Flat Rotational Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions

Ferdag Kahraman Aksoyak ${ }^{1} \cdot$ Yusuf $^{\text {Yayli }}{ }^{2}$

Received: 1 June 2016/Revised: 14 November 2018/Accepted: 27 November 2018/Published online: 18 December 2018
© The National Academy of Sciences, India 2018

Abstract

In this paper, we determine a rotational surface by means of generalized quaternions and study this flat rotational surface with pointwise 1-type Gauss map in fourdimensional generalized space $\mathbb{E}_{\alpha \beta}^{4}$. Also, for some special cases of α and β, we obtain the characterizations of flat rotational surfaces with pointwise 1-type Gauss map in four-dimensional Euclidean space \mathbb{E}^{4} and four-dimensional pseudo-Euclidean space \mathbb{E}_{2}^{4}.

Keywords Quaternions • Gauss map •
Pointwise 1-type Gauss map • Rotational surface
Mathematics Subject Classification 53B25 - 53C40

1 Introduction

Quaternions first introduced by Hamilton are a number system that is a generalization of the complex numbers in four-dimensional space. A real quaternion q is defined as $q=q_{0}+q_{1} i+q_{2} j+q_{3} k$ where $q_{0}, q_{1}, q_{2}, q_{3}$ are real numbers and $1, i, j, k$ are the basis elements which satisfy $i^{2}=j^{2}=k^{2}=i j k=-1$. The set of quaternions H with these basis elements $\{1, i, j, k\}$ is isomorphic to four-dimensional vector space \mathbb{R}^{4}. There are three fundamental

[^0]operations on H : addition, scalar multiplication and quaternion multiplication. The addition and scalar multiplication are defined same as the addition and scalar multiplication on \mathbb{R}^{4} but the quaternion multiplication is determined by distributive law and the multiplication rule between the basis elements of H. The set of quaternions H is a real vector space with these addition and scalar multiplication. Also, it is an associative and non-commutative four-dimensional Clifford algebra with together quaternion multiplication.

The set of all unit quaternions forms 3 -sphere S^{3}. It is a Lie group that is isomorphic to the group $S U(2)$ and double covering the group $S O(3)$, the group of three-dimensional rotations. On the other hand, any quaternions can be represented as the terms of 4×4 real matrices. The matrix representation of a unit quaternion is a real orthogonal $4 \times$ 4 matrix of determinant 1 . So, a unit quaternion could be used to represent the rotations in \mathbb{R}^{4}. Since the rotations in three-dimensional space and four-dimensional space can be expressed by quaternions, they are commonly used in computer graphics, computer vision, robotics, computer simulations, orbital mechanics, etc.

Quaternions were generalized, and a brief introduction of generalized quaternions was given by Pottman and Wallner [1]. Recently, their some algebraic properties were studied by Jafari [2]. Jafari and Yaylı [3, 4] described the rotations in three-dimensional generalized linear space $\mathbb{E}_{\alpha, \beta}^{3}$ and four-dimensional generalized linear space $\mathbb{E}_{\alpha \beta}^{4}$ by means of generalized quaternions. Also, Arslan et al. [5] studied rotational surfaces in n-dimensional Euclidean space.

Let $G(n, m)$ be a Grassmannian manifold consisting of all oriented n-planes through the origin of \mathbb{E}^{m}.

The Gauss map G of an n-dimensional submanifold M of m-dimensional Euclidean space \mathbb{E}^{m} is a smooth map
which carries a point p in M into the n-plane through the origin in \mathbb{E}^{m} obtained by translating parallelly the tangent space at p of M, that is, it is a smooth map which carries a point p in M into $G(n, m)$. The Grassmannian manifold $G(n, m)$ is canonically embedded in $\wedge^{n} \mathbb{E}^{m} \cong \mathbb{E}^{N}, N=\binom{m}{n}$. Hence, the Gauss map is defined by $\quad G: M \rightarrow G(n, m) \subset E^{N}, \quad G(p)=\left(e_{1} \wedge \ldots \wedge e_{n}\right)(p)$. Chen and Piccinni [6] studied submanifolds with finite type Gauss map.

A submanifold M of a Euclidean or pseudo-Euclidean space is said to have pointwise 1-type Gauss map if satisfies

$$
\begin{equation*}
\Delta G=f(G+C) \tag{1}
\end{equation*}
$$

for some nonzero smooth function f on M and some constant vector C. A submanifold with pointwise 1-type Gauss map is said to be of the first kind if the vector C in Eq. (1) is zero vector. Otherwise, pointwise 1-type Gauss map is said to be of second kind. Rotational surfaces in Euclidean space and pseudo-Euclidean space with pointwise 1-type Gauss map were recently studied [7-10]. Also tensor product surfaces with pointwise 1-type Gauss map were recently studied [11].

In this paper, we determine a rotational surface via generalized quaternions and study this flat rotational surface with pointwise 1-type Gauss map in four-dimensional generalized linear space $\mathbb{E}_{\alpha \beta}^{4}$. Also, for some special cases of α and β, we obtain the characterizations of flat rotational surfaces with pointwise 1-type Gauss map in four-dimensional Euclidean space \mathbb{E}^{4} and four-dimensional pseudoEuclidean space \mathbb{E}_{2}^{4} which are given by Aksoyak and Yaylı [12, 13].

2 Preliminaries

The set of generalized quaternions, denoted by $H_{\alpha \beta}$, is defined by

$$
H_{\alpha \beta}=\left\{q=q_{0}+q_{1} i+q_{2} j+q_{3} k ; q_{t} \in \mathbb{R}, t=0,1,2,3\right\},
$$

where i, j, k are quaternionic units which satisfy the equalities

$$
\begin{aligned}
& i^{2}=-\alpha, \mathrm{j}^{2}=-\beta, \mathrm{k}^{2}=-\alpha \beta \\
& \quad i j=k=-j i, \mathrm{jk}=\beta \mathrm{i}=-\mathrm{kj}, \mathrm{ki}=\alpha \mathrm{j}=-\mathrm{ik} \text { and } \alpha, \beta \in \mathbb{R} .
\end{aligned}
$$

By choosing α and β there are the following special cases:

1. If $\alpha=\beta=1$ is considered, then $H_{\alpha \beta}$ is the algebra of real quaternions.
2. If $\alpha=1, \beta=-1$ is considered, then $H_{\alpha \beta}$ is the algebra of split quaternions.
3. If $\alpha=1, \beta=0$ is considered, then $H_{\alpha \beta}$ is the algebra of semi-quaternions.
4. If $\alpha=-1, \beta=0$ is considered, then $H_{\alpha \beta}$ is the algebra of split semi-quaternions.
5. If $\alpha=\beta=0$ is considered, then $H_{\alpha \beta}$ is the algebra of $\frac{1}{4}$-quaternions.
For any $p=p_{0}+p_{1} i+p_{2} j+p_{3} k$ and $q=q_{0}+q_{1} i+q_{2} j+$ $q_{3} k$ in $H_{\alpha \beta}$, the addition rule for generalized quaternions is defined as:

$$
p+q=\left(p_{0}+q_{0}\right)+\left(p_{1}+q_{1}\right) i+\left(p_{2}+q_{2}\right) j+\left(p_{3}+q_{3}\right) k
$$

and the multiplication of a generalized quaternion $q=$ $q_{0}+q_{1} i+q_{2} j+q_{3} k$ by a real scalar c is defined as:
$c q=c q_{0}+c q_{1} i+c q_{2} j+c q_{3} k$.
$H_{\alpha \beta}$ is a real vector space according to this addition and scalar multiplication.

Generalized quaternion product is defined as:

$$
\begin{aligned}
p q & =\left(p_{0} q_{0}-\alpha p_{1} q_{1}-\beta p_{2} q_{2}-\alpha \beta p_{3} q_{3}\right) \\
& +\left(p_{1} q_{0}+p_{0} q_{1}-\beta p_{3} q_{2}+\beta p_{2} q_{3}\right) i \\
& +\left(p_{2} q_{0}+\alpha p_{3} q_{1}+p_{0} q_{2}-\alpha p_{1} q_{3}\right) j \\
& +\left(p_{3} q_{0}-p_{2} q_{1}+p_{1} q_{2}+p_{0} q_{3}\right) k
\end{aligned}
$$

or it could be expressed as:
$p q=\left[\begin{array}{cccc}p_{0} & -\alpha p_{1} & -\beta p_{2} & -\alpha \beta p_{3} \\ p_{1} & p_{0} & -\beta p_{3} & \beta p_{2} \\ p_{2} & \alpha p_{3} & p_{0} & -\alpha p_{1} \\ p_{3} & -p_{2} & p_{1} & p_{0}\end{array}\right]\left[\begin{array}{c}q_{0} \\ q_{1} \\ q_{2} \\ q_{3}\end{array}\right]$.

The generalized quaternion product has an associative and distributive property on the addition, but it has not the commutative property in general.

The conjugate of a generalized quaternion q is denoted by \bar{q} and defined by $\bar{q}=q_{0}-q_{1} i-q_{2} j-q_{3} k$. The norm of a generalized quaternion q is defined as: $N_{q}=q \bar{q}=q_{0}^{2}+\alpha q_{1}^{2}+\beta q_{2}^{2}+\alpha \beta q_{3}^{2}$.

Let $u=\left(u_{0}, u_{1}, u_{2}, u_{3}\right), v=\left(v_{0}, v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{4}$ and α, $\beta \in \mathbb{R}$. The generalized inner product u and v is defined by $g(u, v)=\langle u, v\rangle_{\alpha \beta}=u_{0} v_{0}+\alpha u_{1} v_{1}+\beta u_{2} v_{2}+\alpha \beta u_{3} v_{3}$
or it could be written
$g(u, v)=u^{t}\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & \alpha & 0 & 0 \\ 0 & 0 & \beta & 0 \\ 0 & 0 & 0 & \alpha \beta\end{array}\right] v=u^{t} G v$.
So the vector space on \mathbb{R}^{4} equipped with generalized scalar product is called four-dimensional generalized space and denoted by $\mathbb{E}_{\alpha \beta}^{4}=\left(\mathbb{R}^{4},\langle,\rangle_{\alpha \beta}\right)$ [3].

If $\alpha=\beta=1$, then $\mathbb{E}_{\alpha \beta}^{4}$ is four-dimensional Euclidean space \mathbb{E}^{4}.

If $\alpha=1, \beta=-1$, then $\mathbb{E}_{\alpha \beta}^{4}$ is four-dimensional pseudoEuclidean space \mathbb{E}_{2}^{4}.

A matrix $A_{4 \times 4}$ is called semi-orthogonal matrix in fourdimensional generalized space $\mathbb{E}_{\alpha \beta}^{4}$ if $A^{T} G A=G$ and $\operatorname{det} A=1$. The set of all semi-orthogonal matrices is called rotational group in $\mathbb{E}_{\alpha \beta}^{4}$ [3].

Let $\mathbb{E}_{\alpha \beta}^{4}$ be four-dimensional generalized space. Then, the metric tensor g in $\mathbb{E}_{\alpha \beta}^{4}$ has the form
$g=\mathrm{d} x_{0}^{2}+\alpha d x_{1}^{2}+\beta \mathrm{d} x_{2}^{2}+\alpha \beta \mathrm{d} x_{3}^{2}$,
where $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ is a standard rectangular coordinate system in $\mathbb{E}_{\alpha \beta}^{4}$.

Let M be a two-dimensional submanifold of four-dimensional generalized space $\mathbb{E}_{\alpha \beta}^{4}$. We denote Levi-Civita connections of $\mathbb{E}_{\alpha \beta}^{4}$ and M by ∇ and ∇, respectively. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be an adapted local orthonormal frame in $\mathbb{E}_{\alpha \beta}^{4}$ such that e_{1}, e_{2} are tangent to M and e_{3}, e_{4} normal to M. We use the following convention on the ranges of indices: $1 \leq i, j, k, \ldots \leq 2,3 \leq r, s, t, \ldots \leq 4,1 \leq A, B, C, \ldots \leq 4$.

Let ω_{A} be the dual-1 form of e_{A} defined by $\omega_{A}(X)=$ $\left\langle e_{A}, X\right\rangle$ and $\varepsilon_{A}=\left\langle e_{A}, e_{A}\right\rangle= \pm 1$. Also, the connection forms $\omega_{A B}$ are defined by
$d e_{A}=\sum_{B} \varepsilon_{B} \omega_{A B} e_{B}$,
where $\omega_{A B}+\omega_{B A}=0$. Then, we have

$$
\begin{equation*}
\tilde{\nabla_{e_{k}}^{e_{i}}}=\sum_{j=1}^{2} \varepsilon_{j} \omega_{i j}\left(e_{k}\right) e_{j}+\sum_{r=3}^{4} \varepsilon_{r} h_{i k}^{r} e_{r} \tag{3}
\end{equation*}
$$

and
$\tilde{\nabla_{e_{k}}^{e_{s}}}=-\sum_{j=1}^{2} \varepsilon_{j} h_{k j}^{s} e_{j}+D_{e_{k}}^{e_{s}}, D_{e_{k}}^{e_{s}}=\sum_{r=3}^{4} \varepsilon_{r} \omega_{s r}\left(e_{k}\right) e_{r}$,
where D is the normal connection and $h_{i k}^{r}$ are the coefficients of the second fundamental form h.

If we define a covariant differentiation $\bar{\nabla} h$ of the second fundamental form h on the direct sum of the tangent bundle and the normal bundle $T M \oplus T^{\perp} M$ of M by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

for any vector fields X, Y and Z tangent to M, then we have the Codazzi equation

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{5}
\end{equation*}
$$

and the Gauss equation is given by

$$
\begin{equation*}
\langle R(X, Y) Z, W\rangle=\langle h(X, W), h(Y, Z)\rangle-\langle h(X, Z), h(Y, W)\rangle \tag{6}
\end{equation*}
$$

where the vectors X, Y, Z and W are tangent to M and R is
the curvature tensor associated with ∇. The curvature tensor R associated with ∇ is defined by
$R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$.
For any real function f on M, the Laplacian Δf of f is given by
$\Delta f=-\varepsilon_{i} \sum_{i}\left(\tilde{\nabla_{e_{i}}} \tilde{\nabla_{e_{i}}} f-\tilde{\nabla}_{\nabla_{e_{i}}^{e_{i}} f}\right)$.
The Gaussian curvature K of M in $\mathbb{E}_{\alpha \beta}^{4}$ is given by
$K=\sum_{s=3}^{4} \varepsilon_{s}\left(h_{11}^{s} h_{22}^{s}-h_{12}^{s} h_{21}^{s}\right)$.
Also if Gaussian curvature of M vanishes identically, i.e., $K=0$, the surface M is called flat.

3 Flat Rotation Surfaces with Pointwise 1-Type Gauss Map Via Generalized Quaternions

In this section, by using generalized quaternions we determine a rotational surface in four-dimensional generalized space $\mathbb{E}_{\alpha \beta}^{4}$. If we choose generalized quaternions p and q in Eq. (2) as $p=\cos t+i \frac{1}{\sqrt{\alpha}} \sin t$ and $q=x(s)+j y(s)$, we obtain following rotational surface in $\mathbb{E}_{\alpha \beta}^{4}$.

$$
\begin{align*}
& X(t, s) \\
& =\left(\begin{array}{cccc}
\cos t & -\frac{\alpha}{\sqrt{\alpha}} \sin t & 0 & 0 \\
\frac{1}{\sqrt{\alpha}} \sin t & \cos t & 0 & 0 \\
0 & 0 & \cos t & -\frac{\alpha}{\sqrt{\alpha}} \sin t \\
0 & 0 & \frac{1}{\sqrt{\alpha}} \sin t & \cos t
\end{array}\right) \\
& \left(\begin{array}{c}
x(s) \\
0 \\
y(s) \\
0
\end{array}\right), \\
& M: X(t, s)=\left(x(s) \cos t, \frac{1}{\sqrt{\alpha}} x(s) \sin t, y(s) \cos t, \frac{1}{\sqrt{\alpha}} y(s) \sin t\right), \tag{9}
\end{align*}
$$

where α is positive real constant and $\varphi(s)=$ $(x(s), 0, y(s), 0)$ is the profile curve of M. We choose a moving frame $e_{1}, e_{2}, e_{3}, e_{4}$ such that e_{1}, e_{2} are tangent to M and e_{3}, e_{4} are normal to M as follows:

$$
\begin{aligned}
e_{1}= & \frac{1}{\sqrt{\varepsilon_{1}\left(x^{2}(s)+\beta y^{2}(s)\right)}}\left(-x(s) \sin t, \frac{1}{\sqrt{\alpha}} x(s) \cos t,\right. \\
& \left.-y(s) \sin t, \frac{1}{\sqrt{\alpha}} y(s) \cos t\right) \\
e_{2}= & \frac{1}{\sqrt{\varepsilon_{2}\left(\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}\right)}}\left(x^{\prime}(s) \cos t, \frac{1}{\sqrt{\alpha}} x^{\prime}(s) \sin t,\right. \\
e_{3}= & \frac{\left.y^{\prime}(s) \cos t, \frac{1}{\sqrt{\alpha}} y^{\prime}(s) \sin t\right)}{\sqrt{\varepsilon_{3} \beta\left(\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}\right)}}\left(-\beta y^{\prime}(s) \cos t,-\frac{\beta}{\sqrt{\alpha}} y^{\prime}(s) \sin t,\right. \\
& \left.x^{\prime}(s) \cos t, \frac{1}{\sqrt{\alpha}} x^{\prime}(s) \sin t\right) \\
e_{4}= & \frac{1}{\sqrt{\varepsilon_{4} \beta\left(x^{2}(s)+\beta y^{2}(s)\right)}}\left(-\beta y(s) \sin t, \frac{\beta}{\sqrt{\alpha}} y(s) \cos t\right. \\
& \left.x(s) \sin t,-\frac{1}{\sqrt{\alpha}} x(s) \cos t\right)
\end{aligned}
$$

where β is nonzero real constant. It is easily seen that

$$
\begin{aligned}
\left\langle e_{1}, e_{1}\right\rangle & =\varepsilon_{1},\left\langle\mathrm{e}_{2}, \mathrm{e}_{2}\right\rangle=\varepsilon_{2},\left\langle\mathrm{e}_{3}, \mathrm{e}_{3}\right\rangle=\varepsilon_{3}=\varepsilon \varepsilon_{2},\left\langle\mathrm{e}_{4}, \mathrm{e}_{4}\right\rangle \\
& =\varepsilon_{4}=\varepsilon \varepsilon_{1}
\end{aligned}
$$

where $\varepsilon_{1}, \varepsilon_{2}$ and ε are signatures of $x^{2}(s)+\beta y^{2}(s)$, $\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}$ and β, respectively. Then, we have the dual 1-forms as:
$\omega_{1}=\varepsilon_{1} \sqrt{\varepsilon_{1}\left(x^{2}(s)+\beta y^{2}(s)\right)} \mathrm{d} t$ and
$\omega_{2}=\varepsilon_{2} \sqrt{\varepsilon_{2}\left(\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}\right)} \mathrm{d} s$.
By a direct computation, we can obtain coefficients of the second fundamental form and the connection forms as:
$h_{11}^{3}=\beta \chi \lambda b(s), h_{12}^{3}=0, h_{22}^{3}=-\beta \chi \lambda c(s)$,
$h_{11}^{4}=0, h_{12}^{4}=-\beta \chi \lambda b(s), h_{22}^{4}=0$.
and

$$
\begin{align*}
& \omega_{12}=-\varepsilon_{1} \chi a(s) \omega_{1}, \omega_{13}=\varepsilon_{1} \beta \chi \lambda b(s) \omega_{1} \\
& \omega_{14}=-\varepsilon_{2} \beta \chi \lambda b(s) \omega_{2}, \omega_{23}=-\varepsilon_{2} \beta \chi \lambda c(s) \omega_{2} \tag{11}\\
& \omega_{24}=-\varepsilon_{1} \beta \chi \lambda b(s) \omega_{1}, \omega_{34}=-\varepsilon_{1} \beta \chi \lambda^{2} a(s) \omega_{1}
\end{align*}
$$

Moreover, combining Eqs. (3), (4), (10) and (11) we have covariant differentiation with respect to e_{1} and e_{2} as follows:

$$
\begin{align*}
& \tilde{\nabla}_{e_{1}} e_{1}=-\varepsilon_{2} \varkappa a(s) e_{2}+\varepsilon \varepsilon_{2} \beta \chi \lambda b(s) e_{3} \\
& \tilde{\nabla_{e_{2}}} e_{1}=-\varepsilon \varepsilon_{1} \beta \chi \lambda b(s) e_{4} \\
& \tilde{\nabla_{e_{1}}} e_{2}=\varepsilon_{1} \varkappa a(s) e_{1}-\varepsilon \varepsilon_{1} \beta \varkappa \lambda b(s) e_{4} \\
& \tilde{\nabla_{e_{2}}} e_{2}=-\varepsilon \varepsilon_{2} \beta \chi \lambda c(s) e_{3} \\
& \tilde{\nabla}_{e_{1}} e_{3}=-\varepsilon_{1} \beta \chi \lambda b(s) e_{1}-\varepsilon \varepsilon_{1} \beta \chi \lambda^{2} a(s) e_{4} \tag{12}\\
& \tilde{\nabla}_{e_{2}} e_{3}=\varepsilon_{2} \beta \chi \lambda c(s) e_{2} \\
& \tilde{\nabla_{e_{1}}} e_{4}=\varepsilon_{2} \beta \chi \lambda b(s) e_{2}+\varepsilon \varepsilon_{2} \beta \chi \lambda^{2} a(s) e_{3} \\
& \tilde{\nabla_{e_{2}}} e_{4}=\varepsilon_{1} \beta \chi \lambda b(s) e_{1}
\end{align*}
$$

where

$$
\begin{align*}
a(s) & =\frac{x(s) x^{\prime}(s)+\beta y(s) y^{\prime}(s)}{\varepsilon_{1}\left(x^{2}(s)+\beta y^{2}(s)\right)} \tag{13}\\
b(s) & =\frac{x(s) y^{\prime}(s)-x^{\prime}(s) y(s)}{\varepsilon_{1}\left(x^{2}(s)+\beta y^{2}(s)\right)} \tag{14}\\
c(s) & =\frac{x^{\prime \prime}(s) y^{\prime}(s)-x^{\prime}(s) y^{\prime \prime}(s)}{\varepsilon_{2}\left(\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}\right)} \tag{15}\\
x(s) & =\frac{1}{\sqrt{\varepsilon_{2}\left(\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}\right)}} \tag{16}
\end{align*}
$$

$\lambda(s)=\frac{1}{\sqrt{\varepsilon \beta}}$.
Without loss of generality, we assume that the profile curve φ is parameterized by its arc-length, that is,

$$
\begin{equation*}
\left(x^{\prime}(s)\right)^{2}+\beta\left(y^{\prime}(s)\right)^{2}=1 \tag{17}
\end{equation*}
$$

In that case, we have that $\varepsilon_{2}=1$. From Eqs. (2) and (10), we obtain Gaussian curvature K of M as:

$$
\begin{equation*}
K=-\beta b(s)\left(c(s)+\varepsilon_{1} b(s)\right) \tag{18}
\end{equation*}
$$

Furthermore, by using Eqs. (5), (6) and after some computations we have Gauss and Codazzi equations for

$$
\begin{equation*}
a^{\prime}(s)+\varepsilon_{1} a^{2}(s)=\beta b(s)\left(c(s)+\varepsilon_{1} b(s)\right) \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
b^{\prime}(s)=-\left(2 \varepsilon_{1} a(s) b(s)+a(s) c(s)\right) \tag{20}
\end{equation*}
$$

respectively.
By using Eqs. (7), (12) and with straightforward computation, the Laplacian ΔG of the Gauss map $G=e_{1} \wedge e_{2}$ is computed as:

$$
\begin{align*}
\Delta G= & \beta\left(3 b^{2}(s)+c^{2}(s)\right) e_{1} \wedge e_{2} \\
& +\varepsilon \varepsilon_{1} \beta \lambda\left(-b^{\prime}(s)+\varepsilon_{1} c^{\prime}(s)\right) e_{1} \wedge e_{3} \tag{21}\\
& -\varepsilon \varepsilon_{1} \beta \lambda a(s)\left(\varepsilon_{1} b(s)-c(s)\right) e_{2} \wedge e_{4} \\
& +2 \varepsilon \varepsilon_{1} \beta b(s)\left(\varepsilon_{1} b(s)+c(s)\right) e_{3} \wedge e_{4}
\end{align*}
$$

Now, we determine the flat rotational surfaces in $\mathbb{E}_{\alpha \beta}^{4}$ with the pointwise 1-type Gauss map.

Suppose that the rotational surface M given by the parameterization (9) is flat. From Eq. (18), we obtain that $b(s)=0$ or $\varepsilon_{1} b(s)+c(s)=0$. We assume that $\varepsilon_{1} b(s)+$ $c(s) \neq 0$. Then, $b(s)$ is equal to zero and Eq. (20) implies that $a(s) c(s)=0$. Since $\varepsilon_{1} b(s)+c(s) \neq 0$, it implies that $c(s)$ is not equal to zero. Then, we obtain as $a(s)=0$. In that case, by using Eqs. (13) and (14) we obtain that $\varphi(s)=$ $(x(s), 0, y(s), 0)$ is a constant vector. This is a contradiction. Therefore, $c(s)=-\varepsilon_{1} b(s)$ for all s. From Eq. (19), we get
$a^{\prime}(s)+\varepsilon_{1} a^{2}(s)=0$
whose trivial solution and non-trivial solution are
$a(s)=0$
and
$a(s)=\frac{1}{\varepsilon_{1} s+s_{0}}$,
respectively.

3.1 Case $a(s)=0$

We assume that $a(s)=0$. By Eq. (20), we obtain that $b=$ b_{0} is a constant. So, we have $c=-\varepsilon_{1} b_{0}$. In that case, by using Eqs. (13), (14) and (15), x and y satisfy the following differential equations:
$x^{2}(s)+\beta y^{2}(s)=\mu \quad \mu$ is a constant,
$x(s) y^{\prime}(s)-x^{\prime}(s) y(s)=\varepsilon_{1} b_{0} \mu$,
$x^{\prime \prime}(s) y^{\prime}(s)-x^{\prime}(s) y^{\prime \prime}(s)=-\varepsilon_{1} b_{0}$.

3.1.1 Case $\beta>0$

We assume that $\beta>0$. Then, we obtain a Riemannian metric. Equation (23) is always positive. In that case, we have $\varepsilon_{1}=1$. We can choose μ in Eq. (23) as $\mu=\mu_{0}^{2}$, where μ_{0} is a nonzero real constant. So, by using Eq. (23) we can put
$x(s)=\mu_{0} \cos \theta(s), \quad y(s)=\frac{\mu_{0}}{\sqrt{\beta}} \sin \theta(s)$.
By differentiating Eq. (26), we get
$x^{\prime}(s)=-\sqrt{\beta} \theta^{\prime}(s) y(s)$ and $\mathrm{y}^{\prime}(\mathrm{s})=\frac{1}{\sqrt{\beta}} \theta^{\prime}(\mathrm{s}) \mathrm{x}(\mathrm{s})$,
where $\theta(s)$ is some angle function. By substituting Eqs. (26) and (27) into Eq. (24), we have
$\theta(s)=\sqrt{\beta} b_{0} s+\delta, \quad \delta=$ const.
On the other hand, since the curve φ is a unit speed curve, from Eq. (17) we have

$$
\beta b_{0}^{2} \mu_{0}^{2}=1
$$

Then, we can write components of the curve φ as:
$x(s)=\mu_{0} \cos \left(\sqrt{\beta} b_{0} s+\delta\right)$,
$y(s)=\frac{\mu_{0}}{\sqrt{\beta}} \sin \left(\sqrt{\beta} b_{0} s+\delta\right), \quad \beta b_{0}^{2} \mu_{0}^{2}=1$.
Hence, we obtain that the profile curve φ is a family of ellipse. On the other hand, by using Eq. (21) we can rewrite the Laplacian of the Gauss map G with $a(s)=0$ and $b=-\varepsilon_{1} c=b_{0}$

$$
\Delta G=4 \beta b_{0}^{2} G
$$

that is, the flat surface M is pointwise 1-type Gauss map with the function $f=4 \beta b_{0}^{2}$ and $C=0$, even if it is a pointwise 1-type Gauss map of the first kind.

Remark 1 If we consider as $\alpha=\beta=1$, then we get fourdimensional Euclidean space \mathbb{E}^{4}. Also for $\alpha=\beta=1$, the profile curve φ of flat rotational surface with pointwise 1-type Gauss map which is parameterized by Eq. (28) becomes a circle and we obtain the results which are given by Aksoyak and Yaylı[13]. Hence, the Case 3.1.1 can be considered as a generalization of that study.

3.1.2 Case $\beta<0$

We suppose that $\beta<0$. In that case, we obtain a semiRiemannian metric. If we consider Eq. (23) with $\beta<0$, we can put
$x(s)=\frac{1}{2} \xi\left(\mu_{2} e^{\theta(s)}+\mu_{1} e^{-\theta(s)}\right)$,
$y(s)=\frac{1}{2} \xi\left(\frac{\mu_{2}}{\sqrt{-\beta}} e^{\theta(s)}-\frac{\mu_{1}}{\sqrt{-\beta}} e^{-\theta(s)}\right)$,
where $\theta(s)$ is some smooth function, $\xi= \pm 1$ and $\mu=\mu_{1} \mu_{2}$. Differentiating Eq. (29) with respect to s, we have
$x^{\prime}(s)=\theta^{\prime}(s) \sqrt{-\beta} y(s), y^{\prime}(s)=\frac{\theta^{\prime}(s)}{\sqrt{-\beta}} x(s)$.
By substituting Eqs. (29) and (30) into Eq. (24), we get
$\theta(s)=\varepsilon_{1} \sqrt{-\beta} b_{0} s+\delta, \delta=$ const.
And since the curve φ is a unit speed curve, we have
$\beta b_{0}^{2} \mu=1$.
Since $\beta<0$. then $\mu<0$. So $x^{2}(s)+\beta y^{2}(s)<0$. In that case,
we obtain that $\varepsilon_{1}=-1$. Then, we can write components of the curve φ as:

$$
\begin{gather*}
x(s)=\frac{1}{2} \xi\left(\mu_{2} e^{-\sqrt{-\beta} b_{0} s+\delta}+\mu_{1} e^{-\left(-\sqrt{-\beta} b_{0} s+\delta\right)}\right), \\
y(s)=\frac{1}{2} \xi\left(\frac{\mu_{2}}{\sqrt{-\beta}} e^{-\sqrt{-\beta} b_{0} s+\delta}-\frac{\mu_{1}}{\sqrt{-\beta}} e^{-\left(-\sqrt{-\beta} b_{0} s+\delta\right)}\right), \beta \mathrm{b}_{0}^{2} \mu_{1} \mu_{2}=1 . \tag{31}
\end{gather*}
$$

Hence, we have that the profile curve φ is a family of hyperbolas. On the other hand, by using Eq. (21) we can rewrite the Laplacian of the Gauss map G with $a(s)=0$ and $b=-\varepsilon_{1} c=b_{0}$ as follows:
$\Delta G=4 \beta b_{0}^{2} e_{1} \wedge e_{2}$,
that is, the flat surface M is pointwise 1-type Gauss map with the function $f=4 \beta b_{0}^{2}$ and $C=0$. Even if it is a pointwise 1-type Gauss map of the first kind.
Remark 2 If we consider as $\alpha=1$ and $\beta=-1$, then we get four-dimensional semi-Euclidean space \mathbb{E}_{2}^{4}. Also for $\alpha=1$ and $\beta=-1$, the profile curve φ of flat rotational surface with pointwise 1-type Gauss map which is parameterized by Eq. (31) coincides the profile curve of flat rotational surface with pointwise 1-type Gauss map in \mathbb{E}_{2}^{4} which is obtained by Aksoyak and Yaylı [12]. So, the Case 3.1.2 can be considered as a generalization of that study.
3.2 Case $a(s)=\frac{1}{\varepsilon_{1} s+s_{0}}$

In this part, we give a common proof for the cases which β is positive or negative. Now, we assume that $a(s)=\frac{1}{\varepsilon_{1} s+s_{0}}$. By using $c(s)=-\varepsilon_{1} b(s)$ and Eq. (20), we get
$b^{\prime}(s)=-\varepsilon_{1} a(s) b(s)$
or we can write
$\frac{b^{\prime}(s)}{b(s)}=\frac{-\varepsilon_{1}}{\varepsilon_{1} s+s_{0}}$,
whose solution is given by
$b(s)=\frac{\gamma}{\left|\varepsilon_{1} s+s_{0}\right|}, \quad \gamma$ is a constant.
By using Eq. (21), we can rewrite the Laplacian of the Gauss map G with the equalities $c(s)=-\varepsilon_{1} b(s), b^{\prime}(s)=$ $-\varepsilon_{1} a(s) b(s)$ and $a^{\prime}(s)=-\varepsilon_{1} a^{2}(s)$ as follows:
$\Delta G=4 \beta b^{2}(s) e_{1} \wedge e_{2}+2 \varepsilon \beta \lambda a(s) b(s) e_{1} \wedge e_{3}-2 \varepsilon \beta \lambda a(s) b(s) e_{2} \wedge e_{4}$.

We suppose that the flat rotational surface M has pointwise 1-type Gauss map. From Eqs. (1) and (34), we get
$4 \varepsilon_{1} \beta b^{2}(s)=f \varepsilon_{1}+f\left\langle C, e_{1} \wedge e_{2}\right\rangle$,
$2 \varepsilon_{1} \beta \lambda a(s) b(s)=f\left\langle C, e_{1} \wedge e_{3}\right\rangle$,
$-2 \varepsilon_{1} \beta \lambda a(s) b(s)=f\left\langle C, e_{2} \wedge e_{4}\right\rangle$.
Then, we have

$$
\begin{equation*}
\left\langle C, e_{1} \wedge e_{4}\right\rangle=0, \quad\left\langle C, e_{2} \wedge e_{3}\right\rangle=0, \quad\left\langle C, e_{3} \wedge e_{4}\right\rangle=0 \tag{38}
\end{equation*}
$$

By using Eqs. (36) and (37), we obtain

$$
\begin{equation*}
\left\langle C, e_{1} \wedge e_{3}\right\rangle=-\left\langle C, e_{2} \wedge e_{4}\right\rangle \tag{39}
\end{equation*}
$$

By differentiating the first equation in Eq. (38) with respect to e_{1} and by using Eq. (12), the third equation in Eqs. (38) and (39), we get
$2 a(s)\left\langle C, e_{1} \wedge e_{3}\right\rangle+\beta \lambda b(s)\left\langle C, e_{1} \wedge e_{2}\right\rangle=0$.
Combining Eqs. (35), (36) and (40), we have
$\gamma\left(4 a^{2}(s)+4 \beta b^{2}(s)-f\right)=0$.
Firstly, we consider $4 a^{2}(s)+4 \beta b^{2}(s)-f \neq 0$. Then, we get $\gamma=0$ and it implies that $b=c=0$. In that case, the surface M becomes totally geodesic and has harmonic Gauss map, that is, $\Delta G=0$. Now, we assume that the fuction f satisfies the following equation:
$f=4 a^{2}(s)+4 \beta b^{2}(s)$,
where f depends only on s. By differentiating f with respect to s and by using Eqs. (22), (32) and (42), we get
$f^{\prime}=-2 \varepsilon_{1} a(s) f$.
By differentiating Eq. (36) with respect to e_{2} and by using Eqs. (12), (22), (32), (35), (36), (42), (43) and the third equation in Eq. (38), we have
$a^{2} b=0$
or from Eq. (33) we can write
$\gamma a^{3}=0$.
Since $a(s) \neq 0$, it follows that $\gamma=0$. Then, we obtain that $b=c=0$ again. We obtain that the Gauss map of M is harmonic.

Theorem 1 Let M be the flat rotational surface given by the parameterization (9). Then, M has pointwise l-type Gauss map if and only if M is either totally geodesic or parameterized by one of the following
(1)
$X(t, s)=\left(\begin{array}{ll}\mu_{0} \cos \theta(s) \cos t, & \frac{1}{\sqrt{\alpha}} \mu_{0} \cos \theta(s) \sin t, \\ \frac{\mu_{0}}{\sqrt{\beta}} \sin \theta(s) \cos t, & \frac{1}{\sqrt{\alpha}} \frac{\mu_{0}}{\sqrt{\beta}} \sin \theta(s) \sin t\end{array}\right)$,
where $\theta(s)=\sqrt{\beta} b_{0} s+\delta$ and $\beta b_{0}^{2} \mu_{0}^{2}=1$.

(2)

$$
X(t, s)=\left(\begin{array}{c}
\frac{1}{2} \xi\left(\mu_{2} e^{\theta(s)}+\mu_{1} e^{-\theta(s)}\right) \cos t, \\
\frac{1}{\sqrt{\alpha}} \frac{1}{2} \xi\left(\mu_{2} e^{\theta(s)}+\mu_{1} e^{-\theta(s)}\right) \sin t \\
\frac{1}{2} \xi\left(\frac{\mu_{2}}{\sqrt{-\beta}} e^{\theta(s)}-\frac{\mu_{1}}{\sqrt{-\beta}} e^{-\theta(s)}\right) \cos t \\
\frac{1}{\sqrt{\alpha}} \frac{1}{2} \xi\left(\frac{\mu_{2}}{\sqrt{-\beta}} e^{\theta(s)}-\frac{\mu_{1}}{\sqrt{-\beta}} e^{-\theta(s)}\right) \sin t
\end{array}\right)
$$

where $\theta(s)=-\sqrt{-\beta} b_{0} s+\delta$ and $\beta b_{0}^{2} \mu_{1} \mu_{2}=1$.
Corollary 1 Let M be non-totally geodesic flat rotational surface given by the parameterization (9). If M has pointwise 1-type Gauss map, then the Gauss map G on M is pointwise 1-type Gauss map of the first kind.

Corollary 2 Let M be non-totally geodesic flat rotational surface given by the parametrization (9). If M has pointwise 1-type Gauss map, then the profile curves of M are circles in four-dimensional generalized space $\mathbb{E}_{\alpha \beta}^{4}$. These curves are Euclidean ellipses or hyperbolas.

Corollary 3 Let M be non-totally geodesic flat rotational surface given by the parametrization (9). If M has pointwise 1-type Gauss map, then it is a part of sphere in fourdimensional generalized space $\mathbb{E}_{\alpha \beta}^{4}$. This sphere is a Euclidean ellipsoid or hyperboloid.

References

1. Pottman H, Wallner J (2000) Computational line geometry. Springer, Berlin Heidelberg, New York
2. Jafari M (2012) Generalized Hamilton operators and Lie groups. Ph.D. thesis, Ankara University, Ankara, Turkey
3. Jafari M, Yaylı Y (2013) Rotation in four dimensions via generalized Hamilton operators. Kuwait J Sci 40(1):67-79
4. Jafari M, Yaylı Y (2015) Generalized quaternions and rotation in 3-space $\mathbb{E}_{\alpha \beta \beta}^{3}$. TWMS J Pure Appl Math 6(2):224-232
5. Arslan K, Bulca B, Kosava D (2017) On generalized rotational surfaces in Euclidean spaces. J Korean Math Soc 54:999-1013
6. Chen BY, Piccinni P (1987) Submanifolds with finite type Gauss map. Bull Aust Math Soc 35:161-186
7. Arslan K, Bayram BK, Kim YH, Murathan C, Öztürk G (2011) Vranceanu surface in \mathbb{E}^{4} with pointwise 1-type Gauss map. Indian J Pure Appl Math 42:41-51
8. Dursun U, Turgay NC (2012) General rotational surfaces in Euclidean space \mathbb{E}^{4} with pointwise 1-type Gauss map. Math Commun 17:71-81
9. Kim YH, Yoon DW (2004) Classification of rotation surfaces in pseudo Euclidean space. J Korean Math 41:379-396
10. Yoon DW (2003) Some properties of the Clifford torus as rotation surface. Indian J Pure Appl Math 34:907-915
11. Arslan K, Bulca B, Kılıç B, Kim YH, Murathan C, Öztürk G (2011) Tensor product surfaces with pointwise 1-type Gauss map. Bull Korean Math Soc 48:601-609
12. Aksoyak KF, Yaylı Y (2015) General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space \mathbb{E}_{2}^{4}. Indian J Pure Appl Math 46(1):107-118
13. Aksoyak KF, Yaylı Y (2016) Flat rotational surfaces with pointwise 1-type Gauss map in \mathbb{E}^{4}. Honam Math J 38:305-316

[^0]: Ferdag Kahraman Aksoyak
 ferdag.aksoyak@ahievran.edu.tr
 Yusuf Yayli
 yayli@science.ankara.edu.tr
 1 Division of Elementary Mathematics Education, Ahi Evran University, Kirşehir, Turkey
 2 Department of Mathematics, Ankara University, Ankara, Turkey

