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Interior mounted permanent magnet (IPM) machines have superior features comparing to their counter-
parts for electric vehicle traction applications. Having relatively higher efficiency, high torque and power
densities, low torque ripple and not requirement of regular maintenance are among their superior fea-
tures. It is widely known that the precise torque control in practical IPM drives highly relies on accurate
knowledge of machine parameters viz, inductance values and magnetic flux linkage. These machine
parameters vary significantly in real time operation depending on manufacturing tolerance, operating
temperature, inductance saturation, load torque and so on. It is known that d- and q- axis inductances
and magnetic flux linkage at the full load operation may be approximately 20%, 35% and 20%, respec-
tively, lower than their actual values at no-load operation. It is also commonly known in the literature
for traction applications that these variations (considering wide range operation) have much influence
on both drive system efficiency and output torque production compared to other system nonlinearities
such as stator resistance variation. It has been achieved in this paper that these parameters are estimated
online with fairly high accuracies of each, utilizing recursive least squares (RLS) algorithm. The superior-
ity of the proposed drive achieving considerably higher output torque (�28,7% of peak torque) is vali-
dated through extensive realistic simulations with nonlinear machine model of a 4.1 kW prototype
IPM machine designed and manufactured for traction applications. Proposed strategy and its superiority
among state-of-art drives are discussed in detail.
� 2021 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Utilization of renewable and sustainable energy technologies
plays an important role to deal with worldwide environmental
issues such as global warming [1]. Transportation is one of the
dominant sectors in which non-renewable energy sources are con-
sumed. It is possible to alleviate the environmental issues that
raises from the use of conventional internal combustion engine-
based vehicles for transportation by replacing them with electric
vehicles which facilitate the use of renewable and sustainable
energy technologies with no carbon emissions [2,3].

Interior mounted permanent magnet synchronous machines
(IPMSM) are commonly employed in electric vehicles due to their
superior features such as high power-density, small volume, high
efficiency, high torque-density and so on. Precise torque control
in IPM drives with improved output torque production quality is,
therefore, quite significant research area for wide societies.

It is widely known in the literature that magnetic flux linkage
based torque component is maximum when current angle is zero
(b ¼ 0

�
in Fig. 1) and reluctance torque component is maximum

when b ¼ 45
�
. While maximum torque production, and hence

maximum efficiency operation in constant torque region, can be
achieved when b ¼ 0

�
in surface mounted permanent magnet

machine (SPM) drives as they have no reluctance torque compo-
nent, the saliency in IPM drives facilitates the benefit from reluc-
tance torque component by varying the b angle online and this
renders them higher efficient and attractive machines. Hence,
obtaining and operating at the optimum b angle in IPM drives is
crucial for precise torque control and efficiency optimized opera-
tion in constant torque region.

Theoretically, the b angle is a function of dq- axis inductances
Ldq
� �

, permanent magnet flux linkage Wmð Þ , stator current magni-
tude Isð Þ and the demanded electromagnetic torque Teð Þ from the
machine [4]. Hence, it is evident that precise torque control and
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Fig. 1. Current, voltage and stator flux vectors in stationary and rotating frames.
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the efficiency optimized operation can be achieved with accurate
knowledge of machine parameters. In practical applications, how-
ever, these parameters may significantly deviate from their nomi-
nal values depending on magnetic saturations, operating
temperature, manufacture tolerance, cross-coupling, material
property variations and so on. Based on high-fidelity machine
modelling in [5], it is evident that d- and q- axis inductance values
and the value of magnetic flux linkage at peak current operation
may approximately 20%, 35% and 20% lower than that of machine
parameters at no-load operation. Hence, driving machines by
employing constant machine parameters in the controller as in
[6] cannot achieve optimized control in practice. Thus, estimation
of the varying parameters with high accuracy facilitates to drive
the machine with higher efficiency and higher output torque pro-
duction in practical applications.

In the literature, the parameter variations can be addressed uti-
lizing either online or offline strategies both having the pros and
cons [7,8]. Offline strategies based on experiments require many
prior tests at different operating points such as at different current
magnitudes. Varying operating conditions should also be consid-
ered for more accurate results. For example, an accurate offline
strategy at a certain operating temperature may remarkably devi-
ate from those obtained at a different temperature. One can con-
sider the temperature variations by measuring it, however, the
temperature inside the machine is not uniformly distributed and
the magnets’ temperature may significantly deviate from the mea-
sured stator temperature. In addition, even high-fidelity machine
modelling considering extensive operating conditions may
remarkably loose its fidelity in few years of time as the machine
wears out. Besides, the offline strategies require enough memory
in the processor to be stored as look-up tables. In addition to all
above, offline strategies are unique for a certain machine and all
the procedures need to be undertaken for another machine even
if the machine types are the same.

Online strategies for parameter estimations, on the other hand,
can be adopted to other machines. Besides, online strategies handle
the operating condition variations instantaneously, and hence,
prior tests considering different conditions are not essential.
Although increased computational burden on the processor may
be considered as a drawback, there is a trade-off between the pro-
cessor burden and the system efficiency as well as the precise tor-
que control. Considering all, online parameter estimation
strategies are quite common in the literature for efficiency opti-
mized machine drives.

Model Reference Adaptive System (MRAS) [9–11], Extended
Kalman Filter (EKF) [12], Affine Projection Algorithm (APA) [13],
and Recursive Least Square (RLS) [14–16] algorithm based strate-
gies are extensively utilized for online parameter estimations in
the literature.
2

MRAS based parameter estimation, among them, is a challenge
for multi-parameter identification [17,18]. d- axis inductance, for
example, has been assumed as a constant in [9]. Similarly, mag-
netic flux linkage variation has been addressed in [11], however,
variations in d- and q- axis inductances have significant influence
in IPM drives. Multi-parameter estimation has been proposed
employing MRAS based strategy, however, the system lacks the
stability and is not feasible in practice [8].

EKF based online parameter estimation strategy has been pro-
posed in [12]. However, dq- axis inductance variations have not
been handled. Also, the computational burden in EKF based drives
increases considerably as the order of the system increases due to
inverse matrix calculation [8].

The authors in [13] obtains dq- axis inductance variations using
APA strategy and the magnetic flux linkage variation is handled by
steepest descent method. The combination of two different strate-
gies not only increases the burden on the processor but increases
the complexity and hence the implementation difficulty.

RLS algorithm based parameter estimations in [14,15,19] does
not consider the variations in the magnetic flux linkage. The
authors in [20] utilizes the RLS algorithm to estimate only the mag-
netic flux linkage and the stator resistance whereas the nonlinear-
ities in inductances may significantly deteriorate the system
performance. Each nonlinear parameters have been estimated uti-
lizing RLS algorithm in [21]. The authors have adopted two differ-
ent (fast and slow) RLS algorithms with different execution rates to
sort the rank-deficiency issue. However, the results are of concern
as the estimation is rather slow and the estimated parameters have
much fluctuations.

Recently, magnetic flux linkage and dq- axis inductance varia-
tions are handled employing RLS algorithm in a model predictive
control (MPC) based drive by Tinazzi et al. [16]. MPC based drives
are much more vulnerable to machine parameter variations than
the PI controllers-based drives as the MPC relies on machine
models. Though the parameters are estimated in the proposed
strategy, the drive have the following concerns. First, the inverter
switching frequency is variable. However, it is widely known in
the literature that the constant switching based space-vector
PWM strategy is superior to its counterparts due to less harmon-
ics and less torque ripples [22]. More importantly, authors indi-
cate that parameter-free predictive control has been achieved.
The claim would be true only when the system input is current
command. It is, however, important to note that the system input
is either electromagnetic torque or speed command in most prac-
tical applications. The generation of the current commands relies
on machine parameters in [16], and hence, it is indeed parameter
dependent drive. Similarly, the system input of RLS algorithm
based drives in [23,24] is current command rather than torque
or speed.

This paper discusses the recent modern drives in literature and
proposes a novel IPM machine drive addressing the above-
mentioned issues appertaining to state-of-art control strategies.
Variations of the nonlinear dq- axis inductances and the perma-
nent magnet flux linkage are estimated online utilizing RLS algo-
rithm. High accuracy in estimations for each parameter have
been achieved. Precise torque control has been obtained owing to
employment of the estimated parameters to generate current com-
mands in the controller. Besides, decoupling compensation has
been adopted with the estimated parameters. By doing so, the
transient performance of the drive system has been improved as
well. The proposed drive achieves constant switching frequency
based operation and hence the increased torque and current ripple
due to variable switching frequency based operation is avoided.
The system input is torque command and the commanded dq- axis
currents are generated by the utilization of the estimated parame-
ters with high accuracy. The superiority of the proposed drive has
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been validated through extensive simulations employing nonlinear
machine models which represent parameter variations.
2. Mathematical modelling of IPM machines

Clark and Park transformations of ABC frame equations give dq-
axis rotating reference frame modelling of AC machines. The well-
known peak convention modelling of IPM machines in the rotor
reference frame are given as follows:

Vd

Vq

� �
¼ R

Id
Iq

� �
þ d
dt

Wd

Wq

� �
þx

�Wq

Wd

� �
ð1Þ
Wd

Wq

� �
¼ Ld 0

0 Lq

� �
Id
Iq

� �
þ Wm

0

� �
ð2Þ
Te ¼ 3p
2

WmIq � IdIq Lq � Ld
� �� � ð3Þ

where Idq , Vdq , Wdq are the rotor frame currents (A), voltages (V)
and flux linkages (Wb), respectively. Wm is the permanent magnet
flux linkage (Wb), p is number of pole-pairs, R is the phase resis-
tance (X),x is electrical angular speed (rad/s), Te is the electromag-
netic torque (Nm) and Ldq are the dq- axis inductances (H),
respectively. The optimum b angle shown in Fig. 1 is obtained by
posing o Te /ob to zero. The b angle is obtained under the assump-
tion that partial derivatives of machine parameters with respect
to current angle is zero.

b ¼ sin�1 �Wm þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wm

2 þ 8 Lq � Ld
� �2Is2q� �

� 4 Lq � Ld
� �

Is
� ��1

� �
ð4Þ
3. Proposed drive system setup with parameter identification

It is known in the literature that the efficiency slightly deviates
from the optimum point in real-life experiments in which the b

angle is obtained utilizing (4). This is because the machine param-
eters vary with b angle in practice [25]. However, precise torque
control can be achieved if the parameter variations in (4) can be
addressed accurately. In other words, there will be gap between
the demanded and the actual torque when actual machine param-
eters vary from those employed in (4). Similarly, the efficiency
deviation from the optimized point may increase. Reduced effi-
ciency deviation and closing the torque gap can be achieved by
accurately estimating and employing the machine parameters in
(4). Thus, the parameters are estimated by the RLS algorithm in
the proposed drive and the precise torque control is achieved.

Schematic block diagram of the proposed system is illustrated
in Fig. 2. The current errors are driven to zero via two PI controllers
and the coupling terms in the machine model in (1) is compen-
sated by decoupling in the controller as shown in Fig. 2. Estimated
parameters are employed in (2) for decoupling compensation. The
generated command voltages in rotating dq- frame is transformed
into the stationary ab frame before being fed into the SVPWM
strategy. Circle limit strategy is employed to avoid over-
modulation. Thus, the drive does not demand the voltage magni-
tude higher than the available DC link voltage and the operation
remains in the linear region. Accurate position angle is obtained
in the proposed drive and employed in the coordinate transforma-
tions similar to drives with an encoder or a position resolver.
Details of the parameter identification strategy shown in Fig. 2 will
be discussed in the next section and the details of the current com-
mand approximation from torque command can be found in [4].
3

4. Online parameter estimation strategy based on recursive
least squares algorithm

Based on high-fidelity machine modelling in [5], it is known
that actual Ld , Lq and Wm parameters of IPM machines at the full
load operation may be roughly � 20%, �35% and � 20% (respec-
tively) lower than their accurate values at no-load operation [26].
RLS algorithm is commonly used in practical applications for non-
linear system identification. Hence, the nonlinear Ld , Lq and Wm

parameters in the proposed drive will be estimated online through
Recursive Least Squares Algorithm.

4.1. Generic expression of RLS

The standard technique consists of the following equations
which are solved recursively [16].

K ¼ P nð Þ£T

£P nð Þ£T þ Ik
ð5Þ

bh nþ 1ð Þ ¼ bh nð Þ þ K Y �£bh nð Þ
	 


ð6Þ

P nþ 1ð Þ ¼ I � K£ð ÞP nð Þ=k ð7Þ
where h is unknown parameter vector, £ is regressor vector, Y is
output vector, K is Kalman gain, P is covariance matrix, I is identity
matrix and k is forgetting factor (FF). Fundamental theory associ-
ated with the generic expression is discussed in [16].

4.2. Implementation strategy in the proposed drive

Firstly, it is assumed that the model is expressed as;

Y ¼ bh£ ð8Þ
where the unknown parameter vector h consists of the nonlinear
parameters which will be estimated.

bh ¼ bLd bLq bWm

h iT ð9Þ

Rearranging (1), one can obtain the output and the regressor
vectors for the case identification study as follows:

Y ¼ V�
d � RId

V�
q � RIq

" #
ð10Þ

£ ¼ I
0
d �weIq 0

weId I
0
q we

" #
ð11Þ

where I
0
d and I

0
q denotes for the derivative expressions of dq- axis

currents which can be expressed by Euler approximation as
Id nþ 1ð Þ � Id nð Þð ÞT�1

s and Iq nþ 1ð Þ � Iq nð Þ� �
T�1
s , respectively, where

Ts is the sampling time. Then the updating algorithm is applied via
(5)-(7) as illustrated in Fig. 3 to recursively estimate the nonlinear
parameters by weighted least square cost functions.

4.3. Coefficient tuning and estimator initialization

k is the only coefficient that needs to be tuned in parameter
estimation process. It is also known as the weighting coefficient
as it weights the old data in the estimation. Theoretically, k is
tuned between zero and one, where one means the oldest mea-
surements are equally weighted. Thus, the influence of the new
measurement data reduces when k approaches to one and hence
the estimation process is relatively slow. On the contrary, the
weight of the oldest measurements reduces when k approaches



Fig. 2. Schematic of the proposed drive system.

Fig. 3. Schematic of the RLS based parameter identification in proposed drive.
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to zero and the influence of the new measurement data increases
but the results may significantly fluctuate.

k ! 0 : Fast response but estimated parameters fluctuate.
k ! 1 : Estimated parameters become smooth but slow

response.
Considering the above, k is tuned based on the trade-off

between fast response and smooth estimation process. It is note-
worthy that sufficient response time is obtained with k close to
one [16].

In general, as a common solution for estimator initialization
where initial conditions are not available, the process can start
with the null parameter vectors and the identity covariance matrix.
In the proposed drive, however, null parameter vector cannot be
used due to zero divisions issue in MTPA block shown in Fig. 2.
Thus, nonzero elements close to zero can be employed as initial
condition of h . The initial covariance is P 0ð Þ ¼ I where I is the
3*3 identity matrix. The issues pertinent to rank deficiency is
sorted out by injecting a high frequency small current signal into
dq- axis current commands and its details can be found in [27].
5. Validation of the proposed drive

The effectiveness and superiority of the proposed strategy is
validated by extensive realistic simulations of a 4.1 kW prototype
4

machine (Fig. 4 designed and manufactured for research and devel-
opment in electric vehicle traction applications and the results are
discussed in detail. Machine specifications are listed in Table 1.

The actual machine parameters in the drives have been deliber-
ately altered by simulating the parameter nonlinearities as in
[5,28]. Inverter switching frequency is set to 5 kHz and initial con-
ditions of the parameters are 10�6. Nominal machine parameters
can also be applied as initial condition of parameter vector, how-
ever, as a matter of fact this has negligible influence on the results.

As has been discussed, k is the only coefficient that needs to be
tuned in parameter estimation process and its influence on the
proposed drive system has been studied. Step change to electro-
magnetic torque command from 5 Nm to 10 Nm has been applied
to the drive at 0.25 s while the machine operates at 1000 rpm
mechanical speed and resultant tuning influence of the forgetting
factor on parameter estimation is shown in Fig. 5. As can be seen,
there is a trade-off between fast response and smooth estimation
process when tuning k. It is seen from Fig. 5 that the forgetting fac-
tor k ¼ 0:999 achieves adequate response time with smooth esti-
mations. Hence, the forgetting factor is tuned as k ¼ 0:999 in the
rest of the paper. Steady-state and transient state improvements
are validated in Sections 5.1 and 5.2, respectively.

5.1. Validation of the robustness to parameter variations

Conventional drive, where constant machine parameters are
adopted in the controller, and the proposed drive, where parame-
ter variations are handled online in the controller, have been oper-
ated at 1000 rpm mechanical speed while the torque is increased
from no-load to full-load operation point. The results are illus-
trated in Fig. 6. It is evident that the precise torque control cannot
be achieved in conventional drive when actual machine parame-
ters deviate from those employed in the controller. However, when
the parameter variations can be accurately estimated, the exact
torque command can be produced by the machine in the proposed
drive. Since parameter variations are handled online and employed
in the controller, precise torque control has been achieved. As can
be seen, when machine parameters vary with the MTPA trajectory



Fig. 4. Prototype IPM machine and its cross-section model (36-slot, 8-pole).

Table 1
Prototype machine specifications.

Type IPM

Number of phase / poles 3 / 8
Nominal Speed 2500 RPM @120 V DC

Continuous Torque 15.7 Nm @51.6 Arms
Continuous Power 4.1 kW @120 V DC
Nominal dq- Axis Inductances 0.282 mH / 0.827mH
Nominal PM Flux Linkage 0.0182 Wb
Nominal Phase Resistance 0.0463 X
Inertia 0.0072 kgm2

Fig. 5. Tuning influence of the forgetting factor on parameter estimation.
Fig. 6. Performance improvement validation at constant speed, varying torque
operation.
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Fig. 7. Validation of the proposed drive at varying speed and varying torque operation.
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as in real-life experiments, the drives where constant machine
parameters are adopted cannot achieve accurate torque production
and the produced torquemay be� 28,7% lower than the demanded
peak torque.

The proposed drive has also been validated at varying load and
varying speed conditions, representing both step and ramp
changes as shown in Fig. 7. As can be seen, the drive is robust to
parameter variations and the precise torque control has been
achieved at wide range from no-load to peak torque at varying
speeds. While step changes in torque and speed is not possible in
real-life operations, it is evident in Fig. 7 that the proposed drive
is robust to even step changes in torque and speed. Although the
step changes in machine parameters are not possible in practice,
the proposed estimation strategy identifies the sudden changes
of the parameters with fast response (in milliseconds). It is note-
worthy that the response time of the estimations in Fig. 7 can be
improved by reducing the value of forgetting factor considering
the trade-off in Fig. 5.
Fig. 8. Transient-state performance improvement validation with proposed com-
pensation strategy.
5.2. Decoupling compensation

The coupling terms in (1) may deteriorate the transient perfor-
mance of the drive system unless decoupling compensation is
employed. It is evident in (1) and (2) that decoupling compensa-
tion relies on accurate knowledge of machine parameters. The
estimated parameters have been employed in decoupling com-
pensation as shown in Fig. 2. Torque command has been
decreased from 15Nm to 10Nm step change at 0.2 s when
machine operates at 2500 rpm and the PI controllers in Fig. 2
has been tuned as in [29]. To better illustrate the influence of
decoupling compensation on dynamic performance of the system,
the modulation strategy and the power electronics blocks have
been deliberately removed in the simulated drive. Improved
dynamic performance in the proposed drive has been validated
in Fig. 8.
6

6. Conclusion

The issues pertinent to state-of-art drives have been discussed
in detail and a novel IPM machine drive has been proposed in this
paper. Nonlinear machine parameters (dq- axis inductances and
permanent magnet flux linkage) have been estimated online
through recursive least squares algorithm with fairly high accura-
cies of each and the estimated parameters have been employed in
the controller to achieve precise torque control and to improve
decoupling compensation. Implementation and initialization strat-
egy of the proposed technique with coefficient tuning has been
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analysed and discussed. Nonlinear machine models have been
employed in the simulated drives as in real life experiments and
28.7% Nm higher output torque have been achieved at the full-
load torque operation compared to the drive where constant
machine parameters are employed in the controller. The effective-
ness and the superiority of the proposed drive has been validated
through high-fidelity machine models of a 4.1 kW prototype IPM
machine designed and manufactured for research and develop-
ment in electric vehicle traction applications.
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