
International Journal of Control
Vol. 79, No. 5, May 2006, 375–394

Hybrid systems in automotive electronics design

A. BALLUCHI*{, L. BENVENUTI{, A. FERRARI{
and A.L. SANGIOVANNI-VINCENTELLI{x

{PARADES, Via di S.Pantaleo, 66, 00186 Roma, Italy
{Dipartimento Informatica e Sistemistica, Università di Roma ‘‘La Sapienza’’,

Via Eudossiana 18, 00184 Roma, Italy
xDepartment of Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, CA 94720, USA

(Received 7 June 2005; in final form 2 December 2005)

Automotive electronic design is certainly one of the most attractive and promising
application domains for hybrid system techniques. Some successful hybrid system applications

to automotive model development and control algorithm design have already been reported in
the literature. However, despite the significant advances achieved in the past few years,
hybrid methods are in general still not mature enough for their effective introduction in the

automotive industry design processes at large. In this paper, we take a broad view of
the development process for embedded control systems in the automotive industry with the
purpose of identifying challenges and additional opportunities for hybrid systems. We identify
critical steps in the design flow and extract a number of open problems where hybrid system

technology might play an important role.

1. Introduction

In today cars, the electronic control system is a net-
worked system with an embedded controller dedicated
to each subsystem, e.g. engine control unit, gear-box
controller, anti-lock braking system (ABS), dashboard
controller, and vehicle dynamic control (VDC). The
embedded controllers interact by communicating over
a network. Due to the lack of an overall understanding
of the interplay of sub-systems and of the difficulties
encountered in integrating very complex parts mostly
coming by different Tier-1 suppliers who give scant
information about the inner workings of their products,
system integration has become a nightmare in the auto-
motive industry. Jurgen Hubbert, in charge of the
Mercedes-Benz passenger car division, publicly stated
in 2003: ‘‘The industry is fighting to solve problems
that are coming from electronics and companies that
introduce new technologies face additional risks. We
have experienced blackouts on our cockpit management

and navigation command system and there have been
problems with telephone connections and seat heating’’.
We believe that this state is the rule, not the exception,
for the leading original equipment manufacturers
(OEMs) in today environment. The source of these
problems resides also in the complexity of the embedded
controllers due to the ever increasing demands
on functionality, the need of guaranteeing correct
behaviour, and the time-to-market pressure. (OEMs
must deliver every two–three years new generations of
products characterized by high contents of innovation
Barron and Powers 1996, Azibi and Sardas 2002).

To mitigate the integration problems, the AUTOSAR
initiative (AUTOSAR, Heinecke et al. 2004), promoted
by leading European OEMs and Tier-1 suppliers,
aims at establishing an open standard for automotive
electric/electronic architectures that will hopefully allow
plug-and-play of embedded controllers. Even in the
presence of solidly established standards, we argue
that the design process for embedded controllers has to
be significantly improved. This paper is intended to
demonstrate how hybrid systems techniques can have*Corresponding author. Email: balluchi@parades.rm.cnr.it

International Journal of Control
ISSN 0020–7179 print/ISSN 1366–5820 online � 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/00207170600587465

an important role in solidifying the foundations of
a much needed rigorous design methodology.
Successful approaches to the design of control algorithms
using hybrid systemmethodologies had been presented in
the literature, e.g. cut-off control (Balluchi et al. 1999),
intake throttle valve control (Baotic et al. 2003), actual
engaged gear identification (Balluchi et al. 2005), and
adaptive cruise control (Mobus et al. 2003). However,
despite the significant advances of the past few years,
we cannot claim that hybrid system methodologies are
sufficiently mature for an effective introduction in the
automotive industry.
In this paper, we analyse the design flow for

embedded controllers in the automotive industry with
the purpose of identifying challenges and additional
opportunities for hybrid system technology. In x 2,
an overview of the typical design flow for embedded
controllers adopted by the automotive industry is pre-
sented. We divide the flow into two parts: synthesis
and verification/testing. In this paper, we focus on the
synthesis flow as it does have the highest potential of
improving substantially design productivity and it has
nice opportunities for hybrid system technology. In x 3,
for each design step, we identify critical issues and
we extract relevant open problems that hybrid system
technologies may contribute to solve. Some concluding
remarks are given in x 4.

2. Design scenario and design flow

In today cars, the electronic control system is a net-
worked system with a dedicated Electronic Control
Unit (ECU) for each subsystem, e.g., engine control
unit, gear-box controller, anti-lock braking system
(ABS), dashboard controller, and vehicle dynamic con-
trol (VDC). The ECUs interact by asynchronous com-
munication over a communication network specifically
designed for automotive applications, such as CAN
(Ruffino 1997, Johansson et al. 2005). Typically, an
ECU implements a multirate control system composed
of nested control loops, with frequency and phase
drifts between fixed sampling-time actions and event
driven actions. A typical ECU (for example, the one
demanded to engine control) may have more than one
hundred I/O signals, implement up to three hundreds
control algorithms and share approximately one hun-
dred signals with the other related ECUs. The complex-
ity of the design of automotive ECUs is further
increased by very critical constraints on reliability, cost
and time-to-market and constraints on power consump-
tion, weight and position. As a consequence, a successful
design, in which costly and time consuming re-design
cycles are avoided, can only be achieved using efficient
design methodologies that allow for component reuse

and for evaluation of platform requirements at the

early stages of the design flow (Heck et al. 2003).
The standard design flow for automotive ECUs

adopted by OEMs and Tier-1 companies (subsystem

suppliers) is represented by the so-called V-diagram

shown in Figure 1 Balluchi et al. (2000). The top-

down left branch represents the synthesis flow. The

bottom-up right branch is the integration and testing

flow. While the structure of the design flow is common

to OEMs and Tier-1 suppliers, we focus here on the

problems and approaches followed by Tier-1 suppliers
In particular, the synthesis flow is articulated in the

following steps.

(i) System specification. Formalization of system level

customer requirements; completion of under-

specified requirements; abstraction at the system

level of customer requirements regarding lower

layers (e.g. either a control algorithm or a piece

of software to be integrated in the design).
(ii) Functional deployment. In functional deployment,

the system is decomposed into a collection of

interacting subsystems. The specifications for

each subsystem are derived from the overall

specifications. For each subsystem, the architecture

of control algorithms and their specifications are

also defined.
(iii) Control system. Synthesis of each control

algorithm, according to the specification defined

in the previous step, and its validation.
(iv) HW/SW components. Specifications for the imple-

mentation of the control algorithms. Design of

the hardware and software architectures.

The synthesis flow terminates with the development of

the hardware, the software and possibly some electro-

mechanical components. The right branch of the

V-diagram describes the integration and testing flow

system
specification

functional
deployment

control
design

hw/sw
design

components
implementation

hw/sw
testing

control
validation

functional
integration

system
testing

Figure 1. Design and integration flow.

376 A. Balluchi et al.

whose purpose is the complete testing of the realization
of the ECU and the verification of the compliance
with the requirements. The steps of the integration and
testing flow are

. HW/SW testing. The correct realization of the
hardware and software architecture is verified.
This step includes testing of real-time implement-
ation requirements, electrical power drivers, and
communication.

. Control validation. The correct implementation
of each control algorithm with respect to the
given functional description is assessed by testing
either its input-output response or its closed-loop
behaviour.

. Functional integration. The correct interaction of the
implemented control algorithms is tested considering
an increasing number of algorithms together, to
verify that their composition exhibit the behaviour
defined during functional deployment.

. System testing. The entire ECU is tested against
system specification and the compliance with
customer requirements is verified.

The platform-based design methodology proposed
in Sangiovanni-Vincentelli (2002) nicely fits the design
flow described by the V-diagram. In addition, it pro-
vides concepts and techniques to achieve an efficient
design, aimed at maximizing reuse at each design step
and early verification with abstracted information
from possible implementation platforms (see
also Keutzer et al. (2000) and Sangiovanni-Vincentelli
(2004)). In this context, a platform is a layer of abstrac-
tion that hides the unnecessary details of the underlying
implementation and yet carries enough information
about the layers below to prevent design iterations.
The choice of the layers of abstraction and of the
corresponding parameters are essential in the quality
of the final solution of the design problem.
The basic tenets of the platform-based design

methodology are:

. regarding design as a ‘‘meeting-in-the-middle pro-
cess’’ where successive refinements of specifications
meet with abstractions of potential implementations;

. the identification of precisely defined layers where
the refinement and abstraction process take place.

The layers then support designs built upon them
isolating from lower-level details but letting enough
information transpire about lower levels of abstraction
to allow design space exploration with a fairly accurate
prediction of the properties of the final implementation.
The information should be incorporated in appropriate
parameters that annotate design choices at the present
layer of abstraction. These layers of abstraction are
called Platforms.

In Antoniotti et al. (1998), the application of the
platform-based design methodology to the design of
powertrain control systems was described. The design
approach proposed in the paper is articulated in five
levels of abstraction: system level, function level;
operation level; architecture level and component level.

Since in the automotive industry, embedded control
system design is highly dominated by the need of
implementing an efficient reuse to meet increasing
constraints on cost and time-to-market, then a
derivative design approach is commonly adopted
(see e.g. Martin (2002a, b)). According to this approach,
every two-three years a new generation of products is
conceived. The design of a new generation is intended
to accommodate the specifications of customers for the
near future, so that for each new customer engagement,
the control algorithms as well as the electrical and
mechanical components are obtained by (hopefully
minor) modifications of the current product generation.
When entering the design phase of a new product
generation, the architecture of control algorithms as
well as of their implementation should be conceived to
maximize future reuse, for instance by choosing the
correct granularity of partitioning. The resulting ECUs
are then variants of a same originating design and
ideally share the highest number of parts (e.g., algo-
rithms, software modules, hardware parts, mechanical
components). The derivative design approach does
impact all the design steps in the top-down design flow
of the V-diagram and may affect also the lowest part
of the integration and testing flow.

While derivative design has been used for years, a new
approach that is bound to have a major impact, model-
based design, has been introduced recently in the auto-
motive industry. In model-based design, specifications,
functional architectures, algorithms, and implementa-
tion architectures are represented formally by models
thus allowing, at least in principle, formal analysis and
automatic synthesis. Using block diagram-based model-
ling tools, control algorithms are designed and initial
validation in off-line simulation is performed. Models
of control algorithms are the basis for all subsequent
development stages. The advantages are obvious

. sharing models reduces the risk of mistakes and
shortens the development cycles;

. design choices can be explored and evaluated much
faster and more reliably;

. the result of a model-based development process is
an optimized and fully tested system.

While the overall approach is quite powerful, today
there is only an incomplete implementation of it in
the development cycle. In fact, model-based design is
widely used for the formal representation of control
algorithms, using tools such as Simulink/Stateflow by

Hybrid systems in automotive electronics design 377

The Mathworks or ASCET by ETAS (ETAS. ASCET),

but it is partially and superficially applied to control

algorithm validation. The lack of an extensive model-

based validation of the control algorithms results in

major efforts in experimental validation, which is very

expensive, time-consuming and achieves only a bounded

coverage of the system behaviour. Due to the high cost

of experimental validation, the OEMs will provide less

support to Tier-1 companies for it in the future.
The partial implementation of model-based design in

the automotive industry is due to

. Insufficient investments in design process innova-

tion. In many cases, the reduced efforts devoted

to plant modelling prevent accurate model-based

validation.
. Lack of methodologies suitable to address critical

steps in the design flow, which are currently handled

relying on the experience of the designers. A signifi-

cant example in this respect is functional deployment

for which there is nearly no methodological support.

The low quality of today functional deployment is

witnessed by the results of corresponding step in

the testing flow, i.e. functional integration. In this

step the large majority of the malfunctioning and

non-compliance with the specification are detected,

the recovering of which involves often multiple

redesign cycles.
. Poor integration of the design tool chain, which is

composed by different tools developed indepen-

dently by different tool makers. Such tools are

often connected by file transfer. However, this way

of integrating tools defeats the very purpose of

model-based design, introducing a high potential

of errors in the transformation from one format

to another and preventing formal analysis of the

properties of the design.

In the rest of the paper, the synthesis flow will be

analysed in details enlightening design steps for

which today there is a with weak support of methodo-

logies and tools. As it will be observed, in many cases

hybrid system techniques many significantly contribute

to provide a more efficient approach to such design

steps.
Regarding tool chain integration, in Baleani

et al. (2005) a formal transformation across different

tools is illustrated and an example of the proposed

approach is reported referring to two tools that are

widely used in the automotive domain: Simulink and

ASCET. The proposed approach is based on the use

of a common formal model, namely the synchronous

reactive model of computation, which is used as the

common ground to interpret system specifications

given with different underlying models.

3. Synthesis flow

In this section, we describe the synthesis part of the
automotive design flow covering the levels of system
specification, functional deployment, control system
and HW/SW components. Emphasis will be placed on
the aspects which we believe hybrid system techniques
may have relevant impact on, while details of the
design with no relation to hybrid systems will be slightly
mentioned.

The importance of developing efficient design
approaches for the top layers of the design flow is due
to the fact that most of the critical design choices are
taken in the early stages of the design flow and missteps
in these stages produce costly and time consuming
redesign cycles. Efficient reuse of components is
essential to meet the tight constraints on development
time and cost and should be fostered at all levels of
the design flow.

To support reuse at the functional layer according to
the derivative design approach, it is necessary to develop
methodologies and tools that allow evaluation of ‘‘off
the shelf ’’ control algorithms, available from previous
product developments and included in the product
generation, with respect to the customer requirements
for the design at hand. Often, if direct reuse is not
possible, requirements can be met with minor redesigns.

3.1 System specification

System specifications, issued by the OEM, define the
desired behaviour of the vehicle that should be achieved
by the design of the control system. The specifications
regard

. performance and driveability - dynamic behaviour of
the vehicle, driver assistance, detection and suppres-
sion of critical dynamic vehicle states, comfort;

. fuel consumption;

. legal requirements - environment and safety.

The specifications are defined in terms of a number of
operation modes characterized by different controlled
variables and regard both discrete and continuous
behaviours: in fact system specifications define switching
conditions between operation modes as well as the
desired continuous behaviour for each mode.

Discrete specifications are often given in natural
language and only sometimes formalized in some dis-
crete modelling framework. Continuous specifications
are given following classical methodologies in terms of
steady-state/transient response, frequency domain,
robustness and parameter sensibility, disturbance
rejection, control effort, cost functions, and constraints.

Often, for both discrete and continuous specifications,
requirements are given by specifying requested

378 A. Balluchi et al.

behaviours on hybrid input/output evolutions.
In addition, critical manoeuvres for which the behaviour
requested by the specifications should be guaranteed
(possibly up to some allowed degradation) are also
identified.
The degree of detail given by the OEMs in describing

system specifications is not uniform. Depending on
the importance placed by the OEM on each single
behaviour, functionality or constraint, a different
degree of accuracy in describing the requirement itself
is used. In particular, some behaviours may result only
vaguely specified: in this case, under-specified system
requirements are completed by the Tier-1 supplier on
the basis of its own experience while trying to maximize
reusability for future developments. On the other hand,
there are also behaviours that are very detailed in the
customer requirements to the the point that the OEM
imposes not only a system level requirement but also
a particular solution to satisfy it, resulting in an
undesirable (at least from an ideal point of view)
over-specification.
Since these constraints are often the result of decisions

based on insufficient analysis, the feasible design space
may be empty thus causing unnecessary design cycles.
We do believe that care must be exercised when con-
straint are entered at abstraction levels that are non
appropriate with respect to the role of the company
that specifies them.
The previous discussion shows that, since system

specification regards both discrete and continuous
behaviours, then

. tools for system specifications, requirements manage-
ment and system design, validation and verification
must be developed to deal with hybrid models.

Moreover, since OEM requirements contain details
regarding several levels of the design flow, then to
achieve a complete representation of the system at
system specification level,

. abstraction techniques that deal with hybrid systems
for projecting lower-levels specifications back to
upper-levels must be developed;

Finally, hybrid techniques and supporting tools to
perform coherence and feasibility analysis at system
specification level have to be developed as well.

3.2 Functional deployment

In a first stage of the design, the system is decomposed
into a collection of interacting components. The decom-
position, based on the understanding of the physical
process of interest, is clearly a key step towards a
good quality design, since it leads to a design process
that can be carried out as independently as possible
for each component (see Antoniotti et al. (1998)
for more details). A typical decomposition for engine
control is shown in figure 2. The objectives and
constraints that define the system specification are
distributed among the components by the functional
deployment process so that the composition of the
behaviours of the components is guaranteed to meet
the constraints and the objectives required for the
overall controlled system.

In a second stage of the functional deployment, the
control algorithms architecture is defined. In particular,
the set of control algorithms to be developed for each
function and the topology of interconnection are deter-
mined. Furthermore, for each control algorithm, desired
closed-loop specifications are defined to achieve the
requested behaviour for each functional component.
This process is mainly guided by the experience of
system engineers, with little support of methodologies
and tools. The sets of measurable and actuated quanti-
ties, which will constitute the sets of, respectively,
inputs and outputs to the ECU, are often defined by
the OEM. In fact, the OEM often defines also sensors
and actuators to be used, since they have a major
impact on the cost of the control system. In addition,
customer requirements may include details on the
topology of the control algorithms architecture that
further constrains the functional deployment process.

The results of the functional deployment design stage
are: the control algorithms architecture and the desired
closed-loop specification for each control algorithm.

Ignition

Combustion

Exhaust Gas
Treatment

Motion
Generation

Communication

Mixture
Composition

Air
Management

Fuel
Management

Figure 2. Functional decomposition.

Hybrid systems in automotive electronics design 379

As a consequence, hybrid formalisms are required to
support the description of

. the functional decomposition and the desired behav-
iour for each functional component;

. the architecture of control algorithms, sensors and
actuators, for each functional component;

. the desired requirements for each control algorithm
obtained from the functional deployment process.

Moreover, the development of methodologies and tools
for the synthesis of functional behaviours from system
specifications and for validation of the obtained control
algorithm requirements w.r.t. the desired functional
behaviours, are necessary.

3.3 Control system

At the control system level, the algorithms to be imple-
mented in the architecture defined at the functional level
are designed. All control algorithms have to meet the
assigned specification, so that their composition within
a functional component exhibits the required behaviour
defined during functional deployment.
In general, the design process for each control

algorithm involves the following.

(1) Plant modelling:
(a) model development;
(b) identification;
(c) validation.

(2) Controller synthesis:
(a) plant and specifications analysis;
(b) algorithm development;
(c) controller validation.

(3) Fast prototyping.

However, since according to the derivative design
approach most of the algorithms are obtained from
the current product generation, then the entire three-
step flow is often only partially performed. For example,
if some models of the plant interacting with the control
algorithm under design are already available from
previews designs, then only some adjustments of
sensitive parameters, along with a coarse validation,
could be sufficient to obtain reliable models. If not,
rigorous identification and validation has to be
performed. The complete plant modelling phase is
obviously necessary either for the refinement of unsatis-
factory existing models, when major changes in the
plant have been made or for the development of new
functionalities. The plant modelling step is discussed in
details in x 3.3.2.
In the plant model and specifications analysis stage,

it is first analysed whether an available algorithm can
meet the specification or a new design is needed.
If the algorithm is obtained from the current product

generation, then the algorithm development stage may
involve some minor changes to the reused algorithm in
order to completely cover the new specification. In
these cases, the controller validation stage is the most
important step to ensure that reuse was successful
(see x 3.3.1). Design of new control algorithms, necessary
either when reuse cannot be applied due to major
changes in the specification or when new functionalities
have to be developed, requires the performance of
the entire three-step flow for controller synthesis.
Section 3.3.3 reports a detailed illustration of the
controller synthesis step.

Fast prototyping is adopted when either control
algorithms are designed for new functionalities or
major redesigned has occurred to meet more stringent
specifications.

Before going through the details of the plant
modelling and controller synthesis steps, we report
below a methodology to implement derivative design.

3.3.1 Derivative design. The derivative design
approach to be effective in the industry development
process has to be supported by methodologies and
tools that allow evaluation of ‘‘off the shelf ’’ control
algorithms, available from the current product
generation, with respect to the requested closed-loop
performances for the design at hand. An approach
based on hybrid modelling and randomized algorithms
has been proposed in Agostini et al. (2005).

The problem of validating a control algorithm
extracted from the current product generation with
respect to the closed-loop specification established
during functional deployment can be formalized simi-
larly to a robust control problem. Consider the general
closed-loop scheme depicted in figure 3. The controller
represents the control algorithm obtained from the
current product generation to be evaluated, while the
plant models in an abstract way the remaining part of
the system interacting in closed-loop with it: i.e. a part
of the physical plant, sensors, actuators and possibly
other control algorithms. Furthermore, d models
measurable and unmeasurable disturbances to be

wu Plant

Controller v

d y

Figure 3. General scheme for control algorithm validation.

380 A. Balluchi et al.

rejected, v denotes reference signals and commands,

w stands for feedforward and feedback signals, u

represents the control inputs and y denotes the system

outputs. Due to the different nature of the signals

and components in the closed-loop scheme, a hybrid

modelling approach has to be adopted to be able to

represent the closed-loop behaviour.
Let the desired specification defined during functional

deployment be formalized in terms of a number N of

inequalities of the type

�Ji J ifygjx2X i

� �
� 0 for i ¼ 1, . . . ,N: ð1Þ

where

. x denotes an evolution of the system state and X i is

the family of system evolutions of interest which may

depend on uncertain and time-varying

parameters, as well as initial and final conditions;
. y denotes an evolution of the system outputs on

which the functional is applied and Yi is the family

of output evolutions;
. J i: Yi ! R is a functional measuring the

performance of the controlled system on a particular

evolution x 2 X i and the operator �Jið�Þ collects the

overall performances in X i.

The set of inequalities (1) may be related to different

operating modes of the system and may specify different

requirements in each operating mode.
In context of platform-based design (Sangiovanni-

Vincentelli 2002), the controller synthesis design

step can be view as a refinement of the functional

deployment into a set of control algorithms that

implements the given functional requirements. Assume

that the current product generation contains a set of

candidate control strategies that have to be evaluated

against the functional requirements (1). These

strategies may correspond to different choices of

physical variables in d, u, w and v, and different control

algorithms. The exploration of the candidate solutions

is described by

. a number R of different controller structures;

. a set Xr
C of control parameters for each controller

structure r 2 f1, . . . ,Rg.

A particular control strategy, resulting from the

mapping of given functional requirements into a control

platform, is identified by selecting a controller structure

and an admissible value for the control parameters.

Let ~y and ~x respectively denote the representation in

the given model of the physical variables y and x.

The functional specification (1) is guaranteed for

a control structure r, control parameters c, and a

given plant model if

�Ji J ifygjx2X i

� �
� �Ji J i ~yðr, cÞ

� �
j ~x2X i

� �
� Jiðr, cÞ � 0

for i ¼ 1, . . . ,N: ð2Þ

Note that, while J if�g is a functional that is applied
to the system outputs, Ji: f1, . . . ,Rg � Xr

C ! R is a
function of the controller structures and control
parameters. Furthermore, it is worthwhile to notice
that, to guarantee the functional requirements (1), the
model that produces ~yðr, cÞ has be conservative with
respect to the functionals J if�g.

In Agostini et al. (2005) a methodology and a tool
that support design space exploration and validation
of control strategies extracted from the current product
generation are presented. In the proposed approach,
performance criteria are tested for the control
algorithms over parameters spaces both via randomized
algorithms, i.e. letting the parameters vary according
to a given probability distributions, and stochastic
algorithms, i.e. letting the parameters evolve in time
according to a random coefficient stochastic differential
equation. The results of the analysis are given in the
parameter spaces. If the computation returns an empty
control parameter set, then the corresponding control
strategy extracted from the current product generation
is not suitable for the design at hand since it does not
achieve the desired functional requirements (1). If the
returned set in the control parameter space is large,
then the corresponding algorithm easily satisfies the
functional requirements and it is easy to calibrate. The
selection of the control strategies among those that
meet the functional requirements (1) is done comparing
their implementation costs, as discussed in x 3.4.

Figure 4 reports the results obtained using the tool
described in Agostini et al. (2005) to evaluate the
feasible values for the lower and upper bounds of a
saturation block employed in an air-to-fuel control
algorithm for spark ignition engine control. The desired
specification is to keep the mean-value of the air-to-fuel
ratio close to the stoichiometric value. The plant model
used in the validation scheme of figure 3 represents,
in an abstract and yet conservative way, the
behaviour of the fuel injection controlled system. The
model is hybrid and contains uncertainties to achieve
conservativeness.

3.3.2 Plant modelling. In this section, the three steps of
the plant modelling phase, namely model development,
identification, and validation, are illustrated. Aspects
relevant to the introduction of hybrid system modelling
techniques in automotive applications are outlined.

Hybrid systems in automotive electronics design 381

(a) Model development. Traditionally, control engineers

adopt mean-value models to represent the behaviour

of automotive subsystems. However, the need for

hybrid system formalisms to model the behaviour of

subsystems in automotive applications is apparent in

many cases.
Let us consider for instance the nature of input and

output signals for the internal combustion engine, and

the fuel injection and spark ignition subsystems. As

described in table 1, such signals can be classified in

four different classes, by considering either their discrete

or continuous nature in the time and value domains.

Often models of automotive subsystems are highly
non-linear. In engine modelling for instance, non-
linearities arise from fluid-dynamics and thermody-
namics phenomena (e.g. volumetric efficiency, engine
torque, emissions). Such non-linearities are usually
represented by piece-wise affine maps, identified by
steady state measurements. In addition, since the
mechanical and electro-mechanical components used in
the automotive industry are characterized by a high
production diversity and are greatly affected by aging,
then controller design and validation has to be based
on uncertain models of the plant that capture the main
effects of variability in the plant. Uncertainties can be
represented as: bounded either constant or time-varying
perturbations of parameters, bounded signals and
cross-coupling dynamics.

To conclude this brief discussion, we mention the
increasing importance of human factors in automotive
control design. Since the closed-loop system is a
man-in-the-loop system, to design and validate correctly
control algorithms that interact with the driver, it is
necessary to understand and model the behaviour of
the driver. The need of modelling the human operator
will become increasingly important with the expansion
of x-by-wire applications (driving, steering, braking)
that will require careful design of man–machine
interfaces. The models of the driver must include percep-
tion (regarding also passengers as far as comfort is
concerned), actuation, open-loop and closed-loop
control actions. Moreover, since performance and
driveability of the car are assessed by experienced test
drivers that quote on a scale from 1 to 10 the driving
feeling, then driver’s models can be used to obtain
analytical and repeatable specifications for driveability

Table 1. Time domain and value domain classification of signals for internal combustion engine modelling.

Discrete time Continuous time

Discrete value Continuous value Discrete value Continuous value

Internal combustion engine hybrid model

Inputs Spark ignition Injected fuel
Air charge

Exhaust gas conc.

Engine speed

Outputs Crankshaft events Air-to-fuel ratio Engine torque
Engine temperature

Engine exhaust gas

Direct injection fuel system hybrid model

Inputs Pressure valve cmd Injection signal
Outputs Injected fuel Rail pressure

Fuel temperature

Spark ignition hybrid model
Inputs Spark command Ignition coil cmd

Outputs Spark ignition

-0.4

-0.2

0.0

+0.2

+0.4

U
pp

er
th

re
sh

ol
d

pe
rt

ur
ba

tio
n

Lower threshold perturbation

-0.4 -0.3 -0.2 -0.1 0.0 +0.1

Figure 4. Exploration of a control parameter subspace for

the air-to-fuel control algorithm using randomized algorithms:
‘‘þ’’ good samples (functional requirements achieved), ‘‘�’’
bad samples (functional requirements not achieved), ‘‘�’’

bad sample region.

382 A. Balluchi et al.

controllers design. The development of models for car
driveability perception requires intensive study of
human perception and assessment criteria, different
vehicles and different drivers, driver interviews (during
and after driving), data recording and analysis.
In conclusion, plant models development requires

extensive use of hybrid modelling techniques

. hybrid deterministic and stochastic formalisms,
including FSM, DES, DT, CT, PDA, for represent-
ing interacting behaviours of different nature are
essential;

. such hybrid formalisms should be supported by
appropriate tools for hybrid model description and
simulation.

Finally, to illustrate the relevance of hybrid modelling
in automotive applications, we briefly describes a
hybrid model for spark ignition engine and an auto-
motive driveline.

Spark ignition 4-stroke engine. An accurate model of a
spark ignition 4-stroke engine has a natural hybrid
representation because the cylinders have four modes
of operation corresponding to the stroke they are in,
while driveline and air dynamics are continuous-time
processes. In addition, these processes interact tightly.
In fact, the timing of the transitions between two
phases of the cylinders is determined by the continuous
motion of the driveline, which, in turn, depends on the
torque produced by each piston.
More in detail, consider the hybrid model of the

torque generation process and the driveline presented
in Balluchi et al. (2000). For a given gear selection and
clutch position, the driveline is described by a continu-
ous time system whose state includes the driveline
torsion angle, the crankshaft revolution speed, and the
wheel revolution speed. The inputs of the model are
the torque T produced by the engine and the wheel
torque Tw.
The engine torque T is given by �N

i¼1T
i, where Ti is

the torque generated by each piston at each cycle. The
profile of Ti is determined by the phases of the cylinder,
the piston position, the mass of air and the mass of
fuel loaded in the cylinder during the intake phase,
and on the spark ignition timing.
The 4-stroke engine cycle can be modeled by means of

a finite state machine (FSM) capturing the sequential
nature of the behaviour of the cylinders. In fact, each
cylinder cycles through the following four phases:

. intake (I): the piston goes down from the top dead
center (TDC) to the bottom dead center (BDC) load-
ing the air-fuel mix present in the intake manifold;

. compression (C): the trapped mix is compressed by
the piston during its upward movement from the
BDC to the TDC;

. expansion (E): the combustion takes place pushing
down the piston from the TDC to the BDC;

. exhaust (H): during its upward movement, from the
BDC to the TDC, the piston expels combustion
exhaust gases.

However, for spark ignition engines, the torque gener-
ated by each piston is related not only to the phase of
the cylinder and the air and fuel charge, but also to
the spark generation process. Intuitively, spark ignition
should occur exactly when the piston reaches the TDC
of the compression stroke. Since the combustion process
takes non-zero time to complete, then the pressure in
the cylinder reaches its maximum some time after
spark ignition. As a consequence, in order to achieve
maximum fuel efficiency, it is convenient to produce
the spark before the piston completes the compression
stroke positive spark advance. On the other hand,
producing a spark after the piston has completed the
compression phase and is in the expansion stroke
negative spark advance may be used to reduce drasti-
cally (and much faster than using only the throttle
valve) the value of the torque generated during the
expansion run. Since spark ignition may occur either
during the compression stroke or during the expansion
stroke, a six state FSM is needed to model the possible
behaviours of the cylinder. The cylinder FSM is
shown in figure 5. The FSM state takes one of the
following values

. I, denoting intake;

. BS, denoting before spark: the piston is in the com-
pression stroke and no spark has been ignited yet;

. PA, denoting positive advance: the piston is in the
compression stroke and the spark has been ignited;

.

.

BS NA

I

PA AS

D
C

sp
ar

k &
DC

DC

C E

H

sp
ar

k

DC

sp
ar

k

DC

DC

Figure 5. FSM describing the behaviour of the ith cylinder.

Hybrid systems in automotive electronics design 383

. NA, denoting negative advance: the piston is in the
expansion stroke and the spark has not been ignited
yet;

. AS, denoting after spark: the piston is in the
expansion stroke and the spark has been ignited;

. H, denoting exhaust.

The cylinder FSM changes state either when a spark is
given or when a dead centre is reached. This last event
depends on the continuous motion of the driveline and
more precisely on the crankshaft angle, which defines
the position of the piston. In turn, the crankshaft
revolution speed depends on the torque T produced by
the engine.
Finally, the torque produced by the cylinder depends

on the air-fuel mixture loaded during the intake stroke.
Since the air-fuel mixture is loaded in the cylinder during
the intake stroke while the torque generation starts after
the spark is ignited, then there is a delay between the
time at which the mixture is loaded and the time at
which the corresponding active torque is generated.
This delay can be modeled by means of a DES
synchronized with the FSM transitions. The overall
model of the torque generation process for a
single cylinder consists then of four communicating
sub-models:

. an FSM, modelling the 4-stroke engine cycle and the
spark generation process,

. a DES, modelling the discrete delay on the active
torque generation, and

. two continuous time systems, modelling respectively
the air intake process and the profile of the generated
torque.

Driveline. A second very interesting automotive
subsystem rich of discrete-continuous interactions is
the driveline, see Balluchi et al. (2004a). An accurate
model of the driveline has a natural hybrid representa-
tion because of the discontinuities due to clutch and
the gear on the continuous motion of the driveline.
In fact, the clutch can be modeled as a hybrid system
with three discrete states: locked, slipping, and
unlocked. In figure 6 the FSM of the hybrid model of
the clutch is depicted. When the clutch is locked the
clutch plate and the flywheel are rigidly connected by
static friction, so that their inertias are collected in
a single first-order dynamics. The highest coupling
torque Tmax before incurring in clutch slipping corre-
sponds to the maximum static friction torque, which is
a function of the pressure Pc between the clutch plate
and the flywheel , i.e. Tmax ¼ �sPc. When the trans-
mitted torque T exceeds Tmax, the system enters the
state slipping: the clutch plate and the flywheel are
no longer strictly connected but they slip one on
the other. In this case the coupling torque is due to

dynamical friction and it is a function of the sliding
speed. If the transmitted torque decreases, then the
clutch returns in the state locked, while if Pc ¼ 0
the clutch enters the state unlocked and Tc ¼ 0. In the
state unlocked the crankshaft is completely decoupled
from the rest of the driveline and the two
systems follow independent dynamics.

For some applications, e.g. actual engaged gear
identification (Balluchi et al. 2005), it is useful to collect
in a single state the clutch unlocked and slipping states.
In such cases, the overall system can be described by a
hybrid system with 7 discrete states and four continuous
state variables. The FSM describing the discrete
dynamics of the model is depicted in figure 7. The
discrete state qi, for i ¼ 1, . . . , 5, correspond to ith gear
engaged and clutch locked; location qRG models reverse
gear engaged; location qN represents either driveline
open (idle gear and/or clutch open) or clutch slipping.
The continuous state variables are: the driveline torsion
angle �, the crankshaft revolution speed !e, the clutch
plate revolution speed !c, and the wheel revolution
speed !w. When the clutch is locked, then !e ¼ !c so
that the continuous behaviour of the driveline can be
described by a third order linear system with parameters
depending on the selected gear.

The hybrid model has as inputs the position of the
gear lever lever 2 1, 2, 3, 4, 5,RG,Nf g and the torque
generated by the engine while the connection pressure
of the clutch plates Pc and the load wheel torque Tw

are considered as disturbances. A more detailed drive-
line hybrid model, with 6048 discrete state combinations

LOCKED SLIPPING UNLOCKED

Pc > 0

Pc = 0T > msPc

we = wc

and

T ≥ msPc

Figure 6. The hybrid model of the clutch.

Figure 7. The hybrid model of the driveline.

384 A. Balluchi et al.

and 12 continuous state variables, is presented
in Balluchi et al. (2004a). In addition to the clutch and
the gear, the proposed hybrid model describes the
discontinuities in the driveline due to engine suspension,
elastic torsional characteristic, tires, frictions and
backlashes. This very detailed driveline hybrid model
exhibits a behaviour very close to the physical driveline
and has been developed to be used for control algorithm
validation.

(b) Identification. In current practice, parameter identifi-
cation is mostly based on steady-state measurements,
obtained using either manually defined set-points or
automatic on-line screening. Dynamic parameters are
often either obtained analytically or from step
responses. However, step response and other classical
identification methods can be used to identify models
representing standard continuous evolutions only, such
as those exhibited by mean-value models. When applied
to hybrid models, classical techniques can only be used
to identify the plant model separately in each discrete
mode. They hardly succeed in identifying parameters
related to switching conditions and cannot be applied
to black-box hybrid model identification.
The availability of hybrid system identification techni-

ques using transient data, including mode switching,
would allow to increase identification accuracy, reduce
the amount of experimental data needed and identify
all parameters in hybrid models. Efficient identification
techniques for hybrid systems will also give the
opportunity for modelling more complex hybrid
behaviours that are currently abstracted due to the
difficulties in the identification process.
Moreover, efficient hybrid techniques for the repre-

sentation and identification of non-linearities, as either
piece-wise affine functions (Bemporad et al. 2004a) or
piece-wise polynomial functions, would produce major
impacts in the design

. domain partition could be optimized (possibly not
grid-based), achieving increased accuracy and
reducing model complexity;

. parameter identification accuracy could be
improved;

. high dimension non-linearities Rp ! R with
p� 3, which are today represented as product
of R,R2 ! R functions, could be represented and
identified.

(c) Validation. Model validation is the converse to iden-
tification: given a system model, the objective is to assess
whether the model is consistent with experimental obser-
vations. No assumptions are made about the nature of
the physical system, but the compliance of the model
with the actual behaviour of the system is evaluated
using experimental data. As discussed above, plant

models often include unknown, bounded perturbations
and unknown, bounded input signals to take into
account the high uncertainty in the behaviour of the
components. The validation of uncertain models is a
very critical task that has been studied in the literature
in the case of continuous time systems, see Poolla
et al. (1992), Smith and Doyle (1992) and The Math
works. Techniques have been proposed for explicit
calculation of whether sufficient data for invalidation
of the model has been obtained. These techniques can
be used in automotive applications to assess the richness
of validation patterns for the continuous evolutions
of the plant.

However, established methodologies to address model
validation for hybrid systems are not available yet.
A critical issue is the selection of rich enough test
patterns for hybrid model validation. This topic is
further discussed in x 3.3.3.c, where automatic test
pattern generation for controller validation is analysed.
Some open problems related to validation of hybrid
models are

. automatic generation of validation patterns;

. assessment of the richness of validation patterns. This
problem can be formalized in the framework of
reachability analysis for hybrid systems. Interesting
approaches have been proposed using the concepts
of structural coverage and data coverage.

3.3.3 Controller synthesis. In this section, the
activities related to controller synthesis are presented
by discussing the three steps of: plant and specifi-
cations analysis, algorithm development, and controller
validation.

(a) Plant and specifications analysis. Typically, before
proceeding to the actual design of a control algorithm
for a new application, some experimental data on a
prototype of the system to be controlled are obtained
using either open-loop control or some very elementary
closed-loop algorithm. Open-loop simulation of the
plant model is also very useful in this phase. The plant
model often represents a partially controlled plant and
contains the effect of some inner-loop controllers.
Open-loop simulation of hybrid models requires the
definition of discrete time, event-based and continuous
time input actions, representing either hybrid inputs
and references or perturbations. The assessment of clas-
sical structural properties, such as reachability (Lygeros
et al. 1999), controllability (Nerode and Kohn 1993),
observability (Ezzine and Haddad 1998), stabilizability
(Pettersson and Lennartson 1997, Decarlo et al. 2000),
passivity (Bemporad et al. 2005), etc., on the plant
model is of interest in this phase. In addition, quantita-
tive analysis is very useful to understand the easy and

Hybrid systems in automotive electronics design 385

the critical objectives of the design. It is interesting to
obtain by performance and perturbations/uncertainties
analysis an evaluation of quantities such as stability
margins, most critical perturbations/uncertainties,
robust stability margins, reachability and observability
measures in the state space. Unfortunately, hybrid
system theory is not mature enough for model analysis

. some fundamental properties have not been formally
defined yet;

. tests are often not available for verifying most of
the properties;

. efficient implementation of tests will be necessary for
automatic evaluation, since manual testing of hybrid
system properties is often prohibitively complex;

. analysis tools have be integrated with standard
system engineering tools, so to be able to process
directly the models.

(b) Algorithm development. Control algorithms are often
characterized by many operation modes, that are
conceived to cover the entire life-time of the product:
starting from in-factory operations before car installa-
tion, configuration, first power-on, power-on, function-
ing, power-off, connection to diagnostic tools, and so
on. During normal functioning, control strategies can
be either in one of the nominal operation modes or
in some recovery mode. A significant number of algo-
rithms are dedicated to the computation of switching
conditions between modes and controller initializations.
A short and by no means exhaustive list of control

actions for which hybrid system design is particularly
interesting is as follows: fuel injection, spark ignition,
throttle valve control (especially with stepper motor),
electromechanical intake/exhaust valve control, engine
start-up and stroke detection, crankshaft sensor
management, VGT and EGR actuation (hysteresis
management), emission control (cold start-up, lambda
on/off sensor feedback), longitudinal oscillations control
(backlash and elasticity discontinuities), gear-box
control (servo-actuation in traditional gear shift
systems), cruise control and adaptive cruise control,
diagnosis algorithms (signals and functionalities
on-line monitoring), algorithms for fault-tolerance,
safety and recovery (degraded mode activation).
Diagnostic algorithms represent a large part of the

strategies implemented in automotive ECUs. For
engine control, the implementation of diagnosis algo-
rithms is enforced by legislation: on board diagnosis II
(OBDII) in USA and European on board diagnosis
(EOBD) in EU. In general, these requirements specify
that every fault, malfunction or simple component
degradation that leads to pollutant emissions over
given thresholds should be diagnosed and signaled to
the driver. This requirement has a significant impact
on ECU design, since it implies the development of

many on-line diagnostic algorithms (Chen and
Patton 1999).

Both specifications and accurate models of the plant
are often hybrid in automotive applications but the
methodology currently adopted for algorithm develop-
ment is rather crude and can be summarized as follows.
The continuous functionalities to be implemented in the
controller are designed based on mean-value models
of the plant, with some ad hoc solutions to manage
hybrid system issues (such as synchronization with
event-based behaviours); if the resulting behaviour is
not satisfactory under some specific conditions, then
the controller is modified to detect critical behaviours
and operate consequently (introducing further control
switching). The discrete functionalities of the controller
are designed by direct implementation of non-
formalized specifications. Design methodologies and
corresponding tools for the synthesis of discrete event
systems are usually not employed. The discrete beha-
viour of the controller is not obtained by automatic
synthesis of a formalized specification, as for instance
it is done in hardware design. If the algorithm is not
designed from scratch, but is obtained by elaborating
existing solutions, as it is the case in the derivative
design approach, then additional operation modes may
be introduced to comply with the new specification.
This results in a non-optimized controller structure.
Structured approaches to the integrated design of the
controller that allow to satisfy hybrid specifications
considering hybrid models of the plant are not adopted
as yet even though they have obvious advantages over
the heuristics that permeate the present approaches.

Hybrid system techniques can significantly contribute
to the improvement of control algorithm design in
automotive applications. The introduction of hybrid
synthesis techniques should be aimed at

. shortening the algorithm development time;

. reducing testing effort;

. reducing calibration parameters and provide
automatic calibration techniques;

. improving closed-loop performances;

. guaranteeing correct closed-loop behaviour and
reliability;

. achieving and guaranteeing desired robustness;

. reducing implementation cost.

Most of the analytical approaches proposed so far for
controller design using hybrid system techniques are
quite complex. Usually, the application of these techni-
ques requires designers that have a deep understanding
of hybrid systems and necessitates long development
times. As a consequence, the introduction in the auto-
motive industry of hybrid system design methodologies
often results too much expensive. Hence, to overcome
this problem and make them profitable for the industry

386 A. Balluchi et al.

it is essential that the methodologies be supported by
efficient tools that allow fast and easy application of
hybrid design. Hybrid model predictive control is a
good example in hybrid system research where the
development of a design methodology was supported
by successful efforts in design tool development
(Bemporad et al. 2004b).
We conclude this section by presenting the hybrid

design of two algorithms for engine control.

Cut-off control. A quite critical driveability objective is
the control of longitudinal oscillations of the car when
fast engine torque variations are requested by the
driver (tip-in and tip-out). Roughly speaking, the
control consists of active damping of powertrain
oscillations. The problem is particularly challenging
when the engine is not equipped with electronic throttle
valve, since in this case only fuel injection and spark
ignition controls can be used for engine torque
modulation to achieve the desired damping of the
oscillations. Most of the proposed approaches are
based on mean-value continuous-time models of the
torque generation. As a consequence, since the torque
generation process has a discrete behaviour, the
implementation of such control strategies on a real
engine may result in very poor closed-loop performance
and may give rise to unpredicted unpleasant behaviours.
On the contrary, a design based on a hybrid model
of the engine allows to develop control laws for which
closed-loop performances are guaranteed.
A hybrid approach to the design of a longitudinal

oscillation damping control during tip-out was pre-
sented in (Balluchi et al. 2002b). The control problem
arises when the driver, by releasing the fuel pedal,
requests no torque to the engine. In this case, an obvious
strategy to minimize fuel consumption and emissions
is to shut fuel injection, an operation called cut-off.
However, cutting off fuel injection as soon as the gas
pedal is released, causes a sudden torque reduction
that may result in unpleasant oscillations compromising
driving comfort. A more complex control action
involves modulating the engine torque from the present
value to the value corresponding to cut-off in an
attempt to prevent oscillations. This control policy is
implemented by slowing down air flow decay and,
when air quantity is below a threshold, reducing fuel
injection gradually to zero. As it is often the case,
heuristic rule-based controls need extensive tuning,
yield satisfactory solutions only in a limited range of
operations and are hardly optimal with respect to the
emissions and fuel consumption. In particular, if air
reduction is too slow, when the driver releases the gas
pedal and presses the clutch pedal to change gear,
engine speed raises for a while, thus causing a definite
reduction in passengers’ comfort. Moreover, if air

and/or fuel reduction is too fast, oscillations take place
anyway.

The hybrid control algorithm presented in (Lygeros
et al. 1999) is able to steer the evolution of the system
to the fuel cut-off condition, minimizing the amplitude
of the undesired oscillations. Since a hybrid model
of the engine has been considered during the design,
the algorithm acts on fuel injection and spark ignition
once per engine cycle for each cylinder taking into
account synchronization and actuators’ delay. The
hybrid approach adopted for synthesis of the cut-off
control algorithm guarantees the correctness of the
behaviour when applied to the real plant. The proposed
cut-off control strategy was tested at Magneti-Marelli
Engine Control Division on a commercial car, a 16
valve 1400 cc engine car. The experiment was carried
out driving the car in the test ring and measuring
the important parameters and variables that determine
the performance of the control strategy. In figure 8 the
performance achieved by the proposed hybrid cut-off
strategy are compared with an instantaneous uncon-
trolled cut-off operation. On the left the evolution of
the oscillating modes x̂ are reported along with the
switching curve that defines the regions where fuel
is injected and it is shut off. The effectiveness of the
proposed controller is apparent from the evolution
of the vehicle acceleration and engine speed reported
on the right.

Actual engaged gear identification. As a second example,
consider the problem of on-line identification of the
actual engaged gear. Engine control strategies achieving
high performance and efficient emissions control depend
critically on such identification algorithm. In fact, the
knowledge of the actual engaged gear is necessary in
engine torque control to compensate the equivalent
inertia of the vehicle on the crankshaft and, for Diesel
engines, it is very important to improve emissions
control. In cars equipped with manual gear shift, this
information is not directly available and, at present, it
is deduced by comparing the revolution speed of the
wheels with the revolution speed of the crankshaft.
However, since both of them are affected by oscillations
due to the elasticity of the driveline and the tires, then
this approach implies large time delays in the identifica-
tion and may produce significant identification errors.

The identification algorithm presented in Nerode and
Kohn (1993) is based on a hybrid model of the driveline
(see the driveline model presented in x 3.3.2.a) where
the engaged gear and connection clutch state are
represented as discrete states. The design problem is
then formulated as the identification of the discrete
state of the driveline hybrid model and an on-line
identification algorithm is obtained by applying
the methodology for hybrid observer design proposed

Hybrid systems in automotive electronics design 387

in Ezzine and Hadded (1998). The algorithm is able to

detect a change in the continuous time dynamics and

identify the discrete state of the driveline hybrid model

by processing the crankshaft and wheel revolution

speed measurements and an estimate of the engine

torque mean-value. The on-line identification is

achieved by the generation of appropriate residual

signals, one for each gear, which vanish when the

corresponding gear is engaged and the clutch is

locked. Figure 9 reports the results on actual engaged

gear identification obtained in Magneti Marelli

Powertrain using an Opel Astra equipped with a

Diesel engine and a robotized gearbox SeleSpeed.

For the validation of the identification algorithm, the

estimated engaged gear is compared to the signal on

actual engaged gear provided by the control unit of

the robotized gearbox. The algorithm was tested on

several maneuvers for atotal of 250 gear engagements

and it was able to identify correctly the actual

engaged gear within 250msec, as requested by specifica-

tion. It proved to be remarkably robust with respect to

parameter uncertainties (e.g. vehicle inertia) and

time-varying unknown disturbances (e.g. wheel torque
and road slope).

(c) Controller validation. In the automotive industry,
control algorithms are validated by extensive and
time-consuming – hence expensive – simulations of
the closed-loop models. The designers, based on their
experience, devise critical trajectories to test the
behaviour of the closed-loop system in the perceived
worst-case conditions, in addition to the tests on the
critical maneuvers that may be provided by customer
requirements. Furthermore, a rough investigation on
the robustness properties of control algorithms is
obtained by screening the most critical parameters
and uncertainties and applying critical perturbations.
In the current design flow, there is no automatic
approach to the validation of performance specifica-
tions. Some approaches for automatic test patterns
generation are under investigation. To the best of
our knowledge, there is no tool available in the
market for performance analysis, robust stability, and
formal verification for both continuous and discrete
specification.

x̂2

x̂2

x̂1

x̂1

−20 0 20−40 40

−20 0 20−40 40

−20

0

20

−40

40

−20

0

20

−40

40

wc(t)

wc(t)

a(t)

a(t)

a(t)˜

a(t)˜

j(t)

j(t)

0.2 0.4 0.6 0.80 1

0.2 0.4 0.6 0.80 1

0.2 0.4 0.6 0.80 1

0.2 0.4 0.6 0.80 1

0.2 0.4 0.6 0.80 1

0.2 0.4 0.6 0.80 1

2250
2200
2150
2100
2050
2000

−1.5
−1

−0.5
0

0.5
1

−2

1.5

−0.5
0

0.5
1

1.5

−1

2

2400

2500

2600

2300

2700

−0.5

0

0.5

1

−1

1.5

−0.5
0

0.5
1

1.5

−1

2

Figure 8. Evolutions of the oscillating modes to the target set B�̂ (left) and engine speed, accelerations and injection signal profiles
(right), in an uncontrolled cut-off (top) and with the proposed hybrid control strategy (bottom).

388 A. Balluchi et al.

Due to complexity of the plant-controller interac-

tions, the non-negligible effects of the implementation,

the large uncertainties in the plant given by product

diversity and aging, validation of control algorithms

is one of the hottest topics in automotive industry.

Today, the quality of the validation step is not satisfac-

tory and important improvements in validation will be

necessary to cope with the safety issues that will be

raised by next generation x-by-wire systems. Ideally,

validation and formal verification should be completely

automatic. Hybrid system techniques can contribute

significantly to the improvement of the validation

process:

. Validation has to be supported by tools for:
. efficient simulations of hybrid closed-loop

models;
. stability and performance analysis;
. robust stability and robust performance analysis;
. invariant set and robust invariant set compu-

tations.
. Methodologies and tools should be developed for:

. automatic validation against formalized hybrid

performance specifications;
. automatic validation of safety relevant condi-

tions;
. automatic optimized test patterns generation

reaching specified level of coverage.

. Interesting validation problems are related to the
computation of conservative approximations for
the largest sets of:
. parameter uncertainties;
. calibration parameters;
. implementation parameters (e.g. sampling-period,

latency, jitter, computation precision, etc.);
. for which the desired performances are achieved.

. Some classes of algorithms that require intensive and
complex validation are:
. diagnosis algorithms;
. safety critical algorithms;
. algorithms preventing the system to stall (e.g. idle

speed control).

3.4 Hardware/Software components

The design of the HW/SW implementation of ECUs
in the automotive industry is achieved using the most
advanced methodologies for hardware and software
development. An accurate design is necessary to be
able to meet the strict requirements imposed on the
implementation of safety critical real-time systems and
achieve at the same time the very tight cost targets.
HW/SW implementation of the control algorithms
may offer an interesting and little explored application
of hybrid formalisms as a more rigorous design

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 14 16 18 20
0

20

40

R
es

id
ua

ls

0

1

2

3
E

st
im

at
ed

E
ng

ag
ed

 G
ea

r

0

1

2

3

A
ct

ua
l

E
ng

ag
ed

 G
ea

r

0

0.5

1

1.5

time (sec)

E
ng

ag
ed

 G
ea

r
Id

en
tif

ic
at

io
n

E
rr

or

Figure 9. Gear identification with experimental data: the manoeuvre starts with car at rest, clutch open and first gear engaged

(q ¼ qN ¼ 0). After a clutch slipping phase (q ¼ qN ¼ 0), the clutch is locked (q ¼ q1 ¼ 1); later, second gear (q ¼ q2 ¼ 2) and then
third gear (q ¼ q3 ¼ 3) are engaged, passing through idle and slipping (q ¼ qN ¼ 0).

Hybrid systems in automotive electronics design 389

approach is advocated for reducing implementation
errors. In particular, hybrid methodologies could be

exploited for the formalization and definition of the
specification for HW/SW implementation of control
algorithms. In fact, currently available methodologies

and tools in the control domain and the HW and SW
implementation domains are often not well integrated;
this situation is a frequent cause of design errors.

The specification for the HW/SW implementation
must include all details necessary for a correct imple-
mentation of the algorithms, that is it must provide

. complete description of the algorithm;

. specification of the computation accuracy
. in the value domain: precision for each

computation chain (for fixed-point arithmetic

implementation), threshold detection bounds,
etc.;

. in the time domain: bounds for latency, jitter,
delay in event detection, etc.;

. execution order and synchronization;

. priorities in case of resource sharing (CPU,
communication, etc.);

. communication specifications;

. data storage requirements (e.g. variables to be stored
in EEPROM).

In addition, the specification for the HW/SW implemen-

tation should be derived from executable models,
according to the model-based design approach.
These models should also be integrated with tools for

automatic code generation (Pettersson and Lennartson
1997, Decarlo et al. 2000). Finally, the specification for
the HW/SW implementation should ideally provide

executable acceptance tests that can guarantee that
the computation accuracy obtained in the HW/SW
implementation is compliant with the requirements.

In particular,

. Tools suitable for the description of the
implementation requirements of the algorithms

have to:
. support the specification of the algorithm

behaviour, the computation accuracy and the

other implementation requirements and
constraints mentioned above;

. support description of implementation accep-
tance tests;

. be efficiently integrated with software and
hardware development tools and tools for

automatic code generation.
. Methodologies and tools for defining and validating

implementation constraints should be developed:
. the degradation of the execution of control

algorithms due to the implementation on
bounded resource platforms has to be exported

and modeled at the control system level to
obtain constraints for the implementation;

. these constraints should be formally specified
in the HW/SW implementation requirements
along with executable acceptance tests;

. tools should support the validation of the HW/
SW implementation by running the acceptance
tests.

It is in the analysis of the effects of implementation on
the behaviour of the control algorithms, in the construc-
tion of abstract models of the implementation platform
and in the constraint propagation that we see great value
in hybrid technology.

An integrated control-implementation design metho-
dology has been presented in (Bemporad et al. 2005)
to bridge the gap between functional design and imple-
mentation of embedded control systems. According to
the proposed methodology, the designer evaluates how
closed-loop performance and robustness of a given
control algorithm are affected by the implementation,
which is represented in an abstract form. The proposed
design methodology is based on the principles of
platform-based design described in Sangiovanni-
Vincentelli (2002) and applied to the design of
automotive control systems in Antoniotti et al. (1998)
The application of the methodology presented
in (Balluchi et al. 2002b) to the design of an engine
control unit (ECU) for motorcycles was first described
in (Balluchi et al. 2004b). Such approach is further
refined in Agostini et al. (2005), where a prototype
tool that supports exploration of possible candidate
implementation is also presented.

The essential issue for representing implementation
platforms in an abstract way is to determine the effect
of implementation platforms on the controlled system
performances. Accuracy of measurements and actua-
tions, and how to represent the fact that computation
and communication take time and may be affected by
errors are important issues in this respect. Promising
approaches regarding management of time domain
perturbations due to the implementation, such as
latency and jitter, have been presented in Arzén
et al. (2000) and Cervin et al. (2003). The main effects
of a particular implementation on the behaviour of
the controlled system must be carefully classified and
characterized.

The approach presented below is an integration of the
methodology supporting derivative design described in
x 3.3.1. Schematically, they can be represented in terms
of perturbations on the controller input/output
channels, as illustrated in figure 10. Disturbances nu,
nw, nr and blocks �u, �w, �r represent, respectively,
value and time domains perturbations due to the
implementation and acting on the control inputs u,

390 A. Balluchi et al.

feedback outputs w and reference signals v. Depending
on the selected platform, these perturbations can be
represented by different models and characterized
by abstract parameters p. A set of implementation
platforms with the corresponding exported parameters
is defined by

. a number S of different platform structures;

. a set of parameters Xs
P for each platform structure

s 2 f1, . . . ,Sg;
. a set of platform constraints (typically, the

schedulability and latency constraints are added).

Jvðs, pÞ � 0, for v ¼ 1, . . . ,V: ð3Þ

For a given platform structure s 2 f1, . . . ,Sg, elements
p 2 Xs

P are referred to as the platform parameters.
In the control parameters and platform parameters

product space, feasible mappings are given by the set

U ¼ ðr, c, s, pÞ j r 2 f1, . . . ,Rg, c 2 Xr
C,

�

s 2 f1, . . . ,Sg, p 2 Xs
P, such that

Jiðr, c, s, pÞ � 0, for i ¼ 1 . . .Nþ V
�
, ð4Þ

where Ji include both conservative expressions
for (2), including the effects of the implementation
platform modeled by (s, r), and the platform con-
straints (4).
The best implementation platform, among those

described by parameters inside the set U in (5), can
be selected by introducing a suitable objective
function, representing an estimation of the implemen-
tation cost to be minimized. It is often the case that
the cost model depends only on a subset of the
parameters. The parameters belonging to the ortho-
gonal space can be abstracted away. A very powerful
method for the abstraction of non-relevant
parameters is the use of formulas with existence
and universal quantifiers.

As an example, consider a PI controller with gains KP

and KI designed to control the crankshaft speed in
engine control, with nominal inertia J and inertial uncer-
tainty �J. Parameters KP, KI, J, and �J can be abstracted
using the following formula:

8J 9 KP,KI 8 �J ðĉ, J,KP,KI, �J, p̂Þ 2 U , ð5Þ

where ĉ and p̂ are the control and platform parameters
interesting for the exploration of the possible
implementation platforms. Then, by applying quantifier
elimination to (5), the exploration is reduced to the cost
parameter subspace ðĉ, p̂Þ.

The exploration of the parameter space is performed
by using randomized algorithms and hybrid system
techniques. More precisely, performance criteria are
tested for the control algorithms over parameters
spaces both via randomized algorithms, i.e. letting the
parameters vary according to a given probability
distributions, and stochastic algorithms, i.e. letting
the parameters evolve in time according to a random
coefficient stochastic differential equation.

By performing a random screening of the parameter
space, each sample is labelled either good or bad,
according to fulfilment of the closed-loop specification.
Then, the convex polyhedra Pgood and Pbad are
produced by computing the convex hull of the subsets
of good and bad samples, respectively. The subset of
parameter values for which the specification is
assumed to hold is given by the (non-convex, in general)
polyhedron PgoodnPbad. See e.g. figure 11. Subsequently,
the cost parameter subspaces of all control algorithms to
be implemented in the electronic control unit are com-
posed and the set Pecu is defined by composing the
sets PgoodnPbad obtained for each control algorithm.

Hence, a cost model Hðĉ, p̂Þ is defined in the overall
cost parameter space. In Bemporad et al. (2005), the
use of flexibility functions as cost models was proposed.
The underlining idea is to guide the exploration towards
parameters that can be easily achieved by platforms at
lower levels of abstraction. In this way, the risk of
expensive design cycles that span several platforms is
minimized and a better platform choice is offered
while approaching the implementation level. In some
sense, the flexibility function is an auxiliary function
that serves the purpose of a more efficient search of
the design space. While the macro aspects of this func-
tion are easy to establish and can be generalized, the
actual choice of flexibility functions is the result of the
experience of the designer and can be refined during
re-design to reflect more accurately the difficulty of
achieving the platform parameters. Consequently,
there is no a priori best form of the flexibility function.
For example, the flexibility function of a discrete-time

wu Plant

vController+

+

+

yd

nu
nv

nw

∆u

∆w

∆v

Figure 10. Abstract representation of the effects of imple-

mentation non-idealities.

Hybrid systems in automotive electronics design 391

platform can be an increasing function of the sampling
time and the latency as depicted in figure 11. In fact,
the higher the sampling time, the easier is to find a plat-
form that can support that sampling time. Note that the
function has typically a steep part, where relaxing the
sampling time has a great effect in enlarging the design
space, and a flat one where relaxing the requirements
does not pay off as much. The point corresponding to
the minimum cost, according to the cost model Hðĉ, p̂Þ
in the set Pecu is obtained by an optimization
algorithm. Finally, optimal values – maximizing
robustness – for the remaining parameters of each
control algorithm abstracted away by the quantifier
elimination are selected.

4. Conclusions

In this paper, we analysed in details the design flow for
automotive electronic control systems, with the purpose
of identifying bottle-necks that either cause inefficiency
in the development process or limit the design. We
argued that the development and application of hybrid
system techniques may be a step forward for solving
some of these problems and significantly contribute to
the improvement of the design quality.
The most obvious applications for hybrid system

techniques regard plant modelling and control algo-
rithm design. However, the potential impacts of hybrid
systems could be extended to address problems at the
boundary between control algorithm design and hw/sw
implementation, since they allow the designer to capture
the effects of limited resources and physical constraints

on the performance of the controlled system and check
the correctness of the design. An additional promising
application of hybrid system techniques is in system
design, today an extremely critical step. Hybrid
formalisms can be applied to represent system specifica-
tions and deploy them in an architecture of control
algorithms and requirements.

However, hybrid system techniques at the current
state-of-the-art exhibit limitations that hamper their
proliferation in industry. A coherent set of methodolo-
gies, supported by efficient tools, has not been made
available as yet, the proposed approaches have not
been integrated within the overall development flow
and, apart from few notable exceptions, automotive
control engineers are not trained in hybrid system
techniques.

Acknowledgments

We wish to thank Pierpaolo Murrieri from PARADES;
Gabriele Serra, Giacomo Gentile and Walter Nesci,
from Magneti Marelli Powertrain (Bologna, I); Harald
Heinecke, from BMW and Autosar (Munich, G);
Roland Jeutter, from ETAS (Stuttgart, G); Gabriele
Pieraccini from Ferrari (Modena, I); Paolo Ferracin
from CNH (Modena, I); Gilberto Burgio from Ford
Research Center (Aachen, G) for the many interesting
debates on the topics of the paper. We gratefully
acknowledge the partial support by the CC (Control
and Computation) E.U. Project (grant FP5-IST-2001-
33520), the HYCON E.U. Network of Excellence

0

0.01

0.02

0.03

0.04

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Flexibility function

Sampling time

Latency perturbation /

sampling time

Sa
m

pl
in

g
ti

m
e

pe
rt

ur
ba

tio
n

0

0.02

0.04

0.06

0.08

0.10

Latency perturbation

0 0.02 0.04 0.06 0.08 0.10

Figure 11. On the left: projection onto the implementation parameter subspace: ‘‘+’’ good samples (functional requirements
achieved), ‘‘�’’ bad samples (functional requirements not achieved), ‘‘�’’ bad sample region. On the right: a flexibility function.

392 A. Balluchi et al.

(grant FP6-IST-511368) and the CHESS NSF ITR
grant CCR-0225610.

References

A. Agostini, A. Balluchi, A. Bicchi, B. Piccoli, A.L. Sangiovanni-
Vincentelli and K. Zadarnowska, ‘‘Randomized algorithms for
platformbased design’’, in Proceedings of the 44th IEEE
Conference on Decision and Control, and the European Control
Conference 2005, Seville, Spain, December 2005, pp. 6638–6643.

M. Antoniotti, A. Balluchi, L. Benvenuti, A. Ferrari, C. Pinello,
A.L. Sangiovanni-Vincentelli, R. Flora, W. Nesci, C. Rossi,
G. Serra and M. Tabaro, ‘‘A top-down constraints-driven design
methodology for powertrain control system’’, in Proceedings
GPC98, Global Powertrain Congress, volume Emissions,
Testing and Controls, Detroit, Michigan, USA, October 1998,
pp. 74–84.

K.E. Arzén, A. Cervin, J. Eker and L. Sha, ‘‘An introduction to
control and scheduling co-design’’, in Proceedings of the 39th
IEEE Conference on Decision and Control, Sydney, Australia,
Vol. 5, pp. 4865–4870, December 2000.

AUTOSAR, www.autosar.org (accessed 20 February 2006).
E.-H. Azibi and J.-C. Sardas, ‘‘Computer-aided process engineering
and transformation of the process design activity in automotive
industry’’, in Proceedings of the 2002 IEEE International
Conference on Systems, Man and Cybernetics, Hammamet,
Tunisia, October 2002, pp. 1–5.

M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli,
U. Freund, E. Schlenker and H.-J. Wolff, ‘‘Correct-by-construction
transformations across design environments for model-based
embedded software development’’, in Proceedings of the Design
Automation and Test in Europe Conference, March 2005,
pp. 1044–1049.

A. Balluchi, M.D. Di Benedetto, C. Pinello, C. Rossi and
A.L. Sangiovanni-Vincentelli, ‘‘Hybrid control in automotive appli-
cations: the cut-off control’’, Automatica, 35, pp. 519–535, 1999.

A. Balluchi, L. Benvenuti, M.D. Di Benedetto, C. Pinello and
A.L. Sangiovanni-Vincentelli, ‘‘Automotive engine control and
hybrid systems: Challenges and opportunities’’, in Proceedings of
the IEEE, 88, pp. 888–912, 2000.

A. Balluchi, L. Benvenuti, M.D. Di Benedetto and A.L. Sangiovanni-
Vincentelli, ‘‘Design of observers for hybrid systems’’, in Hybrid
Systems: Computation and Control, volume 2289 of Lecture Notes
in Computer Science, C.J. Tomlin and J.R. Greenstreet, Eds,
Stanford, CA: Springer-Verlag, 2002a, pp. 76–89.

A. Balluchi, L. Benvenuti, C. Lemma, P. Murrieri and
A.L. Sangiovanni-Vincentelli, ‘‘Hybrid models of an automotive
driveline’’, Tech. rep., PARADES, Rome, I, December 2004a.

A. Balluchi, M.D. Di Benedetto, A. Ferrari, G. Gaviani, G. Girasole,
C. Grossi, W. Nesci, M. Pennese and A.L. Sangiovanni- Vincentelli,
‘‘Design of a motorcycle engine control unit using an integrated
control-implementation approach’’, in Proceedings 1st IFAC
Workshop on ‘‘Advances in Automatic Control’’, Salerno, Italy,
April 2004b, pp. 218–225.

A. Balluchi, L. Benvenuti, C. Lemma, A.L. Sangiovanni-Vincentelli
and G. Serra, ‘‘Actual engaged gear identification: a hybrid observer
approach’’, in Proceedings of the 16th IFAC World Congress,
Prague, CZ, July 2005.

A. Balluchi, L. Berardi, M.D. Di Benedetto, A. Ferrari,
G. Girasole and A.L. Sangiovanni-Vincentelli, ‘‘Integrated control
implementation design’’, in Proceedings of the 41st IEEE
Conference on Decision and Control, Las Vegas, NV, USA,
December 2002b, pp. 1337–1342.

M. Baotic, M. Vasak, M. Morari and N. Peric, ‘‘Hybrid theory based
optimal control of electronic throttle’’, in Proceedings of the IEEE
American Control Conference, ACC 2003, Denver, Colorado,
USA, June 2003, pp. 5209–5214.

M.B. Barron and W.F. Powers, ‘‘The role of electronic controls for
future automotive mechatronic systems’’, IEEE/ASME
Transactions on Mechatronics, 1, pp. 80–88, 1996.

A. Bemporad, A. Garulli, S. Paoletti and A. Vicino, ‘‘A bounded-error
approach to piecewise affine system identification’’, IEEE Trans.
Automatic Control, 50, pp. 1567–1580, 2004a.

A. Bemporad, M. Morari and N.L. Ricker, Model Predictive Control
Toolbox for Matlab – Users Guide, The Mathworks, Inc., 2004b.
http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/

A. Bemporad, G. Bianchini, F. Brogi and F. Barbagli, ‘‘Passivity
analysis and passification of discrete-time hybrid systems’’,
in Proceedings IFAC World Congress, Prague, Czech Republic,
2005.

K.R. Butts, ‘‘An application of integrated casexacsd to automotive
powertrain systems’’, in Proceedings of the 1996 IEEE
International Symposium on Computer-Aided Control System
Design, Dearborn, MI, September 1996, pp. 339–345.

A. Cervin, J. Eker D. Henriksson, B. Lincoln and K.E. Arzén, ‘‘How
does control timing affect performance? Analysis and simulation of
timing using Jitterbug and TrueTime’’, IEEE Control Systems
Magazine, 23, pp. 16–30, 2003.

J. Chen and R.J. Patton, Robust Model-Based Fault Diagnosis for
Dynamic Systems, Number 3 in Series on Asian Studies
in Computer and Information Science, Norwell, MA: Kluwer
International, 1999.

R.A. Decarlo, M.S. Branicky, S. Pettersson and B. Lennartson,
‘‘Perspectives and results on the stability and stabilizability
of hybrid systems’’, Proceedings of the IEEE, 88, pp. 1069–1082,
2000.

ETAS. ASCET. http://www.etas.de (accessed 20 February 2006).
J. Ezzine and A.H. Haddad, ‘‘Controllability and observability of
hybrid systems’’, in Proceedings of the 1988 American Control
Conference, pp. 41–46, 1988.

B.S. Heck, L.M. Wills and G.J. Vachtsevanos, ‘‘Software technology
for implementing reusable, distributed control systems’’, IEEE
Control Systems Magazine, Vol. 23, No. 1, pp. 21–35, February
2003.

H. Heinecke, K.-P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh,
J. Leflour, J.-L. Mat/’e, K. Nishikawa and T. Scharnhorst,
‘‘Automotive open system architecture – an industry-wide initiative
to manage the complexity of emerging automotive e/e-architec-
tures’’, in Proceedings of Convergence 2004, Detroit, MI, October
2004.

R. Isermann, ‘‘Mechatronic systems innovative products with
embedded control’’, in Proceedings of the 16th IFAC World
Congress, Prague, CZ, July 2005 (Plenary lecture).

K.H. Johansson, M. Törngren and L. Nielsen, ‘‘Vehicle applications
of controller area network’’, in Handbook of Networked and
Embedded Control Systems, D. Hristu-Varsakelis and W.S. Levine,
Eds, Boston, MA: Birkhäuser, 2005, pp. 741–766.

K. Keutzer, S. Malik, R. Newton, J. Rabaey and A.L. Sangiovanni-
Vincentelli, ‘‘System level design: Orthogonalization of concerns
and platformbased design’’, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19(12), pp. 1523–1543,
2000.

J. Lygeros, C. Tomlin and S. Sastry, ‘‘Controllers for reachability
specifications for hybrid systems’’, Automatica, 35, 1999.

G. Martin, ‘‘The future of high-level modelling and system level
design: Some possible methodology scenarios’’, in Proceedings of
9th IEEE/DATC Electronic Design Processes Workshop
(EDP2002), Monterey, CA, Section 1.1, pp. 1–5, April 2002a.

G. Martin, ‘‘Guest editor’s introduction: The reuse of complex
architectures’’, IEEE Design and Test of Computers, 19, pp. 4–5,
November/December 2002b.

R. Mobus, M. Baotic and M. Morari, ‘‘Multi-object adaptive
cruise control’’, in Hybrid Systems: Computation and Control,
HSCC 2003, volume 2623 of Lecture Notes in Computer Science,
O. Maler and A. Pnueli, Eds., Berlin: Springer Verlag, 2003,
pp. 359–374.

A. Nerode and W. Kohn, ‘‘Models for hybrid systems: Automata,
topologies, controllability, observability’’, in Hybrid Systems,
Lecture Notes in Computer Science 736, Berlin: Springer-Verlag,
1993, pp. 317–356.

S. Pettersson and B. Lennartson, ‘‘Lmi for stability and robustness
of hybrid systems’’, in Proceedings of 16th American Control

Hybrid systems in automotive electronics design 393

Conference, Albuquerque, NM, USA, June 1997, Vol. 3,
pp. 1714–1718.

K. Poolla, P. Khargonekar, A. Tikku, J. Krause and K. Nagpal,
‘‘A time-domain approach to model validation’’, in Proceedings of
the IEEE American Control Conference (ACC1992), pp. 313–317,
1992.

A. Sangiovanni-Vincentelli, ‘‘Defining platform-based design’’,
EEdesign, February 2002. http://www.eedesign.com/

A.L. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis and
M. Sgroi, ‘‘Benefits and challenges for platform-based design’’,

in Proceedings of the Design Automation Conference (DAC04),
San Diego, CA, USA, June 2004.

R. Smith and G.E. Dullerud, ‘‘Continuous-time control model valida-
tion using finite experimental data’’, IEEE Trans. on Automatic
Control, 41, pp. 1094–1105, 1996.

R.S. Smith and J.C. Doyle, ‘‘Model validation: A connection between
robust control and identification’’, IEEE Trans. on Automatic
Control, 37, pp. 942–952, 1992.

The MathWorks. Matlab, Simulink, State.ow. http://
www.mathworks.com (accessed 20 February 2006).

394 A. Balluchi et al.

