E1 2 ½0;E� two macro-states
E1 and E2 ¼ E � E1 for R1 and R2, respectively, are defined. The values of the structure
functions O1ðE1Þ and O2ðE � E1Þ are associated to them and, in force of the previously
stated arguments, the number of micro-states:

N1ðE1Þ ¼ O1ðE1Þ
DE1

DG1
and N2ðE � E1Þ ¼ O2ðE � E1Þ

DE2

DG2
:

All the combinations of the N1 micro-states of R1 and of the N2 micro-states of R2 are
given by:

NðE1;EÞ ¼ N1ðE1ÞN2ðE � E1Þ:

where NðE1;EÞ is the number of possible micro-states of R when choosing for R1 the
energy level E1 and the total energy equal to E. The chance of using this formula is
provided by the fact that the two sub-systems have no common state variables. Since E1

can range in the interval ½0;E�, the total number NðEÞ of micro-states of R having energy
E is found by summing NðEðiÞ

1 ;EÞ for i ¼ 1;NE , where E
ðiÞ
1 ¼ iDE1 and NE ¼ E=DE1.

Thus:

NðEÞ ¼
XNE

i¼1

N1ðE
ðiÞ
1 ÞN2ðE � E

ðiÞ
1 ÞDE1:

This equation can be also expressed by using the structure functions, i.e.

N1ðE1ÞN2ðE � E1Þ ¼O1ðE1ÞO2ðE � E1Þ
DE1

DG1

DE2

DG2

NðEÞ ¼OðEÞ
DE
DG

:

Thus,

OðEÞ
DE
DG

¼
XNE

i¼1

O1ðE
ðiÞ
1 ÞO2ðE � E

ðiÞ
1 Þ

DE1

DG1

DE2

DG2
:

Since R1 and R2 are an energy decomposition of R, the union of their set of variables, i.e.
x1; ’xx1 and x2; ’xx2, provides just the set of variables of R i.e. x; ’xx; moreover, the two sets have
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an empty intersection. This hypothesis allows to write:

DG1 ¼ Dx1;Dx2; . . . ;DxM ;D ’xx1;D ’xx2; . . . ;D ’xxM

DG2 ¼ DxMþ1;DxMþ2; . . . ;DxN ;D ’xxMþ1;D ’xxMþ2; . . . ;D ’xxN

DG ¼ Dx1;Dx2; . . . ;DxM ;DxMþ1;DxMþ2; . . . ;DxN ;D ’xx1;D ’xx2; . . . ;D ’xxM ;D ’xxMþ1;

D ’xxMþ2; . . . ;D ’xxN

so that:

DG ¼ DG1DG2:

Moreover, the bandwidths DE;DE1;DE2, being arbitrary, can be set equal (note however,
that any other choice does not alter relevantly the mathematical derivation of results.

Therefore,

OðEÞ ¼
XNE

i¼1

O1ðE
ðiÞ
1 ÞO2ðE � E

ðiÞ
1 ÞDE1 �

Z E

0

O1ðE1ÞO2ðE � E1Þ dE1:

Since in the previous integral the two structure functions O1ðE1Þ and O2ðE � E1Þ have
arguments ranging inside ½0;E� only, without any loss of generality, we can set:

OiðEiÞ ¼ 0 for Ei50; Ei > E

and rewrite the integral by using the equivalent form:

OðEÞ ¼
Z þ1

�1
O1ðE1ÞO2ðE � E1Þ dE1 ¼ O1 *O2:
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