
Journal of Hydrology 610 (2022) 127895

Available online 4 May 2022
0022-1694/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Research papers 

Evaluation of two new-generation global soil databases for macro-scale 
hydrological modelling in Norway 

Shaochun Huang a,*, Stephanie Eisner b, Ingjerd Haddeland a, Zelalem Tadege Mengistu a 

a Norwegian Water Resources and Energy Directorate (NVE), Middelthuns Gate 29, 0368 Oslo, Norway 
b Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway   

A R T I C L E  I N F O   

This manuscript was handled by Corrado Cor
radini, Editor-in-Chief, with the assistance of 
Juan V. Giraldez, Associate Editor  

Keywords: 
Soil moisture 
Norwegian forest soil profile 
SoilGrids 
Wise30sec 
ESA CCI SM 
ERA5 
GLEAM 

A B S T R A C T   

Lack of national soil property maps limits the studies of soil moisture (SM) dynamics in Norway. One alternative 
is to apply the global soil data as input for macro-scale hydrological modelling, but the quality of these data is 
still unknown. The objectives of this study are 1) to evaluate two recent global soil databases (Wise30sec and 
SoilGrids) in comparison with data from local soil profiles; 2) to evaluate which database supports better model 
performance in terms of river discharge and SM for three macro-scale catchments in Norway and 3) to suggest 
criteria for the selection of soil data for models with different complexity. The global soil databases were 
evaluated in three steps: 1) the global soil data are compared directly with the Norwegian forest soil profiles; 2) 
the simulated discharge based on the two global soil databases is compared with observations and 3) the 
simulated SM is compared with three global SM products. Two hydrological models were applied to simulate 
discharge and SM: the Soil and Water Integrated Model (SWIM) and the Variable Infiltration Capacity (VIC) 
model. The comparison with data from local soil profiles shows that SoilGrids has smaller mean errors than 
Wise30sec, especially for upper soil layers, but both soil databases have large root mean squared errors and poor 
correlations. SWIM generally performs better in terms of discharge using SoilGrids than using Wise30sec and the 
simulated SM has higher correlations with the SM products. In contrast, the VIC model is less sensitive to soil 
input data and the simulated SM using Wise30sec is higher correlated with the SM products than using SoilGrids. 
Based on the results, we conclude that the global soil databases can provide reasonable soil property information 
at coarse resolutions and large areas. The selection of soil input data should depend on the characteristics of both 
models and study areas.   

1. Introduction 

Soil moisture is a key mediator between atmosphere and hydro
sphere, which determines the amount of water available for evapo
transpiration from land, influencing precipitation and air temperature as 
feedback (Seneviratne et al., 2010). In addition, it affects streamflow 
and groundwater recharge via partitioning of precipitation into runoff 
and infiltration in the hydrological cycle (Orth and Seneviratne, 2013). 
Despite its importance, soil moisture is rarely studied in Norway, espe
cially for macro-scale catchments. One major obstacle is lack of national- 
wide soil property information for hydrological or land surface models. 

Global soil databases are often considered as alternative soil property 
information for large-scale modelling and for regions with poor local 
data. For example, the FAO/UNESCO soil map of the world (FAO, 2003) 
and the Harmonized world soil database (HWSD) (FAO/IIASA/ISRIC/ 

ISSCAS/JRC, 2012) are applied as standard inputs in Soil and Water 
Assessment Tool (SWAT) model (Abbaspour et al., 2019). Dai et al. 
(2019) reviewed the global soil databases used by the land surface 
models within the Coupled Model Intercomparison Project 5 (CMIP5). 
The widely used databases were the FAO/UNESCO soil map of the 
world, HWSD, the Data and Information System of International 
Geosphere-Biosphere Programme (IGBP-DIS) database (Global Soil Data 
Task Group, 2000), the Global Soil Dataset for Earth System Model 
(GSDE) (Shangguan et al., 2014), etc. 

All global soil property databases are generated from soil surveys by 
one of two general methods (Dai et al., 2019): the linkage method 
(Batjes, 2003) linking soil profiles and soil mapping units in soil type 
maps, and the digital soil mapping method (McBratney et al., 2003) 
using state-of-art machine learning methods to map the spatial distri
bution of soil properties across the globe. The soil databases produced by 
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the linkage methods are polygon-based due to the shape of soil type 
maps while the soil databases derived by digital soil mapping provide 
gridded, spatially continuous estimates. Thus, the soil databases pro
duced by these methods give distinctively different distribution of soil 
properties. 

Dai et al. (2019) also compared four global soil databases with 
94,441 soil profiles from the World Soil Information Service (WoSIS). 
They found that the SoilGrids system (Hengl et al., 2017), one of the 
most recently developed databases using the digital soil mapping 
method, had much better accuracy than HWSD, IGBP-DIS and GSDE, 
which were developed using the traditional linkage method. Tifafi et al. 
(2018) compared the soil carbon stock estimates based on the global soil 
databases with field measurements. They also found that SoilGrids had 
smaller errors than the World Inventory of Soil Emission Potentials 
database at a resolution of 30 s (Wise30sec) (Batjes, 2016), which is an 
improved version of HWSD. 

So far, there are limited studies that compared the effects of different 
soil input data on hydrological or land surface modelling, and evalua
tions of the new generation of global soil databases are rare. Several 
studies reported improved model performance in terms of specific hy
drological processes, such as soil moisture and river discharge, with 
better soil information and at higher resolutions (Sheshukov et al, 2011; 
Guillod et al., 2013; De Lannoy et al., 2014). Livneh et al. (2015) ana
lysed the sensitivities of different soil input data in the mHM model for 
the Mississippi catchment and concluded that the choice of soil textural 
properties for a single model can be an appreciable source of uncer
tainty. In contrast, Ye et al. (2011) and Mukundan et al. (2010) found 
that the improved high-resolution data did not necessarily improve the 
streamflow simulation using SWAT model. Hence, the effect of soil input 
data can be specific for different models, soil data as well as study areas. 

All the studies mentioned above mainly compared the simulated 
river discharge with observations and inter-compared the simulated 
hydrological processes driven by different soil input data. The simulated 
soil moisture was rarely validated against observations, probably due to 
the lack of soil moisture measurements, especially at catchment scales. 
To fill this gap, satellite-derived soil moisture products have become one 
important source of surface soil moisture observations in recent years, 
and they can be used to calibrate hydrological models for ungauged 
catchments (Choi et al., 2021) or to validate model performance in terms 
of soil moisture (Kearney & Maino, 2018). In addition, the satellite- 
derived soil moisture products are often assimilated in land surface or 
hydrological models to improve the root-zone moisture simulations at 
large scales (Renzullo et al., 2014; Tian et al., 2019). Based on the ad
vances in observation data, Kearney & Maino (2018) assessed the 
application of the new generation of global soil data in an infiltration 
and redistribution model and compared the model outputs with both in- 
situ soil moisture measurements and satellite-derived soil moisture 
product. Their results demonstrated the advantages of using the new 
global soil data for modelling soil moisture at fine spatial and temporal 
resolution for Australia and encouraged the applications of the new 
databases for other regions. 

In this study, we evaluated two recent global soil property databases 
(Wise30sec and SoilGrids) generated by different mapping methods for 
macro-scale hydrological modelling in Norway. To the best of our 
knowledge, we are the first to compare these two databases with respect 
to their utility for hydrological modelling, and it is the first study that 
focuses on macro-scale soil properties and soil moisture simulations in 
Norway. Different from the previous studies, we applied two hydro
logical models to account for the uncertainties caused by different model 
structures, modelling resolutions and descriptions of hydrological pro
cesses. In addition, we used a three-step procedure to systematically 
evaluate the global soil databases. The benchmark data is not only the 
observed discharge but also the Norwegian forest soil database and three 
global soil moisture products. Thus, the objectives of this study are 1) to 
evaluate two recent global soil databases (Wise30sec and SoilGrids) in 
comparison with data from local soil profiles; 2) to evaluate which 

database supports better model performance in terms of river discharge 
and soil moisture for three macro-scale catchments in Norway and 3) to 
suggest criteria for the selection of soil data for macro-scale hydrological 
modelling. 

2. Study area 

Norway is located in Northern Europe and covers an area of about 
325,000 km2. The mainland can be divided into 6 geographic regimes: 
Finnmark, Nordland, Trøndelag, Western Norway, Eastern Norway and 
Southern Norway (Fig. 1a). About half of the land area is covered by 
bedrock and heather (poor shrub vegetations) in high mountains and 
about 38% of the area is covered by forest. 

In this study, we selected three macro-scale catchments with the 
drainage areas larger than 10,000 km2 from the Norwegian flood fore
casting system (Ruan & Langsholt, 2017), where human activities do not 
significantly influence the discharge at the outlet. These catchments are 
the upper Lågen River above the gauging station Losna (ID: 2.145, 
11,206 km2), the upper Glomma River above the gauging station Elve
rum (ID: 2.604, 15,450 km2) and the Tana River above the gauging 
station Polmak (ID: 234.18, 14,170 km2) (Fig. 1). Both the Losna and 
Elverum catchments are located in Eastern Norway and the Polmak 
catchment is partly located in Finnmark and partly in Sweden. 

The three catchments span a range of climatic, hydrological and 
geographic conditions (Table 1). The Losna catchment is located at the 
highest altitude among the three and it receives the largest annual 
precipitation amount. About 90% of the precipitation in this catchment 
ends up as runoff due to the cold climate, steep slopes and large area of 
bedrock. The Polmak catchment is located in the coldest and north
ernmost region, and it receives the lowest amount of precipitation per 
year. It is also flattest and at the lowest altitudes among the three 
catchments. The Elverum catchment is the largest catchment, and it has 
the highest annual temperature (above 0 ◦C) among the three. In both 
the Polmak and Elverum catchments, about 75% of the precipitation 
ends up as runoff. 

These three catchments represent the dominant land cover types in 
Norway. In the Losna catchment, heather and bedrock are the dominant 
land covers (ca. 50%) and forest covers about 25% of the land area. In 
the Elverum and Polmak catchments, more than 50% of the land area is 
covered by forest and more than 20% of the land is covered by heather. 
In addition, due to the large drainage area and distinct locations, these 
catchments contain more than half of quaternary geological conditions 
in Norway according to Norway’s geological survey. 

3. Data and method 

In this study, we evaluated Wise30sec and SoilGrids in three steps 
(Fig. 2). The first step was to compare the global soil data with the 
Norwegian forest soil database. In the second and third steps, we applied 
two hydrological models to simulate river discharge and soil moisture 
using information from the two soil databases separately. The simulated 
discharge was compared with observed discharge (step 2) and the 
simulated soil moisture was compared with three global soil moisture 
products (step 3). In the next subsections, the data and methods are 
described following the workflow shown in Fig. 2. 

3.1. Evaluation 1: Soil characteristics 

3.1.1. Global soil property databases 
The main characteristics of the two global soil databases are listed in 

Table 2. Wise30sec (Batjes, 2016) is developed based on the traditional 
linkage method. It is an improvement of HWSD, as it uses the soil map 
from HWSD with minor corrections and it incorporates more soil profiles 
(~21,000 profiles) than HWSD and climate zone maps as categorical 
covariates. For each soil type, it has seven layers up to 200 cm depth (5 
× 20 cm up to 100 cm depth, and 2 × 50 cm up to 200 cm depth) with 
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Fig. 1. The digital elevation model (a) and the dominant land cover (b) of the three catchments: Losna (gauge identification (ID): 2.145), Elverum (ID: 2.604) and 
Polmak (ID: 234.18). 

Table 1 
The characteristics of the studied catchments.  

Gauge ID Name Area 
(km2) 

Elevation [m] Land cover (%) Mean temperature 
[◦C] 

Mean precipitation 
[mm/year] 

Mean discharge 
[mm/year] 

Runoff 
coefficient 

Heather Forest Bedrock  

2.145 Losna 11,206 1158 
(181–2290)  

31.0  24.9  18.9  − 0.72 810 720  0.89  

2.604 Elverum 15,450 819 
(182–1915)  

22.8  65.2  2.6  0.74 730 539  0.74  

234.18 Polmak 14,170 346 (22–952)  25.4  53.7  1.5  − 1.55 520 389  0.75  

Fig. 2. The flowchart of the three-step evaluation in this study.  
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uncertainty estimation. The resolution of the data is about 1 km. 
SoilGrids (Hengl et al., 2017) is developed using the digital soil 

mapping method. The latest version released in 2020 was produced by 
fitting an ensemble of machine-learning methods based on over 230,000 
soil profile observations and a series of environmental covariates. 
Covariates were selected from a pool of over 400 environmental layers 
from earth observation derived products and other environmental in
formation including climate, land cover and terrain morphology. The 
outputs of SoilGrids are soil properties at six standard depth intervals (5, 
15, 30, 60, 100 and 200 cm) for each grid cell at a resolution of 250 m. 

3.1.2. Norwegian forest soil database 
The Norwegian forest soil database consists of 1040 sampling sites 

covering forested land on a 9 by 9 km regular grid, i.e. sampling density 
follows the geographical distribution of forests in Norway with fewer 
sites in the northernmost region, central mountain areas, and the coastal 
areas, where forest is not the dominant land cover (Fig. 3). Profile de
scriptions, soil sampling and lab analysis for each site were carried out in 
the period 1988–1992 following standardized procedures (Sveistrup 
1984). 

In total, 994 soil profiles provide sufficient data to be included in the 
analysis, i.e. depth and fine earth fractions (sand, silt, clay) for each soil 
layer. Bulk density for mineral soil layers is estimated using a pedo
transfer function from Baritz et al. (2010). The Norwegian forest soil 
profiles have shallow soil depth in general (Fig. 3a). Only about 20% of 
the soil profiles are deeper than 80 cm, 50% are deeper than 50 cm and 
80% of the soil profiles are deeper than 20 cm. Another major 

characteristic is that most forest soils belong to sand soils according to 
the classification by Riley (1996) for Norwegian soils (Fig. 3b). 

3.1.3. Comparison between the Norwegian forest soil profiles and global soil 
data 

Based on the characteristics of the soil profile depth, we converted 
the global soil data and profile data into three layers: layer 1 (0–20 cm), 
layer 2 (20 – 50 cm) and layer 3 (50–80 cm) to maximize the use of the 
profile information. As a result, there are about 80%, 50% and 20% of 
soil profiles available to compare with the global soil data for layer 1, 2 
and 3, respectively. 

We extracted soil property information from the converted global 
soil data at the exact locations of the profiles and compared them 
pairwise. Four key properties (sand, clay, silt content (%) and bulk 
density (g/cm3)), which are available for all profiles, are included in the 
comparison. Three statistic criteria were used: mean error (ME), root 
mean squared error (RMSE), and coefficient of determination (R2). 
These statistics were also used in the comparison between global soil 
data and global soil profiles (Dai et al., 2019). 

3.2. Hydrological modelling 

In this study, we selected one process-based eco-hydrological model: 
Soil and Water Integrated Model (SWIM), and one land surface model: 
the Variable Infiltration Capacity (VIC) model to simulate river dis
charges and soil moisture. These models were widely used in hydro
logical modelling for large-scale catchments worldwide and were 
capable to reproduce river discharges satisfactorily (Huang et al., 2017). 
In addition, they differ substantially in model structure, process 
description and spatial resolution of input data, so that we can analyse 
whether the effects of soil input data differ between the models. Lumped 
conceptual models were not considered in this study because they often 
do not require detailed and spatially distributed soil information. 

3.2.1. SWIM 
SWIM (Krysanova et al., 1998) is an ecohydrological semi- 

distributed model of intermediate complexity. It was developed based 
on SWAT-1993 (Arnold et al., 1993) and MATSALU (Krysanova et al., 
1989) for meso- and macro-scale catchments. It is driven by six meteo
rological parameters at daily timesteps: mean, maximum and minimum 

Table 2 
The main characteristics of Wise30sec and SoilGrids.  

Database Resolution Number 
of layers 

Number of 
properties 

Depth of 
the layers 
(cm) 

Mapping 
method 

Wise30sec 1 km 7 20 20, 40, 
60, 80, 
100, 150, 
200 

Linkage 
method 

SoilGrids 250 m 6 7 5, 15, 30, 
60, 100, 
200 

Digital soil 
mapping  

Fig. 3. The maximum depth (unit: cm) (a) and soil types (b) of the Norwegian forest soil profiles.  
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temperature, precipitation, relative humidity and solar radiation. SWIM 
has a three-level scheme of spatial disaggregation that is the basin, sub- 
basins and hydrotopes. The hydrotopes are sets of elementary units in a 
sub-basin with homogeneous soil and land use types to simulate water 
flows. In this study, we created regular grid sub-basins at a size of 1 km2 

based on the Universal Transverse Mercator (UTM) zone 33 N coordi
nate system corresponding to the meteorological forcing data at the 
same resolution. There are up to five hydrotopes in each sub-basin, with 
a mean hydrotope area of 0.38 km2. 

Lateral transport of water towards the river network is simulated on 
the basis of linear storage functions. After reaching the river system, 
water is routed along the river network to the outlet of the basin using 
the Muskingum flow routing method (Maidment, 1993). Since the sub- 
basin is gridded-based and the sub-basin size is small in this study, the 
Muskingum method can be unstable to rout the runoff from each sub- 
basin. To overcome this problem, we superimposed the official river 
network map on the sub-basins and rout the accumulated runoff from a 
set of sub-basins, which form larger sub-basins based on the river 
network. 

The simulated hydrological system consists of four control volumes: 
the soil surface, the root zone of soil, the shallow aquifer and the deep 
aquifer. The soil root zone is subdivided into several layers in accor
dance with the soil database. The water balance for the soil surface and 
soil column includes precipitation, surface runoff, evapotranspiration, 
subsurface runoff and percolation. The water balance for the shallow 
aquifer includes groundwater recharge, capillary rise to the soil profile, 
lateral flow and percolation to the deep aquifer. 

Surface runoff is estimated as a non-linear function of precipitation 
and a retention coefficient, which depends on soil water content, land 
use and soil type (modification of the Soil Conservation Service (SCS) 
curve number method; Arnold et al., 1990). Lateral subsurface flow is 
calculated simultaneously with percolation and occurs when the storage 
in the soil layer exceeds field capacity after percolation. 

Potential evapotranspiration (PET) is estimated using the method of 
Priestley–Taylor (Priestley and Taylor, 1972). Actual evaporation from 
soil and actual transpiration by plants are calculated separately. An 
extended degree-day method is used to compute snowmelt (Huang et al., 
2013). The percolation from the soil profile to the shallow aquifer is 
corrected by the delay time function proposed by Sangrey et al. (1984). 

3.2.2. VIC 
VIC (Liang et al., 1994) (version 4.2.d) is a semi-distributed hydro

logical model for large-scale applications, solving both the surface en
ergy balance and water balance equations. In this study the model was 
run in so-called water balance mode, where the energy balance is solved 
only when snow is present. The land surface processes are modelled at a 
grid of large cells (0.25◦ in this study to compare with the global soil 
moisture products), which can be subdivided into several “tiles” based 
on land cover types and elevation classes. The fluxes and storages from 
the tiles are averaged together based on the weights of area fraction to 
give grid-cell average. The routing of water flow is performed using the 
unit hydrograph principle. The daily meteorological forcing data used in 
this study are maximum and minimum temperature, precipitation, 
longwave radiation, shortwave radiation, atmospheric pressure, vapor 
pressure and wind speed. 

PET is calculated using the Penman-Monteith equation. An energy 
balance approach is used to represent snow accumulation and ablation 
on the ground (Andreadis et al., 2009), and the model contains an 
explicit canopy snow scheme. There are typically 3 soil layers. The top 
layer is usually 10 cm to ensure reasonable calculation of evaporation 
from the soil. In this layer, surface runoff and infiltration are controlled 
by variable infiltration capacity parameterization and soil evaporation is 
calculated by ARNO formulation (Francini and Pacciani, 1991). The 
middle layer mainly conveys water to the next layer and the last soil 
layer generates base flow using the ARNO baseflow formulation (Fran
cini and Pacciani, 1991). All layers within the root zone can lose 

moisture due to evapotranspiration. 

3.2.3. Model input data 
The digital elevation model (DEM), soil type and land cover type 

maps with 1 km horizontal resolution are required to setup the hydro
logical models in this study. The DEM map is obtained from the Nor
wegian Mapping Authority and the Swedish National Land Survey. 

The soil type maps are required for SWIM and are available from the 
Wise30sec and SoilGrids databases. The soil type map of Wise30sec 
shows that there are 72 soil types in Norway while the SoilGrids data
base estimates 11 most-probable soil types in Norway. Since the soil 
properties of each most-probable soil type vary between grids, we 
decided not to use the most-probable soil types from the SoilGrids 
database but reclassify the soils based on primary soil properties (clay, 
sand and silt content, organic matter, nitrogen content and bulk density) 
for all grid cells in Norway using the K-Mean clustering method (Har
tigan and Wong, 1979). As a result, we reclassified 70 soil types for the 
SoilGrids data to have a comparable number of soil types as in 
Wise30sec. The mean values of soil properties for each new class 
represent the characteristics of the corresponding soil type. 

Besides the primary soil properties available in the soil database, the 
hydrological models need information on soil parameters such as 
available water capacity, hydraulic conductivity, etc. We estimated 
these parameters using the pedotransfer functions by Woesten et al. 
(1999), which were developed for European soils using clay, silk con
tent, organic matter and bulk density as input. These functions show the 
overall best performance among the parameter pedotransfer functions 
for Norwegian soils (Kværno and Haugen, 2011). 

Land use information was compiled from the National Land Resource 
Map (Ahlstrøm et al., 2014) and the remote sensing based forest 
resource map SAT-SKOG (Gjertsen and Nilsen (2012), supplemented by 
Corine Land Cover 2000 (https://www.eea.europa.eu/data-an 
d-maps/data/clc-2000-raster-4) for small upstream areas outside the 
Norwegian borders. The land cover classification distinguishes eight 
general land use types (open area, bog, built-up, cropland, heather, 
bedrock, lake, permanent ice and snow) and 12 structural forest types. 
The forest types are based on a classification scheme developed by 
Majasalmi et al. (2018) for Fennoscandian forests which consists of three 
species groups (spruce, pine, and deciduous dominated) with four 
structural subgroups each, and are applied here to better reflect spatial 
variability in hydrologically relevant land surface properties within 
forested areas. Relevant parameters for each forest type are provided by 
Majasalmi et al. (2018) (maximum leaf area index in growing seasons 
and vegetation height) and Bright et al. (2018) (shortwave albedo). 

The meteorological forcing data are available at daily time steps and 
1 km spatial resolution for all of Norway and areas in neighbouring 
countries draining to Norway and cover the period 1960 – 2020. Pre
cipitation and temperature (daily mean, maximum and minimum) are 
obtained from seNorge2018, v20.05 (Lussana et al., 2019), which is an 
observational gridded dataset. Wind speed is based on the NOrwegian 
ReAnalysis 10 km (NORA10) product (Reistad et al., 2011). Downward 
short- and longwave radiation, relative humidity and surface pressure 
are estimated using the same methods as when preparing the HySN 
(Erlandsen et al., 2019) and HySN5 (Erlandsen et al., 2021) datasets. 
HySN is described and compared with surface observations and other 
data sets in Erlandsen et al. (2019). The dataset prepared for this study, 
HySN2018v2005ERA5 (https://doi.org/10.5281/zenodo.5947547), is 
based on Era5 and SeNorge2018, v20.05. 

The measured discharge data at the gauges Elverum, Losna and 
Polmak is used to calibrate and validate the hydrological models. The 
daily discharge data has been quality checked by the Norwegian Water 
Resources and Energy Directorate (NVE) and it is continuously available 
for the period 1995 to 2019. 

3.2.4. Model calibration 
Ideally, the hydrological models should be calibrated against in-situ 
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soil moisture measurements when the target variable is soil water. 
However, in-situ soil moisture measurements in Norway are sparse and 
the data quality is hardly controlled. Hence, we calibrated the hydro
logical models against discharge at the outlet of the catchments in the 
period 1995 – 2004. The first year of simulation was used for model spin- 
up. The dynamically dimensioned search (DDS) algorithm (Tolson and 
Shoemaker, 2007) was applied to identify the parameterization for each 
catchment independently. DDS is a stochastic based global search al
gorithm and designed for calibration problems with many parameters. 
In this study, we calibrated 11 parameters in the SWIM model: two 
parameters related to potential evaporation, two related to groundwater 
flow, two related to soil percolation and saturated conductivity, three 
related to snow melt and two related to routing. For the VIC model, there 
are in total nine calibration parameters: four related to soil infiltration 
and base flow processes, two related to soil depths and three related to 
snow melt. Detailed information about the calibration parameters is 
presented in the Appendix. 

We selected Nash-Sutcliffe efficiency (NSE) on daily streamflow and 
its logarithm (LNSE) as the criteria to calibrate the models. These two 
criteria can show the model performance in terms of both high and low 
flows, and thus reflect soil functions such as the partitioning of precip
itation into surface runoff and infiltration, base flow and the control of 
water availability for evapotranspiration. Since DDS tries to minimize 
the objective function (θ), we formulated θ as an equally weighted 
combination of the differences between the criteria results and their 
ideal values (1 for NSE and LNSE) (Eq. (1)). 

θ = (1 − NSE)+ (1 − LNSE) (1) 

For each catchment, the hydrological models were calibrated twice 
using the same meteorological forcing data, the same calibration pa
rameters and their ranges, and the same objective function. The only 
difference is the prescribed soil input data, which is based on either 
SoilGrids or Wise30sec data. 

3.3. Evaluation 2: Discharge 

Evaluation of discharge is mainly based on the statistic criteria NSE, 
LNSE and the percent bias of water balance (PBIAS) on daily and 
monthly streamflow at the outlet gauges in the validation period (2005 – 
2019). In addition, visual inspection of monthly hydrographs helps to 
evaluate model performance in terms of seasonal dynamics. 

3.4. Evaluation 3: Soil moisture 

Three global soil moisture products were compared to simulated soil 
moisture from the hydrological models. They include one solely 
satellite-based product: the European Space Agency Climate Change 
Initiative Plus Soil Moisture (ESA CCI SM) (Gruber et al., 2019) and two 
products from models with satellite data assimilation: ERA5 (Hersbach 
et al., 2020) and the Global Land Evaporation Amsterdam Model 
(GLEAM, version 3.5b) (Martens et al., 2017). These products are pub
licly available and show comparable performance compared with more 
than 800 in-situ soil moisture measurements worldwide (Beck et al., 
2021). 

3.4.1. ESA CCI SM product 
The most recent ESA CCI SM product is the ESA CCI SM v06.1 pub

lished in 2021 and it is the most accurate ESA CCI SM product at present. 
The combined ESA CCI SM product is a merged data from various sat
ellites, including three active and ten passive satellites. It provides long- 
term global data from 1978 to 2020 at a regular grid of 0.25◦. In this 
study, we only applied the data after 2015 because one of the newest 
satellites, the Soil Moisture Active Passive (SMAP) satellite, provides 
data from 2015. 

Since the soil moisture measured by satellites only represents the 
condition of top 2–3 cm soil layer, we calculated the Soil Wetness Index 

(SWI, Eq. (2)) on the satellite time series using the exponential 
smoothing filter (Wagner et al., 1999) to compare with the hydrological 
model outputs for the top 10 cm soil layer. 

SWI(tn) =

∑n
i SMsat(ti)e−

tn − ti
T

∑n
i e−

tn − ti
T

(2) 

where SMsat (m3/m3) is the soil moisture retrieval at day ti, T rep
resents the time lag constant and was set to 5 days. Following Pellarin 
et al. (2006), the SWI at time tn was only calculated if ≥ 1 retrievals were 
available in the interval [tn − T, tn] and ≥ 3 retrievals were available in 
the interval [tn − 3 T, tn − T]. 

3.4.2. ERA5 
ERA5 is the fifth generation of the European Centre for Medium- 

Range Weather Forecasts (ECMWF) reanalysis. Compared to previous 
generation reanalysis, ERA5 provides an enhanced number of output 
parameters at spatial resolution of 0.25◦ and hourly temporal resolution 
from 1979 to present. ERA5 includes an advanced land data assimilation 
system to analyse land surface prognostic variables. It applies the soil 
texture data from the digital soil map of the world and derived soil 
properties (FAO, 2003) and ASCAT soil moisture data for data assimi
lation. The output of volume of water in soil layer 1 (0–7 cm) is used for 
comparison in this study. 

3.4.3. GLEAM 
GLEAM is a set of algorithms estimating terrestrial evaporation and 

root-zone soil moisture from satellite data from 1980 to 2020 at 0.25⁰ 
resolution. It uses the ESA CCI SM (v5.3) for data assimilation. The soil 
properties used in GLEAM come from the database of Global Gridded 
Surfaces of Selected Soil Characteristics generated by IGBP-DIS (Global 
Soil Data Task Group, 2000). The surface layer of GLEAM (0–10 cm) is 
used for comparison. 

3.4.4. Evaluation approach 
Since satellite soil moisture products often do not provide any in

formation when soil is frozen or snow-covered, we compared the data 
only in July and August, when the ground is snow-free in all catchments. 
Similar to previous studies (e.g., Beck et al., 2021), we used the Pearson 
correlation coefficient (r) to calculate the correlations between the 
original soil moisture products and the simulated soil moisture. For the 
satellite product, we only calculated the correlations if more than 200 
soil moisture estimates were available. The simulated soil moisture by 
SWIM was aggregated to the grid resolution of the VIC model (0.25◦) 
and the soil moisture products to make the comparison consistent. In 
addition, we calculated r for the low- and high-frequency fluctuations of 
the soil moisture time series as suggested by Gruber et al., (2020). The 
low-frequency fluctuations are the average soil moisture time series 
using a 30-day central moving window. The moving average was 
calculated when more than 21 days with values were available in the 30- 
day window. The high-frequency fluctuations were calculated by sub
tracting the low-frequency fluctuations from the original time series. 

4. Results 

4.1. Evaluation 1: Soil characteristics 

Table 3 shows all statistical results for three soil layers between the 
Norwegian forest soil profiles and the extracted soil properties at the 
profile locations from SoilGrids and Wise30sec. In general, both soil 
databases underestimate sand content and overestimate clay content in 
all layers. SoilGrids has better accuracy than Wise30sec for layer 1 and 
layer 2 shown by ME and RMSE, but Wise30sec shows smaller ME and 
RMSE for layer 3 in terms of sand and silt content. 

The MEs are less than 10% for all particle-size properties in both soil 
databases. The MEs of sand, silt and clay content in SoilGrids are less 
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Table 3 
The mean error (ME), root mean squared error (RMSE) and coefficient of determination (R2) of the two global soil data compared with the Norwegian forest soil 
profiles.    

Layer 1 (0–20 cm) Layer 2 (20–50 cm) Layer 3 (50–80 cm)   

ME RMSE R2 ME RMSE R2 ME RMSE R2 

Bulk density (g/cm3) SoilGrids  − 0.09  0.50  0.00  0.03  0.51  0.00  0.14  0.63  0.01 
Wise30sec  0.13  0.51  0.00  0.14  0.52  0.00  0.30  0.66  0.00 

Sand (%) SoilGrids  − 3.88  15.53  0.07  − 4.74  16.36  0.05  − 9.65  18.47  0.00 
Wise30sec  − 8.45  17.54  0.01  − 5.39  16.92  0.02  − 7.57  17.37  0.01 

Silt (%) SoilGrids  0.47  13.38  0.08  0.19  13.99  0.04  4.26  13.97  0.00 
Wise30sec  2.15  14.13  0.01  − 0.40  14.35  0.01  2.03  13.93  0.00 

Clay (%) SoilGrids  3.28  5.76  0.02  4.47  6.52  0.06  5.23  7.01  0.01 
Wise30sec  6.18  7.48  0.00  5.74  7.37  0.00  5.46  6.82  0.00  

Fig. 4. The error of sand content for soil layer 1 (0–20 cm; upper panels) and layer 3 (50–80 cm; lower panels) in the SoilGrids (left panels) and the Wise30sec (right 
panels) databases compared with the Norwegian forest soil profiles. 
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than 5% in the upper two layers and the MEs of silt content are always 
less than 5% for all layers in both databases. However, the RMSEs of 
sand and silt content are larger than 10% in both soil databases for all 
layers, indicating considerable errors at individual points. In addition, 
Table 3 shows that there are poor correlations (R2 less than 0.1) between 
the global soil data and the soil profiles for all studied soil properties. 

The high RMSEs and poor correlations are attributed to poor 

representation of both spatial and magnitude variation in the global soil 
data. Fig. 4 shows the errors of sand content in layer 1 and layer 3 as an 
example. The random spatial distributions of the errors indicate no clear 
error pattern in both soil databases and layers because the measured soil 
properties can differ substantially between adjacent profiles and the 
global soil data cannot capture such high spatial variability. In addition, 
Fig. 5 shows that the measured soil properties are much more 

Fig. 5. The boxplots of bulk density, sand, silt and clay content for three soil layers in the Norwegian forest soil profiles and the extracted SoilGrids and Wise30sec 
data at the same profile locations. 
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heterogeneous than the estimates from the global soil databases. For 
example, the measured sand content ranges from 5 to 100%, while the 
estimates from the global soil databases spread mainly between 40% and 
80%. 

Bulk density, which represents the soil morphological properties and 
is an indicator of soil porosity, also shows discrepancies between the 
global data and the estimates for the forest soil profiles. Both soil da
tabases overestimate the bulk density for all layers, except SoilGrids for 
layer 1 (Table 3). The largest overestimation is found for layer 3, with 
ME of 0.14 and 0.3 g/cm3 for SoilGrids and Wise30sec, respectively. The 
RMSE for both soil databases and all layers are larger than 0.5 g/cm3, 
which equals to about 19% of the particle density (normally assumed to 
be 2.65 g/cm3). 

The high RMSE and poor correlation results indicate that both global 
databases have significant biases compared with individual profiles. 
Hence, the estimated soil water properties based on the global databases 
can be uncertain for hydrological modelling at small scales. However, 
the small ME results indicate that the global soil databases may still be 
capable to provide reasonable aggregated estimates for large grid cells 
or large catchments, especially for topsoil layers. Therefore, evaluations 
2 and 3 only focus on the results at catchment and large grid scales in the 
following sections. 

4.2. Evaluation of model calibration results 

The SWIM and VIC models were set up for each catchment sepa
rately. For SWIM, two soil property data were generated based on the 
global soil databases. In addition, there are two hydrotope input files for 
each catchment, which include different soil type information corre
sponding to the soil property data. For VIC, two soil input files were 
prepared for each catchment. Since SoilGrids outperforms Wise30sec 
mainly for topsoil, we assumed that both databases had similar reli
ability as input for macro-scale hydrological modelling and calibrated 
each model for each catchment using different soil input files separately. 
The aim of the comparison is to investigate which soil database supports 
a better model performance in terms of discharge. 

Table 4 lists the calibration results in terms of NSE, LNSE and PBIAS. 
In general, both models can reproduce the daily discharge well with 
NSE/LNSE larger than 0.74 and absolute PBIAS less than 10%, except 
VIC using Wise30sec for Polmak catchment. These results confirm that 
the global soil databases can be a good alternative for use in macro-scale 
hydrological modelling in Norway. 

4.3. Evaluation 2: Simulated discharge 

We mainly compared the effects of soil data input in the validation 
period (Table 4). For SWIM, the absolute PBIAS are good (less than5%) 

for all catchments with both soil databases, but the NSE and LNSE show 
different model performance depending on the characteristics of 
catchments and the choice of soil databases. SWIM performs well with 
daily NSE/LNSE greater than 0.8 for the Losna catchment regardless 
which soil database is applied, probably due to the large portion of 
bedrock in this catchment. For the other two catchments, SWIM per
forms generally better with SoilGrids data than with Wise30sec. The 
daily NSE and LNSE using SoilGrids are larger than the ones using 
Wise30sec by 0.05 – 0.09 except the NSE for Polmak, while the monthly 
NSE and LNSE using SoilGrids are larger than the ones using Wise30sec 
by up to 0.08. 

Different from the SWIM results, the simulated discharge by VIC 
shows no significant difference in both daily and monthly NSE and LNSE 
(≤0.03) between the two soil input databases for the Losna and Elverum 
catchments. However, there are large negative PBIAS (down to − 13%) 
for these catchments. For the Polmak catchment, VIC has better model 
performance using SoilGrids than using Wise30sec, especially for low 
flows. 

Fig. 6 illustrates the comparison between observed and simulated 
long-term mean monthly discharge in the validation period. Similar to 
the results above, there is almost no difference between simulations 
driven by the two soil databases for SWIM on long-term mean monthly 
discharges at Losna. For the other two catchments, there are mainly 
differences in the peaks in May. VIC reproduces similar hydrographs 
with both soil data for all three catchments, except in late summer for 
Polmak. 

4.4. Evaluation 3: Soil moisture 

The Pearson correlation coefficient (r) was calculated for each grid 
cell between the simulated outputs and the soil moisture products from 
2015 to 2019. Fig. 7 summarizes the results of r for all grid cells, which 
have more than 80% of the cell area within the catchment boundaries. It 
shows that both the SWIM and VIC outputs have much better correlation 
with the ERA5 and GLEAM products than the ESA CCI SM data, and the 
SWIM outputs have better agreements with the ERA5 products than the 
VIC ones. Since the objective of this study is to evaluate the differences 
between the global soil databases rather than between the soil moisture 
products or hydrological models, we only focus on the difference of r 
between SoilGrids and Wise30sec in the following results. 

For SWIM, the soil moisture outputs using SoilGrids have generally 
higher correlations with all original soil moisture products and their 
low-frequency fluctuations than the outputs using Wise30sec. The dif
ferences of median r for the original data are less than 0.03 while the 
differences of median r for the low-frequency fluctuations range from 
0.03 to 0.09 between SoilGrids and Wise30sec. In contrast, the median r 
for the high-frequency fluctuations using Wise30sec is higher than the 

Table 4 
The statistic criteria of the SWIM and VIC model performance using the SoilGrids and Wise30sec data as input for the three catchments in both calibration (1995 – 
2004) and validation (2005 – 2019) periods. NSE: the Nash-Sutcliffe efficiency on daily/monthly streamflow, LNSE: the logarithm Nash-Sutcliffe efficiency on daily/ 
monthly streamflow and PBIAS: the percent bias of water balance.  

Hydrological 
model 

Soil data Gauge Calibration (1995–2004) Validation (2005–2019) 

NSE 
(daily) 

LNSE 
(daily) 

NSE 
(monthly) 

LNSE 
(monthly) 

PBIAS NSE 
(daily) 

LNSE 
(daily) 

NSE 
(monthly) 

LNSE 
(monthly) 

PBIAS 

SWIM SoilGrids Elverum  0.84  0.82  0.92  0.86 1  0.81  0.77  0.88  0.83 − 4 
Losna  0.86  0.80  0.92  0.83 − 1  0.83  0.84  0.88  0.88 − 4 
Polmak  0.88  0.88  0.95  0.93 − 2  0.65  0.76  0.89  0.85 2 

Wise30sec Elverum  0.77  0.75  0.89  0.82 0  0.74  0.68  0.86  0.76 − 5 
Losna  0.86  0.79  0.92  0.82 0  0.84  0.83  0.90  0.87 − 3 
Polmak  0.78  0.85  0.94  0.92 − 2  0.66  0.71  0.81  0.82 2 

VIC SoilGrids Elverum  0.80  0.84  0.90  0.89 − 8  0.70  0.78  0.83  0.85 − 13 
Losna  0.84  0.87  0.93  0.92 − 7  0.77  0.86  0.88  0.91 − 10 
Polmak  0.74  0.85  0.92  0.90 − 5  0.70  0.67  0.86  0.76 2 

Wise30sec Elverum  0.82  0.84  0.91  0.90 − 7  0.73  0.77  0.85  0.82 − 12 
Losna  0.81  0.84  0.90  0.90 − 7  0.76  0.84  0.86  0.89 − 10 
Polmak  0.72  0.64  0.86  0.71 2  0.64  0.32  0.75  0.43 9  
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median r using SoilGrids by up to 0.04 when compared with ERA5 and 
GLEAM. However, the correlations for the high-frequency fluctuations 
between the simulated and ERA5/GLEAM data are generally poorer 
than the correlations for the original data and low-frequency 
fluctuations. 

For VIC, the soil moisture outputs using Wise30sec have higher 
correlations with all global soil moisture products than the outputs using 
SoilGrids except for the GLEAM high-frequency fluctuations. The 

differences of median r between the two soil databases are most pro
nounced when the simulated results are compared with the ESA CCI SM 
data, up to 0.05. The differences of median r between the soil databases 
are less than 0.03 when compared with the ERA5 and GLEAM outputs. 

Figs. 8 and 9 illustrate the results of r between the SWIM/VIC outputs 
and the original soil moisture products for each grid cell to identify the 
regions with poor model performance. Interestingly, there are no 
distinct spatial distribution of r between SoilGrids and Wise30sec except 

Fig. 6. Comparison between the simulated and observed long-term mean monthly discharge in the validation period (2005 – 2019) using the SWIM and VIC models. 
The red solid lines represent observed discharge, and the green and blue dashed lines represent the simulated discharge using SoilGrids and Wise30sec data, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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in the upper part of the Polmak catchment for SWIM outputs. In Fig. 8, 
the SWIM outputs show good correlation (r greater than 0.7) with the 
ERA5 data for all grids. Poor correlations (r less than 0.3) are mainly 
found in most part of the Elverum catchment, the upper part of the Losna 
catchment and the lower part of the Polmak catchment between the 
simulated soil moisture and the ESA CCI SM data. The SWIM soil 
moisture data does not agree well with the GLEAM data (r less than 0.5) 
in the upper part of the Losna catchment. 

The VIC outputs have different correlations with the global soil 
moisture products in terms of both spatial distribution and magnitude 
compared with the SWIM outputs (Fig. 9). The outputs using Wise30sec 
have higher correlations with ERA5 than the ones using SoilGrids in the 
lower part of Elverum and the upper part of Polmak. The correlations 
with the ESA CCI data are lower than 0.3 in most grids in Eastern Nor
way and the lower part of Polmak, especially using SoilGrids as input. 
The correlations with the GLEAM data are generally good in the Polmak 
catchment using both soil input data but are poor in the upper part of the 
Losna catchment using the SoilGrids data. 

5. Discussion 

5.1. Data quality 

This study used a three-step evaluation on two global soil databases 
and their effects on discharge and soil moisture simulations. Such 
multiple-step evaluation gives valuable information on soil data quality 
and serves as a basis for selecting input data for macro-scale hydrolog
ical or land surface modelling in general. The approach chosen in this 
study corresponds to the enhanced calibration/validation strategies for 
hydrological modelling suggested by Krysanova et al. (2018), i.e., to 

evaluate the quality of input data and consider the uncertainty of input 
data before model calibration. However, it should be acknowledged that 
the benchmark data used in this study also contain several weaknesses 
and uncertainties. 

One of the important benchmark datasets in this study is the Nor
wegian forest soil database. The profiles provide a good spatial distri
bution of soil properties because forest is one of the dominant land 
covers in Norway. However, the forest soil profiles cannot represent the 
soil conditions for other land use types. For example, the European 
HYdropedological Data Inventory (EU-HYDI) (Weynants et al., 2013) 
shows that there is more clay and silt content in Norwegian agricultural 
soils than in forest soils and more than half of the agricultural soil 
profiles are deeper than 1 m. The disadvantage of the EU-HYDI is lack of 
sufficient information on the Norwegian profile locations and thus it 
cannot be applied for pairwise comparison as done in this study. 

The global soil moisture products are another benchmark data in this 
study. Compared with the in-situ soil moisture measurements, they do 
not perform adequately for all climate, vegetation cover and topo
graphic conditions. Beck et al. (2021) showed that all three products 
used in this study have weaker performance in cold climate than in 
temperate climate. Another global assessment of various satellite surface 
soil moisture products has also shown low correlations (median r ranges 
from 0.4 to 0.6) with in-situ soil moisture measurements in subarctic 
climate (Ma et al., 2019). In addition, it is challenging to correctly derive 
soil moisture data from satellites in dense vegetation areas and steep 
terrain (Beck et al., 2021, Blyverket et al., 2019). These problems in
crease the uncertainty of satellite products for Norway, especially in 
forested and mountainous regions. Given the large uncertainties of the 
global soil moisture products, we did not focus on the individual model 
performance in terms of soil moisture but aimed to compare the effects 

Fig. 7. The Pearson correlation coefficient (r) between the SWIM soil moisture outputs and three global soil moisture products (ERA5, ESA CCI (indicated by ESA in 
the figure) and GLEAM) (upper panel) and between the VIC soil moisture outputs and the same soil moisture products (lower panel) for all grid cells, which have 
more than 80% of cell areas within the catchment boundaries. “_high” and “_low” represent the high- and low- frequency fluctuations of the original soil moisture 
time series (see Section 3.4.4 for their definitions), respectively. 
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of different soil property data on hydrological modelling. 
The results of this study show that the most updated global soil data 

still contain considerable discrepancies at point or small scales in Nor
way in comparison with data from local soil profiles. One probable 

reason is that the global soil data were derived based on a global data
base of soil profiles and the percentage of Norwegian soil profiles is 
minor. For example, Norwegian soil profiles account for only 0.2% in the 
most recent world soil profile database (Batjes et al., 2020). Hence, the 

Fig. 8. The Pearson correlation coefficient (r) for each grid cell between the SWIM soil moisture outputs and the original global soil moisture products ERA5 (left 
panels), ESA CCI (middle panels) and GLEAM (right panels). The upper panel shows SWIM outputs with SoilGrids and the lower panel shows SWIM outputs 
with Wise30sec. 

Fig. 9. Te same as Fig. 8 but the Pearson correlation coefficient (r) between the VIC model outputs and the global soil moisture products.  
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estimated soil properties in Norway can be influenced by soil profiles 
from other parts of the world, especially using the linkage method. In 
addition, there are fewer data for soil physical than soil chemical attri
butes, and fewer measurements for deeper than for surficial horizons in 
most of the soil profile data worldwide (Batjes et al., 2020). The esti
mation methods also play an important role for the underestimation of 
spatial variation in soil properties in the global databases. The soil 
properties in SoilGrids vary smoothly within small areas due to the grid- 
based spatially continuous estimation while the soil properties in 
Wise30sec are constant within each soil type polygon. 

Soil depth can also be a source of uncertainty in the SWIM simula
tions. The soil depth in the global databases is always 2 m, but we only 
applied the data in the top 1 m soil because of the shallow soil depths 
indicated by the Norwegian forest soil profiles. The prescribed soil depth 
of 1 m should be appropriate to simulate the three catchments in this 
study because the calibrated soil depths in VIC range from 0.9 to 1.2 m. 
However, this prescribed soil depth may not be appropriate for other 
catchments, and it can be improved in the future with variable soil 
depths based on the bedrock depth information (Pelletier et al., 2016). 

Finally, we should keep in mind that lack of national soil property 
maps and in-situ soil moisture measurements are major obstacles for soil 
moisture studies in Norway. We failed to bias correct the global soil data 
based on the forest profiles because the profiles contain much larger 
heterogeneity in space and magnitude than the global data. In addition, 
a soil moisture network and quality-controlled data are expected to 
improve the understanding of soil water processes in Norway. 

5.2. Uncertainty of hydrological modelling 

In this study, SWIM using SoilGrids shows a better performance in 
terms of river discharge and soil moisture than using Wise30sec for most 
cases. VIC using Wise30sec tends to give better soil moisture estimations 
than using SoilGrids, but the effects of soil input data on VIC are not as 
strong as on SWIM. The different effects of soil input data on the hy
drological models can be attributed to the prescribed vs calibrated soil 
parameters, the land surface processes, model resolution and catchment 
characteristics. 

Firstly, there is less freedom for SWIM to change soil water processes 
than for VIC during calibration. For SWIM, there are six-layer prescribed 
soil information, including depth, clay, sand silt, bulk density, porosity, 
available water content, field capacity and saturated conductivity. 
Among them, only the saturated conductivity can be corrected globally 
during calibration. In contrast, there are only three soil layers in VIC, 
including the prescribed information such as bulk density, saturated 
conductivity and soil moisture content at critical and wilting points. 
There are four calibration parameters to adjust infiltration and base flow 
simulations. Due the different number of prescribed and calibrated pa
rameters, the prescribed soil data play a bigger role on SWIM than on 
VIC for soil water. 

Secondly, the simulated land surface fluxes, such as evaporation and 
snow melt, can dominate the simulation of soil moisture and discharge 
compared with soil parameters in some cases. For example, snow 
scheme/parameters are probably more important than soil scheme/pa
rameters during the snow melt season because they directly control the 
amount of water above ground. The degree day factor snow scheme in 
SWIM is calibrated to match snowmelt, whereas the energy balance 
snow scheme in VIC is not calibrated and hence it is more difficult to 
match snowmelt that infiltrates into soil. 

Thirdly, the loss of topographic variability in the VIC due to grid cell 
size (0.25◦) can also contribute to weaker model performance in terms of 
discharge. VIC accounts for subgrid-scale variability in atmospheric 
forcings, which reduces its sensitivity to spatial scale compared to using 
cell averaged forcings at coarse spatial resolutions (Haddeland et al., 
2002; Boone et al., 2004). However, 0.25◦ spatial resolution is most 
likely too coarse to capture all relevant processes in these catchments. 
Magnusson et al. (2019) found that there is an increasing error with 

spatial resolution for snow water equivalent simulations in Norway 
using the Flexible Snow Model, especially between 1 km and other 
coarse resolutions. In addition, the aggregated soil information at large 
grid cells may also reduce the differences between the two global soil 
databases and thus diminish the effects of soil input data on hydrological 
modelling. In contrast, the sub-basin size for SWIM is only 1 km2 so that 
the model can use the input data directly, without a loss in spatial 
variability of the meteorological, topographic and soil information. 

Fourthly, the effects of soil input data are also dependent on the 
characteristics of the study areas. For bedrock dominant regions such as 
the Losna catchment, the soil information is less important than for 
other catchments irrespective of the hydrological model used because a 
large share of rainfall and snowmelt will form surface runoff on 
impermeable surfaces. Hence, the criteria for selecting soil input data 
should consider the characteristics of both models and study areas. For 
the more physically based soil modules such as in SWIM, it is highly 
recommended to evaluate the quality of the soil data to reduce the input 
data uncertainty. 

Lastly, we should acknowledge that the calibration against only river 
discharge at the outlet of catchments may lead to equifinality problems 
for the calibrated parameters. However, the aim of this study is not to 
provide the best simulations for the three catchments, but to compare 
the effects of different global soil data as input. Such global calibration 
at a single point allows us to detect the potential problems of the spatial 
distribution in the soil input data, while calibration at several interme
diate gauges might hide the problems of input data by tuning the cali
bration parameters for different regions separately. 

6. Summary and conclusions 

In this study, we evaluated two state-of-the-art global soil databases 
(SoilGrids and Wise30sec) and their effects on macro-scale hydrological 
modelling in Norway in three steps. Firstly, we compared soil texture 
and bulk density between the Norwegian forest soil profiles and the 
global data at the same locations. The results show that SoilGrids has 
smaller MEs than Wise30sec for all soil properties in the upper soil layers 
and for bulk density and clay content in the deep soil layer. However, 
both soil databases have large RMSE (greater than 10% for sand and silt 
content and greater than 0.5 g/cm3 for bulk density) and poor correla
tions (R2 less than 0.1), mainly because they cannot capture the high 
spatial and magnitude variability in physical soil properties found in the 
local soil profiles. 

Secondly, we evaluated the effects of different soil input data on river 
discharge simulations for three macro-scale catchments in Norway using 
one process-based hydrological model SWIM and one land surface 
model VIC. SWIM generally performs better using the SoilGrids data as 
input than using the Wise30sec data, with higher NSE and LNSE by up to 
0.09 in most cases. The VIC outputs are not sensitive to soil input data 
for the two catchments in Eastern Norway with marginal differences in 
NSE and LNSE (≤0.03) between the simulations based on two soil da
tabases. For the snowmelt dominated Polmak catchment, VIC performs 
better using SoilGrids than using Wise30sec, especially for low flows. 

Thirdly, we compared simulated soil moisture with three global soil 
moisture products (one from a merged satellite product (ESA CCI SM 
v6.1) and two from global models with data assimilation (ERA5 and 
GLEAM)) at grid cells of 0.25◦. For SWIM, the soil moisture outputs 
based on SoilGrids have generally higher correlations with original soil 
moisture data and their low-frequency fluctuations than the outputs 
based on Wise30sec. The differences in median r are up to 0.09 between 
the simulations based on two soil databases. In contrast, VIC simulated 
soil moisture using Wise30sec has higher correlations with the ERA5 and 
GLEAM data than using SoilGrids by up to 0.05 in terms of median r. 

Based on the three-step evaluation, we can conclude that 1) the 
global soil databases are capable to provide reasonable soil property 
information at coarse resolutions for macro-scale hydrological model
ling in Norway, but they can introduce considerable errors at point or 
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small scales; 2) SoilGrids contains smaller mean errors when compared 
with the Norwegian forest soil database and supports better model 
performance than Wise30sec in terms of discharge and soil moisture in 
most cases simulated by SWIM; 3) both global soil databases can be used 
for VIC as input and the selection should be based on the study of interest 
and the characteristics of study area. 

The results of this study can serve as a basis for other macro-scale 
hydrological or land surface models to select the soil input data for 
Norwegian studies. The multi-step evaluation can also be applied for 
other geographic regions and is highly recommended for soil process- 
based models, such as SWIM, in the applications with poor local soil 
information. In addition, this study evokes the need of national soil 
property maps and in-situ soil moisture measurements, especially for 
small-scale modelling studies. 
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