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Abstract: The external data flow decreases the throughput of the transport connection. The 

indicator of this external load is the queue size in front of the protocol data. In this article, using 

a mathematical model in analytical and numerical forms, the relation between the throughput of 

the channel and the protocol parameters are presented including the queue size parameter. In this 

work the effect of the queue size on time-out duration has been shown, which is one of the 

important parameters and it’s studied weakly in researches. Also, the relation between round-

trip delay, the reliability of the transmission of the information segments with queue size are also 

shown. 

 

1. Introduction 

Transmission connection throughput has an extremely significant feature of computer networks. This 

indicator determines the quality of network services for subscribers and it’s determined by the values of 

protocol parameters such as (window size and timeout duration), and the characteristics of the data 

transmission path (duration round trip delay, reliability of the transmission of the information segments 

for both directions of the transport connection). Also, the external data flow acts to determine the 

throughput of the selected transport connection. This external flow decreases the throughput of the 

channel even if they have one common path route. The main indicator for this external load on the 

transport connection is the queue size in front of the protocol block data in selected sections of the transit 

nodes. By studying this indicator, the distribution of queue lengths in transit nodes from external 

network streams for analyzed connection can be estimated, and then it is used to manipulative the active 

characteristics of the linking and the selection of protocol parameters for the communication time 

between given subscribers. TCP [1]  is an important transport layer protocol. Modern computer networks 

with the TCP protocol have a significant role to cope with a huge number of today’s network problems.  

As accrued before, many problems were solved by adding new algorithms like Reno, New Reno, 

Tahoe [17]. These modifications can be considered long-standing and the research continues to improve 

the speed of the transport connection. Nowadays, the external loads on the shared network resources are 

not be considered by known models of asynchronous control procedures of a separate data link and 

transport protocol [2]–[8]don’t consider the external loads on the shared network resources. These loads 

could be on any virtual connection along the path between subscribers, which have common nodes. In 

[9],[10], the study of the data conversion process of the load transmission connection is carried out under 

the condition that the protocol parameters and channel attributes are very limited. Many modern studies 

on transport connection channels show that only a few factors or parameters such as timeout, round-trip 

delay, or congestion, have affected the speed of transport connection. However, there are no clearly 
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expressed analytical formulas or numerical analyzes [17]. In [16], to improve the speed of transport 

protocols a thorough presentation of modern modifications is carried out. The study clearly showed that 

modern studies consider only certain factors of congestions, timeout, and round-trip delay. But the work 

[15] does not consider the probability of data delivery reliability in the forward and reverse channels. 

While in our study, the conditions for the probability of data delivery reliability in the communication 

channel have been considered for both directions, analytical solutions were found and their 

confirmation, using numerical studies. In this paper, we present the mathematical model of the 

transmission connection under the transmission protocol connection in the group failure mode. This 

model is taking to account the factors such as losing data in forward and reverse directions, the 

mechanism of data retransmission, which counts time-out losing acknowledgments from receiving host, 

and another important factor “non-zero queue” from external interconnection. The significant 

improvement of this study compares to the study of [13] is the solution for all states of the Markov chain 

have been found except one case, which is not such important for the research. The mathematical model 

that is shown here is the same model, which was published in [12], but here the model has been shown 

for group failure mode, also the tasks and conditions are dissimilar.  

 

2. Description of the mathematical model 

Let’s consider data exchange between subscribers, which are connected by a multi-link data path. We 

suppose that the following conditions are true [11],[12]: The connection between nodes is duplex and 

having the same speed in both forward and reverse directions. The path length, which is expressed by 

hop numbers, is equal to 𝐷𝑓. The reverse channel, in which acknowledgments are delivered to the 

sender, has a length 𝐷𝑜. The confirmation is a receipt that contains information about whether the 

segment data sequence was correctly sent to the recipient. The reliability of the transmission of the 

information segments in the path, from sender to receiver and vice versa (the forward and reverse 

channel), are given as 𝐹𝑓 and 𝐹𝑜 respectively. The time processing of segments is equal in all nodes. 

Besides, the interacting subscribers have an unlimited flow of segments for transition and the length of 

segments is equal. Acknowledgments from the receiver are sending with their counterflow. Also, we 

propose that segment retransmission is organized according to group failure mode [23]. We suppose 

that, the loss of segments is not happening of the lack of buffer memory. The function of probability 

𝑏𝑛, 𝑛 = 0, 𝑁̅̅ ̅̅ ̅ is given. This means each segment in the flow, that we are analyzing, will meet a queue 

with 𝑛 ≤ 𝑁, where 𝑁 is the maximum length of the queue. The maximum length of queues 𝑁 defined 

by the buffer pools capacity of the transition nodes. We call the time 𝑡, which is needed to take the 

segment into the output line as a cycle. The cycle is defined as a sum of time needed to take segment 

into the output line, channel propagation signal, and the time for processing segment for the node side.  

The timeout 𝑆 is expressed as the length of 𝑡. It is launched before the beginning of the first transition 

segment in the queue and it will be fixed for all segments within a window size.  We consider that the 

window size of the controlling protocol, is defined by 𝑊. 𝑆 > 𝑊 sets the timeout duration. The sum of 

the length of forward and reverse path 𝐷 = 𝐷𝑓 + 𝐷𝑜 can be presented as round-trip delay in the unloaded 

channel, which was expressed in cycles 𝑡. After sending the next segments, the protocol will copy it into 

the queue of transmitted but unconfirmed segments, then it will launch timeout. As soon as the queue 

size becomes equal to the width of the window 𝑊, the control protocol will pause transmission while 

waiting for the acknowledgment or the expiration of timeout 𝑆 for confirmation. If the acknowledgment 

is positive, the segments, which sent successfully, will be deleted from the queue. If the timeout, for 

determining segment, is reached, that segment will be retransmitted and the timeout  of confirmation will 

be reset and launched again. Then the time of confirmation by the source of end-to-end acknowledgment 

is dispersed according to geometric law with 𝐹𝑜 parameter and the duration of sampling cycle 𝑡. The 

usefulness of virtual association in a loaded multilink that is controlled by the transport protocol, data 

transmission path with segment queues before sending data or confirmations can be described by a 

markovized process of the dynamics of a transmitted queue but not confirmed segments, in which the 

queue size of the advancing or inverse data flow of the testing connection is an additional variable of 
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Markov process. In the Markov chain state (𝑖, 𝑛), a sequence of size (𝑖 − 𝑛) segments that have been 

sent from the source, in which one of the links in the process of transfer met a queue with the length of 

𝑛 segments. States of Markov chain 𝑖 = 0, 𝑊 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 0, 𝑁̅̅ ̅̅ ̅, corresponding to the size of the queue 

which is transmitted but not yet confirmed segments in the flow source. And the time from the beginning 

of the transmission of the sequence, while the states 𝑖 =  𝑊 +  𝑛 + 1, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  0, 𝑁̅̅ ̅̅ ̅ refer to the time, 

during which the sender is not active and is waiting for an acknowledgment of correct reception of the 

sent sequence of 𝑊 segments.  

We define 𝑃(𝑖, 𝑛), 𝑖 =  0, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  0, 𝑁̅̅ ̅̅ ̅̅  as the probabilities of Markov chain states. Then the 

sequence of transmitted, but not confirmed data segments of considered virtual connection with a zero-

length queue grows to the state of a Markov chain with coordinates (𝐷 − 1,0) with probability 𝑏0. The 

further increasing size of this sequence occurs with a probability of 𝑏0(1 − 𝐹𝑜). In the states (𝑖, 𝑛), 𝑖 =
 𝐷 − 1 +  𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  0, 𝑁̅̅ ̅̅ ̅, it is possible, that sender receives the acknowledgment, and depending on 

the acknowledgment results, the sender transmits new segments (with a positive acknowledgment), or 

retransmit distorted segments. Since the transmitted sequence of segments of the virtual connection, that 

we are analyzing, may encounter a queue of non-zero length at any moment of transferring process (on 

the path of the sequence to the addressee or when transferring confirmation to the sender of information 

flow), the transition from the state (𝑖, 0), 𝑖 =  0, 𝑆 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  to state (𝑖, 𝑛), 𝑖 =  0, 𝑆 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =  1, 𝑁̅̅ ̅̅ ̅ occurs with 

probability bn. 

 

3. State probabilities for Markov chain 

The transition probabilities of the Markov chain can be expressed as 𝜋𝑖𝑛
𝑗𝑚

, where (𝑖, 𝑛) is the coordinates 

of the initial state, and the resulting state (𝑗, 𝑚) from the initial state into the chain. Then the dynamics 

of the process of transmitting information flow in the group failure mode for loaded data transmission 

channel can be set with the following values of transition probabilities: 

𝜋
𝑖𝑛

𝑗𝑚
=

ە
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۖ
ۓ

 

𝑏0,   𝑗 = 𝑖 + 1, 𝑚 = 0; 𝑖 =  0, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 0;

𝑏0൫1 − 𝐹0൯ , 𝑗 = 𝑖 + 1, 𝑚 = 0;  𝑖 =  𝐷 − 1, 𝑆 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 0;

𝑏𝑚, 𝑗 = 𝑖, 𝑚 = 1, 𝑁̅̅ ̅̅ ̅;  𝑖 =  0, 𝑆 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 0;

𝑏0𝐹𝑜𝐹𝑓
𝑖−𝐷+2,   𝑗 = 𝐷 − 1, 𝑚 = 0, 𝑖 =  𝐷 − 1, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 0, ;

𝑏0𝐹𝑜𝐹𝑓
𝑖−𝐷+2 , 𝑗 = 𝑊 + 𝐷 − 2 − 𝑖, 𝑚 = 0; 𝑖 =  𝑊, 𝑊 + 𝐷 − 3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 0,                   

𝑏0𝐹𝑜(1 − 𝐹𝑓
𝑖−𝐷+2) ,    𝑗 = 0, 𝑚 = 0;  𝑖 =  𝐷 − 1, 𝑊 + 𝐷 − 3̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 0,               

𝑏0𝐹𝑜, 𝑗 = 0, 𝑚 = 0;  𝑖 =  𝑊 + 𝐷 − 2, 𝑆 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 0,

1, 𝑗 = 0, 𝑚 = 0;   𝑖 = 𝑆 − 1, 𝑛 = 0, 𝑁̅̅ ̅̅ ̅,

1 , 𝑗 = 𝑖 + 1, 𝑚 = 𝑛;  𝑖 =  0, 𝐷 − 2 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅;

1 − 𝐹0, 𝑗 = 𝑖 + 1, 𝑚 = 𝑛;  𝑖 =  𝐷 − 1 + 𝑛, 𝑆 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅,

𝐹𝑜𝐹𝑓
𝑖−𝐷+2−𝑛 , 𝑗 = 𝐷 − 1, 𝑚 = 0;  𝑖 =  𝐷 − 1 + 𝑛, 𝑊 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁,̅̅ ̅̅ ̅̅        

𝐹𝑜𝐹𝑓
𝑖−𝐷+2−𝑛 , 𝑗 = 𝑊 + 𝐷 − 2 − 𝑖, 𝑚 = 0;  𝑖 =  𝑊 + 𝑛, 𝑊 + 𝐷 − 3 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅,     

𝐹𝑜(1 − 𝐹𝑓
𝑖−𝐷+2−𝑛) , 𝑗 = 0, 𝑚 = 0; 𝑖 =  𝐷 − 1 + 𝑛, 𝑊 + 𝐷 − 3 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅,

(1) 

There are different solutions for the equilibrium system of Markov chain state probabilities, and can be 

determined by the relationship between 𝑊, 𝑆, 𝐷, and 𝑁 (window size, timeout, path length, and 

maximum queue length) The time-out length must be bigger or equal to the round trip-delay length (𝑆 ≥
𝐷) and must go beyond the width of window size, also time-out should be longer than the waiting time 

for the beginning data transiting in transmission nodes because of existed queues inside the virtual 

channel. Due to the wide variety of protocol parameter values, the system has several different solutions. 
For the analysis and research of the data transmission process of loading arbitrary values of protocol 

parameters in the channel, 𝑏0 = 0 is an indispensable condition. In this paper, the study works to analyze 
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the data transmission process in the load channel with a non-zero queue length (𝑏0 = 0) and a protocol 

parameter with a common path and the maximum queue length 𝑆 ≥ 𝑊 + 𝐷 + 𝑁 − 1.  

For 𝑊 ≥ 𝐷, the solution of equilibrium system from system equation (1) can be written as the following: 

𝑃(0,0) = 𝐹𝑜 ∑ ∑ (1 − 𝐹𝑓
𝑖−𝐷+2−𝑛)𝑃(𝑖, 𝑛)

𝑊+𝐷−3+𝑛

𝑖=𝐷−1+𝑛

𝑁

𝑛=1

+ ∑ 𝑃(𝑆 − 1, 𝑛

𝑁

𝑛=1

) 

+𝐹𝑜 ∑ ∑ 𝑃(𝑖, 𝑛)𝑆−2
𝑖=𝐷+𝑊−2+𝑛

𝑁
𝑛=1                  (2) 

𝑃(𝑖, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 − 2 − 𝑖 + 𝑛, 𝑛)𝑁

𝑛=1 , 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅             (3) 

𝑃(𝐷 − 1,0) = 𝐹𝑜 ∑ ∑ 𝑃(𝑖, 𝑛)𝑊−1+𝑛
𝑖=𝐷−1+𝑛

𝑁
𝑛=1 𝐹𝑓

𝑖−𝐷+2−𝑛            (4) 

𝑃(𝑖, 0) = 0, 𝑖 = 𝐷, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅                      (5) 

𝑃(0, 𝑛) = 𝑏𝑛𝑃(0,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅                   (6) 

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛) + 𝑏𝑛𝑃(𝑖, 0), 𝑖 = 1, 𝐷 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅           (7) 

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅              (8) 

𝑃(𝑖, 𝑛) = (1 − 𝐹0)𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅                   (9) 

Let’s start solving the equilibrium system. According to equation (8), we get : 𝑃(𝑖, 𝑛) =
𝑃(𝐷 − 1, 𝑛), 𝑖 = 𝐷, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅, and from equation (9) we have: 𝑃(𝑖, 𝑛) = 𝑃(𝐷 − 1 +

𝑛, 𝑛)𝐹̅𝑜
𝑖−𝐷−𝑛+1

, 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅, taking to account these relations and from equations (4) and 

(5) for 𝑖 = 1, 𝐷 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  we find: 

𝑃(𝑖, 0) =
𝐹𝑜𝛷𝑊−𝑖

𝐹̅𝑜
∑ 𝑃(𝐷 − 1, 𝑚)𝑁

𝑚=1 , 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑊ℎ𝑒𝑟𝑒: 𝛷 = 𝐹𝑓(1 − 𝐹𝑜), 𝐹̅𝑜 = 1 − 𝐹𝑜  (10) 

𝑃(𝐷 − 1,0) =
𝐹𝑜𝐹𝑓(1−𝛷𝑊−𝐷+1)

1−𝛷
∑ 𝑃(𝐷 − 1, 𝑚)𝑁

𝑚=1                          (11) 

With equations (7), (6) and (10) we can find: 

𝑃(𝑖, 𝑛) = 𝑏𝑛[𝑃(0,0) +
𝐹𝑜𝛷𝑊−𝑖

𝐹̅𝑜

∑ 𝑃(𝐷 − 1, 𝑚)

𝑁

𝑚=1

], 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ 

𝑃(𝐷 − 1, 𝑛) = 𝑏𝑛[𝑃(0,0) +
𝐹𝑜𝐹𝑓(1−𝛷𝑊−1)

(1−𝛷)
∑ 𝑃(𝐷 − 1, 𝑚)𝑁

𝑚=1 ]           (12) 

Accordingly, from equation (12) we can find the state probabilities 𝑃(𝐷 − 1, 𝑛), 𝑚 = 𝑛 + 1, 𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ for 

arbitrary 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ through 𝑃(𝐷 − 1, 𝑚) and we get: 

𝑃(𝐷 − 1, 𝑛) =
𝑏𝑛

1−𝛷−𝐹𝑜𝐹𝑓(1−𝛷𝑊−1) ∑ 𝑏𝑚
𝑛
𝑚=1

[𝑃(0,0)(1 − 𝛷) + 𝐹𝑜𝐹𝑓(1 − 𝛷𝑊−1) ∑ 𝑃(𝐷 − 1, 𝑚)𝑁
𝑚=𝑛+1 ]

    , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅                        (13) 

When 𝑛 = 𝑁, we get: 𝑃(𝐷 − 1, 𝑁) = 𝑏𝑁
𝑃(0,0)(1−𝛷)

1−𝛷−𝐹𝑜𝐹𝑓(1−𝛷𝑊−1)
, substituting this relation into equation (13) 

for values 𝑛 = 𝑁 − 1 to 1, recursively, we can find the functional expression for state probabilities 

(𝐷 − 1, 𝑛) via 𝑃(0,0): 𝑃(𝐷 − 1, 𝑛) = 𝑏𝑛
𝑃(0,0)(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅. From here, up to the probability of 

the initial state, we obtain the probability distribution of states of the Markov chain: 

𝑃(𝑖, 0) =
𝑃(0,0)𝐹𝑜𝐹𝑓𝛷𝑊−1(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 𝛷−𝑖, 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

(𝐷 − 1,0) =
𝑃(0,0)𝐹𝑜𝐹𝑓(1−𝛷𝑊−𝐷+1)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1   

𝑃(𝑖, 𝑛) = 𝑃(0,0)𝑏𝑛
1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1−𝑖

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 , 𝑖 = 0, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑏𝑛
𝑃(0,0)(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 , 𝑖 = 𝐷 − 1, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑏𝑛
𝑃(0,0)(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 𝐹̅𝑜
𝑖−𝐷−𝑛+1

, 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

By using the normalization condition, finally we can get the relation for initial state 𝑃(0,0): 
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𝑃(0,0) =
(1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1)(1−𝛷)𝐹𝑜

𝐹𝑜(1−𝛷)[𝐹𝑜𝐹𝑓+𝐷൫1−𝐹𝑓൯+(1−𝛷)(1+𝑁̅)]+𝐹𝑜
2𝐹𝑓(𝛷𝑊−𝐷+1−𝛷𝑊)+(1−𝛷)2(𝐹̅𝑜−𝐹̅𝑜

𝑆−𝐷+1
∑

𝑏𝑛
(1−𝐹𝑜)𝑛

𝑁
𝑛=1 )

, Where 

𝑁̅ = ∑ 𝑛𝑏𝑛
𝑁
𝑛=1 , is the average length of the queue. Note: if we put the value of 𝐹𝑓 = 1, we can get the 

same results for selective failure mode, which are represented in [12]. 

Let’s consider the case when the size of the window does not exceed the duration of round-trip delay 

(𝑊 < 𝐷) and the duration of time-out is the same 𝑆 ≥ 𝑊 + 𝐷 + 𝑁 − 1. According to equation (1) the 

system of equilibrium will change as the followings: 

The equations of (2) (6) (9) will remain the same. Equation (3) is true for 𝑖 = 1, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. Equation (7) is 

true for 𝑖 = 1, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅. Equation (4) will change to 𝑃(𝐷 − 1,0) = 0. Equation (8) will be 

changed to 𝑖 = 𝑊, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅. The solutions of the equilibrium system will be as the following 

for 𝑊 < 𝐷: 

𝑃(𝑖, 0) =
𝑃(0,0)(1−𝛷)𝐹𝑜𝐹𝑓𝛷𝑊−1−𝑖

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 , 𝑖 = 1, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑏𝑛𝑃(0,0)[
1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1−𝑗

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 ], 𝑖 = 0, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑊 − 1,0) =
𝑃(0,0)(1−𝛷)𝐹𝑜𝐹𝑓

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1  

𝑃(𝑖, 𝑛) = 𝑏𝑛
𝑃(0,0)(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 , 𝑖 = 𝑊 − 1, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑏𝑛
𝑃(0,0)(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1 𝐹̅𝑜
𝑖−𝐷−𝑛+1

, 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

As the way before we can find the initial state using normalization condition: 

𝑃(0,0) =
(1−𝐹п+𝐹𝑜𝐹п𝛷𝑊−1)(1−𝛷)𝐹𝑜

𝐹𝑜[𝐹𝑜𝐹п(𝛷−𝛷𝑊)+𝐹𝑜𝐹п(1−𝑊)(1−𝛷)+(1−𝛷)2(𝐷+1+𝑁̅)]+(1−𝛷)2(𝐹̅𝑜−𝐹̅𝑜
𝑆−𝐷+1

∑
𝑏𝑛

(1−𝐹𝑜)𝑛
𝑁
𝑛=1 )

  

Then, the transmission process with interval restrictions has been analyzed on the duration of the 

timeout. Let's present already found solutions. With restrictions 𝑊 ≥ 𝐷, 𝑊 + 𝐷 − 1 ≤  𝑆 ≤ 𝑊 + 𝐷 +
𝑁 − 1, 1 ≤ 𝑁 ≤ 𝐷 − 2, the equations of the original equilibrium system (2-9) are transformed into: 

𝑃(0,0) = 𝐹𝑜 ∑ ∑ (1 − 𝐹𝑓
𝑖−𝐷+2−𝑛)𝑃(𝑖, 𝑛)𝑊+𝐷−3+𝑛

𝑖=𝐷−1+𝑛
𝑁
𝑛=1 + ∑ 𝑃(𝑆 − 1, 𝑛𝑁

𝑛=1 )  

+𝐹𝑜 ∑ ∑ 𝑃(𝑖, 𝑛)𝑆−2
𝑖=𝐷+𝑊+𝑛−2

𝑆−(𝑊+𝐷−1)

𝑛=1   

𝑃(𝑖, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 − 2 − 𝑖 + 𝑛, 𝑛)𝑉𝑖

𝑛=1 , 𝑖 = 1, 𝐷 + 𝑊 + 𝑁 − 1 − 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑉𝑖 = 𝑆 − 𝐷 − 𝑊 + 𝑖

  

𝑃(𝑖, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 − 2 − 𝑖 + 𝑛, 𝑛)𝑁

𝑛=1 , 𝑖 = 𝐷 + 𝑊 + 𝑁 − 𝑆, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝑃(𝐷 − 1,0) = 𝐹𝑜 ∑ ∑ 𝑃(𝑖, 𝑛)𝑊−1+𝑛
𝑖=𝐷−1+𝑛

𝑁
𝑛=1 𝐹𝑓

𝑖−𝐷+2−𝑛
  

𝑃(0, 𝑛) = 𝑏𝑛𝑃(0,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛) + 𝑏𝑛𝑃(𝑖, 0), 𝑖 = 1, 𝐷 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = ൫1 − 𝐹0൯𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

Similarly, we solve the equations and as a result we obtain the probabilities of the states of the Markov 

chain: 

𝑃(𝑖, 0) =
𝑃(0,0)(1−𝛷)𝐹𝑜𝐹𝑓𝛷𝑊−𝑖−1 ∑ 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ

, 𝑖 = 1, 𝐷 + 𝑊 + 𝑁 − 1 − 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑃(𝑖, 0) =
𝑃(0,0)(1−𝛷)𝐹𝑜𝐹𝑓𝛷𝑊−𝑖−1

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ

, 𝑖 = 𝐷 + 𝑊 + 𝑁 − 𝑆, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝑃(𝐷 − 1,0) =
𝑃(0,0)𝐹𝑜𝐹𝑓(1−𝛷𝑊−𝐷+1)

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ
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𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)ቄ1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1−𝑖 ∑ 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1+𝑖 𝛷𝑆−𝐷−𝑚ቃቅ

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ

, 𝑖 = 1, 𝐷 + 𝑊 + 𝑁 − 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

  

, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)[1−𝐹𝑓+𝐹𝑜𝐹п𝑓𝛷𝑊−𝑖−1]

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ

, 𝑖 = 𝐷 + 𝑊 + 𝑁 − 𝑆, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)(1−𝛷)

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ

, 𝑖 = 𝐷 − 1, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)(1−𝛷)𝐹̅𝑜

𝑖−𝐷−𝑛+1

1−𝐹п+𝐹𝑜𝐹𝑓ቂ𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚ቃ

, 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

As before we can find the initial state 𝑃(0,0) using normalization condition: 

𝑃(0,0) = 𝐹𝑜(1 − 𝛷){1 − 𝐹𝑓 + 𝐹𝑜𝐹𝑓[𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +

∑ 𝑏𝑚
𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚]}{𝐹𝑜

2𝐹𝑓[𝛷𝑊−𝐷+1  

+1 − 𝛷 − 𝛷𝑊 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 − ∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚+1 + (1  

−𝛷) ∑ 𝑏𝑚
𝑁
𝑚=𝑆−𝐷−𝑊+2 𝛷𝑆−𝐷−𝑚(𝑚 − 𝑆 + 𝐷 + 𝑊 − 1)] + (1 − 𝛷)[𝐹𝑜൫1 − 𝐹𝑓൯𝐷  

+𝐹𝑜(1 − 𝛷)(𝑁̅ + 1) + (1 − 𝛷) (𝐹̅𝑜 − ∑ 𝑏𝑛
𝑁
𝑛=1 𝐹̅𝑜

𝑆−𝐷−𝑛+1
)]}−1  

Consider analyzing the process of information transfer for window size less than the time-trip delay 

(𝑊 ≤ 𝐷) and interval restrictions on the timeout duration 𝐷 + 𝑊 − 1 ≤ 𝑆 ≤ 𝐷 + 𝑊 + 𝑁 − 1 and the 

maximum of queue size 1 ≤ 𝑁 ≤ 𝑊 − 2, then the equilibrium equations from (2-9) take the form: 

𝑃(0,0) = ∑ 𝑃(𝑆 − 1, 𝑛𝑁
𝑛=1 ) + 𝐹𝑜 ∑ ∑ 𝑃(𝑖, 𝑛)𝑆−2

𝑖=𝐷+𝑊+𝑛−2
𝑉
𝑛=1 , 𝑉 = 𝑆 − 𝐷 − 𝑊 + 1  

P(i, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 + 𝑛 − 2 − 𝑖, 𝑛)𝑉𝑖

𝑛=1 , 𝑖 = 1, 𝐷 + 𝑊 + 𝑁 − 1 − 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑉𝑖 = 𝑆 − 𝐷 − 𝑊 + 𝑖  

P(i, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 + 𝑛 − 2 − 𝑖, 𝑛)𝑁

𝑛=1 , 𝑖 = 𝐷 + 𝑊 + 𝑁 − 𝑆, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

P(0, n) = 𝑏𝑛P(0,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛) + 𝑏𝑛𝑃(𝑖, 0), 𝑖 = 1, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅    

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝑊, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅   

𝑃(𝑖, 𝑛) = 𝑃(𝐷 − 1, 𝑛) = 𝑃(𝑊 − 1, 𝑛)  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛)(1 − 𝐹0), 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝐷 − 1, 𝑛)𝐹̅𝑜
𝑖−𝐷−𝑛+1

= 𝑃(𝑊 − 1, 𝑛)𝐹̅𝑜
𝑖−𝐷−𝑛+1

  

Similarly, when solving equations, the probabilities of states of the Markov chain can be obtained: 

𝑃(𝑖, 0) =
𝑃(0,0)𝐹𝑜𝐹𝑓൫1− ൯𝜙 𝜙𝑊−𝑖− ∑1 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑖 = 1, 𝐷 + 𝑊 + 𝑁 − 1 − 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑃(𝑖, 0) =
𝑃(0,0)𝐹𝑜𝐹𝑓൫1− ൯𝜙 𝜙𝑊−𝑖−1

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑖 = 𝐷 + 𝑊 + 𝑁 − 𝑆, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0){1−𝐹𝑓+𝐹𝑜𝐹п[𝜙𝑊−1− ∑𝑖 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+𝑖+1 𝜙𝑆−𝐷−𝑚 }]

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑖 = 1, 𝐷 + 𝑊 + 𝑁 − 1 − 𝑆̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

 𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)[1−𝐹𝑓+𝐹𝑜𝐹𝑓𝜙𝑊−1−𝑖]

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑖 = 𝐷 + 𝑊 + 𝑁 − 𝑆, 𝑊 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ 

𝑃(𝑖, 𝑛) =
𝑏𝑛൫1− ൯𝜙 𝑃(0,0)

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑛 = 𝑊 − 1, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛൫1− ൯𝜙 𝑃(0,0)

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

𝐹̅𝑜
𝑖−𝐷−𝑛+1

, 𝑛 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

Next the initial state 𝑃(0,0) has been found. 

𝑃(0,0) = {1 − 𝐹𝑓 + 𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]}𝐹𝑜(1 − 𝜙){𝐹𝑜

2𝐹𝑓 [1  

−𝜙 ∑𝑊 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑− 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚+1 + (1  
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−𝜙) ∑ 𝑏𝑚
𝑁
𝑚=𝑆−𝐷−𝑊+2 𝜙𝑆−𝐷− (𝑚 𝑚 − 𝑆 + 𝐷 + 𝑊 − 1)] + (1 − 𝜙)2[1 + 𝐹𝑜(𝐷 − 𝑊 +

𝑁̅)  +𝐹𝑜𝑊൫1 − 𝐹𝑓൯ − ∑ 𝑏𝑛
𝑁
𝑛=1 𝐹̅𝑜

𝑆−𝐷−𝑛+1
]}−1   

Consider another variety of interval restrictions on protocol parameters and the maximum queue size of 

the form 𝑊 ≥ 𝐷, 𝐷 + 𝑊 − 1 ≤ 𝑆 ≤ 𝑊 + 𝑁 + 1, 𝐷 − 2 ≤ 𝑁 ≤ 𝑊 − 2. Under these constraints, the 

equations of the original equilibrium system (2-9) will change in the following: 

𝑃(0,0) = 𝐹𝑜 ∑ ∑ (1 − 𝐹𝑓
𝑖−𝐷+2−𝑛

)𝑃(𝑖, 𝑛)𝑊+𝐷−3+𝑛
𝑖=𝐷−1+𝑛

𝑁
𝑛=1 + ∑ 𝑃(𝑆 − 1, 𝑛𝑁

𝑛=1 ) +

𝐹𝑜 ∑ ∑ 𝑃(𝑖, 𝑛)𝑆−2
𝑖=𝐷+𝑊−2+𝑛

𝑁
𝑛=1   

𝑃(𝑖, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 − 2 − 𝑖 + 𝑛, 𝑛)

𝑉1

𝑛=1 , 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑉1 = 𝑆 − 2 − (𝐷 + 𝑊 − 2 − 𝑖)  

  

𝑃(𝐷 − 1,0) = 𝐹𝑜 ቂ∑ ∑ 𝑃(𝑖, 𝑛)𝑊−1+𝑛
𝑖=𝐷−1+𝑛

𝑉2

𝑛=1 𝐹𝑓
𝑖−𝐷+2−𝑛 + ∑ ∑ 𝑃(𝑖, 𝑛)𝑆−2

𝑖=𝐷−1+𝑛
𝑁
𝑛=𝑉2+1 𝐹𝑓

𝑖−𝐷+2−𝑛ቃ , 𝑉2  

= 𝑆 − 𝑊 − 1     

𝑃(𝑖, 0) = 0, 𝑖 = 𝐷, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑃(0, 𝑛) = 𝑏𝑛𝑃(0,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ 

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛) + 𝑏𝑛𝑃(𝑖, 0), 𝑖 = 1, 𝐷 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ 

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ 

𝑃(𝑖, 𝑛) = ൫1 − 𝐹0൯𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅ 

By solving the equations, the following results achieved the probabilities of the states of the Markov 

chain: 

𝑃(𝑖, 0) =
𝑃(0,0)(1−𝜙)𝐹𝑜𝐹𝑓𝜙𝑊−𝑖−1 ∑ 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑃(𝐷 − 1,0) =
𝑃(0,0)𝐹𝑜𝐹𝑓[1−𝜙𝑊−𝐷+1 ∑ 𝑏𝑚

𝑆−𝑊−1
𝑚=1 −∑ 𝜙𝑆−𝐷−𝑚𝑁

𝑚=𝑆−𝑊 𝑏𝑚]

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

  

𝑃(𝑖, 𝑛) = 𝑏𝑛𝑃(0,0)[
1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝜙𝑊−1−𝑖 ∑ 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+𝑖+1 𝜙𝑆−𝐷−𝑚ቃ

1−𝐹𝑓+𝐹𝑜𝐹𝑓ቂ𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚ቃ

], 𝑖 = 0, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝐷 − 1, 𝑛) =
𝑏𝑛𝑃(0,0)(1−𝜙)

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)൫1−𝜙൯

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

,   𝑖 = 𝐷 − 1, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0)൫1−𝜙൯𝐹̅𝑜

𝑖−𝐷+1−𝑛

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

,   𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

From the normalization condition, we obtain the initial state P (0,0): 

𝑃(0,0) = {1 − 𝐹𝑓 + 𝐹𝑜𝐹𝑓[𝜙𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 + ∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]}(1 − 𝜙){(1  

−𝜙)൫1 − 𝐹𝑓൯𝐹𝑜𝐷 + 𝐹𝑜
2𝐹𝑓[𝜙𝑊−1(2 − 2𝐹𝑓 + 𝐹𝑜𝐹𝑓𝜙൫1 + 2𝜙1−𝐷 −

𝜙2−𝐷൯) ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1   

+൫2 − 𝜙൯𝐹𝑜𝐹п ∑ 𝑏𝑚
𝑆−𝑊−2
𝑚=𝑆−𝐷−𝑊+1 ൫𝜙𝑊−𝐷+1 − 𝜙𝑆−𝐷−𝑚൯ + (1  

 −𝜙) ∑ 𝑏𝑚
𝑆−𝑊−1
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚(𝑚 − 𝑆 + 𝐷 + 𝑊 + 1) + (𝐷 − 1)(1 

−𝜙) ∑ 𝑏𝑚
𝑁
𝑚=𝑆−𝑊 𝜙𝑆−𝐷−𝑚 + (1 − 𝜙) − (1 − 𝜙)𝜙𝑊−𝐷+1 ∑ 𝑏𝑚

𝑆−𝑊−1
𝑚=1 ] + (1 −

𝜙)2(𝐹𝑜𝑁̅  

 +1 − ∑ 𝑏𝑚
𝑁
𝑚=1 𝐹̅𝑜

𝑆−𝐷−𝑚+1
)}−1 

Consider to present one more solution of the system of equilibrium equations for the parameters 

𝑊 ≥ 𝐷, 𝐷 + 𝑊 − 1 ≤ 𝑆 ≤ 𝑊 + 𝑁 + 1, 𝑊 − 2 ≤ 𝑁. Under these constraints, the equations of the 

original equilibrium system (2-9) will change as the following:  

𝑃(𝑖, 0) = 𝐹𝑜 ∑ 𝐹𝑓
𝑊−𝑖𝑃(𝐷 + 𝑊 − 2 − 𝑖 + 𝑛, 𝑛)

𝑉𝑖

𝑛=1 , 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅   
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𝑃(𝐷 − 1,0) = 𝐹𝑜[∑ ∑ 𝑃(𝑖, 𝑛)𝑊−1+𝑛
𝑖=𝐷−1+𝑛

𝐸
𝑛=1 𝐹𝑓

𝑖−𝐷+2−𝑛 + ∑ ∑ 𝑃(𝑖, 𝑛)𝑆−2
𝑖=𝐷−1+𝑛

𝑋
𝑛=𝐸+1 𝐹𝑓

𝑖−𝐷+2−𝑛]  

𝑃(0, 𝑛) = 𝑏𝑛𝑃(0,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛) + 𝑏𝑛𝑃(𝑖, 0), 𝑖 = 1, 𝐷 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑋̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 𝑋 + 1, 𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = ൫1 − 𝐹0൯𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑋̅̅ ̅̅ ̅  

Where 𝑉𝑖 = 𝑆 − 2 − (𝐷 + 𝑊 − 2 − 𝑖), 𝐸 = 𝑆 − 2 − (𝑊 − 1), 𝑋 = 𝑆 − 2 − (𝐷 − 1).  

By solving the equations, the following results are achieved: 

𝑃(𝑖, 0) =
(1−𝜙)𝑃(0,0)𝐹𝑜𝐹𝑓𝜙𝑊−𝑖−1 ∑ 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

, 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑃(𝐷 − 1,0) =
𝐹𝑜𝐹𝑓𝑃(0,0)ቂ∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=1 −𝜙𝑊−𝐷+1 ∑ 𝑏𝑚

𝑆−𝑊−1
𝑚=1 −∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝑊 𝜙𝑆−𝐷−𝑚ቃ

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

  

𝑃(𝑖, 𝑛) =
𝑏𝑛𝑃(0,0){1−𝜙−𝐹𝑜𝐹𝑓ቂ∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=1 −𝜙𝑊−𝑖−1 ∑ 𝑏𝑚

𝑆−𝐷−𝑊+𝑖
𝑚=1 −∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1+𝑖 𝜙𝑆−𝐷−𝑚ቃ}

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

, 𝑖 = 0, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 =

1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝐷 − 1, 𝑛) =
𝑏𝑛(1−𝜙)𝑃(0,0)

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

, 1, 𝑆 − 𝐷 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑃(𝑖, 𝑛) =
(1−𝜙)𝑃(0,0)𝑏𝑛

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

, 𝑖 = 𝐷, 𝐷 + 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑋̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
(1−𝜙)𝑃(0,0)𝑏𝑛

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

, 𝑖 = 𝐷, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 𝑋 + 1, 𝑁̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) =
𝑃(0,0)൫1−𝜙൯𝑏𝑛𝐹̅𝑜

𝑖−𝐷−𝑛+1

1−𝜙−𝐹𝑜𝐹𝑓[൫1−𝜙𝑊−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 +∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1−𝜙𝑆−𝐷−𝑚൯]

, 𝑖 = 𝐷 + 𝑛, 𝑆 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

From here we can get 𝑃(0,0): 

𝑃(0,0) = {1 − ϕ − FoFf[൫1 − ϕW−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 + ∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1 − ϕS−D−m൯]}𝐹𝑜(1 − ϕ){(1

 −ϕ)2𝐹𝑜D − ൫1 − ϕ൯Fo
2Ff[(𝐷 − 1) ∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=1 − ∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ϕS−D−m 

+ ∑ b𝑚
S−𝑊−1
m=S−𝐷−𝑊+1 ϕS−D−m + ϕW−1 ∑ bm

S−D−W
m=1 + ∑ 𝑏𝑚

𝑆−𝑊−1
𝑚=𝑆−𝐷−𝑊+1 ϕS−D−m(𝑚 −

𝑆  

+𝐷 + 𝑊)] − Fo
2Ff[ϕW−D+1 ∑ bm

S−W−2
m=1 − ϕW−1 ∑ bm

S−D−W
m=1   

− ∑ bm
S−W−2
m=S−𝐷−𝑊+1 ϕS−D−m] + (1 − ϕ)2[𝐹𝑜 ∑ (S−𝐷−1

m=1 𝑚bm + 1൯  

+𝐹𝑜 ∑ bm
N
m=S−𝐷 (𝑆 − 𝐷) + F̅o − F̅o

S−D+1
∑ bm

N
m=1 F̅o

−m
]}−1     

The last variety of interval restriction on protocol parameters and the maximum queue size has form of  

𝑊 ≥ 𝐷, 𝐷 < 𝑆 < 𝐷 + 𝑁 + 1, when 𝐹𝑜 = 1, the equilibrium equations are like the following: 

𝑃(0,0) = (1 − 𝐹𝑓) ∑ 𝑃(𝐷 − 1 + 𝑛, 𝑛)𝑉
𝑛=1 + ∑ 𝑃(𝑆 − 1, 𝑛𝑁

𝑛=𝑉+1 ),  where 𝑉 = 𝑆 − 2 − (𝐷 − 1) 

𝑃(𝑖, 0) = 0, 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅   

𝑃(𝐷 − 1,0) = 𝐹𝑓 ∑ 𝑃(𝐷 − 1 + 𝑛, 𝑛)𝑆−𝐷−1
𝑛=1   

𝑃(0, 𝑛) = 𝑏𝑛𝑃(0,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 1, 𝐷 − 2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝐷 − 1, 𝑛) = 𝑃(𝐷 − 2, 𝑛) + 𝑏𝑛𝑃(𝐷 − 1,0), 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

𝑃(𝑖, 𝑛) = 𝑃(𝑖 − 1, 𝑛), 𝑖 = 𝐷, 𝐷 − 1 + 𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑛 = 1, 𝑁̅̅ ̅̅ ̅  

The initial state is obtained by solving all the equilibrium equations and from the normalization 

condition: 

𝑃(0,0) =
1−𝐹𝑓 ∑ 𝑏𝑚

𝑉
𝑚=1

1+𝐷−(𝐷−1)𝐹𝑓 ∑ 𝑏𝑚
𝑉
𝑚=1 +∑ 𝑏𝑚

𝑉
𝑚=1 𝑚+(𝑆−𝐷) ∑ 𝑏𝑚

𝑁
𝑚=𝑉+1

, where 𝑉 = 𝑆 − 𝐷 − 1 
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Research in a multidimensional area (𝑆, 𝑊, 𝐷, 𝐹𝑜, 𝐹𝑓 ) is a difficult task. The solution for this problem is 

the dimension reduction of the attribute space. Effective options for this reduction are absolute reliable 

reverse data transmission path (𝐹𝑜 = 1) and the case of a uniform forward and reverse data transmission 

path (𝐹𝑜, = 𝐹𝑓 = 𝐹) with conditions of unlimited window size (𝑊 → ∞) and, consequently, timeout 

duration (𝑆 → ∞). The initial probability case for 𝐹𝑜 = 1 looks as the following:  

𝑃(0,0) =
1−𝐹𝑓

1+𝐷+𝑁̅+𝐹𝑓(1−𝐷)
 for 𝑊 ≥ 𝐷. 

𝑃(0,0) =
1−𝐹𝑓

1+𝐷+𝑁̅+𝐹𝑓(1−𝑊)
 for 𝑊 < 𝐷. 

For the case of a uniform forward and reverse data transmission path (𝐹𝑜, = 𝐹𝑓 = 𝐹) with conditions of 

unlimited window size (W → ∞) and, consequently, time-out duration (𝑆 → ∞), the probability of initial 

states of Markov chain gets this form: 

𝑃(0,0) =
(1−𝐹)𝐹

𝐷(1−𝐹)𝐹+(1−𝐹+𝐹2)𝐹(1+𝑁̅)+1−2𝐹+2𝐹2  for 𝑊 ≥ 𝐷. 

P(0,0) =
(1−F+F2ΦW−1)(1−Φ)F

F[F2(Φ−ΦW)+F2(1−W)(1−Φ)+(1−Φ)2(D+1+N̅)]+(1−Φ)2((1−F)−(1−F)S−D+1 ∑
bm

(1−F)m
N
m=1 )

 for 𝑊 < 𝐷. 

after we found all the cases, now we can find the throughput for the selected loaded channel, which we 

study and to show how the throughput is behaving. 

 

4. Throughput of the loaded channel 

The capacity of the transport connection in the conditions of competition flows of various subscribers 

for transmission channel throughput is defined as the ratio of the average amount of data, transmitted 

between two consecutive acknowledgements, to the average time of getting the acknowledgements [7], 

[8]. The states of Markov chain, for which it is possible to get receipts, have a contribution to the 

throughput of the virtual connection. 

The following equations can calculate the bandwidth for the upper constraint 𝑆 ≥ 𝑊 + 𝐷 + 𝑁 − 1: 

𝑍𝑔 = 𝑃(0,0)𝐹𝑓{𝐹𝑜
2𝐹𝑓(1 − 𝛷𝑊−𝐷+1) + [(1 + 𝛷𝑊+1 − 𝛷𝑊) ∑

𝑏𝑛

𝑛+1
𝑁
𝑛=1   

 +
𝐹̅𝑜

𝑆−𝐷+1
൫𝐹𝑓

𝑊−𝐹𝑓
𝑊+1𝐹̅𝑜−1+𝛷൯

1−𝐹𝑓
∑

𝑏𝑛

(𝑛+1)𝐹̅𝑜
𝑛

𝑁
𝑛=1 ]}{1 − 𝐹𝑓 + 𝐹𝑜𝐹𝑓𝛷𝑊−1}−1for 𝑊 ≥ 𝐷. 

𝑍𝑔 =
𝑃(0,0)𝐹𝑓

1−𝐹𝑓+𝐹𝑜𝐹𝑓𝛷𝑊−1
∑

𝑏𝑛

𝑛+1
𝑁
𝑛=1 {(1 − 𝛷𝑊) +

(1−𝛷)(𝐹𝑓
𝑊−1)𝐹̅𝑜

𝑆−𝐷−𝑛+1

1−𝐹𝑓
} for 𝑊 < 𝐷. 

For the cases of absolute reliable reverse data transmission path (𝐹𝑜 = 1), for 𝑊 < 𝐷 and the throughput 

depend on the closeness of the value of windows size with the value of round-trip duration, but for 𝑊 ≥
𝐷, is invariant to 𝐷. For calculating we get the following formulas for 𝑆 ≥ 𝑊 + 𝐷 + 𝑁 − 1: 

𝑍𝑔 =
𝐹𝑓(𝐹𝑓+∑

𝑏𝑛
𝑛+1

𝑁
𝑛=1 )

1+𝐷+𝑁̅+𝐹𝑓(1−𝐷)
 for 𝑊 ≥ 𝐷. 

𝑍𝑔 =
𝐹𝑓 ∑

𝑏𝑛
𝑛+1

𝑁
𝑛=1

1+𝐷+𝑁̅+𝐹𝑓(1−𝑊)
 for 𝑊 < 𝐷. 

For the case of a uniform forward and reverse data transmission path (𝐹𝑜 = 𝐹𝑓 = 𝐹) with conditions of 

unlimited window size and time-out duration (𝑊 → ∞, 𝑆 → ∞), the throughput is as the followings:  

𝑍𝑔(𝑊 = ∞, 𝑆 = ∞) =
𝑃(0,0)𝐹

1−𝐹
(𝐹3 + ∑

𝑏𝑛

𝑛+1
𝑁
𝑛=1 )  for 𝑊 ≥ 𝐷 

𝑍𝑔(𝑊, 𝑆 = ∞) =
𝑃(0,0)𝐹൫1−𝛷𝑊൯

1−𝐹
∑

𝑏𝑛

(𝑛+1)

𝑁
𝑛=1   for 𝑊 < 𝐷 

Consider the following solution for the throughput for the interval restrictions on the duration of the 

timeout 𝑊 + 𝐷 − 1 ≤  𝑆 ≤ 𝑊 + 𝐷 + 𝑁 − 1 and the size 1 ≤ 𝑁 ≤ 𝐷 − 2 of the opponents' queues 

when window size is greater than round-trip delay 𝑊 ≥ 𝐷: 

𝑍𝑔 =
𝐹п𝑃(0,0)

(𝑌 1−𝐹 )𝑓

[𝐹𝑜
2𝐹𝑓(1 − 𝛷𝑊−𝐷+1 ൫) 1 − 𝐹 ൯𝑓 + ∑

𝑏𝑛

𝑛+1

𝑆−𝐷−𝑊+1
𝑛=1 [൫1 − 𝐹𝑓൯(1 − 𝛷𝑊) + ൫1 − 𝐹𝑓

𝑊൯(1  

−𝐹𝑓)(𝛷 − 1)𝐹̅𝑜
𝑆−𝐷−𝑛+1

] + ∑
𝑏𝑛

𝑛+1

𝑁
𝑛=𝑆−𝐷−𝑊+2 (1 − 𝐹̅𝑜

𝑆−𝐷−𝑛+1
)]  
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Where 𝑌 = 1 − 𝐹𝑓 + 𝐹𝑜𝐹𝑓[𝛷𝑊−1 ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 + ∑ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝛷𝑆−𝐷−𝑚] 

For reverse data transmission path (𝐹𝑜 = 1), it takes the form: 

𝑍𝑔 =
Ff{F (f 1−𝐹 )𝑓 +(1−𝐹𝑓) ∑

𝑏𝑛
𝑛+1

𝑆−𝐷−𝑊+1
𝑛=1 +∑

𝑏𝑛
𝑛+1

𝑁
𝑛=𝑆−𝐷−𝑊+2

(

}

1−𝐹 )𝑓 ቄ𝐷(1−𝐹𝑓)+𝐹𝑓+1+𝑁̅ቅ
  

For the case of a uniform forward and reverse data transmission path (𝐹𝑜, = 𝐹𝑓 = 𝐹): 

𝑍𝑔(𝑊 = ∞, 𝑆 = ∞) =
𝐹5

1+F3+N̅F(1−Φ)+Φ(𝐷−1)
  

For queue size of 𝐷 − 2 ≤ 𝑁 ≤ 𝑊 − 2 we get:  

𝑍𝑔 =
P(0,0)Ff

𝑌
{Fo

2𝐹𝑓[1 − ϕW−D+1 ∑ bm
𝑆−𝑊−1
m=1 − ∑ ϕS−D−mN

m=S−W bm] +
1−ϕ

1−𝐹𝑓
[∑

bm

𝑚+1

𝑆−𝐷−𝑊+1
𝑚=1 ((1 

  

−ϕ𝑊)(1 − 𝐹𝑓) − F̅o
S−D+1−m

൫1 − 𝐹𝑓
𝑊൯) + ∑

bm

𝑚+1

𝑁
𝑚=𝑆−𝐷−𝑊+2 (1 − F̅o

S−D−m+1
  

−𝐹𝑓൫1 − ϕ𝑆−𝐷−𝑚+1൯)]}−1  

And for N ≥  W − 2 the throughput can be calculated as the followings: 

𝑍𝑔 =
P(0,0)Ff

𝑈
[Fo

2𝐹𝑓(∑ bm
𝑆−𝐷−1
m=1 − ϕW−D+1 ∑ bm

𝑆−𝑊−1
m=1 ) +

𝐹𝑓൫1−ϕ൯

1−𝐹𝑓
∑

bm

𝑚+1

𝑆−𝑊−1
𝑚=1 [൫1 − ϕW൯൫1 − 𝐹𝑓൯

  

−൫1 − 𝐹𝑓
𝑊൯F̅o

S−D−n+1
]]  

Where 𝑈 = 1 − ϕ − Fo𝐹𝑓[൫1 − ϕW−1൯ ∑ 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 + ∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=𝑆−𝐷−𝑊+1 ൫1 − ϕS−D−m൯].  

For reverse data transmission path (Fo = 1), it takes the form: 

𝑍𝑔 =
𝑃(0,0)𝐹𝑓

1−𝐹𝑓 ∑ 𝑏𝑚
𝑆−𝐷−1
𝑚=1

{𝐹𝑓 ∑ 𝑏𝑚
𝑆−𝐷−1
𝑚=1 + ∑

𝑏𝑚

𝑚+1

𝑆−𝑊−1
𝑛=1 }, 

For the case of a uniform forward and reverse data transmission path (𝐹𝑜, = 𝐹𝑓 = 𝐹): 

𝑍𝑔 =
𝑃(0,0)𝐹

𝑈
[𝐹3൫∑ 𝑏𝑚

𝑆−𝐷−1
𝑚=1 − 𝜙𝑊−𝐷+1 ∑ 𝑏𝑚

𝑆−𝑊−1
𝑚=1 ൯ +

𝐹൫1−𝜙൯

1−𝐹
∑

𝑏𝑚

𝑚+1

𝑆−𝑊−1
𝑛=1 [൫1 − 𝜙𝑊൯(1 − 𝐹)  

−(1 − 𝐹𝑊)(1 − 𝐹)𝑆−𝐷−𝑚+1]]  

For the interval of 𝑊 + 𝐷 − 1 ≤ 𝑆 ≤ 𝑊 + 𝐷 + 𝑁 − 1, 1 ≤ 𝑁 ≤ 𝑊 − 2, 𝑊 ≤ 𝐷 the following is 

obtained: 

𝑍𝑔 =
𝑃(0,0)𝐹𝑓

1−𝐹𝑓+𝐹𝑜𝐹𝑓[𝜙𝑊− ∑1 𝑏𝑚
𝑆−𝐷−𝑊
𝑚=1 ∑+ 𝑏𝑚

𝑁
𝑚=𝑆−𝐷−𝑊+1 𝜙𝑆−𝐷−𝑚]

[∑
𝑏𝑛

𝑛+1

𝑁
𝑛=1 (1 − 𝛷𝑊) +

(1−𝛷)(𝐹𝑓
𝑊−1)𝐹̅𝑜

𝑆−𝐷−𝑛+1

1−𝐹𝑓
]  

For reverse data transmission path (𝐹𝑜 = 1) we get the followings:   

𝑍𝑔 =
𝐹𝑓 ∑

𝑏𝑛
𝑛+1

𝑁
𝑛=1

1+𝐷+𝑁̅−𝐹𝑓(W−1)
  

For the case of a uniform forward and reverse data transmission path (𝐹𝑜 = 𝐹𝑓 = 𝐹): 

𝑍𝑔(𝑊, 𝑆 = ∞) =
𝐹2(1−𝜙)൫1−𝛷𝑊൯ ∑

𝑏𝑛
(𝑛+1)

𝑁
𝑛=1

F3+(1−𝜙)2[1+F(𝐷−𝑊+𝑁̅)+𝑊𝜙]
  

The ultimate throughput solution for W ≥ D, D < S < D + N + 1, Fo = 1 has the following form: 

𝑍𝑔 =
𝐹𝑓[𝐹𝑓 ∑ bm

𝑆−𝐷−1
m=1 +∑

bm
𝑚+1

𝑆−𝑊−1
m=1 ]

1+𝐷−(𝐷−1)𝐹𝑓 ∑ bm
𝑆−𝐷−1
𝑚=1 +∑ 𝑚bm

𝑆−𝐷−1
m=1 +(𝑆−𝐷) ∑ bm

N
m=𝑆−𝐷

  

As a result, numerical analyzes show that by increasing the queue number of rivals, the throughput of 

the transport channel decreases. You can easily see in (Figure 1,Figure 2), with a length of N = 8, the 

throughput is lower than with N = 6,4,2. 
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Figure 1. Dependency of the throughput on different queue sizes, for 𝐷 = 18, 𝑊 = 19, 𝑏 = 5, 𝑆 ≥ 𝐷 + 𝑊 +
𝑁 − 1, 𝐹𝑜 = 1. 

 

Figure 2. Dependency of the throughput on the reliability of data transmission in forwarding channel, 

for 𝐷 = 12, 𝑊 = 15, 𝑏 = 5, 1 ≤ 𝑁 ≤ 𝐷 − 2, 𝐷 + 𝑊 − 1 ≤ 𝑆 ≤ 𝐷 + 𝑊 + 𝑁 − 1, 𝐹𝑜 = 1. 

Figure 3 shows how the throughput of transport connection changes by moving the round-trip delay 

with fixed values of the queue length and the geometric distribution of the queue length. a parabolic 

dependence is observed. 

 

Figure 3. Dependency of the throughput on the reliability of data transmission in forwarding channel 

for different round-trip delay and with parameters of 𝑁 = 2, 𝑏 ∈ [2. .15] 𝑤𝑖𝑡ℎ 𝑠𝑡𝑒𝑝 =  3, 𝑆 ≤ 𝐷 +
𝑊 + 𝑁 − 1, 𝐹𝑜 = 1. 
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5. Conclusion 

In this paper, the mathematical model, in analytical and numerical forms has been proposed, and the 

relationship between the parameters of the loaded transmission channels of different subscribers is 

found. Also, the throughput of the virtual channel is described with which, we can calculate throughput 

of the transport connections. The analysis of equations shows that the throughput of 𝑊 ≥ 𝐷 is 

unchanged for the round-trip duration, but for 𝑊 < 𝐷, the throughput of the channel depends on how 

close the window size value is to the round-trip duration value. From the equations, we can see that as 

the competition between subscribers in the transmission connection intensifies, for 𝑊 < 𝐷, the 

throughput of the channel decreases. According to the results of the numerical analysis, the throughput 

dependency on the reliability of transmission data in the forward channel has a parabolic dependence 

and the form of the throughput dependency on the queue size, and on the round-trip delay is hyperbolic. 

Consequently, the longer the queue size, the lower the throughput. In [11], the efficiency of the FEC 

(Forward Error Correction) model was presented, without considering the load on the transport channel. 

Formerly, after the completion of this work, the research will be continued. As a next step of improving 

this study, the method of forward error correction considering the queue size on the transport connection 

will be applied. Then, identify those cases in which the FEC method has positive results in comparison 

with the classical transport channel (without using FEC) in conditions of an increased level of errors 

and at long distances between hosts. 
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