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This paper describes a new concept referred to here as “energy sinks” as an alternative to
conventional methods of vibration absorption and damping. A prototypical energy sink envisioned
here consists of a set of oscillators attached to, or an integral part of, a vibrating structure. The
oscillators that make up an energy sink absorb vibratory energy from a structure and retain it in their
phase space. In principle, energy sinks do not dissipate vibratory energy as heat in the classical
sense. The absorbed energy remains in an energy sink permanently �or for sufficiently long
durations� so that the flow of energy from the primary structure appears to it as damping. This paper
demonstrates that a set of linear oscillators can collectively absorb and retain vibratory energy with
near irreversibility when they have a particular distribution of natural frequencies. The approach to
obtain such a frequency distribution is based on an optimization that minimizes the energy retained
by the structure as a function of frequency distribution of the oscillators in the set. The paper offers
verification of such optimal frequency spectra with numerical simulations and physical
demonstrations. © 2005 Acoustical Society of America. �DOI: 10.1121/1.2074807�

PACS number�s�: 43.40.At, 43.40.Kd �RLW� Pages: 3031–3042
I. INTRODUCTION

Considerable advances over the years have been made in
reducing structural vibrations by means of damping. These
range from passive methods to active-control methods. Pas-
sive methods include contact damping, fluid-layer damping,
and those that use energy absorption materials, such as vis-
coelastic and granular materials. Selection of damping meth-
ods is based on cost and suitability to a given application;
contact damping for jet engine blade vibrations, fluid layer
damping for rotating thin disks, and viscoelastic layers for
stationary large panels are such examples.

Energy sinks function as a substructure attached to, or
an integral part of, a primary structure from which they can
absorb and trap vibrational energy without adversely affect-
ing its performance. As such, energy sinks provide a suitable
alternative to application of conventional damping treat-
ments under conditions when they are not suitable. For ex-
ample, transient vibrations of large structures that have very
low frequencies such as naval vessels and those deployed in
space and buildings fall into this category.

The energy sinks described here consist of a set of linear
oscillators. When attached to a primary structure, for ex-
ample an oscillating rigid platform, the set of oscillators ab-
sorbs and retains the vibratory energy from the primary
structure. Energy sinks described here, in principle, do not
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require the presence of loss mechanisms, or damping in the
classical sense. Energy is conserved and the absorbed energy
remains in the collective phase space of the attached oscilla-
tors. Depending on design parameters of the set, the ab-
sorbed energy may remain in the set permanently �or for
sufficiently long duration� so that the flow of energy from the
primary structure appears as damping. As such, energy sinks
induce “apparent damping” to the primary structure.1

Irreversible absorption of energy is usually associated
with nonlinear systems, such as a lattice of atoms in a solid
excited by friction.2 Corresponding linear systems normally
require the presence of loss mechanisms to irreversibly ab-
sorb energy because in a conservative linear system energy
exchange between a primary structure and its satellites is
known to exhibit periodicity, or recurrence, determined by
the system configuration. For example, considering transient
cases, when a primary structure responds to an initial exci-
tation, energy transferred to the attached oscillators returns to
the primary structure after a delay during which the oscilla-
tors undergo their own periodic motions. However, as shown
in this paper, under certain conditions conservative linear
systems may also absorb and retain energy with near irre-
versibility.

The concept of energy sink described here differs from
the previous similar proposals, such as spatial containment or
single nonlinear attachments, or those that consider influence
of internal degrees of freedom on a structure, viz. Refs. 3–7.

The method used here relies on the use of a set of lossless,
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linear oscillators that absorbs the vibratory energy of the pri-
mary structure to which it is attached.

Multiple tuned mass dampers with linear stiffness and
damping function effectively under steady-state excitation.
Zuo and Nayfeh in a series of studies showed optimum dis-
tributions of these properties for vibration reduction in
single- and multiple-degree-of-freedom systems.8,9

Among the many studies that examined energy absorp-
tion from a primary structure by attached oscillators, viz.,
Refs. 10–24, several showed that numerous oscillators at-
tached to a primary structure collectively act like a viscous
damper.10,12–14 Most of these studies also demonstrate a trade
off between the number of oscillators and the need for pres-
ence of a loss mechanism in the oscillators; a set of oscilla-
tors absorbs energy even for vanishing values of loss factor
in each oscillator so long as the number of oscillators remain
large, approaching infinity.12

For practical cases, however, where the primary struc-
ture has a finite number of oscillators attached to it, the as-
sertions for vanishing loss factors hold true only during a
transient period, described as the return time t*, during which
energy flows into the satellite oscillators before returning to
the primary structure. If the attached oscillators do not pos-
sess any loss mechanisms, even for very large number of
oscillators, energy returns to the master with a return time
that depends on the number of oscillators.1,16 For a very large
number of oscillators, the transient part has a very long du-
ration. The return time corresponds to the smallest difference
among the natural frequencies of the oscillators.

The present study shows that energy can be trapped with
near irreversibly by a finite number of linearly attached os-
cillators even in the absence of dissipative mechanisms. In
this case, energy absorption by the oscillators is governed by
their frequency distribution, a subject which has not yet re-
ceived much attention. The results show the existence of an
optimal frequency distribution that minimizes the total en-
ergy returned to the primary structure from the set of oscil-
lators.

The underlying physics of energy absorption also relates
to the return times associated with the optimum set of fre-
quencies. The optimization method described in the follow-
ing produces an optimal distribution for the fundamental fre-
quencies of the oscillators such that the combination of the
associated return times minimizes the energy retained by the
primary structure. Corresponding experiments demonstrate
the feasibility of energy sinks.
3032 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
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II. MODEL

The prototypical system under consideration consists of
a rigid primary structure with a substructure comprised of a
set of oscillators attached to it as depicted in Fig. 1. The
system does not possess any mechanism of dissipation in the
classical sense, thus stiffness alone characterizes the connec-
tions between the substructure and the primary structure. The
total mass, m �m=�mi�, of the attachments is a fraction of
the primary mass, M, always m /M �0.1

Dynamic response of such a system can be described by
a set of coupled equations:

MẍM + KMxM + �
i=1

N

ki�xM − xi� = 0, �1�

miẍi + ki�xi − xM� = 0, �2�

where ki and mi represent the stiffness and mass of individual
oscillators, respectively, and xM�t� is the displacement of the
primary structure and xi�t� is the displacement of the ith os-
cillator in the set. �For brevity, the time variable t is omit-
ted in xM�t� and xi�t�.� For a given mass ratio m /M, energy
trapped by the attached set is determined largely by the
properties of the mass and stiffness mi ,ki, or the un-
coupled natural frequency distribution �i, of the attached
oscillators.

Figure 2�b� shows a typical impulse response of the pri-
mary structure in the prototype problem described by Eqs.
�1� and �2� that has a linear frequency distribution as shown
in Fig. 2�a�. In this simple example, the natural frequencies
of the oscillators have a constant frequency difference be-
tween the neighboring frequencies. As expected of linear os-
cillators with a linear frequency distribution, the response
shows a recurrence; as shown in Fig. 2�c�, energy periodi-
cally returns to the primary structure when the number of

FIG. 1. Schematic description of a primary structure and attached set of
oscillators.

FIG. 2. �Color online� Simulation re-
sults using N=99 oscillators: �a� linear
frequency distribution of the attached
oscillators, �b� displacement response,
and �c� total energy of the primary
structure.
Koç et al.: Energy sinks
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oscillators is finite, in this case N=100. The return time cor-
responds to the constant frequency difference t*=2� /��.
The optimization method described next seeks to determine a
frequency distribution for the attached oscillators that re-
duces the response amplitude of the primary structure and
diminishes the energy it retains.

III. OPTIMIZATION

The optimum distribution of the natural frequencies of
attached oscillators is sought by finding the frequencies that
minimize the objective function, which is based on the inte-
gral of the energy of the primary structure:

LM � �
0

�

xM
2 �t�dt . �3�

Because the approach used here requires that the integral is
finite, a small amount of “damping” will be introduced for
optimization to find the desired distribution. However, the
frequency distribution obtained from this approach will then
be used in the absence of any damping in the system. With
Parseval’s theorem, an equivalent expression to Eq. �3� in the
frequency domain becomes

LM � �
−�

+�

�XM���2�d� . �4�

Using nondimensional parameters, substituting in Eq. �4� the
equations of motion of the system �1� and �2� produces

LM � �
−�

+� d�

�1 + j�M − �2 − �m/MN��i=1
N �2�1+j�i�

1+j�i−��/�i�2 �2
,

�5�

where �=� /�M, �i=�i /�M, with �M =	KM /M and �i

=	ki /mi, and �i ,�M represent the loss factors associated
with the oscillators and primary structure, respectively.

Optimization searches for the minima of the multivari-
able function LM��� by solving the set of coupled nonlinear
equations:

�LM

��i
= 0, i = 1,…,N . �6�

For the solution �= ��1 ,�2 ,… ,�N� of Eq. �6� to be a
local minimum solution of LM��� requires that the Hessian
Matrix Hkj, evaluated at �, is positive definite with all ei-
genvalues that satisfy:

Hkj =
�2LM���
��k � � j

	 0, k = 1,…,N, j = 1,…,N . �7�

The numerical results reported in Sec. IV are obtained
using the Quasi-Newton optimization method and ODE23t
solver, which avoid introduction of numerical damping.

IV. NUMERICAL RESULTS

The optimization process starts with an estimated fre-
quency distribution, seeks to minimize the integral of the

energy, LM, by continuously adjusting the frequency distri-
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bution, and stops when LM reaches its minimum value. The
frequency distribution that produces the lowest value of LM

is accepted as the optimum distribution. The time it takes for
optimization of a particular case depends on the number of
oscillators and the value of the loss factor as shown in the
following. The effectiveness of the resulting optimum fre-
quency distribution is judged by the vibration amplitude of
the primary mass and the total energy it retains following, in
this case, an impulsive excitation as compared with the case
shown in Fig. 2 for which the attached oscillators have a
linear frequency distribution. In the optimization and simu-
lations results presented in this paper, frequencies are nor-
malized with respect to that of the primary oscillator and the
frequencies for the energy sinks range between 0 and twice
the primary mass resonant frequency.

A. Influence of initial frequency estimates

Optimization starting with different sets of initial esti-
mates for the frequency distribution of the attached oscilla-
tors do not show a discernible difference in the case of N
=29 oscillators. Some differences in the optimum results ap-
pear for N=99 oscillators, particularly when using very low
loss factors, but not enough to affect the response of the
primary and the energy it retains, as shown later with simu-
lations.

As shown in Fig. 3, the three different initial estimates
of frequency distributions, constant, linearly varying and a
nonlinearly varying power-law distribution, which we refer
to here as a polynomial distribution, produce nearly identical
optimized frequency distributions. Also shown in Fig. 3 is
the change in the value of the integral energy, represented by
LM, throughout the optimization process, starting with the
result of the first step of optimization. Its initial value and
rate of decline depend on the selection of the initial fre-
quency distribution shown in the first column. Each of the
initial frequency distributions produce nearly the same mini-
mum integral of energy, within 0.3% of each other.

Similar optimum distributions result in the case of a
larger number of attached oscillators �N=99�, however, with
some variation at either end of each frequency distribution as
shown in Fig. 4. The largest difference in the minimum value
of integral among the three cases changes with the loss fac-
tors used in the integral. The values of LM corresponding to
the optimum frequency distributions shown in Fig. 4 vary
0.5% for �i=0.01 and the variation increases to about 16%
when �i=0.001 is used. The differences that also appear in
the corresponding frequency distributions indeed become
less if optimization process is continued.

B. Role of loss factor used in optimization of LM

The loss factors used to ensure a finite value for LM in
Eq. �4� also determine the duration of the integral considered
for optimization. Ideally, the lower the loss factors used, the
closer the integral energy represents the energy sink, which
does not embody dissipation sources. A lower loss factor
leads to minimization of the energy of the primary structure
over a longer period of time, which also requires longer com-

putation times. A higher loss factor, on the other hand, short-
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ens the period of the integral, thus reducing the time over
which energy should be minimized. However, loss factors �i

also reduce the vibration amplitude of individual oscillators
in the energy sink and thus reducing their effectiveness in
transferring energy from the primary structure as simulations
demonstrate.

Figures 5 and 6 show examples of optimization results
for low and moderate values of loss factors for N=29 and 99
oscillators, respectively. In each case, the initial frequency
distribution of the set has a constant value the same as that of
the primary mass, �M =1, as indicated by the solid line.

Optimization spreads the frequencies over a band with a
higher density around the frequency of the primary mass.
The optimum frequency sets in Fig. 5, obtained using loss
factors �i=0.1, 0.01, and 0.001, display very similar distri-
butions except at each end of the frequency bands. The cor-
responding optimum frequency distributions for N=99 oscil-
lators, shown in Fig. 6, also exhibit similar trends.

The simulations presented next show the relative effec-
tiveness of optimum frequency distributions in reducing the

FIG. 3. �Color online� Optimized frequency distributions �dotted lines� for a
system of N=29 oscillators each with a loss factor �i=0.001. The change of
the integral of the energy of the primary structure, Eq. �5�, �right-hand
column� at each iteration illustrates the optimization process for different
initial estimates for the frequency distribution from which optimization
starts: �a� all oscillators have the same frequency as the primary structure
�i=1, �b� linear distribution, and �c� polynomial distribution.
vibration amplitude of the primary mass and the energy it
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retains. Results also show that the use of large loss factors
speeds up the optimization process but produces less than
optimal distributions as demonstrated later with simulations.
Very small values of loss factors prolong the optimization
process and introduce computational errors.

C. Simulations

The simulation results presented in the following use the
optimum frequency distributions, obtained as described ear-
lier, in solving Eqs. �1� and �2� without any damping in the
system.

As an example, Fig. 7 demonstrates simulation results
that correspond to the optimum frequency set shown in Fig.
5�c� obtained for N=29 oscillators with loss factors �i

=0.001 and compares them with the corresponding responses
for the initial frequency distribution with which optimization
started. The amplitude response and the total energy of the
primary mass presented over a long time period show a dis-
tinct reduction from the initial conditions from which opti-
mization started when all oscillators had the same frequency
as the primary, making the initial configuration essentially a
two-degree-of-freedom system. The response spectrum 7�b�

FIG. 4. �Color online� Optimized frequency distributions for N=99 oscilla-
tors that result from different initial frequency distributions for two different
loss factors �i: �a� all oscillators have the same frequency as the primary
structure �i=1, �b� linear distribution, and �c� polynomial distribution.
of the primary mass reflects the presence of a distributed set
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of frequencies that contains the effects of each of the 29
oscillators, distinct from the two frequencies with which the
initial estimate started out. While the initial amplitude and
the energy of the primary structure exhibits a periodic behav-
ior with a constant amplitude, the optimized frequency dis-
tribution reduces both the response amplitude and the re-
tained energy each to a fraction of the corresponding initial
values.

The impulse response of the primary structure shows

FIG. 5. �Color online� Influence of loss factors �i on the resulting optimized
frequency distributions for a system with N=29 oscillators, which initially
have the same frequencies as that of the primary �i=�M =1. �a� �i=0.1, �b�
�i=0.01, and �c� �i=0.001.
that the envelop of its displacement amplitude remains
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within 40% of its initial response for N=29 and the retained
energy within 20% of its initial value. The energy initially
contained in the two frequencies spreads over to 29 frequen-
cies, each with an amplitude less than 10% of the initial
spectral amplitudes. As shown later, increasing oscillator
number in the set further reduces the amplitude and retained
energy.

Simulations that correspond to the optimized frequency
sets obtained from different initial distributions presented in

FIG. 6. �Color online� Effect of loss factor on the optimized frequency
distribution for N=99. Optimization begins with the same initial frequencies
for all oscillators and the primary structure. �a� �i=0.1, �b� �i=0.01, and �c�
�i=0.001.
Fig. 4 produce responses shown in Figs. 8 and 9. The slight
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variations among the optimal frequency distributions lead to
barely discernible differences in the response amplitude of
the primary and the energy it retains over time. While the
differences are small, in this case the optimum frequencies
resulting from an initial estimate of constant frequencies and
loss factors �i=0.001 show a better performance, Fig. 9�a�.

An example of how nonoptimal frequency distributions
that result from use of large loss factors in Eq. �5� affect the
performance of an energy sink is shown in Fig. 10. The
3036 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
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frequency distribution presented in Fig. 6�a�, obtained using
�i=0.1, yields larger amplitudes for the displacement of and
the energy retained by the primary than the corresponding
cases with distributions obtained using lower loss factors.
These results are consistent with the observation that the
lower the loss factors used in equations of motion �5� the
closer they represent the energy sink, which does not have
any dissipation at all.

FIG. 7. �Color online� Simulation re-
sults for a set of N=29 attached oscil-
lators each with a loss factor of �i

=0.001. The top row shows the re-
sponse of the primary when all at-
tached oscillators and the primary
have the same frequency �i=�M =1.
The bottom row shows the results ob-
tained using the optimum frequency
distribution: �a� displacement time, �b�
displacement-frequency response, and
�c� total energy of the primary struc-
ture.

FIG. 8. �Color online� Simulation re-
sults for the optimum frequency distri-
butions obtained starting with initial
frequencies that correspond to those in
Fig. 4 ��i=0.01� show negligible dif-
ference in the displacement response
of the primary in time and frequency
domains as well as the total energy it
retains. N=99. Optimum frequency
used in each row corresponds to a dif-
ferent set of initial frequency estimates
used in optimization: �a� all oscillators
have the same frequency as the pri-
mary structure �i=1, �b� linear distri-
bution, and �c� polynomial distribu-
tion.
Koç et al.: Energy sinks
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D. Role of damping in an energy sink

Since physical systems have inherent dissipation mecha-
nisms, it is worth examining the influence of losses present
in an energy sink on its performance. For low values of loss
factors, �i
0.01, the main role of dissipation in the oscilla-
tors is to further reduce the oscillation amplitude of the pri-
mary structure as seen in Fig. 11 compared with Fig. 9�a�.
However, the presence of large damping in the system, for
example �i
0.1, reduces the effectiveness, and perhaps the
need, for an energy sink.

E. Multiple-degree-of-freedom systems

When optimization is applied to a primary structure with
two degrees of freedom depicted in Fig. 12, oscillator fre-
J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005

Downloaded 11 May 2012 to 151.100.100.103. Redistribution subject to ASA licens
quencies distribute themselves around each of the primary
frequencies and absorb energy from both masses. In the ex-
ample shown, for comparison, the mass ratio between the
oscillators and the two-component primary mass has the
same value as in the previous examples. As a result of opti-
mization, oscillators assume frequency distributions about
the natural frequencies of the primary structure, �M

�1�=0.618
and �M

�2�=1.618, similar to those that resulted for a single-
degree-of-freedom platform. As before, simulations show
that the optimized frequency distributions reduce the vibra-
tion amplitude and the retained energy by the primary struc-
tures. The responses of the primary structures have a higher
amplitude than the corresponding case with a single primary,
in part, as a result of the effectively reduced number of os-
cillators for each mass.

FIG. 9. �Color online� Simulation re-
sults for the optimum frequency distri-
butions obtained starting with initial
frequencies that correspond to those in
Fig. 4 ��i=0.001�: �a� all oscillators
have the same frequency as the pri-
mary structure �i=1, �b� linear distri-
bution, and �c� polynomial distribu-
tion. Results show negligible
difference in the displacement re-
sponse of the primary in time and fre-
quency domains as well as the total
energy it retains. N=99.

FIG. 10. �Color online� Simulation re-
sults for an energy sink with N=99 os-
cillators. The optimum frequency dis-
tribution, shown in Fig. 6�a�, is
obtained using a rather large loss fac-
tor �=0.1 for each of the oscillators:
�a� linear frequency distribution of the
attached oscillators, �b� displacement
response, and �c� energy of the pri-
mary structure.
Koç et al.: Energy sinks 3037
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F. An analytical expression for optimal frequency
distribution

The frequency distributions obtained by the above-
described optimization can be approximated by an analytical
expression that depends on a single parameter �:

FIG. 12. �Color online� Optimized frequency distribution of N=99 oscilla-
tors attached to a two-degree-of-freedom primary structure and the re-
sponses of the platform with the attached oscillators and platform attached
to ground �bottom�. The natural frequencies of the primary structure are

�1� �2�
�M =0.618 and �M =1.618.

3038 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
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���� = A 2� − 1

�2� − 1�
e��2�−1� − 1

e� − 1
+ 1� , �8�

where 0��1. Discrete values �i��� of frequency distribu-
tion are obtained with �i= i /N.

Figure 13 shows a representative set of frequency distri-
butions for different values of � with corresponding simula-
tions in Fig. 14. Very small values of � represent a nearly
linear frequency distribution with the same periodic energy
return to the primary structure. Values of �	5 assign most
of the oscillators the same frequency, producing essentially a
two-degree-of-freedom system, with the corresponding re-
sults in rows �c� and �d� of Fig. 14 and as discussed earlier.
Among these, the distribution that corresponds to ��2.5
yields the most optimum result yielding minimum average
energy retention by the primary.

An alternative method to reduce the computation time in
cases involving a large number of attached oscillators uses
the distribution that results from optimization for a small
number of oscillators. Figure 15 displays and compares the
distributions obtained for N=29 and N=99 oscillators by di-
rect optimization. Repopulating the distribution for N=29
with 99 oscillators and simulating the response of the pri-
mary structure as before produces results very close to those
obtained by a distribution obtained through direct optimiza-
tion. A comparison of the results based on interpolated dis-
tribution given in Fig. 16 with those in Fig. 9 shows very
little difference.

V. EXPERIMENTS

The two energy sinks with different physical configura-
tions demonstrate the efficacy of the proposed energy sinks.

FIG. 11. �Color online� Simulated re-
sponse of the primary with N=99 os-
cillators corresponding to Fig. 9�a� but
each oscillator has a loss factor �i

=0.001.

FIG. 13. �Color online� Examples of frequency distribution for different

values of � in Eq. �8�.

Koç et al.: Energy sinks
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The ubiquitous presence of inherent losses in physical sys-
tems precludes construction of either a primary structure or
an energy sink that can oscillate indefinitely. However, use of
different frequency distributions delineates the effects of
losses in the system from energy absorbed by the attached
oscillators.

A. A set of thin beams attached to a T-configuration

Figure 17 shows the impulse response of a
T-configuration of joined beams with and without a set of
thin beams attached to it. The first natural frequencies of the
thin beams follow the optimum distribution described by the
analytical expression in Eq. �8�. Without the oscillators, the
response of the structure decays as a result of dissipation due
to connections and material losses. However, the correspond-
ing response with the attached oscillators exhibit the same
FIG. 14. �Color online� Simulation re-
sults for displacement response in time
and frequency domains and the energy
retained by the primary mass using
values of � in Eq. �8�: �a� �=0.01, �b�
�=2.5, �c� �=7.0, and �d� �=10.0.
behavior as those obtained through simulations in both time

J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
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FIG. 15. �Color online� A comparison of the frequency distribution for N
=99 oscillators obtained by two approaches. Dotted line represents result by
direct optimization and the solid line represents interpolation for N=99 us-
ing the optimum distribution obtained for N=29 oscillators.
Koç et al.: Energy sinks 3039
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and in frequency domains. The response of the primary
structure in the frequency domain, shown with both linear
and logarithmic scales, clearly shows the effects of the oscil-
lators.

B. A set of flexible beams attached to a rigid
oscillator

This demonstration uses as the primary structure a single
degree of freedom oscillator that consists of a rigid block
which can freely slide in an air bearing. A pair of springs at
one end anchors it to an optical table. As displayed in Fig.
18, a lightweight structure built on the block carries a set
flexible cantilever wire beams, each with a mass along its
axis that acts as an oscillator. Natural frequency of each os-
cillator is determined by adjusting the position of the mass
along the beam. Figure 19 presents velocity response of the
block to an impulse for two cases: the oscillators have either
a linear or an optimum frequency distribution. When the dis-
tribution follows the optimum values obtained using the
3040 J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
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method described earlier, the energy returned to the block is
distributed both in time and frequency compared with the
case when oscillators have a linear distribution. The recur-
rence observed with the linear distribution has a lower am-
plitude than expected, in part due to the inexact values of the
oscillator frequencies. The inherent damping in the physical
system also reduces the response amplitudes. To better reflect
the effects of losses in the system, the simulation results
presented in Fig. 20 include their values as measured from
the experimental setup. The simulated responses, both in
time and frequency domain, represent the same characteris-
tics as those produced by measurements.

VI. CONCLUDING REMARKS

An energy sink that consists of a set of oscillators can
absorb vibration energy from a structure to which it is at-
tached. Following transient excitation of a structure, energy
that flows into the oscillators remains in their phase space.

FIG. 16. �Color online� Response of
the primary structure with an interpo-
lated frequency distribution. Opti-
mized frequency distribution obtained
using N=29 oscillators interpolated
for N=99 oscillators. �i=0.001.

FIG. 17. �Color online� Response of a
structure �top� shown with and without
the oscillators that make up an energy
sink. The first bending frequency of
the thin beams that act as oscillators
follow the analytical optimum fre-
quency distribution given in Eq. �8�.
Response of the structure with and
without the oscillators is shown �bot-
tom row� in frequency domain using
both linear and logarithmic scales.
Koç et al.: Energy sinks
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The net force they collectively exert on the primary struc-
ture, and thus the total energy that returns to the primary,
stays below a fraction of its initial value.

Because energy sinks, in principle, do not require con-
ventional dissipation sources, they are particularly useful in
high temperature or chemically hazardous environments
where materials and mechanisms that provide dissipation
may not be as effective. The unavoidable loss mechanisms in
physical systems, however, induce dissipation in the primary
and the attached oscillators. As long as these dissipation rates
remain moderate, they do not adversely affect the perfor-
mance of energy sinks, but assist in reducing the vibration
amplitude of the oscillators as well as the primary structure.

Energy absorption by a set of linear oscillators relates to
their frequency distribution. The optimization method pre-
sented in this paper finds such a distribution. The optimiza-
tion used here minimizes the energy of the primary mass
over a selected time period. Optimization results show a de-
gree of robustness of the process with respect to the initial
frequency distributions and the values of loss factors. Opti-
mum distributions increase the density of oscillators near the
frequencies of interest, as demonstrated for a two-degree-of-
freedom primary structure. This result is consistent with the
observation that with linear frequency distributions �and thus
constant frequency difference�; oscillators near the primary
frequency respond with a higher level of energy absorption
than those with frequencies away from it. Such a distribution
also de-emphasizes the need to finely tune the frequencies as
in conventional vibration absorbers.

The simulations and the physical demonstrations support
the viability of reducing vibrations of structures with linear
energy sinks and that the concept can be extended to primary
J. Acoust. Soc. Am., Vol. 118, No. 5, November 2005
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structures with multiple degrees of freedom. Ability of linear
energy sinks to absorb energy independent of dissipation
sources sets it apart from many other similar approaches. In
particular, energy sinks have an advantage in transient and
low frequency applications.

Although this manuscript primarily addresses the role of
optimum frequency distribution of energy sinks, their ability

FIG. 18. �Color online� A set of 40 oscillators attached to a primary struc-
ture.

FIG. 19. �Color online� Response of
the block with 40 oscillators to an im-
pulse excitation shows that oscillators
with an optimum frequency distribu-
tion �right� spread the return energy
over both time and frequency and re-
duce its amplitude. Inherent damping
in the system also reduces the ampli-
tude of recurrence for the linear distri-
bution, at t
8 s.
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to absorb energy also depends on other parameters such as
the number of oscillators and their mass ratio as discussed in
earlier studies, viz. Ref. 1.
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