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Abstract: In this work, the process for obtaining aluminum nitride in the combustion mode of co-flow
filtration of a nitrogen–argon mixture was investigated. The combustion of granules consisting of
aluminum and aluminum nitride as an inert diluent was studied under conditions of co-current
filtration in a flow of nitrogen and a nitrogen–argon mixture in the range of a specific flow rate of
1.5–5.0 cm3/(s·cm2). It was found that the specific flow rate of the gas mixture and the amount
of argon in the nitrogen–argon mixture had a significant effect on the rate and the temperature of
combustion. The structure and phase composition of the synthesis products were studied. The
maximum achieved yield of the AlN phase was 95 wt.%. Moreover, this method is energy efficient
and allows the production of metal nitrides without the use of high-pressure reactors.

Keywords: aluminum nitride; filtration combustion; co-flow filtration; self-propagating high-temperature
synthesis; phase composition

1. Introduction

Aluminum nitride is a unique compound of high applied value in the field of micro-
electronics, in particular, for creating substrates for hybrid microcircuits based on high
thermal conductivity ceramics [1]. Due to its high thermal conductivity and low coefficient
of thermal expansion, aluminum nitride is one of the promising materials for the produc-
tion of such substrates [2]. To obtain AlN ceramics with high thermal conductivity, the
initial powder must satisfy a number of conditions, such as chemical purity, shape, and
particle size distribution of particles. The thermal conductivity of AlN decreases due to
the presence of impurities such as iron, silicon, and oxygen [3,4]. Studies have shown that
the oxygen impurity has the greatest effect on the thermal conductivity of AlN ceramics.
In this case, to achieve high thermal conductivity, the oxygen impurity should not exceed
1.0 wt.% [5]. Another factor affecting thermal conductivity is the density of ceramics, which
depends on the shape and size of the particles [6]. There are many methods for producing
aluminum nitride, the main of which are: the carbothermal [7], the plasma-chemical [8],
and the gas-phase method [9]. The above technologies for producing AlN are characterized
by high energy consumption. In contrast, there is the self-propagating high-temperature
synthesis (SHS) method [10–14]. Studies devoted to the synthesis of aluminum nitride by
the SHS method have long been conducted [15,16]. The SHS method is a highly efficient
method for producing aluminum nitride, but it requires the use of high-pressure reactors.

Traditionally, self-propagating high-temperature synthesis and filtration combustion
of metal powders in nitrogen are studied under conditions of natural filtration in high-
pressure reactors [17]. Another type of filtration combustion is known: when the reagent
gas is forced into the reaction chamber, moving along with the combustion front through
the reaction products. A number of theoretical works [18–21] are devoted to this method;
however, despite this, there are few experimental works on the combustion of metals
and alloys in the co-flow filtration mode. Basically, such works [22,23] are devoted to
the study of the co-flow combustion of a mixture of titanium and carbon powders in the
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nitrogen and/or argon atmosphere. This method is of high practical importance, since
it is energy efficient and allows the production of metal nitrides without the use of high
pressures. It should be noted that the composition of the initial products, as well as the
operating parameters (the composition and flow rate of the gas mixture), significantly
affect the combustion characteristics and, as a consequence, the reaction products. Thus,
it is promising to study the features of the combustion of metal powders in a nitrogen-
containing gas flow. In this work, we studied the effect of the specific flow rate of the gas
mixture on the rate and combustion temperature of aluminum, the structure, and the phase
composition of the materials obtained during the synthesis of aluminum nitride in the
co-flow filtration mode.

2. Materials and Methods
2.1. Raw Components

The raw components were aluminum powder with an average size of 8 µm and a
purity of 98% and AlN powder (purity of 98%) with an average size of 25 µm, previ-
ously obtained by the SHS method. The combustion of the powders was carried out in a
nitrogen/nitrogen–argon mixture. The purity of argon and nitrogen was 99.99%.

2.2. Experimental Part

Combustion in the co-flow filtration mode was carried out in a SHS reactor, which
consisted of a reaction chamber (inner diameter of 1.6 cm), a gas supply unit, and a unit
for recording operating parameters. The experimental procedure on the combustion of the
raw components in the co-flow filtration mode is similar to the experimental procedure on
the combustion of chromium powder in the co-current gas flow, which was described in
detail in our work [24].

Preliminary experimental work has shown that the initial powders are strongly com-
pacted when gas is supplied, which negatively affects the filtration process. Thus, to
prevent such an effect, the raw components were granulated. The granulation process
was carried out as follows. The raw powders were mixed with 1% polyvinyl alcohol. The
obtained mixture was rubbed through sieves with a mesh size of 0.5 mm and 1 mm, respec-
tively. The obtained granules were dried in a vacuum furnace at 150 ◦C and repeatedly
rubbed through the sieves to obtain granules with a size of 500–1000 µm.

In this work, the combustion process of a sample consisting of aluminum and alu-
minum nitride granules was investigated in the mode of co-current filtration in a flow of ni-
trogen and the nitrogen–argon mixture in the range of a specific flow rate of
1.5–5.0 cm3/(s·cm2). It is known that the completeness of combustion is inversely propor-
tional to the exothermicity of the composition [19]. For the SHS method, the main way
to increase the completeness of combustion is to dilute the metal with the reaction prod-
uct [19]. According to the preliminary experimental work, it was found that the combustion
temperature of aluminum in the co-flow filtration combustion mode significantly exceeds
the melting temperature of aluminum. In this case, the melting process significantly affects
the filtration process, and, consequently, the obtained experimental results. Due to the
high exothermicity of aluminum, to increase the completeness of combustion, as well as to
prevent melting, aluminum nitride was added to the aluminum powder as an inert diluent.
To determine the optimal composition of the granules, experimental studies were carried
out. The following ratios were taken as the initial compositions of the granules: 100 wt.%
Al; 30 wt.% AlN + 70 wt.% Al; 50 wt.% AlN + 50 wt.% Al; 70 wt.% AlN + 30 wt.% Al (here-
inafter the “wt.” index will be omitted). It should be noted that the combustion of 100%
Al; 30% AlN + 70% Al; 50% AlN + 50% Al led to the presence of melts in the combustion
products, which impeded the filtration process and led to combustion breakdown. In the
general case, the experiment was carried out as follows.

Granules with a layer thickness of 4 cm were poured into the reaction chamber (Figure 1).
To ignite the sample, titanium granules with a size of 500–1000 µm were used. In this case,
titanium powder also acted as an oxygen-obtainer. The thickness of the ignition layer was
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4 mm (Figure 1). The initiation of the reaction was performed by applying an electric pulse
to the spiral, which was brought into contact with the surface of the igniting composition.
After ignition, a combustion front was formed, which propagated along the sample. As
a result of the combustion process, a sample was obtained, which was removed from the
reaction chamber, and ground by hand in a mortar into a powder for further research.
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Figure 1. Scheme of the flow-through SHS reactor.

2.3. Characterization

The pressure was monitored using a manometer and pressure sensors at the inlet and
the outlet of the reactor. The gas flow rate at the inlet and the outlet of the reactor was
controlled using electronic micro-flow meters of the hot-wire type “Red-y”. The reaction
temperature was measured with a WR5/20 tungsten-rhenium thermocouple. Data from
sensors and thermocouples were displayed on-line and recorded in a computer.

The particle size distribution of the raw powders was determined using a FRITSCH
Analysette 22 MicroTec plus (Germany) analyzer by laser diffraction. X-ray phase analysis
was performed using a Shimadzu 6000 diffractometer with CuKα radiation based on
the PDF-4 database. The microstructure of the raw powders and combustion products
was determined using a QUANTA 3D microscope equipped with an energy-dispersive
attachment (EDX).

3. Results and Discussion
3.1. Determination of the Optimal Composition of the Initial Powder Mixture

Figure 2 shows images of combustion products of AlN-Al mixtures in various concen-
trations obtained in the co-flow filtration mode in a nitrogen atmosphere with a specific
flow rate of 3.0 cm3/(s·cm2).
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Figure 2. Appearance of the combustion products: (a) 50% AlN + 50% Al; (b) 70% AlN + 30% Al.

As can be seen from Figure 2a, the central region of the (50% AlN + 50% Al) sample
was partially melted, which makes the filtration process difficult. In contrast, in the (70%
AlN + 30% Al) sample shown in Figure 2b, this region was not observed. The melting
of the central part was explained by the highest combustion temperature in the center of
the sample in comparison with the temperature at the periphery, where there was heat
exchanged with the wall of the reaction chamber.

According to the obtained results, it was found that the optimal ratio of Al to AlN, at
which it is possible to avoid the effect of melting on the co-flow filtration process, was 70%
AlN + 30% Al.

3.2. Influence of the Specific Nitrogen Flow Rate on the Combustion Rate of the Initial Composition

One of the main operating parameters that has a significant effect on the combustion
process in the co-flow filtration mode is the specific flow rate of the gas mixture.

The combustion of the granular mixture of aluminum and aluminum nitride in the
range of specific nitrogen flow rate of 1.5–5.0 cm3/(s·cm2) was studied. Figure 3 shows the
profile patterns of the specific nitrogen flow rate at the inlet and the outlet of the reactor.
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Figure 3. Profile patterns of the specific N2 flow rate obtained during combustion of the (70% AlN + 30% Al)
sample. Parameters: (a) q = 5.0 cm3/(s·cm2), (b) q = 3.0 cm3/(s·cm2), (c) q = 1.5 cm3/(s·cm2), 1–reactor
inlet, 2–reactor outlet.
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As can be seen from Figure 3, profiles of the specific flow rate have a complex shape,
which can be conditionally divided into three parts: I-a gentle section (gas supply section),
II-a section with a sharp drop in the specific flow rate (the beginning of the reaction),
and III-a section with a monotonic increase in the specific flow rate (the completion of
the reaction). The specific flow rate in region III increased monotonically; however, its
value did not reach the initial value. It is possible to achieve a stable propagation of the
combustion wave at the specific flow rate of more than 1.5 cm3/(s·cm2). Figure 3 shows
that during combustion at q = 5.0 and 3.0 cm3/(s·cm2), the specific flow rate at the outlet
decreased sharply but did not reach zero; thus, the gas was in excess. In this case, one
part of the gas was absorbed, and the other part passed through the reaction products. At
the specific flow rate of 1.5 cm3/(s·cm2), an almost complete absorption of the reaction
gas was observed. A further decrease in the specific flow rate led to a lack of fuel and the
termination of the AlN synthesis reaction.

At the specific flow rate of 3.0 and 5.0 cm3/(s·cm2), two cavities were observed in
region II, the presence of which was obviously associated with different rates of absorption
of the reaction gas by the igniting composition and the initial composition. It should be
noted that after the completion of the reaction, the specific flow rate did not reach its initial
value. This can be explained by the following: during the reaction, the granular layer was
compacted as a result of thermal sintering, and the passage of gas through the powder
layer in the initial amount became impossible.

Figure 4 shows typical photographic records of the combustion front propagation
in the co-flow filtration mode in a nitrogen atmosphere at the following parameters:
70% AlN + 30% Al, q = 3.0 cm3/(s·cm2). The combustion rate was measured experimentally
over the thickness of the sample. It was found that the combustion front propagates at a
constant speed through the entire thickness of the sample. Therefore, the combustion rate
was determined as the ratio of the sample thickness to the burning time.
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Figure 4. Combustion front propagation in the co-flow filtration mode with the parameters:
70% AlN + 30% Al, q = 3.0 cm3/(s·cm2), N2 = 100%.

Table 1 shows the combustion rate of the initial composition depending on the value
of the specific nitrogen consumption. As can be seen from Table 1, the higher the specific
flow rate of nitrogen, the higher the maximum combustion rate.

Table 1. Combustion rate of the sample (70% AlN + 30% Al) depending on the specific flow rate
of nitrogen.

q, cm3/(s·cm2) υ, mm/s

1.5 0.7
3
5

1.45
1.5

3.3. Influence of the Specific Flow Rate of Nitrogen on the Combustion Temperature of the
Initial Composition

Figure 5 shows the heat patterns obtained during the combustion of the (70% AlN +
30% Al) sample depending on the specific flow rate of nitrogen.
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Figure 5. Heat patterns obtained during the combustion of the (70% AlN+ 30% Al) sample in nitrogen.

The maximum combustion temperature of the initial composition depending on the
specific flow rate of nitrogen is shown in Table 2.

Table 2. Maximum combustion temperature of the (70% AlN + 30% Al) sample depending on the
specific flow rate of nitrogen.

q, cm3/(s·cm2) Tmax, ◦C

1.5 1831
3
5

1860
1915

As can be seen from Table 2, the higher the specific flow rate of nitrogen, the higher the
temperature and the combustion rate. Obviously, this was due to the larger amount of fuel
entering the reaction zone. At the same time, a more rapid cooling of the reaction products
was observed: the “quenching” process [24,25]. Such quenching fixes the composition of
the products formed in the high-temperature region [25]. It should be noted that an increase
in the combustion temperature with an increase in the specific flow rate of nitrogen was also
observed, but at these operating parameters it was insignificant, since the exothermicity of
the initial composition was significantly reduced by the addition of 70% AlN.

3.4. Influence of the Argon Addition to the Reaction Gas on the Combustion Characteristics of the
Initial Composition

The second most important operating parameter that had a significant effect on
the combustion process in the co-flow filtration mode was the composition of the gas
mixture. It is known that the co-flow filtration mode is very sensitive to the purity of the
filtering reagent [19]. Previous experiments [24,25] confirmed that the addition of inert
argon to nitrogen significantly affects the combustion process. The more cold ballast gas
(argon) enters the reaction zone, the more energy will be spent on heating it and the more
intensively the heat will be redistributed. Thus, the combustion of the initial composition
in the co-flow of a nitrogen–argon mixture with a 15% argon content was studied.
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3.4.1. Influence of the Specific Flow Rate of the Nitrogen–Argon Mixture on the
Combustion Rate of the Initial Composition

With the addition of 15% argon to nitrogen, it was not possible to carry out combustion
at the specific flow rate of 1.5 cm3/(s·cm2) since this led to the breakdown of combustion.
Therefore, the combustion of the initial composition in the nitrogen–argon atmosphere was
studied at the specific flow rate of 3.0–5.0 cm3/(s·cm2). Figure 6 shows the profile patterns
of the specific flow rate of the nitrogen–argon mixture at the inlet and the outlet of the
reactor obtained during the combustion of the (70% AlN + 30% Al) sample.
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Both in the case of combustion of the initial composition in the nitrogen flow (Figure 3)
and in the case of combustion in the flow of the nitrogen–argon mixture (Figure 6), the
profiles of the reaction gas flow rate can also be conditionally divided into three areas. An
increase in the specific N2-Ar flow rate from 3 to 5 cm3/(s·cm2) led to an increase in the
combustion rate (Table 3).

Table 3. Combustion rate of the (70% AlN+ 30% Al) sample.

Ar, wt.15%

q, cm3/(s·cm2) υ, mm/s

3
5

0.68
1.27

The combustion rate in the nitrogen–argon mixture at the specific flow rate of
3.0 cm3/(s·cm2) decreased by more than two times. However, with an increase in the
specific flow rate to 5.0 cm3/(s·cm2), the difference between the combustion rates in nitro-
gen and the nitrogen–argon mixture was only 0.23 mm/s.

3.4.2. Influence of the Specific Flow Rate of the Nitrogen–Argon Mixture on the
Combustion Temperature of the Initial Composition

Figure 7 shows a comparison of the heat patterns obtained during the combustion of
the (70% AlN + 30% Al) samples in the flow of the nitrogen–argon mixture, depending on
the specific flow rate.
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Figure 7. Heat patterns obtained during the combustion of the (70% AlN+ 30% Al) samples in the
flow of the nitrogen–argon mixture.

An increase in the specific flow rate of the nitrogen–argon mixture from 3 to 5 cm3/(s·cm2)
led to an increase in the maximum temperature (Table 4).

Table 4. Maximum combustion temperature of the (70% AlN + 30% Al) samples.

Ar, wt.15%

q, cm3/(s·cm2) Tmax, ◦C

3
5

1661
1792

Figure 8 shows a comparison of the heat patterns during the combustion of the initial
composition in the nitrogen flow and in the nitrogen–argon mixture. In the case of combus-
tion in the flow of the nitrogen–argon mixture (Figure 7), an increase in the combustion
temperature was observed; however, the combustion temperature was significantly lower
than the combustion temperature in pure nitrogen at the same specific flow rate (Figure 8). A
decrease in the maximum combustion temperature in the nitrogen–argon mixture was asso-
ciated with the redistribution of heat for heating cold argon. With an increase in the specific
flow rate of the nitrogen–argon mixture, an increase in the temperature and combustion
rate was observed. Obviously, this effect is still associated with a larger supply of fuel to the
reaction region and the simultaneous slip of argon through the reaction products, in which
already-heated argon transfers heat to the region behind the combustion front, heating
it up. However, this effect is observed due to the high exothermicity of the composition.
Apparently, when the critical value of the argon concentration in the mixture is reached, a
decrease in the combustion temperature will be observed with an increase in the specific
flow rate, since heating a large content of cold argon will require a significant amount
of heat.
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of nitrogen and nitrogen–argon mixture.

3.5. Phase Composition of Combustion Products
3.5.1. Phase Composition of the Combustion Products Obtained in the Nitrogen Flow

To calculate the weight fractions of phase components in the combustion products,
the Rietveld method was used.

XRD patterns of the combustion products obtained from the (70% AlN + 30% Al)
sample in the nitrogen flow are shown in Figure 9.
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the nitrogen flow: (a) q = 1.5 cm3/(s·cm2) and (b) q = 5.0 cm3/(s·cm2).

Phase analysis of the combustion products obtained in the nitrogen flow showed that
at the specific flow rate of 1.5 cm3/(s·cm2), in addition to the main phase of aluminum
nitride, there were phases of aluminum oxynitride (Table 5). Moreover, there was an
oxynitride phase with a high nitrogen content (according to energy dispersive analysis,
22–25 wt.%). Presumably, this was due to less sharp cooling of the combustion products.
At the flow rate of 5.0 cm3/(s·cm2), the products contained 95% aluminum nitride and
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only 5% aluminum oxynitride Al9O3N7. The content of the AlN phase was higher at the
nitrogen flow of 5.0 cm3/(s·cm2), which was explained by an excess of fuel.

Table 5. Weight fraction of phases in the combustion products (the nitrogen flow).

q, cm3/(s·cm2) Phase Weight Fraction, %

1.5
AlN

Al2.87 O3.45 N0.55
Al7O3N5

77
15
8

5.0 AlN
Al9 O3 N7

95
5

3.5.2. Phase Composition of the Combustion Products Obtained in the Nitrogen–Argon Flow

XRD patterns of the combustion products obtained from the (70% AlN + 30% Al)
sample in the nitrogen–argon flow are shown in Figure 10.
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in the nitrogen–argon flow: (a) Ar = 15%, q = 3.0 cm3/(s·cm2) and (b) Ar = 15%, q = 5.0 cm3/(s·cm2).

After combustion in the nitrogen–argon mixture, the main phases in the combustion
products were aluminum nitride and aluminum oxynitride (Table 6). Moreover, at the
specific flow rate of 3.0 cm3/(s·cm2), the Al2.87O3.45N0.55 phase prevailed among the
detected oxynitride phases, and, at the specific flow rate of 5.0 cm3/(s·cm2), the Al7O3N5
phase prevailed. Apparently, this was also due to the smaller amount of fuel that entered
the reaction area. Free aluminum was found in an insignificant amount (2%) at the flow
rate of 5.0 cm3/(s·cm2) and less than 1% at the flow rate of 3.0 cm3/(s·cm2), which was
probably due to a more rapid cooling of the combustion products as a result of which the
aluminum particles did not react.

Table 6. Weight fraction of phases in the combustion products (the nitrogen–argon flow).

q, cm3/(s·cm2) Phase Weight Fraction, %

3.0

AlN
Al2.87 O3.45 N0.55

Al7O3N5
Al

72
17
11
<1

5.0

AlN
Al2.87 O3.45 N0.55

Al7O3N5
Al

74
7

17
2
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As can be seen from the obtained results, the complete conversion of aluminum nitride
in the studied range of the specific flow rate and the small diameter of the reaction chamber
(1.6 cm) was not achieved. Obviously, this was due to two factors. First, there was a
temperature gradient at which the maximum temperature was concentrated in the center
of the sample, and the minimum temperature was at the periphery, as a result of heat loss
due to the contact of granules and the walls of the reactor. Thus, presumably, to reduce
the effect of the thermal gradient, it was necessary to increase the diameter of the reaction
chamber. Second, this is the “quenching” mode, in which the incoming gas cools the
combustion products and “fixes” the reaction products, while during combustion in the
natural filtration mode there is a nitrogen-addition phase [25]. Thus, the degree of purity
of the AlN phase during synthesis in the co-flow filtration mode is determined by the
purity of the initial powders and the combustion parameters (the specific flow rate and the
composition of the reaction mixture).

3.6. The Structure of Combustion Products

The synthesized samples are easily destructible products of a white-gray color. Grind-
ing of the combustion products led to obtaining granules of the initial size, and fur-
ther grinding of the granules led to obtaining particles comparable to the size of the
initial powder.

Figure 11 shows the structure of the combustion products obtained in the flow of
nitrogen (Figure 11a) and the nitrogen–argon mixture (Figure 11b) at the same gas flow rate.
As can be seen from Figure 11, there were particles of aluminum nitride with a whisker-
shape, acicular (rod-like), layered structure, as well as sharply angular particles. However,
the structure of aluminum nitride after combustion in the nitrogen flow was mainly
represented by acicular particles, which are particles with a layered structure and whiskers
up to 20 µm in length; the diameter of whiskers did not exceed 0.3 µm. The structure of
aluminum nitride after combustion in the nitrogen–argon mixture was represented mainly
by sharply angular particles and acicular particles. Whiskers of aluminum nitride were
contained in small amounts, and their average length reached 5 µm; the diameter did not
exceed 0.1 µm. Apparently, the higher content of particles with a whisker structure was
due to the higher synthesis temperature in the nitrogen flow.
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4. Conclusions

In this work, the combustion of the granular mixture consisting of (70% AlN + 30% Al)
was studied. The combustion products were studied, and the fundamental possibility of
obtaining aluminum nitride of various compositions in the co-flow filtration mode by
varying the operating parameters was shown. For the first time, the effect of the specific
flow rate of the gas mixture on the rate and temperature of aluminum combustion in
the co-current gas flow was experimentally studied. It was revealed that the specific
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consumption of the gas mixture, as well as the composition of the nitrogen–argon mixture,
has a significant effect not only on the combustion rate and the temperature but also on
the structure of the combustion wave, which manifests itself in the form of temperature
profiles, which ultimately affect the combustion products. The maximum achieved purity
of the AlN phase was 95 wt.%. The structure of aluminum nitride is represented mainly by
acicular (rod-like) particles, particles with a layered structure and whiskers up to 20 µm in
length; the diameter of the whiskers did not exceed 0.3 µm. The method makes it possible
to obtain metal nitrides without using high-pressure reactors. During the synthesis, the
maximum pressure at the outlet of the reactor did not exceed 1.3 atm, which is an order of
magnitude lower than the pressures used in the production of aluminum nitride by the
traditional SHS method. The choice of the optimal combustion parameters, the geometric
parameters of the reaction chamber (diameter), and the use of high-purity raw powders
will increase the purity of the combustion products.
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