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know to get maximum benefit or to obtain optimal values.
Traditionally, such users choose to use their’s current knowl-
edge in determining the values of products. In this case, they
come across many different problems coming from buyers,
sellers, web platforms, banks, both local and international

1. Introduction

In modern century, one of the most studied fields from all over
the world is the economy or finance. Developing many techno-
logical and scientific tools, experts and scientists produce many

more sophisticated products. These devices are used to deter-
mine the optimal conditions in all situation of daily life. In this
stage of interaction of such devices and its user, they need to
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platforms, as well. Therefore, such problems were studied to
explained and investigated by using scientistic norms. Thus,
such works introduce more intellectual ways for the user.
Therefore, to observe financial market is highly important.
Deeper properties of the modeling of a global financial market
produce a global informative systems. Especially, these
dynamical systems can be used to deep investigation of the
productions. Moreover, the transmitting productions from
producing to users via various ways such as high way, plane,
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shipping is one another important points in observing. The
first step is to conduct its mathematical models being either
complex-valued or real values with wave function. Therefore,
many models were developed by experts in extracting their
wave distributions in today and future direction. Just at this
stage, soliton theory is one of the most used theories because
we get exact informations such as periodic, singular, dark,
bright, complex and travelling. Such dynamical informations
bring an indispensable in understanding, prediction, control
and future prospects of complex behaviors of productions.
In this sense, Sharp et al. investigated the stochastic differential
equations (SDE) in finance [1]. The stability of backward SDE
was analyzed under small perturbations of the coefficients and
of the boundary values in [2]. They introduced the existence
and uniqueness properties. Irving and his team determined
the mixed linear-nonlinear coupled differential equations in
terms of multivariate discrete time series sequences in [3]. Jin
et al. demonstrated the optimal consumption and portfolio
rules in a continuous-time finance model in [4]. More recently,
fractional order impulsive stochastic differential equation in [5]
was studied in controllability by Ganesh and his team. They
used the Haar wavelet approximation method to illustrate
the theory in numerical integration. In [6], Samarskii intro-
duced the economy splitting schemes. In [7], Decardi-Nelson
and their team proposed the robust economic model. They
suggested the notion of risk factor in the controller design
and provided an algorithm to determine the economic zone
to be tracked. Adomian modeled and analyzed a national
economy model, namely, coupled nonlinear stochastic multidi-
mensional (discrete or continuous) operator equations by
using decomposition method to obtain the solutions of com-
plex dynamical systems [§]. With the developing and advance-
ment of computers, the modelling of large power plants were
studied in [9].

Therefore, in modern century, to find deep properties of
economy and finance problems by using mathematical mod-
els is one of the most studied fields due to its wide appli-
cation areas of nonlinear science. Such mathematical
models are generally presented in the form of nonlinear
partial differential equations (NPDEs). One of the most
studied NPDEs is the Ivancevic option pricing model
(IOPM) given by

iallP(S7 [) + %O'am\y(sv l) + ﬁ\‘}'(& Z)|2\P(Sv Z) = Ov (11)

where i = \/—_1,‘P(s7 t) is a complex-valued function of s and
¢t [10]. In Eq. (1.1), the independent variable 7 being 0 <t < T
is used to represent time, and s is used to explain the asset
price of product and defined 0 < s < oo. The dependent vari-
able W(s, 7) is used to symbolize the option price wave func-
tion. Further, the probability density function is also given by

|¥(s,7)|* and this term is used to show the potential field.
Furthermore, ¢ is dispersion frequency coefficient, and it is
used to symbolize the volatility being constant or stochastic
process itself, (in this paper, it is considered as a constant),
and also f§ is considered as adaptive market potential. Eq.
(1.1) is used to describes a nonlinear wave-packet which is
defined in the complex-valued wave function. Moreover,
Eq. (1.1) presents a relationship among economy and
optional pricing. Some properties of Eq. (1.1) are investigated
in [11] by using various methods such as trial function

method, tanh expansion method, direct perturbation method.
In [28], the fractional properties of Ivancevic option pricing
model were investigated. In [29], the vector financial wave
propagations were extracted. In [30], a nonzero adaptive mar-
ket potential was studied.

The rest of this paper is organized as follows. In Section 2,
two important properties of sine-Gordon equation are
obtained. In Section 3, the formulations of methods such as
rational sine-Gordon equation (RSGEM) which is recently
developed, and modified exponential function method
(MEFM) are presented. These two methods are very impor-
tant for the studied governing model in extracting more deep
properties. RSGEM is based on the properties of trigonomet-
ric functions. This is the one of the novelties of this paper.
Moreover, MEFM is based on the Riccati differential equa-
tion. Thus, via these methods, we investigate deeper proper-
ties of IOPM in special functions such as trigonometric,
periodic, singular, dark, mixed dark-bright, travelling and
instability. Moreover, we observe the wave behaviors of
IOPM via various simulations. Physically, we extract many
different physical features such as price estimation, future
direction of any production in economy, determining an
increasing trend and so on. In Section 4, the applications
of the schemes to the IOPM and the plotted figures are
reported. In Section 5, the modulation instability analysis
and the stability of the steady state properties are also
extracted. In Section 6, novelties and outcomes of this paper
are given as a result.

2. Investigation of the sine-Gordon equation

Before starting the main method, we need to extract two
important properties of sine-Gordon equation because
RSGEM is based on these two important facts coming from
sine-Gordon equation given by [12-14]

Uy — Uy = n1* sin(u), (2.1)

being m is a real constant and nonzero. With the help of wave
transformation given as u = u(x,t) = U(&), & = u(x — ct), Eq.
(2.1) may be rewritten as

m2

D

217
where U = U(¢),U" = ‘:'15’5 and c, u are real constants nonzero.

After some basic calculations, Eq. (2.2) may be rewritten as

U’ sin(U), (2.2)

" 2 P

(((5]) ) - ﬁ sin? (%]) +k, (2.3)
being k is an integral constant. Considering as k =0, o =¥,
and a* = ”2(’1”77(2), Eq. (2.3) reads as

o' = asin(w), (2.4)

in which o = w(&). Putting as a = 1 and solving yields the fol-
lowing two important properties as [16,17]

2pe*

sin(w) = Pt 1 1 p_; = sech(§), (2.5)
2pec
cos(w) :]#:l | p_, = tanh(¢&). (2.6)
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3. Formulations of schemes

3.1. Projected RSGEM

This part presents the general properties of RSGEM which is
newly developed scheme. Let’s start the general nonlinear
mathematical model given as

) =0. (3.1)
In Eq. (3.1) when we apply the wave transformation as
E=E(x,1) =U(&), &= u(x—ct), we convert Eq. (3.1) into
the following nonlinear differential equation given by

NU, U, U" U*,---) = 0. (3.2)
where U= U(¢), U

function of solution formula as

U— S tanh™ ' (&)[A4;sech(€) + ¢ tanh(&)] + 4 (3.3)

S2¥ tanh’ (&)[Bisech(¢) + d; tanh(&)] + B, | '
With the help of Egs. (2.5) and (2.6), Eq. (3.3) is rewritten as
S cos™H ()[4 sin(w) + ¢;cos(w)] + Ao
S cosi!(w)[B; sin(w) + d; cos(w)] + By
Balancing in Eq. (3.2), we find the relationship between n and
M producing the analytical solution to the Eq. (3.1).

—_—_— = =2
PE= & =2..
(B, By, By, B,

:%. In Eq. (3.2), we suppose the test

U= (3.4)

3.2. Projected MEFM

In this subsection, we present the general properties of
MEFM. Let’s start the general nonlinear mathematical model
given as

P(Y, ¥, ¥, ¥, ) =0.
In this equation, when we apply the wave transformation as
Y =W¥(x,1) = U(&), & = u(x — cr), it produces
N(U, U, U", U%--)=0.
where U = U(¢), U = % In this last equation, we suppose the
test function of solution formula as
Zl OA [eig]_
- S lBleY

where 4;, B;, (0 < i < N,0 <j < M) are constants to be deter-
mined later. In Eq. (3.5) Q = Q(¢) satisfies the following differ-
ential equation
Q = exp(—Q) + pexp(Q) + /. (3.6)
Eq. (3.6) is of the following several families [15,18,19]

Family 1: When p 7 0,2 — 4u > 0,

Q&) =1In (_22#_4# x tanh (22_4'“(5 + E)) - A) .

-+ AN(:’?NQ
-+ B}\/[é’st27

A0+A1€7
By + Bje @ + -

(3.5)

2 2
(3.7)

Family 2: When p # 0, 1% — 4u < 0,
Q%) —ln( —);ﬂ+4,u X tan ( _/1;+4 5+E> —i
(3.8)

Family 3: When u =0, 5 0 and A2

Q&) = —in <e(<+5+—1> . (3.9)

Family 4: When 0,/ # 0 and 2*> — 4u = 0,

—4u >0,

Q&) = 1n<—72A(fJfE) +4>. (3.10)
I(E+E)
Family 5: When =0,/ =0 and 4> —4u =0,
Q&) =in(E+ E). (3.11)

A, B, (0<i< N, 0<Lj<N),E . p are coefficients to be
obtained, and M, N are positive integers that one can find by
the balancing principle.

Step 3: Inserting Eq. (3.5) into Eq. (3.2) produces new solu-
tions to the Eq. (3.1).

4. Applications

This section applies these two powerful schemes in extracting
the periodic, complex, dark, travelling wave and other solu-
tions to Eq. (1.1).

4.1. Application of the RSGEM

Taking the following travelling wave transformation given by
W(s, 1) = U(E)e", &=t +ps, y =
where 7 and w are time velocity, and p and k are the parame-
ters coming from the asset price of product. Substituting Eq.
(4.1) into Eq. (1.1), yields

p*VU — (7 +2w)U + 28U° = 0, (4.2)

from the real part while we obtain the following equality from
the imaginary part

wt + KS, (4.1

r+xp:0:>r:—pic, (4.3)

where V(.) = lg‘
obtained from complex dynamic. Due to Eq. (4.3), the govern-
ing model render to apply RSGEM and MEFM. Specially,
considering as M = 1 and n = 1 into Eq. (3.4), we get the fol-
lowing test function of the solution formula for Eq. (4.2)

Eq. (4.3) is one of the important steps

Ay + A, sin(w) + ¢; cos(w)

u= By + B sin(w) + d, cos(w)

(4.4)

Putting Eq. (4.4) into (4.2) presents an algebraic equations
of trigonometric functions. By calculating via various pro-
grams, we find the values of Ay, Ay, By, By, 8,1, w, p,d, c1.

24e2d ¢ \/EEIZF —B(AP+c2)
Set-1: When 4, = Y9 g, — VTG ), L9
€ en Ao VB 0 A3 P VBE
2 (,‘2 . . .
w= —"—zz—i—ﬂ (;‘J;'),we have the mixed dark-bright travelling
1 1
wave soliton as
\Pl.l — ei(}c,s‘+lg)
\/A +ey 2d,
) Ajsech(2sv — 2tkv) + \/ﬁ + ¢ tanh(2sv — 2¢xv)
Bysech(2sv — 2txv) + 7VB+‘“' + d, tanh(2sv — 21Kv)
\/AI‘F
(4.5)
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where ¢ = —£ + puti+d) | _ VB g B <0 for valid Case-2: Once it is selected as 4y = ”"BO A = M,
2 B +4— ’ /B?erf ’ ' B’ B

solitons. Ay =B yp— 21 (A — 4u)p*, we extract the complex

Remark-1 In the solution W, (s, ) is 4, # By and ¢, # d,

simultaneously, for valid solution. Set-2: If A4, = %7
i 2 p2 2 2
AlzmivB;’gOB'dlK:f —72w [3—7 3,We have the

mixed complex dark-bright solution as

Cl i(—stttw
Yo, = i(—s{+tw)
12 B, e
dy + isech(sp + tp{)Y + By tanh(sp + 7p()
By + Bysech(sp + tp() + d, tanh(sp + 1p{)’

where C:\/"T”Z—Zw,ﬁ: B, - B —d, and, B} - B -
0

(4.6)

d; >0, = — 2w > 0,for valid solitons.
c W B
Set-3: It is selected as Aj = %7 A = —%,

2
—p? _
7—2‘4’7[3——42,

mixed dark-bright given as as

K=— we have conjugate solution in

v, - €1 istim) dy — isech(sp + tp{)9 + By tanh(sp + tp{)
By By + Bysech(sp + tp() + d, tanh(sp + 1p{)’
(4.7)

where (= /=% —2w,9 = /B ~d;, and, B}—Bi—

2
dy > 0, == — 2w > 0,for valid solitons.
— —4p3—p* (B2 +d?
Set-4: Taken as A,=-24L 4, = Ve By
2/p 2/p
2i\/pe .
d pﬁ” , w=14(=2K? — p?), T = —kpproduces another mixed

soliton solution

pe <) (—ipd) + v/Isech(ps — kpt) + 2+/Be; tanh(ps — kpt))
2\/B(pBisech(ps — kpt) + 2i\/Bey + pd, tanh(ps — kpt))
(4.8)

\Pl.4 =

where i = —4fc3 — p*(B} + d;), and, /i > Ofor valid solitons.

4.2. Application of the MEFM

Balancing the terms U” and U® in Eq. (4.2), we get the relation;
N =M + 1. Choosing M =1, and N =2 Eq. (3.5), becomes

Ay + A1~ 4 4,290
Bo + Ble*‘?@)

U() = (4.9)
Substituting Eq. (4.9) along with Eq. (3.6), yields a polynomial
in powers of exponential functions which produces the values
of the parameters involved into different cases.

Case-1: When
Ay = D200 Ay =PI gy = B = — 5 — 4 (7 — ),

we get the following mixed dark soliton solution
- i(sete(—2-1 mp 2(—2—y/7Tanh (L /7(E+sp—txp)
o5 4) g 3 Ay

VB(—4— /7Tanh [} /7(E + sp — 1xp)]) '
(4.10)

\PI.S =

where y = 1> —4u,
w7 0,2 —4u > 0 for validity solution.

under the terms of family-1 being

N 2

conjugate of W, s as

ippe s+ (2 + 2L“ (=2 —/7tanh (3 /7(E +sp — ncp))))

\PI.G = - A ;
VB(=4 — /7tanh (3 \/Z(E + sp — txcp)))
(4.11)
being y = /> —4u,j = —%—%sz.
. p P ____JA¢B - 2B
Case-3: Taken as B() = —ZAUU+£A] 7ﬁ = —m,
A, = w W= —% -1 (/12 —4u)p?, extracts the dark

soliton solution

hetltester) (2 - ZL“ (A4 ctanh [Lc(E +sp — tKP)]))

Y, —
v 2B, (=4 —ctanh [L¢(E + 5p — txp)])

)

(4.12)

being h=2u(—2A40 + Ad1),0 = 5 — L (2 —4p)p’,c =
72 —4p.
Case-4: Under the family-1 conditions, considered as 4y =

n + (__+/ M) fl
By

Li(Z? = 2p), A4y = id, By =2 w = — =Y

A, = i, produces another new dark sollton solution

ie" 7y1(2 4 £ (= — htanh (g(s, 1)) — & 2 + hitanh (g(s, )] )
By[—A — htanh (g(s,1))][2 + 1(—4 — Iitanh(g(s, 1)))] '
(4.13)

fls, 1) = s+ (=5 + L (=4 + 2n)), g(s,1) =
0
Bi Bl - - i
‘h(EJr ;/B; —tZBO ),h:\//bz—4u,::22—2,u,z:2—u

Case-5: With the help of family-1 conditions, taken as 4y =

ll"1.8 =

being

avi _ 9. __ 2B _ (r(2+2n')3(2) _ V"
71(/“ - 2:“)3"41 = *21;%31 _To’ﬁ - 7222(/1274“) P = 7\/5\;/12?’
A, = —2i, we find the periodic solution as

ie““"‘*"")j(qﬁ — Ohtanh (f(s, 1)) — (2 + hitanh (s, z)))z)

Fro=- B.(—J — htanh (1 A(—i—Titanh (f(s.1))) ’
(= — Titanh (f(s, ))) (2 + A b e

(4.14)

being  f(s,1) = Jh(E — W2 4 mime i) — /77 — 4y,

2 g

J=220 =530

,q& =2-0A
5. Modulation instability analysis

In this part of the study, modulation instability analysis (MI)
for the stationary solutions of Eq. (1.1) is studied by supposing
that Eq. (1.1) have the following stationary solution

1(s,1) = (Vao + ¥ (s, 1))e”", (5.1)

where a, represent the incident power. We investigate the evo-
lution of the perturbation W (s, ) using the concept of linear
stability analysis. Substituting Eq. (5.1) into Eq. (1.1) and lin-
earizing the result in W(s, ¢), we acquire

¥, + %‘I’ + Bay(¥ + W) =0, (5.2)
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where W* is the conjugate function and o is dispersion fre-
quency coefficient, supposing solutions of Eq. (5.2) are in the
following format

"P(S, l) — ,yei([fs—zt) + 53—1'(/1?—9(1)7 (53)

where f is the wave number, o is the frequency of the pertur-
bation. Putting Eq. (5.3) into Eq. (5.2) gives a set of two

homogenous equations as follows
~ay = 4890 + Byaq + ray = 0 (54
at — L fPot + Byag + Pray = 0. .

From Eq. (5.4), one can easily obtain the following coefficient
matrix of y and ¢

(—a—%ﬁzaJrﬂao pao )(V)_(O). (53)
far  x=iFo+fa )N/ \0

The coefficient matrix in Eq. (5.5) has a nontrivial solution if
the determinant equal to zero. By expanding the determinant,
we obtain the following

4 2
—o? + ﬁTa — Boay =0, (5.6)

Eq. (5.6) has the following solutions for o :

0 =1 /oy Fo A

w =~ 1 VB
The stability of the steady state is determined by Eq. (5.7),
when « has an imaginary part. Thus, the necessary condition

necessary for the existence of modulation instability to occur
from Eq. (5.8) is when either

(5.7)

po —4ay >0, and o <0, (5.8)
or
fo —4ay <0, and o > 0. (5.9)

Now for investigating instability modulation gain spectrum it
should be noted that

g(B) = 2Im(x) = 7B /o/Bo — 4ay, (5.10)
we have the following cases,

Case-1 If it is considered as
g(p) = 2Im(x) = —B*\/a/Bo — 4ay, (5.11)

we have the following sub-cases

Fig. 1

Case 1.1) For these values ap = 1,0 = % we have

1
gui(B)=—3B7VB-12.
Case 1.2) For these values ay = —1,6 = 2 we have
g2(B) = =28/ +2.
Case 1.3) When ay =1,0 = 1 we have

81.3(ﬁ) = —.B3/2\/ B—1

Case 1.4) When we consider these parameters given as
ay = —1,0 =1 we have

f1s) =387+

Case-2 When it is selected as

() = 2Im[a] = B*V/a\/Bo — 4ay,
we have the following sub-cases
Case 2.1) For these values gy = 1,6 =1 we have

&.1(p) = %ﬁm v =16+ 8.

(5.12)

Case 2.2) For these values ay = —1,6 = 2 we have
€2(B) =28"/B+2.
Case 2.3) Once gy = 4,0 = | we have

4

g3(B) = /33/2 B- 9
Case 2.4) When ay = —1,0 =1 we have

62a(H) =3 2 VF TS,

Case 2.5) If ¢y =§,0 = { we have

625(8) = 15 /20195,

These sub-cases can be expressed as the following graphs

6. Results and discussion

In this part of the paper, we present some remarks and phys-
ical meanings of figures. All figures were plotted under the suit-

B Im|u]

The 3D surfaces of Eq. (4.5) under the values, xk =0.1, f = -3, 4, =0.5, ¢, =0.3, B, =.0.1, d, =0.2.
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ful"2 Im[u]

0.0

-1.0 -0.5 0.0 0.5 1.0

-10 -05 00 0s 10

Fig. 2 The contour surfaces of Eq. (4.5) under the values k = 0.1, f = -3, 4, =0.5, ¢, =0.3, B, =.0.1, d, =0.2.

2
—_\ 0.0100
X
0.0005 ]
000 f
ot |
a.00s0f
50 50 s

Fig.3 The (a) 3D surface and (b) 2D surface of Eq. (4.6) under the values, p = 0.1, w = —0.3, B, =3, ¢, = 0.3, B, =04, d, = 0.2. and
t = 0.123. for 2D graph.

|uj~2
030,

0.25

100 50 0 50 0 *

Fig. 4 The (a) 3D surface and (b) 2D surface of Eq. (4.8) under the values, k =0.1, f = —-0.1, p=0.2, B, =04, d, =0.5, ¢, = 0.3,
and ¢ = 0.12 for 2D graph.

able values of the parameters. Fig. 1 is used to symbolize the points of these fluctuations are also observed in contour simu-
mixed dark-bright simulation. Its fluctuation is also seen in lations. Figs. 3 and 4 are another singular simulation which the
the right side via imaginary part. In Fig. 2, the high and low governing model is stable. Fig. 5 explain another wave
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[ul*2 Im(u|

Fig. 5 The 3D surfaces of Eq. (4.10) under the values, 2=0.8, u=0.1, E=0.5, k=0.3, p=0.1, =0.2.

[u*2 Im(u|
0.0030 0.06
00035F 004f
00020 [\ AM
00015k A A i
-100 -5 30 0w
\ uuu{;- ‘| ‘|‘l" "”Ill‘IWH\‘
\ ’ | vvi l“ _u'd2-|V| | | ’\ H |I l‘l
00005 ol
\/ R AR
; i . ; s
-100 -5 50 100 006k

Fig. 6 The 2D surfaces of Eq. (4.10) under the values, 1 =0.8, u=0.1, E=0.5, k=03, p=0.1, f=0.2,7=0.11.

Fig. 7 The 3D surfaces of Eq. (4.11) under the values 1 =0.8, u=—0.1, E=0.5, k=03, p=0.1, $=0.2.

distribution of governing model in mixed dark-bright soliton wide range. In this figure, wave fluctuations of IOPM are sim-
solution. Fig. 6 is two dimensional simulation for 7z =0.11. ulated in frequent. Fig. 9 is plotted to show the stability range
Fig. 7 is strict singular wave simulation which is coming from of the parameters of IOPM. This is very important the test
the strain condition of Family — 1. Fig. 8§ is used to plot in a function of the solution formula for valid result.
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Fig. 9 The modulation instability graphs for different values in Eqs. (5.11) and (5.12).

7. Conclusions

In this article, RSGEM and MEFM were successfully applied
to the governing model in extracting the dark, complex, mixed
dark-bright, singular solitons, periodic and trigonometric
functions solutions to IOPM. The instability modulation anal-
ysis for the stationary solution of Eq. (1.1) is investigated. The
constraint conditions are reported in detail. Choosing suitable
values of parameters the two-dimensional and three-
dimensional surfaces were plotted via computational pro-
grams. The direction of the option price wave function’s in
the future may be estimated by these findings such as singular
from the figures and contour points. From Fig. 9 plotted via
instability modulation analysis, it is concluded that an adap-
tive market potential is closely related to the representation
of the incident power and the dispersion frequency coefficient,
ap and o, respectively [20-27]. The extracted results may be
used to explain some deeper properties of IOPM economy
model. Their option price wave fluctuations are given with
the real physical meanings of IOPM economy model and
stable option price pulses. All the acquired solutions of the
IOPM model have numerous applications in many branches
of nonlinear sciences, including economy, finance, the option
price and so on. For example, the sine-Gordon traveling waves
can give new insights in determining and controlling the option
price wave fluctuation of long time assets of productions.
Thus, RSGEM which recently developed method and MEFM
may be also used to find different solutions of nonlinear model
arising in the field of economy and other related fields [31-42].
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