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Abstract An L(h, 1, 1)-labeling of a graph is an assignment of labels from the set
of integers {0, . . . , λ} to the nodes of the graph such that adjacent nodes are assigned
integers of at least distance h ≥ 1 apart and all nodes of distance three or less must be
assigned different labels. The aim of the L(h, 1, 1)-labeling problem is to minimize λ,
denoted by λh,1,1 and called span of the L(h, 1, 1)-labeling. As outerplanar graphs
have bounded treewidth, the L(1, 1, 1)-labeling problem on outerplanar graphs can be
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exactly solved in O(n3), but the multiplicative factor depends on the maximum degree
� and is too big to be of practical use. In this paper we give a linear time approximation
algorithm for computing the more general L (h, 1, 1)-labeling for outerplanar graphs
that is within additive constants of the optimum values.

Keywords Graph labeling · Frequency assignment · Condition at distance three

1 Introduction

In multi-hop radio networks, one of the problems that have been studied extensively is
the radio-frequency assignment problem. Each station and its neighbors are assigned
frequencies so as to avoid signal collisions. This is equivalent to a graph coloring pro-
blem, where nodes are stations and edges represent interferences between the stations.

The type of graph coloring problem varies depending on the kind of frequency
collisions that are to be avoided. If the only requirement is to avoid direct collisions
between two neighbors, then this coincides with the classical graph coloring problem
with its associated chromatic number χ . We call this the L(1)-labeling problem of a
graph G. Should it be desired that each station and all of its neighbors have distinct
frequencies, we have the L(1, 1)-labeling problem. This is also known as the distance-
two coloring of a graph or coloring of the square of the graph, and has been well-studied
(Agnarsson and Halldórsson 2004; McCormick 1983; Ramanathan and Lloyd 1992).
Griggs and Yeh (1992) introduced a variation of a graph coloring problem which they
called λ-coloring problem. In this problem, each node is assigned a color from the
set of integers {0, . . . , λ} in such a way that adjacent nodes must be assigned colors
of at least two apart and nodes of distance two must have distinct colors. This is
also known as the L(2, 1)-labeling problem. The motivation of this type of coloring
problem comes from the radio frequency adjacent-band interference problem, where
adjacent frequencies may leak across the frequency bands. Subsequently, the problem
has been extended to L(h, k)-labeling, where adjacent nodes must be assigned colors
of distance at least h ≥ 0 apart and nodes of distance two must be assigned colors at
least k ≥ 0 apart (see Calamoneri 2006; Yeh 2006 for a comprehensive survey).

The L(h, k)-labeling problem has been studied on many different graphs. Of par-
ticular interest is the class of planar graphs and its subclass the outerplanar graphs.
Indeed, in many real applications, the actual network topologies are planar, since they
consist of communication stations located in a geographical area with non-intersecting
communication channels (Report of the Project 1998–2002).

In practice, the distances in some wireless networks can be quite close (for example,
the cellular network). Thus it may be necessary that not only stations of distance two
apart must have distinct frequencies, but perhaps distance three or more. This motivates
the study of L(h, 1, 1)-labeling problem, where adjacent nodes must have frequencies
at least h ≥ 1 bands apart and all nodes of distance two or three must also have distinct
frequencies.

In this paper we focus on L(h, 1, 1)-labeling of outerplanar graphs. More precisely,
we start from L(1, 1, 1)-labeling of outerplanar graphs, i.e. the distance three coloring,
where colors are distinct for nodes that are within distance three of each other, then
we extend it to L(h, 1, 1)-labeling of outerplanar graphs for any h ≥ 2.

123



L(h, 1, 1)-labeling of outerplanar graphs 309

1.1 Our results

For an outerplanar graph G of maximum degree � we present lower bounds of
3� − 3 for the maximum number of colors that are needed to perform the L(1, 1, 1)-
labeling.We show that by using a simple greedy first fit approach, 4� − 7 colors are
necessary to L(1, 1, 1)-label an outerplanar graph with maximum degree �. Then we
give a linear time approximation algorithm to L(1, 1, 1)-label an outerplanar graph
using no more than 3� + 9 colors for � ≥ 6 and extend it to L(h, 1, 1)-label an
outerplanar graph using no more than 3� + 2h + 7 colors for � ≥ 4h + 7, h ≥ 2.

1.2 Related results

The distance-d coloring problem, L(1, . . . , 1) = L(1d)-labeling of a graph, where
all nodes within distance d ≥ 1 must have distinct colors, have been studied in the
literature. Zhou et al. (2000) gave an O(n3) time algorithm to L(1d)-label a graph with
n nodes of bounded treewidth k. Outerplanar graphs are graphs of treewidth 2, thus
the algorithm from Kanari et al. can be used to achieve an optimum coloring of any
outerplanar graph with n nodes in time O(n3). However, the multiplicative constant
of the algorithm (which depends on the treewidth) is already too big on graphs of
treewidth 2. Indeed, for graphs of treewidth 2, the multiplicative constant is α231

,
where α is the chromatic number of the third power of the graph to be colored.

In contrast, our approximation algorithm is linear, and only within an additive
constant of the optimum value.

For outerplanar graphs, the L(h, 1)-labeling problem for h ≥ 1 has also been
studied. The L(1, 1)-labeling problem appeared in Bodlaender et al. (2004) and Cala-
moneri and Petreschi (2004) and the L(2, 1)-labeling in Bodlaender et al. (2004),
Bruce and Hoffmann (2003), Calamoneri and Petreschi (2004) and Jonas (1993). To
the best of our knowledge, nothing is known for the L(h, 1, 1)-labeling of outerplanar
graphs for h ≥ 2.

The rest of the paper is organized as follows. The next section gives the preliminary
materials on L(h, 1, 1)-labeling and outerplanar graphs. Section 3 describes the tech-
niques and results of L(1, 1, 1)-labeling of outerplanar graphs. The same techniques
are then used in Sect. 4 to obtain results for L(h, 1, 1)-labeling for h ≥ 2. The final
section gives the conclusion and states some open problems.

2 Preliminaries

Let G = (V, E) be a graph with node set V and edge set E . The number of nodes of
the graph is denoted by n and the maximum degree by �. Throughout the paper we
assume our graph connected, loopless and simple.

Definition 1 Let G be a graph and h ≥ 1 be a non-negative integer. An L(h, 1, 1)-
labeling of G is an assignment of colors (integers) to the nodes of G from the set of
integers {0, . . . , λ} such that nodes of distance 1 have colors that differ by at least h,
and nodes of distance 2 or 3 have colors that differ by at least 1. The minimum value λ
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Fig. 1 a An Outerplanar embedding of G. b The resulting OBFT(G)

for which G has an L(h, 1, 1)-labeling is denoted by λh,1,1 and the minimum number
of colors is denoted by χh,1,1 = λh,1,1 + 1.

Note that even though it would be more intuitive using the set of integers {1, . . . , λ}
instead of {0, . . . , λ} all the literature adopts this notation.

An outerplanar graph is a graph that has a planar embedding such that all the nodes
lie on the exterior face.

We first state some known facts about outerplanar graphs, of which the first two are
well-known.

Characterization by minors: A graph G is outerplanar iff it does not contain the
complete graph K4 nor the complete bipartite graph K2,3 as minors. (A minor of a
graph is obtained by edge contractions, edge deletions or deleting isolated nodes.)
Degree 1 or 2: An outerplanar graph G has a node of degree 1 or 2.

OBFT(G) (Calamoneri and Petreschi 2004): An outerplanar graph G has an ordered
breadth first tree graph OBFT(G), constructed in the following manner. Choose a node
r and induce a total ordering on the nodes clockwise on the exterior face of a planar
embedding of G. Perform a breadth first search starting with the root r and visit the
nodes in order of the given ordering. We end up with an OBFT(G) with possibly some
non-tree edges which have the following properties. Denoting as vl,i the i th node from
the left at level l, a non-tree edge can only exist between nodes x and y if:

1. x and y are adjacent nodes on the same level, i.e. x = vl,i and y = vl,i+1 for some
level l ≥ 1 and i ≥ 1;

2. x and y are nodes on adjacent levels, x = vl,i and y = vl+1, j , and y must be the
rightmost child of its parent w = vl,k and k = i − 1, i.e. node x must be the next
node after w on the same level in the OBFT(G).

See Fig. 1 for an example of OBFT(G), where dotted lines denote non-tree edges.
Given as input an outerplanar embedding of G, an OBFT(G) can be computed in

O(n) time.
We prove the following results concerning an OBFT(G) that will be useful to prove

the upper bound of our algorithms.
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a b c

Fig. 2 Proof of Lemma 1. Lines with double bars are paths while simple lines represent edges

Lemma 1 Let G be an outerplanar graph with its associated OBFT(G), and two
siblings x and y, x < y, in OBFT(G). Any node u in the subtree of OBFT(G) rooted
at x is less than any node w in the subtree of OBFT(G) rooted at y.

Proof First observe that the parent of x and y, say p, can assume three possible relative
positions with respect to x and y: p < x < y, x < p < y and x < y < p (see Fig. 2).

In the first case (Fig. 2a), node u can lie either between p and x or between x and y,
otherwise a crossing would be generated. Assume by contradiction that there exists a
node w < u. Now, w cannot lie between root 1 and p (path w � y would cross path
1 � p); w cannot lie between p and x (path w � y would cross edge (p, x)); so
the only feasible interval for w is between x and y. Nevertheless, also in this interval,
w < u implies a crossing between paths x � u and y � w. So u < w.

In the second case (Fig. 2b) 1 < u < p as there is necessarily a path connecting
root 1 to p, and w > p for similar reasons. So u < w.

Finally, in the third case (Fig. 2c) u is either between root 1 and x or between x
and y. With similar reasoning as in the first case, u < w. ��
Theorem 1 Any OBFT(G) of an outerplanar graph G is an outerplanar embedding
of G.

Proof First observe that, in view of the definition of outerplanar graph, if the embed-
ding is not outerplanar, then either there exists some node embedded inside an internal
face, or there is some node on the boundary of internal faces only.

Given an OBFT(G), let us suppose first that there is a node v embedded inside an
internal face f . In fact, if a whole subtree is embedded inside f then we can contract
it to its root, say v. We will prove the claim by contradiction. The boundary of f is
the cycle created in the OBFT(G) by at least one non-tree edge (u, w) (see Fig. 3).
Let us consider the lower common ancestor of u and w on the boundary of f , say it
lca(u, w). Since v is embedded inside f then lca(u, w) �= v. Let x and y be the two
children of lca(u, w) on the boundary of f . By the OBFT(G) construction, it must
be x < y. In view of the properties of the non-tree edges of an OBFT(G), for v to be
inside f one of the following three configurations must occur:

(a) v is in the subtree rooted at x (see Fig. 3a);
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a b c

Fig. 3 Proof of Theorem 1. Lines with double bars are paths while simple lines represent edges

Fig. 4 Proof of Theorem 1. Lines with double bars are paths while simple lines represent edges

(b) v is in the subtree rooted at y (see Fig. 3b);
(c) v is a child of lca(u, w) (see Fig. 3c).

Since in all three cases we have u < v < w by Lemma 1, we get a contradiction as
it is impossible to place in the outerplanar embedding of G the tree-path 1 � v not
crossing edge (u, w) as shown in Fig. 4. It follows that v does not exist.

Let us suppose now that a node v lies on the boundary of internal faces only and
consider the simple cycle C constituted by the boundary of the union of all such faces.
By construction, if v lies on level l of the OBFT(G), then on C there must be a node
w on a level strictly greater than l and a node u on a level strictly less than l such that
there exist paths w � v and u � v not using nodes of C . As u and w both lie on C ,
then there are two distinct paths inside C connecting u and w both passing through
a node at level l. This leads to an absurdity as we can construct the forbidden minor
K2,3: v represents the internal node, u and w are the degree 3 nodes and the two nodes
on level l are the remaining degree 2 nodes. ��
Corollary 1 In an OBFT(G) of an outerplanar graph G, for each node c, there exists
at least one of c’s children not having non-tree edges on both sides.
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Fig. 5 Proof of Corollary 1. Lines with double bars are paths while simple lines represent edges

Fig. 6 Lower bound

Proof The claim trivially holds if c is the root of the OBFT(G), as the rightmost child
of c cannot have non tree edges on its right. In general the claim directly follows from
Theorem 1 as node c would be internal (see Fig. 5). ��

3 L(1,1,1)-labeling

In this section we deal with the L(1, 1, 1)-labeling of outerplanar graphs. The technique
used here will be generalized in the next section in order to handle the L(h, 1, 1)-
labeling for h ≥ 2.

Let us begin by providing a lower bound on the number of colors needed.

Theorem 2 There exists an outerplanar graph of degree � that requires at least
3� − 3 colors to be L(1, 1, 1)-labeled.

Proof Consider the graph shown in Fig. 6; x, y and z are nodes of degree �. As all
adjacent nodes of x, y and z are at mutual distance ≤ 3, it is easy to see that it requires
at least 3� − 3 colors. ��

The greedy first-fit approach is a frequently used technique for labeling nodes
of graphs and usually performs rather well in practise. This technique consists in
considering nodes one by one in any order and assigning them the first color not used
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Fig. 7 Greedy first-fit lower bound

by any of their labeled neighbors satisfying the L(1, 1, 1)-labeling condition. If there
is a tree-like structure, the followed order is typically the top–down left to right one.
In our case, we can state the following theorem.

Theorem 3 There exists an outerplanar graph G of degree � such that the greedy
first-fit approach requires at least 4� − 7 colors to L(1, 1, 1)-label G.

Proof We refer to Fig. 7. A greedy first-fit algorithm assigns label 0 to the root;
labels from 1 to � to the root’s children; labels from � + 1 to 3� − 5 to the root’s
grandchildren, in view of the edge connecting their parents. The first � − 2 nodes of
the last level can assume colors from the set {3, . . . ,�}, while the remaining nodes
must use new labels from the set {3� − 4, . . . , 4� − 8}. ��

Since the gap between the lower bound on χ1,1,1 and the guaranteed performance
of the greedy first-fit approach is rather large, we now present an algorithm that, given
an outerplanar graph G of maximum degree � ≥ 6, finds an L(1, 1, 1)-labeling of
nodes of G using at most 3� + 9 colors, and hence is almost optimal as the lower
bound is at least 3� − 3.

Let A be the color set {0, 1, . . . , �+2}, B the color set {�+3,�+4, . . . , 2�+5}
and C the color set {2� + 6, 2� + 7, . . . , 3� + 8}; each set has size � + 3. The first
step of the algorithm is to build an OBFT(G), rooted on a node of degree 1 or 2. Then
the algorithm proceeds to assign a set of colors to the children of each node. Finally,
it colors each node with a color from its color set.

Before describing how to assign sets of colors, we first introduce some definitions.
For a node v, let Cv denote the children of v in the OBFT(G) and S(Cv) be the

color set that is assigned to Cv . S(v), where v is a single node, denotes the color set
assigned to the set composed by v and its siblings. At each step we assign color sets
in a way such that conflicting sets are avoided. By conflicting sets we mean that the
colors in the sets may violate the L(1, 1, 1)-labeling condition.

Let v be a node assigned to a specific set of colors (refer to Fig. 8a). All grand-
children of v are at distance ≤ 3 from Cv , hence we must forbid set S (Cv) to all
grandchildren of v and, in general, we are free to choose between the two remaining
sets. Since v and possibly its left and right siblings (if they are adjacent to v), are
at distance ≤ 3 from the grandchildren of v, we prefer to choose the color set dif-
ferent from the one already assigned to v and its siblings when possible. Occasionally,

123



L(h, 1, 1)-labeling of outerplanar graphs 315

Fig. 8 a Color set assignment. b Fixed right color set

Fig. 9 a Alternate color sets. b Fixed left color set

we will have no choice but to assign a specific color set because it is the only color set
left that can be assigned without causing conflicts. This can occur for the grandchil-
dren of v that are children of either a leftmost or rightmost child of v. We call these
color sets fixed (see Figs. 8b, 9b).

We now describe how to assign a color set. The color sets are assigned level by
level top-down from the root to the leaves and from the left to the right within each
level of the tree, except in some special cases that will be explained later.

After we have assigned two separate color sets to the root and its children, we have
two levels that are fully assigned and we have to assign color sets to the third level.
Assume that we have already assigned color sets to level h and h + 1, h ≥ 1; we are
now ready to assign color sets to level h + 2. Suppose v and its children Cv have been
assigned sets, (refer to Fig 8a). In order to assign color sets to v’s grandchildren we
first have to check Cr , where r is the rightmost child of v. The only case in which we
do not follow the left to right order is depicted in Fig. 8b: if there is non-tree edge
(r, x) (i.e. the distance between any node in Cr and any node in Cx is ≤ 3) and the
color sets S (Cv) �= S (Cx ) then we have no choice but to assign the only color set
available to Cr .

Afterwards, we have to check if node r is connected to its left sibling by a non-tree
edge. If so, we have to assign sets from right to left, alternating with the only color set
left available (see Fig. 9a), until there is a missing non-tree edge, which will occur due
to Corollary 1. Next, we check the leftmost child l of node v. Again, if the color set to
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Fig. 10 Color set assignment algorithm

be assigned to Cl is fixed (Fig. 9b), we have to assign the only available set and then
check if node l is connected via a non-tree edge to its right sibling. If so, repeat the
alternating set assignment as before (until a missing non-tree edge is encountered).
After the two boundary sets have been assigned, we try to assign color sets from left
to right using a color set that is different from S(v) if possible, alternating color sets
from left to right for any non-tree edge that is present.

A more formal description is given in Fig. 10.

Theorem 4 There exists a linear time algorithm that L(1, 1, 1)-labels any outerpla-
nar graph with 3� + 9 colors, where � ≥ 6.

Proof We have already described the first two steps of the algorithm (i.e. the construc-
tion of OBFT(G) and the color set assignment), so it remains to detail how to assign
to each node a color from its color set satisfying the L(1, 1, 1)-labeling condition.

123



L(h, 1, 1)-labeling of outerplanar graphs 317

Fig. 11 Proof of Theorem 4

Given a node group and its assigned color set, we can arbitrarily choose a different
color for each node, paying attention only to nodes that are at distance ≤ 3 from a
node group having the same color set. So, we first assign colors to such nodes (there
are no more than four: the leftmost, its right sibling, the rightmost and its left sibling)
avoiding conflicts, and then we proceed with all other nodes.

It is straightforward to see that this algorithm correctly labels the graph in linear
time. It remains to show that � + 3 colors in each group are always enough.

Let us fix any node x on an OBFT(G) and its set of children Cx . Without loss of
generality, let our algorithm assign color set A to Cx . It is easy to see that the worst
case for the cardinality of A is when Cx is at distance ≤ 3 from as many nodes as
possible, all colored with a color in A. This happens when there are as many non-tree
edges as possible, as they somehow shorten the distances computed on the tree. For
this reason, let x be the rightmost sibling as this configuration allows the presence of
non-tree edge (s, m) (refer to Fig. 11a, b for the notation).

Two cases are possible, according to the existence of non-tree edge (x, y).
According to the algorithm, if such an edge exists (see Fig. 11a) both Cx and the

group of nodes to which t belongs to receive the same color set A. In order to maximize
the number of nodes at distance ≤ 3 from Cx , let us consider the case in which the
algorithm assigns color set A to the group to which y belongs to and to the group of
nodes children of the left sibling of x . It is easy to see that, according to our algorithm,
no other nodes at distance ≤ 3 can receive a color from the color set A. Hence, exactly
|Cx | nodes must be labeled using colors from A, avoiding the color assigned to nodes
t , t ′, y y′ and l. Since |Cx | ≤ � − 2, � + 3 colors in A are sufficient.

If edge (x, y) does not exist the algorithm assigns color sets as shown in Fig. 11b.
(note that the group of nodes to which m belongs to has a fixed left color set due to
the non-tree edge (t, y)). Hence, nodes in Cx must be labeled using colors from set
A avoiding the colors assigned to nodes m, l, w and v all at distance ≤ 3 from nodes
in Cx . Since |Cx | ≤ � − 1, � + 3 are sufficient.

Furthermore, observe that the color assigned to j cannot be used in p, the color
assigned to k cannot be used neither in p nor in q, and similarly the color assigned
to o cannot be used in s and the color assigned to n cannot be used neither in r nor
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in s. It follows that, after removing the 4 colors forbidden by m, l, w and v, the � − 1
remaining colors must be at least 4. In the special case in which the color assigned to k
is the same as the color assigned to n, one color more is necessary. Hence we need the
precondition � ≥ 6. ��

We conclude this section observing that if � ≤ 6, the algorithm requires anyway
27 colors to perform the labeling.

4 L(h, 1, 1)-labeling

In this section we show how to generalize the results of the L(1, 1, 1)-labeling to the
L(h, 1, 1)-labeling for h ≥ 2.

First, observe that Theorem 2 provides a lower bound of 3� − 3 for χh,1,1, for any
h ≥ 1. Also Theorem 3 on the greedy first-fit approach applies to the general case
h ≥ 1.

In the following, we get an L(h, 1, 1)-labeling by exploiting the Color Set Assign-
ment Algorithm and then by opportunely labeling nodes. Color sets are separated by a
gap in order to address the requirement of spacing adjacent nodes by at least h colors
apart. In detail, set A contains colors {0, 1, . . . , � + 2}, set B colors {� + h + 2,� +
h+3, . . . , 2�+h+4} and set C colors {2�+2h+4, 2�+2h+5, . . . , 3�+2h+6}.
The h −1 colors in the gaps between color sets guarantee that the distance 1 constraint
between adjacent groups of nodes is respected.

As a building block for L(h, 1, 1)-labeling outerplanar graphs, we need to be able
to perform a labeling of paths as stated in the following lemma.

Lemma 2 Given any integer h ≥ 2, it is possible to label with l ≥ 2h +1 consecutive
colors any path having at most l nodes, respecting the following constraints:

• each color must be assigned to at most one node;
• adjacent nodes must receive colors that are at least h apart.

Proof Without loss of generality, suppose we have colors from 0 to l − 1. Assign to
the first node of the path any color x , to nodes in position 2i, i = 1, . . . , � l

2� color
(x+� l−1

2 �+i)mod l, to nodes in position 2 j−1, j = 1, . . . , 	 l
2
 color (x+ j−1)mod l

(see Fig. 12a). It is easy to see that this labeling respects the constraints if and only if
l ≥ 2h + 1. Moreover, this labeling has minimum span. ��

Remark 1 Modifying the algorithm described in the proof of Lemma 2 in a way such
that it assigns the i th color in an ordered list of l ≥ 2h +1 non necessarily consecutive
colors, it will still find a valid assignment for a path of length l (see Fig. 12b).

0 1 2 3 4 5 6

2 30 4 1 5 6

0 1 2 3 4 5 6 107 8 9 11

0 8 3 9 4 11 5

a b

Fig. 12 Path labeling: a consecutive colors, b colors with holes
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Fig. 13 L(h, 1, 1)-labeling worst case

Note that once we have assigned a color set to each group of siblings, each such
group induces a subgraph of a path. Moreover, we already know that in the worst
case scenario, we will have � − 1 nodes to label with exactly � − 1 available colors.
Nevertheless as it may happen that the end points on both sides of the resulting path
are not freely choosable, we need some refinement in order to apply Lemma 2.

Consider the worst case scenario depicted in Fig. 13, where the � − 1 children of
node x have to be labeled with the remaining � − 1 colors. In such a configuration,
in view of Corollary 1, at least one non-tree edge connecting two siblings must be
missing. Consider the path from l1 to the leftmost node missing its right non-tree edge
and the path from r1 to the rightmost node missing its left non-tree edge; without
loss of generality, let the path starting from r1 be the shortest one. We label first r1
using the first available color, keeping into account the constraints induced by already
colored nodes. Then we label r2 with a color at least h apart from the color assigned
to r1. Now we complete the labeling of the path by using Lemma 2.

It is not restrictive to assume that all the remaining uncolored siblings constitute a
unique path, as otherwise the constraints are weaker; so we repeat the same procedure
to label the path starting from l1. Observe that the produced labeling is feasible and
we are always able to perform it, provided that enough colors are available.

Theorem 5 For any h ≥ 2, there exists a linear time algorithm that L(h, 1, 1)-labels
any outerplanar graph with 3� + 2h + 7 colors if � ≥ 4h + 7.

Proof As Color Set Assignment Algorithm does not depend on h, we have already
proved in Sect. 3 that it can be run successfully, guaranteeing that at least �−1 colors
are always available to label at most � − 1 siblings. The claim is proved if we show
that the available colors are always enough to complete the labeling of each group of
siblings.

Refer to Fig. 13. First observe that the labeling of the paths starting from l1 and
r1 are subject to equivalent constraints, and that when we label the first path we have
much more colors to chose from, so it is enough to prove that the remaining colors
are sufficient to label the second path.
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To label the first node, l1, at most 2h (distance 1 from a) plus 2 (distance ≤ 3 from
b and c) colors cannot be used. The shortest path consists of at most ��−1

2 � nodes, so
there is at least one color available as �−1−��−1

2 �−2h −2 ≥ 1 when � ≥ 4h +7.
In order to label l2, we have at least � − 1 − ��−1

2 � − 1 colors, from which we
have to eliminate at most 2h (distance 1 from l1) +1 (distance 3 from b) colors, so
at least 	�−1

2 
 − 1 − 2h − 1 ≥ 1 colors. Finally, l2 is also the first node of the path
labeled using Lemma 2; hence we must prove that there are at least 2h + 1 available
colors. This is always true as, among the �−1 colors, we used at most ��−1

2 � to label
the shortest path and 1 color to label l1, so the remaining colors are at least 2h + 2.
Observing that the length of the longest path never exceeds the number of available
colors, the claim follows. ��

We conclude this section by observing that even in the general case of the L(h, 1, 1)-
coloring, there is a threshold for values of the maximum degree; in this case, if � ≤
4h + 7, the algorithm requires anyway at most 14h + 28 colors.

5 Conclusion

In this paper we provide very close upper and lower bounds on the number of colors,
χh,1,1, that are needed to L(h, 1, 1)-label an outerplanar graph for h ≥ 1. We show that
the greedy first-fit technique does not work well in this case. In the literature, there is a
known algorithm that optimally L(1, 1, 1)-labels outerplanar graphs running in O(n3)

time (Zhou et al. 2000), but the multiplicative factor is too large to be of practical use.
Our algorithm produces an approximate solution that only differs from the optimal
solution by a constant additive factor, and it is linear.

Some open problems arise from this work. First, there is a gap between the upper
bound provided by the algorithm and the lower bound shown. It would be nice to close
the gaps between the bounds.

Furthermore, the upper bounds we found are rather large for small values of �,
and can probably be improved: our aim has been finding an algorithm with a good
asymptotic behaviour.

Finally, for L(h, 1d) = L(h, 1, . . . , 1), we have only studied the case when d = 2. It
would be interesting also to study the L(h, 1d)-labeling problem of outerplanar graphs
for d ≥ 3 . The same technique of using color group assignments can be applied, but the
number of cases to be considered increases quite a bit. The problem here is to find good

estimates for f (h, d) and g(h, d) in the inequality χh,1d ≤ f (h, d)�	 d
2 
 + g(h, d).
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