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a b s t r a c t

In this paper, the effects of different mass loadings required for the estimation of the

frequency response functions, FRFs, from data gained by the emerging technique of

operational modal testing, is proposed. This technique allows the evaluation of the natural

frequencies, mode shapes and damping ratios from operational data achieved from a first

session of tests, then the scaling factors are derived from a further experimental

investigation. The approach is based on the sensitivity of the eigenproperties to structural

modifications, such as the mass and stiffness distribution. It is shown that the generalized

modal parameters could be derived by the measurements of the natural frequency shifts

due to a controlled mass variation in the structure, assuming negligible changes in the

mode shapes. Such generalized modal parameters are finally used to estimate the FRFs.

This mode shape scaling technique, together with the investigation of the effects of the

mass positioning on the uncertainties in the estimates of the scaling factors will be

experimentally investigated on simple aerospace structures.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic signature of structures is generally identified by the ‘‘standard’’ experimental modal analysis (EMA)
approaches that require the measure of both the input loadings and the corresponding structural responses, Ref. [1].
Although the high accuracy in the estimate of the modal model these approaches have gained, in recent years many
research groups have focused their activities on those methods capable to identify such modal parameters using the
ambient excitation and measuring only the responses of the structure. These activities led to the development of the so-
called ambient, or operational, or output only modal analysis, Refs. [2–4]. With respect to the traditional EMA techniques,
the test setup for the output only modal analysis will consider only the measurements of the responses of the system,
resulting then an easier way for characterizing the dynamic behavior of the structure. In addition, this approach could
identify the dynamic properties of the system in real operative conditions where the boundary conditions are, in general,
substantially different from those simulated in the modal tests performed in the labs, or evenly unknown. Also, these
output only approaches are giving better and more reliable results in cases where the actual loading and operating
conditions are important for the structural response, Ref. [5], or for those tests where the loadings are roughly replicated
during the traditional spectral analysis. Moreover, this capability to extract the modal parameters of the system under the
real operating conditions represents a great advantage of these techniques from the industrial point of view since their
reliability and the low costs associated to the whole test phase. Moreover, this approach could be used to improve the
modal models measured in the laboratory to better reflect the actual behavior of the system under the operational
situation, to update the numerical model of the system, and finally, to monitor the integrity of the structure during its
operational life, Ref. [3]. Nevertheless, these techniques need further improvements in many crucial topics such as closed
. All rights reserved.
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mode identification, modal damping estimation, and mode shape scaling, Ref. [6]. In this paper, the generalized parameters,
or scaling factors, are achieved by an experimental/numerical procedure based on the work done in Ref. [5], and in Ref. [7],
that—in turn—could be originated, for some items, from the pioneer work presented in Ref. [8]. The core of the approach is
the sensitivity of the modal parameters to changes of the mass and the stiffness properties of the structure. If such
structural modifications have no influences on the mode shapes, then the unknown scaling factors are estimated from the
knowledge of the structural perturbation itself and from the measurements of the corresponding eigenfrequency shifts.
This is an appealing results since the aim of the additional test will be the estimate of the natural frequencies only,
speeding up the entire procedure. Although both mass and stiffness perturbations could be used in order to produce the
eigenfrequency shifts, changing the mass distribution is easier from the practical point of view. First, the unscaled modal
mode shapes, natural frequencies, and damping ratios are estimated using both the frequency domain decomposition FDD,
technique, Ref. [9], and the logarithmic decrement techniques. Then, a second experimental test is performed to estimate
the generalized parameters from the measure of the eigenfrequency shifts induced by a known mass change of the
structure. The generalized masses associated to the eigenmodes considered in the experimental analysis are identified, and
then the residues needed to estimate the frequency response function (FRF) of the system can be achieved. This response
model could be finally used to improve the numerical representation of the structure, i.e., Finite Element model, as reported
in Ref. [10], where the FRFs were used for correlation and structural updating problems. The experiences gained by the
author during the different output only investigations on simple structures, Refs. [11–13], are here reported to validate the
whole procedure to estimate the FRFs from operational data. Furthermore, the effects of mass loading and positioning on
the evaluation of the scaling factors are also analyzed.

2. Theoretical basis

2.1. Background on FDD

The aim of the developed procedure is the estimate of the modal parameters by using output only data. In this approach,
the analysis of the response data is made in the frequency domain using the well-known FDD method. In this section, the
key points of this method will be briefly summarized. The readers should refer to Ref. [9] for further details. Considering
the time responses of the vibrating structure measured at No measurement points, xiðtÞ; i ¼ 1; . . . ;No, the auto, Rxixi

ðtÞ, and
cross, Rxixj

ðtÞ, correlation functions are defined as follows:

Rxixi
ðtÞ ¼ E½xiðtÞ; xiðt þ tÞ� ¼ lim

T!1

1

T

Z þT=2

�T=2
xiðtÞxiðt þ tÞdt (1)

Rxixj
ðtÞ ¼ E½xiðtÞ; xjðt þ tÞ� ¼ lim

T!1

1

T

Z þT=2

�T=2
xiðtÞxjðt þ tÞdt (2)

in which E½�� is the expected value operator. These correlation functions of the time shift t not only allow one to completely
describe nondeterministic signals, under the hypothesis of Gaussian stationary, ergodic with zero mean value signals, xiðtÞ,
but also the auto and cross spectral density functions could be evaluated from the Wiener–Khintchine relations, Ref. [14]:

Gxixi
ðoÞ ¼

Z þ1
�1

Rxixi
ðtÞe�jot dt; Gxixj

ðoÞ ¼
Z þ1
�1

Rxixj
ðtÞe�jot dt (3)

The spectral density matrix of the response signals, GxxðoÞ 2 CNo�No , is then computed as follows:

GxxðoÞ ¼

Gx1x1
ðoÞ Gx1x2

ðoÞ � � � Gx1xNo
ðoÞ

Gx2x1
ðoÞ � � � � � � � � �

..

. ..
. ..

. ..
.

GxNo x1
ðoÞ Gxnx2

ðoÞ � � � GxNo xNo
ðoÞ

0
BBBBB@

1
CCCCCA (4)

This spectral density matrix could be expressed in terms of the FRF matrix of the system, HðoÞ 2 CNo�Ni with Ni the number
of the input loadings, by the following relation:

GxxðoÞ ¼ HðoÞGff ðoÞH
H
ðoÞ (5)

where Gff ðoÞ 2 CNi�Ni is the spectral density matrix of the input. Introducing the modal properties of the dynamic system, it
is possible to relate the FRF matrix to:
�
 the modal vector matrix, formed by N mode shapes, V 2 CNo�2N , i.e., V ¼ ½wð1Þ; . . . ;wðNÞ;wð1Þ
�

; . . . ;wðNÞ
�

� where the
superscript � denote complex conjugate,

�
 the diagonal matrix, L 2 C2N�2N , of the system poles, lk ¼ sk þ jodk, where sk and odk are the k-th damping factor and

damped natural frequency, respectively, and

�
 the modal participation factor matrix, L 2 C2N�Ni .
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As reported in Ref. [15], this relationship could be written as

HðoÞ ¼ VðjoI� LÞ�1L (6)

Combining the previous Eqs. (6) and (5), it is possible to write

GxxðoÞ ¼ VðjoI� LÞ�1LGff ðoÞL
H
ðjoI� LÞ�nVH (7)

where H and �n represent the hermitian and complex conjugate of the matrix inversion operations, respectively. This
equation could be further simplified if the hypotheses of uncorrelated white noise input loadings, at least in the frequency
band of interest, i.e., Gff ðoÞ ¼ const:, and low damping ratios, with well separated modes, are considered. In this case, by
applying the Heaviside partial fraction theorem, Eq. (7) could be rewritten as

GxxðoÞ ¼ VðjoI� LÞ�1DVH (8)

where the resulting projection of the unknown input level on the modal base forms the diagonal matrix, D 2 C2N�2N , of
scalar constant dk, Ref. [9]. If a limited number of modes, M, will significantly contribute to the formation of the output
response spectral matrix, at the frequency o, then the previous equation could be rewritten so that the mode contribution
is highlighted, Refs. [2,9]:

GxxðoÞ ¼
XM
k¼1

dkw
ðkÞwðkÞ

T

jo� lk
þ

d�kw
ðkÞ�wðkÞ

H

jo� l�k
(9)

Recalling that the structure behaves as a single degree of freedom (SDOF) system around the peak of resonance, i.e., the
structure is characterized by low damping ratios and well separated mode shapes, then only the k-th mode will dominate
the right-hand side of Eq. (9), when evaluated at a frequency equal to one of the k-th eigenfrequency onk (k ¼ 1; . . . ;M).
Therefore, at resonance, the power spectral density matrix of the responses is related to the modal model as

GxxðonkÞ ¼
dkw

ðkÞwðkÞ
T

jonk � lk
þ

d�kw
ðkÞ�wðkÞ

H

jonk � l�k
(10)

The previous relations must consider digital time series with proper concern for the quantization and aliasing problems.
Assuming the digital data formed by Ns sampling values, the spectral density matrix will be computed on a FFT-based
procedure and it will be defined at discrete frequency lines oi, ði ¼ 0;1;2; . . . ;Ns=2Þ. For each of the available frequency
lines, it is possible to have a spectral representation of the GxxðoiÞ matrix through the singular value decomposition (SVD)
algorithm. Recalling that Gxx ¼ GH

xx, it is possible to write

GxxðoiÞ ¼ UiSiUiH (11)

where Ui
2 CNo�No ¼ ½uið1Þ ; . . . ; uiðNo Þ

� and Si 2 Rþ
No�No

are the matrix of the No left singular vectors and the diagonal matrix of

the singular values (si
j; j ¼ 1; . . . ;No), respectively, associated to the i-th spectral line. If the considered frequency line is

practically coincident with the k-th natural frequency, onk, then the SVD of GxxðonkÞ will return a predominant singular

value, sk
p, since the rank of GxxðonkÞ is unitary due to the hypothesis of SDOF system behavior around the peak of resonance.

It is worthwhile to observe that p is generally set to one by the common numerical routines. Moreover, it is possible to

estimate the corresponding k-th mode shape, wðkÞ, from the corresponding p-th left vector, ukðpÞ . Specifically, when oi ¼ onk,
Eqs. (10) and (11) yield to the following approximation:

wðkÞ ¼ ukðpÞ (12)

Therefore, the procedure for the estimate of the natural frequencies and mode shapes will perform an initial SVD of the
ðN=2Þ þ 1 spectral density matrices. The natural frequencies of the system will be estimated from those frequencies to

which the singular values sk
p exhibit their local maxima, whereas the corresponding p-th left vector, ukðpÞ , give an estimate of

the k-th mode shape. Although these modal parameters are estimated in the frequency domain, the identification of the
damping ratios requires a time domain technique, i.e., the logarithmic decrement, Ref. [1], performed on the SDOF auto
correlation functions. Such functions are achieved by filtering the auto spectral density functions with an ideal band-pass
filter, centered on the natural frequency of the mode of interest, and performing the inverse FFT in order to obtain the
typical free-decay functions.

2.2. Mode shape scaling technique

Unfortunately, the output only techniques do not allow to estimate the generalized parameters, such as the generalized
masses, because the excitation force is unknown. As a result, the mode shapes obtained so far, generally called ‘‘operational

mode shapes’’, remain unscaled, restricting then the applicability of the operational modal models. In the following, a
procedure to obtain the generalized parameters, based on the works presented in Refs. [5,7,8], is outlined. If the reference
structural model, expressed by its stiffness (K) and mass (M) matrices, is perturbed with a change of its stiffness, DK, and



ARTICLE IN PRESS

G. Coppotelli / Mechanical Systems and Signal Processing 23 (2009) 288–299 291
mass, DM, properties, the undamped eigenvalue problem, written for the k-th eigenvalue, o2
nk

, with the corresponding not
normalized eigenvector wðkÞ, is

ðKþ DKÞðwðkÞ þ DwðkÞÞ ¼ ðMþ DMÞðwðkÞ þ DwðkÞÞðo2
nk
þ Do2

nk
Þ (13)

in which the new values of the k-th eigenfrequency, ō2
nk

, and eigenvector, w̄
ðkÞ

are expressed as ō2
nk
¼ o2

nk
þ Do2

nk
and

w̄
ðkÞ
¼ wðkÞ þ DwðkÞ. Pre-multiplying the above Eq. (13) by wðkÞ

T

, neglecting higher order terms, and assuming that the
perturbation in the properties of the structure does not affect the mode shapes, one gets

wðkÞ
T

MwðkÞDo2
nk
¼ wðkÞ

T

DKwðkÞ � o2
nk

wðkÞ
T

DMwðkÞ (14)

Finally, considering that, by definition, the k-th generalized mass is given by mk :¼ wðkÞ
T

MwðkÞ, Eq. (14) yields

mk ¼ wðkÞ
T

MwðkÞ ¼
wðkÞ

T

DKwðkÞ � o2
nk

wðkÞ
T

DMwðkÞ

Do2
nk

(15)

Then, k-th scaled eigenvector, fðkÞ, can be obtained by performing:

fðkÞ ¼

ffiffiffiffiffiffiffi
1

mk

s
wðkÞ (16)

The above Eq. (15) represents a practical first order approximation for the sensitivity of the natural frequencies for light

damped structures. In the following section, the scaling procedure of the k-th operational mode shape has been performed
considering a mass change only. In this case, by adding small known masses at selected degrees of freedom, DOFs, the

changes in the poles of the system, Do2
k , could be experimentally evaluated. Therefore, the scaling factors,

ffiffiffiffiffiffiffiffiffiffiffiffi
1=mk

p
, are

easily achieved from Eq. (15) by evaluating the diagonal matrix of the added mass, DM and assuming DK ¼ 0. It is
worthwhile to remark that the accuracy of the approach depends on the amount of the added mass that should be small
enough and located so that to comply with the first order approximation hypothesis. Furthermore, the added masses
should not be placed near the nodes of the mode shapes in order to reduce the uncertainties in the estimate of the pole
shifts. When the mass changes produce small changes of the values of the natural frequencies, the scaling factors, mk,
predicted by Eq. (15) (with DK ¼ 0), may be inaccurate. In order to improve such accuracy, the following first order
approximation could be used:

mk ¼ �
1

2Donk

wðkÞ
T

DMwðkÞ (17)

in which Donk
¼ ōnk

� onk
. Finally, the FRF matrix could be evaluated from the estimated modal model following the

standard formulation, as reported in the previous Eq. (6). If the viscous damping is considered, then the ij-th element of the
FRF matrix is synthesized by the following well-known relationship:

HijðoÞ ¼
XM
k¼1

fðkÞi fðkÞj

o2
nk � o2 þ j2oonkz

2
k

(18)

3. Experimental investigation

In this section, the proposed approach, will be investigated through experimental investigations. First, the modal
parameters of the reference structure, i.e., natural frequencies, damping ratios, and unscaled mode shapes, will be
estimated from the response data, then the effects of the mass loading in predicting the generalized masses will be
analyzed. Finally, the comparison between the FRFs evaluated from the output only approach and the ones estimated from
the modal model achieved by the traditional input/output analysis, will be presented. Among the several experimental
tests that have been carried out to validate the approach, only the findings pertinent to the beam and a plate structures will
be outlined for brevity. Nevertheless, they are of general validity giving guidelines that could be followed by a wide range of
applications.

3.1. Beam structure

The experimental analysis was performed on a cantilever aluminum beam of dimensions 0:2� 0:0154� 0:00285 m, Ref.
[11]. The considered experimental degrees of freedom were the vertical translations of the beam measured at four equally
spaced locations along the span (numbered starting from the clamped end). The response of the structure, randomly
excited with a ‘‘pencil’’ crawling on one side of the beam, was recorded in the period of 40.96 s, Fig. 1, and the auto and cross
spectral densities, considered in a 0–400 Hz frequency band, were evaluated using 16 data block records of length of 2048
sampling points. Once the spectral density matrix was evaluated, the analysis of the corresponding singular values was
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Fig. 2. Estimate of the natural frequencies of the beam structure with FDD technique.

Table 1

Natural frequencies, f n , and damping ratios, zn , of the beam structure estimated by the output only experimental modal analysis

Mode # f n ðHzÞ zn (%)

1 51.18 0.49

2 318.83 0.25

G. Coppotelli / Mechanical Systems and Signal Processing 23 (2009) 288–299292
performed for all the frequencies considered in the experimental investigation, as reported in Fig. 2. From this analysis, two
eigenvalues were clearly identified from the frequencies where the singular values exhibited their (local) maxima,
accordingly with the theoretical prediction. Also the identified mode shapes (not reported) are in excellent agreement with
the theoretical ones. The estimated natural frequencies and damping ratios (these last ones evaluated in time domain using
the logarithmic decrement approach) are reported in Table 1. Furthermore, the effects of the added mass on the estimate of
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Table 2
Eigenfrequency shifts due to mass loading for the beam structure

Test # f n1 (Hz) e1 (%) f n2 (Hz) e2 (%)

1 50.01 1.90 310.62 2.34

2 50.40 1.14 316.68 0.44

3 49.23 3.43 305.15 4.06

4 48.45 4.96 303.39 4.62

Table 3
Generalized masses of the beam structure

Mode # Test #1 Test #2 Test #3 Test #4

1 0.0057 0.0050 0.0047 0.0047

2 0.0050 0.0061 0.0050 0.0052
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Fig. 3. Effects of the mass loading on the beam structure. (a) Effect of mass loading on the first eigenvector. (b) Effect of mass loading on the second

eigenvector.
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the generalized parameters were considered. Four additional experimental tests were performed in which different mass
loadings of the structure were considered. Specifically, in Test #1, four masses of 0.27 g were placed at the four
experimental degrees of freedom; in Test #2, two masses of 0.54 g were placed at the first and third experimental point;
Test #3 used the same masses as the previous one, but located at second and fourth experimental point. Finally, the Test #4
used four masses of 0.54 g located in all the experimental points. The generalized masses were computed from the
knowledge of the mass changes and from the measure of the eigenfrequency shifts, as prescribed by Eq. (15). These last
shifts are reported in Table 2, where e1 and e2 refer to the measured change, in percentage, corresponding to the first and
second mode, respectively. The resulting scaling factors are reported in Table 3, whereas the comparison of the resulting
mode shapes with the corresponding achieved for the reference structure is shown in Fig. 3 for the first and second modes,
respectively. All the performed additional tests introduced no remarkable modification to the dynamical behavior of the
structure, i.e., the mode shapes are practically unchanged, and the eigenfrequency shifts do not exceed the quota of 5% drift.
The accuracy of the process for the estimate of the generalized mass could be evaluated recalling the orthogonality
properties of the modal base with respect to the mass distribution. For all the identified k-th modes, the distance, d,
between the theoretical unit value of the double product fðkÞ

T

MfðkÞ and the actual one, could be used as a criteria to be
followed for an optimal mass placement, when evaluating the scaling factors. In addition, the zero value of the cross
product fðhÞ

T

MfðkÞ should be checked for completeness. Introducing the mass matrix of the beam structure under
investigation, with the aid of an updated finite element model, it was possible to evaluate such distances that are reported,
in percentage, in Table 4 for the two identified mode shapes and for the four different tests. These distances seem to depend
on the total value of the added mass itself as well as on the order of the mode. Furthermore, a dependency on how the
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Table 4
Effects of mass loading in the normalization procedure of the eigenvectors of the beam structure

Mode # d (%) ð¼ 1� fðkÞ
T

MfðkÞÞ

Test #1 Test #2 Test #3 Test #4

1 15.17 4.12 �3.18 �3.83

2 �1.51 15.50 �2.57 1.08
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Fig. 4. Comparison between the eigenvectors (unitary mass scaling) of the beam structure: (a) first eigenvector and (b) second eigenvector.
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added mass is distributed on the structure is reported. Specifically, the mass distribution of Test #1 resulted in a very poor
identification of the generalized masses for the first eigenmode, probably due to the lack of accuracy in determining the
change in the natural frequencies. Test #2 had the worst deviation from unitary value and nonzero values of some cross
products have been noticed. Test #3, although with low errors, reported nonzero values of the cross products as the
previous test. The mass distribution of Test #4 had the lowest errors in the normalization conditions, with scaled
eigenmodes practically the same of those estimated from FRF achieved with the input/output analysis (for this case, a least
square residue/pole polynomial ratio fitting has been adopted), as shown in Fig. 4 for the first and second mode shape,
respectively. The complete FRF matrix can be achieved considering Eq. (18) and by using the estimated poles and the
normalized eigenvectors. In Figs. 5, 6 one of the available columns of the FRF matrix is depicted. In each picture, the FRFs
synthesized with the modal parameters obtained both with the standard input/output analysis (synthesized) and with the
output only analysis (synthesized from output only) are compared with the one achieved with the standard H2 input/
output approach (measured), Ref. [15], confirming the correctness of the estimate performed with the proposed procedure
around the peak of resonance.
3.2. Plate structure

The dynamic behavior of a composite plate, used in a space application as described in Ref. [13], is further investigated.
The structure is considered under free-free boundary conditions (provided by suspending it with proper elastic bands, as
shown in Fig. 7), whereas the frequency band of interest was 0–3200 Hz. The acquisition time was 2.56 s, and 214 sampling
points were used. An overlap of 90% of the data blocks of 2048 spectral lines is also introduced to reduce the effects of the
nondeterministic components of the output signals. The time responses of 64 experimental degrees of freedom, uniformly
distributed over the composite plate, Fig. 8a, were measured by five roving accelerometers. A crawling pencil provided the
white noise excitation of the structure, as reported in Fig. 8b where the time histories corresponding to the first set of five
accelerometers are reported. The natural frequencies of the composite structure were estimated from the analysis of the
maximum values of the singular values as a function of the frequency line. This peak-picking technique led to the singular
value diagram reported in Fig. 9. As in the previous subsection, the unscaled mode shape was estimated from the singular
vector corresponding to the maximum singular value, whereas the damping ratios were achieved in time domain from the
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Fig. 9. Estimate of the natural frequencies of the composite plate with FDD Technique.

Table 5

Natural frequencies, f n , and damping ratios, zn , of the plate structure estimated by the output only experimental modal analysis

Mode # f n (Hz) zn (%)

1 461.75 0.71

2 718.71 0.58

3 1024.90 1.80

4 1175.80 0.80

Table 6
Mass loading of the composite plate for each of the performed tests

Test # DM (kg) Grid number

1 0.10 11, 14, 17, 24, 29, 36, 41, 48, 51, 54

2 0.10 3, 6, 17, 24, 29, 36, 41, 48, 59, 62

3 0.14 1, 3, 6, 8, 17, 24, 29, 36, 41, 48, 57, 59, 62, 64

4 0.08 3, 17, 24, 29, 36, 41, 48, 62
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SDOF free decay using the logarithmic decrement technique. Both the estimated natural frequencies and damping ratios
are reported in Table 5. It is worthwhile to remark that the modal identification of the output only procedure is perfectly
compatible with the one achieved by other input/output techniques, as reported in Ref. [13]. Again, the first step in the
identification process of the generalized masses was to perform one more modal survey on the reference plate with a
known increase of the mass distribution. In order to evaluate the effects of different mass loading on the estimate of the
scaling factors, four different tests were performed. The mass distribution was changed so that the natural frequency shifts
were about 5%, average, with negligible changes in the mode shapes. The resulting mass distribution adopted for each test
is reported in Table 6, in which the grid numbers refer to Fig. 8a, whereas the total mass increase was achieved using
0.01 kg lumped masses placed at each grid point. The resulting natural frequencies and corresponding shifts, for each of the
performed test, are summarized in Table 7. As final step, all of the four tests were used to estimate the modal masses. The
accuracy of such estimates was evaluated following the approach developed when dealing with the beam structure. From
this analysis, it seemed that the evaluation of the modal masses using the mass changes of Test #2 was the most accurate
with respect to the ones derived from the other tests. Indeed, the added mass for this test concerned a wider area of the
plate structure, with respect to Test #1, whereas the eigenfrequency shifts corresponding to Test #3 and Test #4 are either
to large or to small, respectively. The resulting modal masses are reported in Table 8. From the estimates of the natural
frequencies, damping ratios, mode shapes, and modal masses, the response model, i.e., the whole FRF matrix, could be
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Table 7
Natural frequency shifts due to the mass loading of the composite plate

Mode # Test #1 ðHzÞ Df n (%) Test #2 (Hz) Df n (%)

1 447.09 2.72 443.97 3.40

2 684.71 4.37 672.20 6.11

3 922.33 10.06 931.70 9.15

4 1125.50 4.51 1122.40 4.78

Test #3 (Hz) Df n (%) Test #4 (Hz) Df n (%)

1 415.83 9.52 450.22 2.04

2 669.08 6.55 681.58 4.80

3 906.69 11.59 934.83 8.84

4 1075.50 8.76 1147.40 2.66

Table 8
Estimate of the modal masses of the composite plate from Test #2

Mode # Modal mass

1 2.88

2 6.09

3 0.35

4 4.27
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Fig. 10. Comparison among the FRFs of the composite plate.
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finally synthesized from Eq. (18). In Fig. 10 a comparison between the measured and synthesized, from output only data,
FRFs is depicted considering, for example the driving point corresponding to the grid number 23. From this picture, a
perfect identification of the FRF is acknowledged except for the third natural frequency where a small reduction of accuracy
is evident. For this specific mode, the assumption that there are no changes in the modal shapes after the structural
modification was not fully accomplished. Although the mass loading corresponding to Test #2 had no practical influence on
the first, the second, and the fourth modal shapes, the third one exhibited an evident modification. Comparing such a mode
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with the corresponding of the original structure, a modal assurance criterion, MAC, value as low as about 70% was
computed, whereas a relative high frequency shift, about 10%, was measured, as reported in Table 7. A possible explanation
of this behavior could be addressed to the type of this third mode. This is a typical ‘‘drum’’ mode, strongly affected by the
location of the added mass, especially by those located in the proximity of the center of the plate, i.e., grid numbers 29 and
36. The consequence of this mass loading was a significant modification of the nodal line, with respect to the corresponding
perturbation that could be observed in the other modes.

4. Concluding remarks

In this paper, an approach devoted to the estimate of the generalized parameters of a vibrating structure using ‘‘output

only’’ data has been investigated. This approach requires some additive experimental tests by perturbing the original
structure with some known changes in mass distribution (or more in general in stiffness distribution). At least the measure
of two time responses are needed to evaluate the modal parameters and, in turn, the whole frequency response function
matrix could be easily achieved with a significant level of precision. In particular the experimental results showed an
appealing comparison between the measured FRFs (by a classical input/ouput approach) and those derived by the output
only modal testing. Moreover, the effects of the entity and distribution of the perturbation mass have been investigated
considering both a cantilever aluminum beam and a free-free composite plate. As a result of this investigation, a criteria for
the mass loading has been outlined. It seems that it is preferable to uniformly distribute the added mass across the
structure, so that to avoid the mass loading corresponding to a node of a generic mode. Furthermore, it seems convenient to
perturbate the structure so that natural frequency shifts are large enough to reduce the errors in their estimates, say 5%,
keeping the mode shapes practically unchanged. Finally, the frequency domain decomposition technique, used to estimate
the modal parameters, seems to be a reliable and efficient estimator for the natural frequency and mode shapes. These
results confirm the interest given to the output-only techniques. In fact, they merge experimental efficiency (due to the low
cost required to run the experimental activities since no input measurements are needed) with the possibility to get all the
necessary data in order to achieve a complete dynamic identification of a structure.
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