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A B S T R A C T   

Entropy generation minimization approach is a very good method allowing to analyze the en-
gineering systems to exclude technical failure. The present study deals with computational 
analysis of triple diffusive flow, energy transference and entropy production in different porous 
cavities from square to triangular through trapezoidal shape. The formulated boundary-value 
problem has been worked out using the finite element technique and non-primitive variables. 
The developed computational code has been verified using numerical results of other researchers. 
Analysis of entropy production due to energy and mass transport, motion friction, and porous 
material has been performed for different chamber’s shapes. Entropy generation analysis in 
chambers of various geometries under the triple-diffusive flow is a novelty of the present 
research, where different entropy production mechanisms have been scrutinized for one complex 
problem. It has been ascertained that average total entropy generation strength raises with 
buoyancy ratios, Lewis and Rayleigh numbers, but it has the minimum value for the square 
chamber in comparison with triangular and trapezoidal shapes. Moreover, obtained results 
characterize a neglecting influence of motion friction on the total entropy generation.   

1. Introduction 

Entropy generation analysis is an effective technique for an investigation of technical systems in order to exclude bottlenecks and 
increase the operating time. Initially the entropy generation minimization method was developed by Bejan [1–3]. Nowadays, there are 
many published papers concerning usage of this technique for various engineering apparatus and regions. It is well-known that porous 
materials are employed in practice due to extended heat transfer area that characterizes an opportunity of the energy transport 
enhancement [4–6]. Also, such media can be found in electronic devices [7], solar power systems [8], heat exchangers [9,10], in 
human organism [11]. 

Technical analysis of heat and mass transfer in engineering devices including porous media is attended by entropy generation study 
[6,12–19]. Thus, Alsabery et al. [12] have numerically studied entropy production and convective energy transference in a porous 
wavy chamber under the influence of internal rotating cylinder. Using the finite element technique, authors have found that a rise of 
the medium porosity characterizes a reduction of the Bejan number. Moreover, the Bejan number can be decreased with a growth of 
the internal cylinder angular velocity. Biswal et al. [13] have simulated numerically the thermal convection and entropy production in 
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a tilted porous chamber using various thermal boundary conditions. Employing the Galerkin finite element technique authors have 
ascertained that the total entropy production owing to energy transference and liquid friction rises with modified Darcy and Prandtl 
numbers. An influence of local isothermal heaters on entropy production in a square porous cabinet has been scrutinized computa-
tionally by Kaluri and Basak [14]. It has been revealed that low Darcy number illustrates a domination of entropy production owing to 
the energy transference because of low medium permeability. At the same time, various arrangement of heaters illustrates different 

Nomenclature 

Bem solute Bejan number 
Be Bejan number 
cp heat capacity (J K− 1) 
Cm concentration of solutes (kg m− 3) 
Dm mass diffusivity of solutes Sm (m2 s− 1) 
Da Darcy number 
g acceleration due to gravity (m s− 2) 
k thermal conductivity of fluid (W m− 1 K− 1) 
K permeability of the porous medium (m2) 
Le1 Lewis number of solute 1 
Le2 Lewis number of solute 2 
Nc1 dimensionless buoyancy parameter of solute 1 
Nc2 dimensionless buoyancy parameter of solute 2 
NS local entropy generation rate 
p pressure (N m− 2) 
Q0 dimensional internal heat generation/absorption coefficient 
Q non-dimensional internal heat generation 
Ra Rayleigh number 
Sm chemical components (“salts”) 
T fluid temperature (K) 
T0 (Th + Tc)/2 (K) 
v velocity vector 
u, v velocity components along x and y axes (m s− 1) 
x, y Cartesian coordinates (m) 

Greek letters 
αpm thermal diffusivity of the porous medium (m2 s− 1) 
βT coefficient of thermal expansion (K− 1) 
β1, β2 coefficient of thermal expansion of solute Sm (kg− 1 m3) 
ΔC1 concentration difference of salt 1 (kg m− 3) 
ΔC2 concentration difference of salt 2 (kg m− 3) 
ε porosity of the medium 
χ1 dimensionless concentration of solute 1 
χ2 dimensionless concentration of solute 2 
ΔT temperature difference (K) 
μ dynamic viscosity (N m− 2 s) 
ν kinematic viscosity (m2 s− 1) 
θ dimensionless temperature 
ρ density (kg m3) 
ψ stream function (m2 s− 1) 
Φ irreversibility ratio 
ΩT dimensionless temperature difference ratio 
ΩC1 dimensionless concentration difference ratio due to salt 1 
ΩC2 dimensionless concentration difference ratio due to salt 2 
ΩC1,2 dimensionless concentration difference ratio due to salt 1 & 2 coupling 

Subscripts 
c cold 
f fluid 
h hot 
m = 1,2 salt and concentration identifier 
1, 2 due to coupling of salt 1 & 2  
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entropy generation strength. Entropy generation in a porous trapezoidal [15] and triangular [16] cavities has been scrutinized using 
the Galerkin finite element method. Authors have demonstrated an influence of the cavity geometry on entropy production and found 
effective shapes with high energy transport strength and optimal entropy production. Baytas [17] has numerically investigated 
thermal convective energy transference and entropy production in a tilted square chamber. High Bejan number and low total entropy 
production have been found in the case of tilted chamber for high values of the inclination angle. Forced convection combined with 
entropy production in a rectangular channel with heated portions on the bottom and upper walls under the impacts of semi-porous fins 
has been scrutinized by Vatanparast et al. [18]. Authors have analyzed an influence of the Reynolds and Darcy numbers, thermal 
conductivity ratio, and size of fins on entropy generation intensity. As a result, optimal parameters have been found with minimal 
entropy production strength. Rashad et al. [19] have studied numerically natural convection of copper/water nanofluid in an inclined 
porous cavity under an influence of uniform magnetic field and local heater/cooler. It has been found that a rise of the nanoparticles 
concentration leads to the heat transfer degradation and average total entropy generation. Other interesting and useful results on 
thermal convection and entropy generation can be found in [20–27]. 

It should be noted that combined convective energy and mass transport within porous cabinets can be found in chemical engi-
neering apparatus, solar collectors and other devices [28–32]. Thus, Arpino et al. [28] have developed an efficient artificial 
compressibility characteristic-based split technique for numerical simulation of transport phenomena in partially porous regions for 
forced, mixed and natural convection modes. It has been shown that this developed algorithm has a successful application for the 
studied class of phenomena. Baytas et al. [29] have examined numerically natural convective heat and mass transfer in a square 
cabinet partially filled with a porous material using local thermal equilibrium approach. Authors have revealed that porous steps have 
a critical influence of natural convection within the region. Massarotti et al. [30] have investigated numerically free convection in a 
partially porous gap between two tall cylinders under an impact of constant temperatures from internal and external cylinders. Authors 
have demonstrated that the porous insertion affects the transient temperature and velocity patterns, namely, fluctuations of tem-
perature and velocity can be reduced for low Darcy numbers. Prasad et al. [31] using the finite element method have studied an 
influence of Soret and Dufour diffusion on unsteady MHD mixed convection of Casson liquid along the vertical wavy surface in a Darcy 
porous medium. It has been ascertained that an inclusion of Dufour and Soret effects allows to increase the velocity and temperature. 
He et al. [32] have examined numerically double-diffusive natural convection in a differentially heated and salted porous square 
chamber under an influence of temperature-dependent viscosity. Authors have shown that a diminution of viscosity with temperature 
affects the heat and mass transport strengths in the porous medium. Other useful outcomes can be found in [33–39]. 

At the same time, the mentioned complex analysis for combined convective energy and mass transport within porous cabinets is 
very important in the case of entropy generation investigation. Nowadays, there are several published papers on convective energy and 
mass transference in a chambers combined with entropy generation analysis [40–46]. Mchirgui et al. [40,41] have numerically studied 
double-diffusive thermal convection in a tilted porous enclosure using Darcy-Brinkman formulation with local thermal equilibrium 
approach. Authors have investigated an influence of the cavity inclination angle on entropy generation intensity. Effective values of all 
governing parameters have been found. Kefayati [42,43] has examined computationally thermal convection and entropy generation in 
a tilted porous chamber filled with non-Newtonian power-law liquid. Using the lattice Boltzmann technique, author has shown that the 
power-law index has a non-monotonic influence on the entropy generation intensity. Siavashi et al. [44] have performed the 
computational analysis of double-diffusive thermal convection and entropy production in a tilted porous chamber with internal 
isothermal heaters. Employing the finite volume method, authors have investigated the entropy generation strength behavior with 
several governing parameters. Authors have defined the optimal configuration with high heat and mass transport rates and low en-
tropy production intensity. Zhu et al. [45] have computationally investigated 3D double-diffusion convection and entropy production 
in a porous cube filled with power-law liquid. They have demonstrated that the shear-thinning liquid is more effective in the case of 

Fig. 1. Schematics of porous cavities[47].  
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energy and mass transference and entropy generation for double-diffusive convection. 
This conducted brief review shows that combination of energy and mass transport with entropy generation analysis is a very 

topical. At the same time, there are no papers on triple-diffusive convection and entropy generation in chambers of various shapes. The 
objective of the present study is a computational investigation of triple-diffusive thermal convection and entropy production in a 
porous cabinet of different shapes. It should be noted that the present research is an expansion of the previous published paper [47] to 
the case of entropy generation analysis. 

2. Governing equations for triple diffusion 

The transport processes in various porous cavities presented in Fig. 1 are studied. The left sidewall is kept at a higher temperature Th 
whereas as the right side/inclined wall is held at low temperature Tc (< Th). Horizontal walls are adiabatic. A temperature dependent 
heat generation in the flow region has also been considered. Mathematical analysis of the examined phenomena is performed taking 
into account the following assumptions for fluid flow, heat and mass transfer  

- steady triple-diffusive flow;  
- two-dimensional case;  
- laminar mode;  
- walls of the cavities are impermeable;  
- Boussinesq approximation is valid;  
- linear Darcy law for the porous medium. 

For the benefit of the reader, here, we will recall the main governing equations and boundary conditions. 
Two different chemical components (“salts”) Sm (m = 1,2) have been dissolved in a fluid-saturated porous medium, which have 

concentrations Cm (m = 1,2), respectively, and that the equation of state is [48] 

ρ = ρ0 [1 − βT ΔT + β1 ΔC1 + β2 ΔC2] (1)  

where ΔT = T – T0, ΔС1 = С1 – С1С, and ΔС2 = С2 – С2С. The reference density, temperature and salt concentrations are denoted by ρ0, 
T0, С1С and С2С, respectively, while the constants βT, β1 and β2 denote the coefficient of thermal expansion and solute Sm expansion 
coefficients, respectively (m = 1,2), which are defined by Rionero [48] 

βT = −
1
ρ

(
∂ ρ
∂ T

)

p
, β1 = −

1
ρ

(
∂ ρ

∂ C1

)

p
, β2 = −

1
ρ

(
∂ ρ

∂ C2

)

P
(2) 

Combining Darcy’s law [49] 

μ
K

v = − ∇p + ρ g (3)  

with (thermal) energy and mass balance together with the Boussinesq approximation (1), we obtain the following fundamental 
equations governing the isochoric motions [47–49] 

∇ ⋅ v = 0 (4)  

μ
K

v = − ∇p + ρ0 [1 − βT ΔT + β1 ΔC1 + β2 ΔC2] g (5)  

v ⋅ ∇T = αpm ∇2T +
Q0

ρcp
(T − Tc) (6)  

1
ε v ⋅ ∇C1 = D1 ∇

2C1 (7)  

1
ε v ⋅ ∇C2 = D2 ∇

2C2 (8)  

where v is the velocity vector, p is the pressure field, μ is the dynamic viscosity, K is the permeability, g is the gravity vector, αpm is the 
thermal diffusivity of the porous medium and Dm (m = 1,2) are the mass diffusivity of the solute Sm. 

The appropriate boundary conditions are [47]  

(i) For the horizontal top and bottom walls OA and BC, u = v = ∂T
∂y =

∂C1
∂y = ∂C2

∂y = 0 (9)  
(ii) For the left-side wall OC, u = v = 0,T = Th,C1 = C1h,C2 = C2h (10)  

(iii) For the right-side wall AB, u = v = 0,T = Tc,C1 = C1c,C2 = C2c(11) 
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To write the governing equations and boundary conditions (4)–(11) in a non-dimensional form, we employ the following pa-
rameters along with the dimensionless stream function: 

X =
x
L
, Y =

y
L
, u =

αpm

L
U, v =

αpm

L
V, T = (Th − Tc)θ + Tc,Q =

Q0L2

αpmρcp

C1 = (C1h − C1c)χ1 + C1c,C2 = (C2h − C2c)χ2 + C2c,U =
∂ψ
∂Y

,V = −
∂ψ
∂X

Ra =
gKβT ΔTL

υαpm
,Nc1 =

β1ΔC1

βT ΔT
,Nc2 =

β2ΔC2

βT ΔT
,Le1 =

αpm

εD1
,Le2 =

αpm

εD2

(12) 

Using Eq. (12), Eqs. (4)–(8) can be transformed to the non-dimensional form 

∂2Ψ
∂X2 +

∂2Ψ
∂Y2 = − Ra

(
∂θ
∂X

+Nc1
∂χ1

∂X
+Nc2

∂χ2

∂X

)

(13)  

∂Ψ
∂Y

∂θ
∂X

−
∂Ψ
∂X

∂θ
∂Y

=
∂2θ
∂X2 +

∂2θ
∂y2 + Qθ (14)  

∂Ψ
∂Y

∂χ1

∂X
−

∂Ψ
∂X

∂χ1

∂Y
=

1
Le1

(
∂2χ1

∂X2 +
∂2χ1

∂Y2

)

(15)  

∂Ψ
∂Y

∂χ2

∂X
−

∂Ψ
∂X

∂χ2

∂Y
=

1
Le2

(
∂2χ2

∂X2 +
∂2χ2

∂Y2

)

(16) 

The additional non-dimensional conditions are  

(i) For the horizontal top and bottom borders, Ψ = ∂θ
∂Y =

∂χ1
∂Y =

∂χ2
∂Y = 0 (17)  

(ii) For the left sidewall, Ψ = 0, θ = 1, χ1 = 1, χ2 = 1 (18)  
(iii) For the right sidewall, Ψ = 0, θ = 0, χ1 = 0, χ2 = 0 (19) 

3. Entropy generation model 

In a triple-diffusive natural convection system of non-isothermal flows in porous media without chemical reactions, the associated 
sources of irreversibility are due to heat transfer, momentum transfer (fluid friction), porous medium (pm), mass transfer of salts 
concentrations C1 and C2, and the coupling between salts concentrations C1 and C2. The general expression for the entropy generation 
rate for triple diffusive flow in two dimensions can be written as [50] 

S′′′
⋅

gen
=

kf

T2
0

[(
∂T
∂x

)2

+

(
∂T
∂y

)2]

+
μ

KT0

(
u2 + v2)+

μ
T0

[

2
(

∂u
∂x

)2

+ 2
(

∂v
∂y

)2

+

(
∂u
∂x

+
∂v
∂y

)2]

+
RD1

C0

[(
∂C1

∂x

)2

+

(
∂C1

∂y

)2]

+
RD1

T0

[
∂C1

∂x
∂T
∂x

+
∂C1

∂y
∂T
∂y

]

+
RD2

C0

[(
∂C2

∂x

)2

+

(
∂C2

∂y

)2]

+
RD2

T0

[
∂C2

∂x
∂T
∂x

+
∂C2

∂y
∂T
∂y

]

+
RD12

C0

[
∂C1

∂x
∂C2

∂x
+

∂C1

∂y
∂C2

∂y

]

(20) 

The dimensionless entropy generation rate NS is defined as the ratio of the local volumetric entropy generation rate S′′′ ⋅gen to a 
characteristic entropy generation rate S′′′ ⋅gen,0 = T2

0L2 /(kf ΔT2). Therefore, the dimensionless entropy generation rate is NS =

S′′′
⋅

gen /S′′′
⋅

gen,0. The non-dimensional form of local entropy generation rate is given as 

NS =

{(
∂θ
∂X

)2

+

(
∂θ
∂Y

)2}

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
NS,h

+ φ1

[{(
∂ψ
∂X

)2

+

(
∂ψ
∂Y

)2}

+ Da

{

4
(

∂2ψ
∂X∂Y

)2

+

(
∂2ψ
∂Y2 −

∂2ψ
∂X2

)2}]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
NS,pm+NS,f

+φ2

[
ΩC1

ΩT

{(
∂χ1

∂X

)2

+

(
∂χ1

∂Y

)2}

+

{
∂χ1

∂X
∂θ
∂X

+
∂χ1

∂Y
∂θ
∂Y

}]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
NS,C1

+φ3

[
ΩC2

ΩT

{(
∂χ2

∂X

)2

+

(
∂χ2

∂Y

)2}

+

{
∂χ2

∂X
∂θ
∂X

+
∂χ2

∂Y
∂θ
∂Y

}]

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
NS,C2

+ φ4

{
∂χ2

∂X
∂θ
∂X

+
∂χ2

∂Y
∂θ
∂Y

}

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
NS,C12

(21) 

In the above equation, the dimensionless parameters are defined as: 
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ΩT =
ΔT
T0

,B =
μα2

m

kf T0L2,Da =
K
L2,ΩC1 =

ΔC1

C0
,ΩC2 =

ΔC2

C0
,

M1 =
RD1C0

kf
,M2 =

RD2C0

kf
,M3 =

RD12C0

kf
,φ1 =

B
Ω2

T Da
,φ2 =

M1ΩC1

ΩT
,φ3 =

M2ΩC2

ΩT
,φ4 =

M3ΩC1 ΩC2

Ω2
T

(22)  

3.1. Entropy generation number 

The entropy generation number can be obtained by integrating the local entropy generation rate over the whole domain of the 
cavity volume as 

NS,avg =

∫

Ω

NS∂Ω (23)  

where Ω represents the global computational domain and NS is the total entropy generation rate in triple diffusion, given by 

NS = NS,h + NS,pm + NS,f + NS,C1 + NS,C2 + NS,C12 = NS,h + NS,othersources  

3.2. Irreversibility ratio 

The local irreversibility Φ is defined as a ratio between the local entropy generation rate due to fluid friction to the local entropy 
generation rate due to heat transfer NS,h 

Φ =
NS,f

NS,h
(24) 

It is essential to mention that when Φ > 1 then irreversibility due to fluid friction is the dominated factor, whereas when 0 < Φ < 1 
the heat transfer irreversibility dominants. 

The average dimensionless irreversibility ratio is obtained by numerical integration of the local dimensionless ratio over the entire 
cavity volume and is given by 

Φavg =

∫

Ω

Φ∂Ω (25)  

3.3. Heat Bejan number 

The conventional local Bejan number is the ratio between the local entropy generation rate due to heat transfer NS,h to the total 
entropy generation rate NS, the relation that describes this number is expressed as 

Beh =
NS,h

NS
=

NS,h

NS,h + NS,othersources
=

1

1 +
NS,othersources

NS,h

whereNs,othersources = Ns,pm + Ns,f + Ns,C1 + Ns,C2 + Ns,C12

(26) 

It is important to note that  

(i) When the thermal irreversibility plays a major contribution NS,h → ∞, Beh = 1.  
(ii) When the other sources contribute dominant part in entropy generationNS,h → 0, Beh = 0.  

(iii) When both heat and other sources contribute equally, Beh = 0.5. 

The average dimensionless Bejan number due to heat transfer is obtained by numerical integration the local dimensionless one over 
the entire cavity volume and it is given by 

Beh,avg =

∫

Ω

Beh∂Ω (27)  

3.4. Mass Bejan number 

A new type of mass local Bejan number is presented here, which is the ratio between the sum of local entropy generation rate due to 
mass transfer of salts concentrations C1 and C2, and the coupling between salts C1 and C2, i.e., NS,C1 + NS,C2 + NS,C12 to the total entropy 
generation NS and is defined as 
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Bemass =
NS,C

NS
=

NS,C

NS,C + NS,othersources
=

1

1 +
NS,othersources

NS,C

whereNS,othersources = NS,h + NS,pm + NS,f andNS,C = NS,C1 + NS,C2 + NS,C12

(28)  

where NS,C is the entropy generation due to solutes and their coupling. 
It is important to note that  

(i) When the solutal irreversibility plays a major contributionNS,C → ∞, Bemass = 1.  
(ii) When the other sources contribute dominant part in entropy generation NS,C → 0, Bemass = 0.  

(iii) When both solutes and other sources contribute equally, Bemass = 0.5. 

The average dimensionless mass Bejan number is obtained by numerical integration of the local one over the entire cavity volume 
and are given by 

Bemass,avg =

∫

Ω

Bemass∂Ω (29)  

where the symbol Ω represents the global computational domain. 

4. Validation of results 

We have already shown the reliability and accuracy of the method used to obtain the results in our previous paper [47]. To show the 

Fig. 2. Comparison of the results in a case of fluid without any salts with literature [17] for (a) entropy generation due to heat transfer (NS,h) and (b) 
total entropy generation number (NS) with Ra = 100 and ϕ1 = 10–1. 
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Fig. 3. Comparison of local entropy production owing to energy transport Sgen,ht and liquid friction Sgen,ff for Ra = 103: computational results [51] – 
a, computational results [52] – b, present results – c. 

Fig. 4. Comparison of local entropy production owing to energy transport Sgen,ht and liquid friction Sgen,ff for Ra = 105: computational results [51] – 
a, computational results [52] – b, present results – c. 
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validation of the proposed method, we have made comparison with the literature [17] for a special case of pure fluid flow in a porous 
square cavity. The results are presented in Fig. 2. for entropy generation due to heat transfer and total entropy generation rate and they 
are found to be in a good agreement with the literature. 

The second test was thermal convection in a square chamber. Figs. 3 and 4 demonstrate a good agreement between the iso-contours 
of local entropy generation owing to energy transport and fluid friction for various Rayleigh numbers with the numerical results of Ilis 
et al. [51] and Bhardwaj et al. [52]. 

5. Results and discussion 

The entropy generation due to several sources of irreversibility is investigated in the selected cavities. The dimensionless governing 
equations are solved numerically and the velocity, temperature, concentration gradients are utilized in the entropy generation model. 
The effects of governing parameters on the entropy generation due to various sources, Bejan numbers and irreversibility ratio are 

Fig. 5. Iso-contours of entropy generation due to (i) heat (ii) heat in porous media and (iii) triple diffusion in porous media in different cavities with 
Ra = 50,Nc1 = Nc2 = 0.5, Le1 = 8, Le2 = 5,Q = 0.5,φ1 = 0.5,Da = 10− 4,φ2 = φ3 = φ4 = 0.5. 
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investigated and discussed. 
The iso-contours of total entropy generation and its components due to heat transfer and porous medium are displayed in Fig. 5 in 

the selected cavities. The entropy generation due to thermal irreversibility ensues near the hot and cold regions, see Fig. 5(i). The iso- 
contours due to thermal and porous medium are produced in Fig. 5(ii). In each case, the maximum values of irreversibility pinpoint in 
the lower region close to the hot wall of the cavity. Local entropy generation is located in the upper corner of the cooled side and lower 
corner of the heated side of the cavity. 

The iso-contours of local heat and mass Bejan numbers are displayed in Fig. 6(a) and (b) for low Rayleigh numbers in the selected 
cavities. It is well known that, for low Rayleigh numbers, the thermal irreversibility is muscularly leading and the heat Bejan number 
upsurges with an increase in the heat transfer. This is imitated in Fig. 6 (a) (i)–(iii), where the local Beh > 0.80 in all cavities. These 
figures reveal that the thermal irreversibility is dominant over other sources. The value of Beh is found to be highest in the trapezoidal 
cavity and lowest in the triangular cavity. The mass Bejan number measures the contribution of total irreversibility due to diffusion of 
species and their coupling NS,C in the cavity. The Fig. 6 (b) (i)–(iii) show the iso-contours of Bem in the selected cavities. It is concluded 
that when NS,C → ∞, Bem → 1. In Fig. 6 (b) (iii), the maximum value of Bem is noticed. 

The variation of individual local components of entropy generation rate, Bejan numbers and irreversibility ratio along X-axis at the 
centers of each cavity is displayed in Fig. 7(a) and (b) for the fixed values of the pertinent parameters. It is important to note that the 
entropy generation due to the coupling of both species is maximum at the hot and cold walls in each cavity, Fig. 7(a) (i)–(iii). This is 
due to higher temperature and concentration gradients at the left and right walls. The second and third major sources of irreversibility 
are the porous medium and heat transfer. The entropy generation due to these sources is also maximum at the right and cold walls in 
each case. On the other side, the entropy generation rates due to friction and each solute are found to be minimum in each case. Fig. 7 
(b) explains the variation of both Bejan numbers and irreversibility ratio along Y-axis at X = 0.5. The heat and mass Bejan numbers 
measure the contribution of thermal or solutal irreversibility in the total entropy generation. It is noticed that Beh is minimum at the hot 
and cold walls and increases at the central position in each case. This is due to higher temperature gradients in the central region. The 
mass Bejan numbers show opposite behavior. They are higher at the walls and decrease in the central region. The irreversibility ratio 
shows the importance of irreversibility due to fluid friction and heat transfer. It is necessary to indicate here Φ < 1 in each case, which 
shows that the thermal irreversibility is dominant over viscous irreversibility. 

The contribution of the numerous sources of irreversibility in the total entropy generation rate along center position of each cavity 
is presented in Fig. 8. The main sources of irreversibility include heat and mass transfer, fluid friction, porous medium and magnetic 

Fig. 6. Iso-Countors of (a) heat Bejan number and (b) mass Bejan number in different cavities with Ra = 50,Nc1 = Nc2 = 0.5,Le1 = 8,Le2 = 5,Q =
0.5,φ1 = 0.5,Da = 10− 4,φ2 = φ3 = φ4 = 0.5. 
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Fig. 7. Variations in (a) different components of local entropy generation and (b) irreversibility ratio, heat and mass Bejan numbers for different 
cavities with Q = Nc1 = Nc2 = φ1 = φ2 = φ3 = φ4 = 0.5, Ra = 50, Le1 = 8, Le2 = 5,Da = 10− 4.

Fig. 8. Effects of diffusion on total local entropy generation in selected cavities with Ra = 50,Le1 = 8,Le2 = 5,Da = 10− 4,φ2 = 10− 2,φ1 = φ3 =

10− 1,Q = Nc1 = Nc2 = φ4 = 0.5. 
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field. In the absence of all other sources, the variation of thermal irreversibility (mono diffusion) is found to be minimum in case of 
square cavity (Fig. 8a) and maximum in the triangular cavity (Fig. 8c). As expected, the irreversibility increases with the addition of 
other sources due to double and triple diffusion. The maximum irreversibility ensues at the hot and cold wall in each cavity for triple 
diffusion with coupling. In the central region of each cavity, the entropy generation rate is found to be minimum. The triple diffusion 
with/without coupling is basically exemplified by the combined heat and mass transfer associated the entropy generation. 

The variation of the average total entropy generation rates and irreversibility ratios with buoyancy ratios are presented in Fig. 9(a) 
and (b) for the selected geometries. It is important to note that the average total entropy generation rate increases with an increase in 
each buoyancy ratio in each case. The buoyancy ratios depend upon the concentration difference ΔC which help in increasing the 
solutal irreversibility. Consequently, the total entropy generation rate increases. This is confirmed in Fig. 9(a) (i)–(iii) for each cavity. 
On the other side, the irreversibility ratio is directly proportional to the fluid flow irreversibility which in turn depends upon the ΔT. 
When ΔT decreases, the buoyancy ratios increase and as a result Φavg increases with both buoyancy ratios in each case (see Fig. 9(b) (i)– 
(iii)). 

The combined effects of both solute Lewis numbers on the average entropy generation are displayed in Fig. 10(a) and the average 
irreversibility ratio in Fig. 10(b) for the selected cavities. The Lewis numbers play a vital role in the case of combined heat and mass 
transfer. It measures the comparative thermal and solutal resistances. It is important to note that, for smaller values of Le1 and Le2, the 
effects of each Lewis number on the average total entropy generation are negligible and become evident for higher values in each 
cavity. In each case, the Lewis number is greater than 1 which shows the superiority of the solutal boundary layer. As the Lewis 
numbers increase, the total solutal resistance increases and consequently the total average total entropy generation increases as shown 
in Fig. 10(a) (i)–(iii). The variation of average irreversibility ratio with Le1 and Le2 is depicted in Fig. 10(b) (i)–(iii) for the selected 
geometries. Like Ns,avg, the average irreversibility ratio increases with an increase in both Lewis numbers. The Lewis number depends 
upon the thermal diffusivity and measures the rate of heat transfer. The entropy generation rate due to heat transfer decreases with an 
increase in the Lewis number which helps in increasing the irreversibility ratio. 

The variation of average entropy generation rates and Bejan numbers with internal heat generation for the certain Rayleigh 
numbers is compared in Fig. 11 for the selected geometries. The average entropy generation rate consists of irreversibility due to heat, 
porous medium, fluid friction, both species and their couplings (Eq. (14)) and depends upon several pertinent parameters. In the 
absence of internal heat generation, the average entropy generation rate is found to be minimum and increases with increasing the heat 

Fig. 9. Effects of buoyancy ratios on (a) average total entropy generation rate (b) average irreversibility ratio with Ra = 50,Le1 = 8,Le2 = 5,Da =
10− 4,Q = φ1 = φ2 = φ3 = φ4 = 0.5. 
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generation. This is due to the increase in the heat transfer irreversibility, Fig. 11(a) (i)–(iii) illustrates this behavior within the selected 
cavities. Rayleigh number helps in enhancing natural convection and increases the total average entropy generation rate, as shown in 
Fig. 11(a) (iii). The comparison shows that the triangular cavity provides highest entropy generation rate than square and trapezoidal 
cavities. 

By definition, the conventional Bejan number (Beh) shows the share of the thermal irreversibility in the total entropy generation 
rate. The effects of Ra and heat generation parameter Q on Beh are displayed in Fig. 11(b) (i)–(iii) for the selected cavities. In each case, 
Beh < 0.5, which reveals that the thermal irreversibility is less than the irreversibility due to other sources. Due to increase in Ra, the 
buoyancy forces increase and as a result fluid flow irreversibility rises. Further Darcy number, due to porous medium, encourages the 
entropy generation. Consequently, the irreversibility due to other sources becomes higher than thermal irreversibility and the con-
ventional Bejan number remains less than 0.5 in each case, as shown in Fig. 11(b) (i)–(iii). Like Ns, the Bejan number increases with 
internal heat generation and Ra in each cavity. The square cavity shows higher Bejan number than other cavities. Similar to con-
ventional Bejan number, another type of mass Bejan number is defined in Eq. (21) which shows the contribution of the irreversibility 
due to different species with their coupling (NS,C = NS,C1 +NS,C2 +NS,C12 ) in the total entropy generation rate NS. The impacts of the heat 
generation parameter and Rayleigh number on the average mass Bejan number are illustrated in Fig. 11 (c) (i)–(iii) for each cavity. It is 
observed that, in each case, Bemass < 0.5 which shows that the entropy generation rate is higher due to sources other than solutes, i. 
e.NS,C > NS,othersources where NS,othersources = Ns,h + Ns,f + Ns,pm. 

Fig. 12(a) and (b) explains the variation of average heat and mass Bejan numbers with the buoyancy ratios in the selected ge-
ometries. The average heat Bejan number depends upon the thermal irreversibility which decreases with an increase in both buoyancy 
ratios. Consequently, the ratio NS,othersources

NS,h 
increases and the average heat Bejan number decreases in each case (see Fig. 12(a) (i)-(iii)). For 

small buoyancy ratios, the contribution of thermal and other sources is found to be almost the same. As the buoyancy ratios increase, 
the dominance of irreversibility due to other sources upsurges. The comparison shows that the square cavity provides higher thermal 
irreversibility than other cavities. Fig. 12(b) represents the variation of average mass Bejan number Bem,avg with both buoyancy ratios 
for the selected geometries. In case of mass transfer, NS,C plays the same role as NS,C in heat transfer. Bem,avg depends upon irre-
versibility due to solutes and their coupling. Beh,avg, Bem,avg are also decreased with both buoyancy ratios. 

Fig. 10. Effects of Lewis numbers on average entropy generation rate and average irreversibility ratio for different cavities withRa = 50,Da = 10− 4,

φ1 = φ2 = 10− 2,φ3 = 10− 1,Q = Nc1 = Nc2 = φ4 = 0.5. 
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6. Conclusions 

The entropy generation due to several sources in a triple-diffusive natural convection system of non-isothermal flows is analyzed. 
Effects of various governing parameters have been studied highlighting an influence of each irreversibility source on entropy gen-
eration. The summary of results is given below:  

• Both internal heat generation and Rayleigh number tend to increase average entropy generation rate and Bejan number. Moreover, 
a rise of the Rayleigh number from 50 till 100 allows to double the average entropy generation for square and trapezoidal porous 
cavities, while for the triangular porous cavity such augmentation of the Rayleigh number allows to increase the average entropy 
generation rate in one and a half times. 

• The square and trapezoidal cavities offer less entropy generation rate and higher Bejan number that can be useful for the engi-
neering systems where the minimization of the entropy generation is desirable. 

Fig. 11. Effects of heat generation parameter and Rayleigh number on (a) total average entropy generation rate (b) average heat Bejan number (c) 
average mass Bejan number for different cavities with Le1 = 8, Le2 = 5,Da = 10− 4,φ1 = φ2 = 10− 2,φ3 = 10− 1,Nc1 = Nc2 = φ4 = 0.5. 
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• Both internal heat generation and Rayleigh number tend to decrease the average mass Bejan number. Moreover, it is possible to 
reduce the average mass Bejan number up to one and a half times with a growth of Rayleigh number from 50 till 100 for each 
considered geometry of the porous cavity.  

• The square cavity shows higher average mass Bejan number that characterizes less essential influence irreversibility due to heat 
transfer, porous medium and fluid friction on mass transfer in the square porous cavity.  

• Lewis numbers tend to increase the average total entropy generation rate and irreversibility ratio. By the way, an essential influence 
of Le2 can be found for high values of Le1.  

• Both average heat and mass Bejan numbers decrease with an increase in the buoyancy ratios of both salts.  
• The average entropy generation rate and irreversibility ratio increase with an increase in the buoyancy ratios. Moreover, a growth 

of the average entropy generation rate up to four times can be achieved with Nc2 for low value of Nc1 in the case of square and 
trapezoidal chambers.  

• Local entropy generation is observed on the upper corner of the cooled side and lower corner of the heated side of the cavity. 
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