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Abstract. The rational fraction polynomial (RFP) modal identification procedure is a well known frequency 
domain fitting technique. To deal with a linear problem, the RFP procedure does not directly minimize the fitting 
error, i.e. the difference between the experimental and the analytical frequency response function, but a frequency 
weighted function of it: this causes bias in the modal parameter estimates. In this paper an iteration procedure is 
proposed which uses the output of the RFP technique as a starting estimate, and minimizes the true fitting error, 
expressed as a first order Taylor expansion of the identified parameters. Results are quite satisfactory: the fitting 
error is notably reduced after few iterations. Moreover, less computational modes with respect to the original RFP 
method are needed to obtain a good fit in a given frequency band. 

Sommario. I1 metodo dei polinomi ortogonali (RFP) ~ una ben nora tecnica di identificazione modale operante nel 
dominio delte frequenze. Per ottenere un problema di ottimizzazione lineare, nel metodo RFP non ~ minirnizzato 
direttamente l'errore di 'fitting', differenza tra la risposta sperimentale e quella analitica, ma l'errore pesato 
attraverso una opportuna funzione della frequenza. Tale operazione causa in generale una stima distorta dei 
parametri rnodali. In questo lavoro si propone una tecnica iterativa in cui i parametri modali identificati attraverso 
il metodo RFP costituiscono la stima iniziale per innescare la procedura iterativa stessa. I1 metodo minimizza 
l'effettivo errore di fitting e i risultati ottenuti sono molto soddisfacenti. L'errore di fitting risulta notevolmente 
ridotto dopo poche iterazioni. Inoltre, rispetto al tradizionale metodo dei polinomi ortogonali, ~ necessario un 
minor numero di modi computazionali per ottenere una buona identificazione in un assegnato campo di frequenze. 
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1. Introduction 

Experimental modal analysis and some of its most advanced applications, such as mod- 
el updating and structural modification, lie upon the ability of correctly identifying modal 
parameters from experimental measurements, which is nowadays almost taken for granted. In 
fact many good identification algorithms exist, both in the time and frequency domains, but 
unfortunately experimental data are not always easy to fit. In intricate situations such as noisy 
measurements, high modal coupling, or both, the reliability of the estimated modal parameters 
is poor: different methods can in fact produce very different results, and even with a single 
technique, depending on different reasonable operator choices, one may obtain different sets 
of modal parameters. Therefore any improvement to the current identification procedures is 
welcome. 

The rational fraction polynomial (RFP) method [ 1] is considered a very efficient technique 
for modal identification in the frequency domain. It is a direct method, in the sense that 
the entire set of  modal parameters is determined in one step, by solving a linear problem. 

* A first version of this paper was presented at 17th Int. Seminar on Modal Analysis, Leuven (Belgium), 23-25 
September 1992, and preprinted in the Proceedings. 
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Moreover, the use of orthogonal polynomials [2] largely improves the numerical efficiency 
of the technique, making it very robust and reliable. However, this simplicity is not obtained 
without difficulty: as shown in section 2, the price to pay is that the RFP method does not 
minimize the true fitting error, which is the difference between the experimental and fitted 
frequency response functions, but gives a weighted error, denoted by the product of the fitting 
error times a frequency dependent function. In section 3 it is shown how this procedure 
introduces a distortion which prevents minimizing the actual fitting error, causing bias in the 
parameter estimates. 

Consideration of the above questions leads to minimization of the true fitting error, which is 
a nonlinear function of the identification parameters. This involves a nonlinear minimization 
technique, which is generally iterative in nature, thus requiring a starting estimate of the 
solution and often presenting a difficult convergence. Such drawbacks can be reduced by 
defining an iteration technique which uses the output of the RFP method as a starting estimate, 
and expresses the error as a first order Taylor expansion of the identification parameters. This 
procedure makes the subproblem defined at each iteration very similar to the one stated in the 
original RFP technique, and allows the use of the same solution algorithm, including the use of 
orthogonal polynomials. Continuing on from the original RFP technique, the new procedure 
has been named the iterative rational fraction polynomial (IRFP). Examples and comparisons 
are shown in section 4. 

2. The Rational Fraction Polynomial Method 

It is assumed that the inertance FRF, H(8), is represented within a given frequency range by 
a viscous linear parametric model in the form: 

r+2n 
H ( s ) = L +  ~ s 2 Rk h=r+i S -- ,,~------~ q- U82 q- e M ( 8 )  (l)  

where s = jw; n is the assumed number of modes within the considered frequency band; Ak 
and Rk, occurring in complex conjugate pairs, are respectively poles and residues; eM(S ) is the 
modelling error, accounting for every discrepancy between the system and the model (choice 
of an erroneous number of modes in the selected frequency band, use of upper and lower 
residual terms U and L to describe the contribution of the out-of-band modes, nonlinearities, 
etc.). 

Brought to a common denominator, relation (1) reads: 

H(s) = bqsq + ...-~ bl~S-~ bo + eM(S) (2) 
8P+. . .+  als+ao 

where ai and bi are real; p = 2n and q = 2n + 2. The name Rational Fraction Polynomial 
method, for the identification procedure recalled here, derives from the above expression of 

The experimental iner tance/ t (s)  can be related to H(s) by the expression: 

= + (3)  

where eE(s)~is the experimental error. The statistical properties of rE(s)  strongly depend 
on the way H(~) is actually obtained. Usually eE(s) is assumed to be derived from a white 
random process with zero mean. 
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From equations (2) and (3) the following expression can be derived: 

e(s) = eE(s) + eM(s) = H(s)  - bqsq + . . . +  bls + bo, (4) 
sp + . . .  + als + ao 

where the fitting error e(8), the difference between experimental and analytical FRF, is clearly 
a nonlinear function of the ai's. 

The aim of the identification process is to find a rational fraction polynomial model that 
'fits' the experimental FRF, i.e. to find a set of coefficients (ai, bi) such that e(s) is minimized 
in the mean square sense. Since e(s) is not linearly related to the coefficients ai, the process 
involves using the nonlinear minimization technique• Due to its iterative nature, the nonlinear 
procedure would require a starting estimate of the unknowns and could cause trouble with 
respect to convergence. 

In the RFP technique [1], the requirement to minimize the fitting error ~(s) is relaxed in 
order to deal with a linear problem• Therefore a different identification problem is defined, 
which is equivalent to the original one only if e(s) can be made identically zero: equation (4) 
is multiplied by D(s)  = s p + . . .  + als  + ao, obtaining: 

(s p + . . .  + als  + a0)H(s)  - (bqs q + . . .  + bls + bo) = ew(s ) ,  (5) 

where ew(s )  is a weighted error term that accounts for both the experimental error eE and 
the modelling error eM: 

ew ( s )  = (sP + "  "+ a,a + ao) [eM(s) + eE(s)] = D(s)e ( s ) .  (6) 

Now ew(s ) ,  which depends linearly on the unknown parameters ai and hi, is minimized 
instead of e(s), with the hope that the minimum of ew(s)  corresponds to a reasonably low 
value of e(a). 

Equation (5) can be given a more general form by introducing two polynomial bases in s, 
{qS~(s)} and {0'~(s)), instead of the natural basis {s~}: 

(q)P q-" " • " -]- t ~ l ¢  -~- a 0 ) f ~ [ ( 8 )  --  (bqO q - { - - - . - ~  bl  o q- b0) = e w ( 8 ) ,  (7) 

where the real coefficients hi and bi are linearly related to ai and bi. Coefficients (ti and [~i can 
now be obtained from equation (7) by minimizing ew  in the mean square sense. This can be 
made straightforwardly since ew is a linear function of 5i and/~i, by defining the objective 
function: 

M M 
E ( 5 0 , . . . , & p - l , b o , . . . , / ) q )  = ~ e ~ v ( s l ) e w ( s l  ) = y~(D*(sl)e*(sl))(D(sl)e(sl)) ,  (8) 

/= I  /=1 

where M is the number of experimental frequencies and the superscript * denotes complex 
conjugate. With the positions: 

V ~  

. . .  

e -7 - - -  " " " 

OP-I ( sM )ITI (.SM ) . . . .~1(8M) 

Q = 

it = 

Oq(sl) . . .  1]  
• o , 

i 

(A) ap_ 1 
fi= 

ho 

bq 

bo 

(9) 
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the following expression for vector ew = [eW(Sl).-- eW(SM)] T holds: 

ew=v+[Vl-Q] l~ " (I0) 

The objective function E can be rewritten as: 

v* + 

(11) 

_Q p. Q Q. 

The solution is obtained by requiring that the derivative of E with respect to dt and la be zero: 

R e / I  pT p T p .  _ p T Q .  /t 
_QT ] v* + [ _ Q T p .  QTQ. ] } ( 1 ~  ) = o .  (12) 

k L  

The problem (12) is ill-conditioned for an arbitrary choice of the polynomial bases {¢~(s)} 
and {0n(8)}, and in particular when the natural basis {s ~ } is used. Ill-conditioning can be sig- 
nificantly reduced if the two polynomial bases are chosen in order to satisfy the orthogonality 
conditions: 

M ~ 2 . 

I = 1,.. . ,p 
/ = 1  

M ( 1 3 )  

~oi*(sl)OJ(sl) = ~id i, j= 1,...,q. 
/ = 1  

It can be shown that such polynomial bases exist, independently of the frequency spacing, 
which needs not to be constant ([2]). If the conditions (13) are valid, then: 

p T p .  = I QTQ, = I pTv* = 0 (14) 

and consequently the system (12) becomes: 

[Re(_~Tp.) Re(--PTQ')] ( b )  :Re{[OQT]v "} (I5) 

Not only the system (15) is well conditioned, but it can be solved separately with respect 
to dt and b. This greatly reduces the dimension of the problem: 

dt - [I - Re(pTQ*)Re(QTP*)] -1Re(pTQ*)Re(QTv *) (16) 

1~ = Re(QTv *) + Re(QTP*)~t. 

Once gt and 1~ are known, they can be transformed back to the coefficients a and b of the 
natural polynomial basis. 

Having computed ai and hi, the residues/~k and poles )~k can be evaluated in the same 
way as the polynomial coefficients of equation (2) are obtained from poles and residues. The 
poles are the roots of the polynomial: 

z p+'' '+alz+aO=O (17) 
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whereas the residues are computed from the coefficients bi and poles Ak through the relations: 

L = --b° U = bq Rk = bqA~-2 ÷ "'" + blA~-I + b°A~-2 (18) 
ao I-IiCk(Ak - Ai) 

These are obtained by equating relation (1) with (2), and noticing that /-Ik=lP (s - Ak) = 

s p + --" + al~ + a0. 

3 .  T h e  I t e r a t i v e  R a t i o n a l  F r a c t i o n  P o l y n o m i a l  M e t h o d  

3.1. DRAWBACKS OF THE RFP METHOD 

The introduction of the weighted error ew(s), according to equation (6), yields a linear 
expression in the parameters ai and bi, but introduces a distorsion which is absent only if 
eM(s) and eE(s) are both zero. In any other case the minimization is performed on a weighted 
error, with the weighting function given by the denominator D(8) of the identified transfer 
function. D(s)  is a priori unknown, since it depends on the unknown parameters a l , . . . ,  ap, 
but likely its roots will be not far from the system poles. 

Consequently the function D(s) presents two remarkable properties: 
- its absolute value is very low at frequencies corresponding to the imaginary part of the 

identified system poles; 
- its absolute value definitely increases as frequency increases, since the function is a 

polynomial in s = ju;. 
It should be recalled that, despite the minimization of the weighted error ew(8), the actual 
identification goal is to obtain low values for the fitting error e(s). From equation (8) it can 
be seen that a frequency dependent weight is assigned to the norm of e(s). More precisely 
the weight tends to zero close to the natural frequencies and tends to increase with frequency. 
Therefore the error e(s): 

- is higher close to the natural frequencies, where it reaches peak values; 
- decreases with the increasing frequency, i.e. it tends to be higher at low frequencies and 

lower at high frequencies. 
These two effects can be defined as localization and unbalance, respectively. In Figure 1, the 
identified a D (s)l of  a typical FRF measurement together with the error l e(s)l are plotted versus 
frequency: a sort of  'complementarity' between ID(8)I and le(s)] can be observed, since when 
the former is high the latter is low and viceversa. Since D(s) and e(s) have different units, 
labeling the Y-axis would be misleading: in fact only the relative trend of the above quantities 
is relevant. 

The effects of  such a frequency distribution of the error are easily predicted: poor fitting 
in the low frequency band, badly localized natural frequencies, erroneous damping estimates, 
wrong mode shapes. 

3.2. DESCRIPTION OF THE IRFP METHOD 

The above discussion stresses the unconveniences of considering the weighted error defined 
by equation (6) instead of the fitting error defined by equation (3). The latter is in fact 
derived without any weighting function, and therefore, after the identification, it should 
appear balanced and uniformly distributed inside the frequency band. 
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Fig. 1. Identified ID(s)[ (--) and error le(s)l (...) for a typical FRF measurement. 

The difficulties related to the solution of a nonlinear problem can be faced as follows. First, 
the RFP method is used to get a starting solution a (°), b (°). Equation (4) is then linearized by 
considering a Taylor series expansion truncated to first order terms: 

q p--I  O e ( 8 )  
e(s) = e(8)la(k),b(k ) + ~ Oe(s) (b r_b !k ) )+  y ~  (a _a!k))(19)  

r=0 Obr a(k),b(k) r=0 Oar a(a),b(k) 

where a (k), b (k), the starting point of  the expansion, is set equal to a (°), b (°) at the first step. 
The terms at the r.h.s, of  equation (19) are easily computed as: 

b~ k)sq + . . . +  b~)s  + b (k) 
e(S)la(k),b(k) = k r ( S ) -  ~ + . . . + # ~ +  ~k) = &~)-*z(~)(~) = ~(k)(,) 

O e ( , )  a ( ~ )  = a ~  

Obr ,b(k) 

~ r  

(20) 

Oe(s) a(k) b~k)s q + . . . +  blk)s + b (k) H(k)(8)s  r 
Oa~ ,b( k, ---- (sP + . . . T a~k) s + a~k)) 2s~ = sP + " " . + alk) 8 + a~ k) 

//(k)(,) 
D(k)(------3 ~ , 

where D¢~)(,)= ," + . - .  + # ,  + # 
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After substituting the expressions (20) in equation (19), the following linearized expression 
for e(s) is obtained: 

q s~ p-I H(k)(8 )srta _ a! k)) 
(8) = e(k)(s) - ~ D(~)(s ) (b~ - b (~)) + ~ D(k)(8 ) , 

r = 0  r = 0  

q H(k~:s,,,i ) P-' 
= e(k)(s ) D(k)( ~ 8~6b!k ) + D(k)(s) ~ s~ea!k), (21) 

r = 0  r = 0  

where 5a (k) = (a~ - a (k)) and 5b! k) = (b~ - b!k)). It can be noticed that two polynomials 

in 8, with coefficients 5a (k), 5b! ~), appear in equation (21). This again can be given a more 
(k) (k) 

general form by introducing two polynomial bases in s, {¢ ~ (s)} and {0 ~ (s)}, instead of 
the natural basis {8n): 

1 q 0(~) H(k)(s) P~ (k) 
e(s) = e(k)(s) D(k)(8) ~ 5~(k) + D(k)(8) )..£ ¢~ 5h!k), (22) 

r=O r=O 

where 5h (k) and 5b (k) are the coefficients in the new polynomial bases. These coefficients have 
to be determined in order to minimize the norm of the error e(s), i.e. the objective function: 

M 
E(~)(ea~),eal~), ea(~) e~(~) ~))  = E:(8~)~(8~). 

" ' ' ~  p - l ~  0 ~ ' ' ' ~  
i=1  

Equation (22) can be rewritten in matrix form: 

(6fi(k) ) 
e = e (k) + [ p(k) l_Q(k) ] 51~(k) 

(23) 

(24) 

where: 

e = [ e ( 8 1 ) - ' ' e ( S M ) ]  T e(~) = [~(~)(8~)...~(~)(8M)] ~ 

p(k) = 

H(k)(sl  ~ (k) ~:-1(~,) H(k)(81) A~-L~, H(k)(81) 
D(k)(sl ~ q Y  [ 1) "'" D(k)(81) 

• : ° • 

(25) 

Q(k) = 

(h) 
0 q (~1) 1 

D(k)(sl) D(k)(sl) 
• : : 

(k) 
0 q (SM) 1 

. , ,  

D(k)(SM) D(k)(SM) 

,Sa(k) = • 6fj(k) = 

6 h (o k) 

~b~ ~) ) 
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The analogy between equations (9)-(10) and equations (24)-(25) is immediately apparent. 
Again, the objective function (equation (23) in this case) is minimized by requiring that its 
derivatives with respect to ~it (~:) and ~1~(k) be zero: 

R e ~ [  p(k)T _p(k)TQ(D. ~fi(k) _Q(k )T]e (k ) '+  [ P(k)Tp(~)* (26) 

(k) (k) 
The polynomial bases { ¢ n (s) } and { 0 n (8) } can now be selected so as to satisfy the following 
orthogonality conditions: 

M (k)* H(k)(sg) 2 (k) F_,¢ ¢i 
/ = l  ~ (81) = t~ij i , j  = 1,.. . ,p 

0 i (sl) D(k)(st------ ~ 0 i (sl) = 5ij i , j  = 1, . . . ,q .  
/=l 

(27) 

(k) (k) 
From the above conditions it is obvious that the polynomial bases {¢ n (s)} and {0 n (s)} 
must be explicitly marked with the index (k): they in fact depend on the starting point used in 
the Taylor expansion. In view of the conditions (27), equation (26) can be rewritten: 

I Re(--P(k)TQ(k)*) ] (6fi(k) Re 
(28) 

and, after the positions: 

A (k) = Re(-Q(@~P (k)*) d i D =  Re(-P(k) re  (k)*) d~ k) = Re( -Q(k) re  (k)*) (29) 

equation (28) becomes: 

I A (k)T 

I ~l~(k)) = ( d ~ k ) ) "  
(30) 

The solution of equation (30) gives: 

6'I~ (k) = d~ k) _ A(k)6fi(k). 
(31) 

After transforming back 6it (k) and/~1~ (k) into the natural basis through two transformation 
matrices C (k) and C~ k), the values of a and b can be updated as follows: 

a(k+ ~) = a (k) + C(k)~fi(k) 
b(k+ 1) = b(k) + C~k)~l~ (k). 

(32) 

The IRFP procedure is summarized in the block diagram shown in Figure 2, which indicates 
that the most important tasks of the iterative part of the algorithm (generation of Forsythe 
polynomials and system solution) can be handled by the same routines used in the one-step 
RFP technique. 
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Fig. 2. Block diagram of the IRFP procedure (the RFP part is represented inside the dashed box). 

4. Results 

Significant numerical results are shown in the present section. In particular a comparison 
between the RFP and 1RFP method is performed to point out some typical improvements 
practically obtained when using the iterative procedure. The first test concerns the identifica- 
tion of a theoretically computed FRF relative to an 8-dof lumped system. Figures 3 and 4 show 
respectively the results obtained by RFP and IRFP methods. In Figure 3 the above mentioned 
localization effect is particularly apparent in fitting the first and sixth modal peak: the latter is 
practically ignored. The result obtained by using the IRFP technique is quite satisfactory: no 
bias is actually present in the identified FRF. 

The second test is performed on an experimental FRF from a real structure (lab frame). 
The identification is conducted in the frequency range 0-500 Hz, in which the FRF shows 
nine modal peaks. Therefore nine modes have been considered in the fitting procedure corre- 
sponding to a denominator polynomial of degree eighteen. This is practically the maximum 
degree available to the analyst when using commercial RFP software, and this is related, 
according to our experience, to many numerical problems of the algorithm beyond this limit. 
The result obtained by the RFP method is shown in Figure 5: again, the localization effect 
is very important, especially on the first and eigth modal peaks, and as in the above case the 
smallest peak is lost in the RFP reconstruction. Figure 6 shows the FRF identified by the IRFP 
procedure, which exhibits no significant distorsion. 

The third test is performed on the same experimental FRF used previously, but now the 
identification is conducted in the frequency range 0-550 Hz, in which the FRF shows more 
than nine modal peaks. However, for the above stated reasons, only nine modes could be used 
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4. IRFP method: theoretical (-..) and identified (m) FRFs. 

in the identification. In Figure 7 the experimental FRF and the RFP fitted FRF are compared: 
a high distorsion appears in the whole frequency range and only three out of nine available 
modes (one around 120 Hz and the remaining ones close to the upper frequency limit) are 
correctly identified. Figure 8 shows the FRF identified by the IRFP procedure: the result is 
quite satisfactory since all the nine modes available to the algorithm are employed for the 
best in order to minimize the fitting error. According to the authors' experience, this is the 
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Fig. 5. RFP method: experimental (. • .) and identified (--) FRFs (range 0-500 Hz). 
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Fig. 6. IRFP method: experimental (...) and identified (--) FRFs (range 0-500 Hz). 
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Fig. 7. RFP method: experimental (. • .) and identified (--) FRFs (range 0-550 Hz). 

general result whenever the RFP and IRFP methods are forced to use an insufficient number 
of modes. 

The absolute value of  the fitting error in the last test is shown in Figure 9: the RFP error 
is characterized by typical peaks in the resonance regions (localization effect), and by a large 
difference between low frequency and high frequency error (unbalance effect); on the contrary 
the IRFP error is lower and homogenously distributed within the frequency range. 
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Fig. 8. IRFP method: experimental (...) and identified (--) FRFs (range 0-550 Hz). 
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Fig. 9. Frequency trend o f  the fitting error in RFP (.- -) and IRFP ( - - )  methods.  

5. Conclusions 

A curve fitting procedure, the Iterative Rational Fraction Polynomial (IRFP) technique, has 
been developed starting from the well known Rational Fractional Polynomial method. The 
IRFP procedure presents the advantage of minimizing the true fitting error, defined as the 
difference between the experimental and the fitted FRFs, thus producing unbiased modal 
parameter estimates, unlike the RFP technique, which minimizes a frequency weighted func- 
tion of that error. 

The additional computational effort, implied by the IRFP technique to perform the itera- 
tions, turns out to be not very important. First, the method converges in the majority of cases 
and very rapidly, usually requiring one or two iterations at most. Whenever convergence of 
the IRFP method fails, one could of course be satisfied with the estimate previously given 
by the RFP technique, but convergence failure usually implies extremely bad results also for 
the RFP algorithm. Furthermore, unlike the RFP technique, the IRFP procedure can work 
without time-consuming tricks like the use of the so-called computational modes. In order 
to get acceptable results, often the RFP procedure must be run by specifying a number n of 
modes greater than those strictly necessary, or by specifying an order of numerator greater 
than 2n -t- 2 (see equations (1) and (2)). The additional modes, referred to as computational 
modes, have no physical meaning, but yield a smaller fitting error at the price of an increasing 
computational burden. 

The unnecessary computational modes bring another important advantage for the IRFP 
technique, in addition to saving computer time. Despite the use of orthogonal polynomials, 
which greatly improves the numerical efficiency of the technique, there is still an upper bound 
on the maximum degree of the polynomials that can be handled without degrading the results. 
This is turned into an upper bound on the number of modes that can be used inside a given 
frequency band. For most commercial RFP softwares the maximum number of modes in 
a band is nine, corresponding to denominator polynomials of degree eighteen. This limit is 
maintained in the IRFP procedure but, unlike in the original RFP technique, all the used modes 
are true vibration modes, thus providing extended fitting capabilities. 

The reported results are quite satisfactory and demonstrate the very good performance of 
the IRFP technique, both in absolute terms and compared to the parent RFP method. Further 
results, which include a demonstration of the statistical behaviour with respect to external 
noise, are reported in reference [3]. 
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Finally, it must  be remarked that the IRFP procedure, here presented for single FRF 
processing, can be straightforwardly extended to become a global frequency domain modal 
parameter estimation technique, like the RFP method [4]. 
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