Filomat 33:11 (2019), 3497–3508 https://doi.org/10.2298/FIL1911497K

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Semicommutativity of Rings by the Way of Idempotents

Handan Kose^a, Burcu Ungor^b, Abdullah Harmanci^c

^aDepartment of Mathematics, Kirsehir Ahi Evran University, Kirsehir, Turkey ^bDepartment of Mathematics, Ankara University, Ankara, Turkey ^cDepartment of Mathematics, Hacettepe University, Ankara, Turkey

Abstract. In this paper, we focus on the semicommutative property of rings via idempotent elements. In this direction, we introduce a class of rings, so-called right *e*-semicommutative rings. The notion of right e-semicommutative rings generalizes those of semicommutative rings, e-symmetric rings and right *e*-reduced rings. We present examples of right *e*-semicommutative rings that are neither semicommutative nor e-symmetric nor right e-reduced. Some extensions of rings such as Dorroh extensions and some subrings of matrix rings are investigated in terms of right *e*-semicommutativity. We prove that if *R* is a right *e*-semicommutative clean ring, then the corner ring *eRe* is clean.

1. Introduction

Throughout this paper, all rings are associative with identity. Due to Bell [4], a ring R is called to satisfy the Insertion-of-Factors-Property (IFP) if ab = 0 implies aRb = 0 for any $a, b \in R$. In [14] Narbonne and in [18] Shin used the terms semicommutative and S I for the IFP, respectively. In this work, we say semicommutative for this notion. In ring theory, the notion of semicommutativity plays an important role and has generated wide interest. Semicommutativity and its generalizations have been studied by many authors. Some generalizations of semicommutative rings are given as central semicommutative rings [2] and nil-semicommutative rings [7]. A ring R is central semicommutative if ab = 0 implies that $aRb \subseteq C(R)$ for any $a, b \in R$ where C(R) is the center of R. In [7], it is said that a ring R is *nil-semicommutative* if for every $a, b \in R, ab$ being nilpotent implies that aRb is a nil subset of R. Every semicommutative ring is central semicommutative and nil-semicommutative.

A ring R is symmetric [11] if abc = 0 implies acb = 0 for all $a, b, c \in R$. In [13] symmetric rings are generalized to *e*-symmetric rings. The ring R is called *e*-symmetric for $e^2 = e \in R$ if abc = 0 implies acbe = 0for all $a, b, c \in R$. Every symmetric ring is semicommutative.

Idempotent elements are important tools for studying the structure of a ring. In the light of aforementioned concepts, it is a reasonable question that what kind of properties does a ring gain when it satisfies semicommutativity by way of idempotent elements? This question is one of the motivations to deal with the semicommutative property using idempotents. Motivated by the works on semicommutativity and esymmetricity, the goal of this paper is to extend the notion of semicommutativity via idempotent elements

²⁰¹⁰ Mathematics Subject Classification. Primary 16U80; Secondary 16N40

Keywords. Semicommutative ring, e-semicommutative ring, symmetric ring, e-symmetric ring, idempotent

Received: 05 January 2019; Accepted: 15 July 2019

Communicated by Dragan S. Djordjević

Email addresses: handan.kose@ahievran.edu.tr (Handan Kose), bungor@science.ankara.edu.tr (Burcu Ungor), harmanci@hacettepe.edu.tr (Abdullah Harmanci)

of the rings, namely, *e*-semicommutativity. We present some characterizations of this notion in various ways. We prove that every *e*-symmetric ring is *e*-semicommutative, and give an example to show that the converse of this result need not be true. We also discuss properties of this class of rings and give some structure theorems. Furthermore, some applications of *e*-semicommutative rings are performed. In this direction, this concept is considered for some rings of matrices. On the other hand, as an application, we deal with the question: If *R* is a clean ring and $e^2 = e \in R$, is the ring *eRe* clean? This question was asked in [8]. Šter proved in [19] that a corner ring *eRe* may not be clean when *R* is a clean ring and *e* is a full idempotent of *R*. We show that if *R* is a right *e*-semicommutative and clean ring, then *eRe* is also clean.

In what follows, \mathbb{Z} denotes the ring of integers and for a positive integer n, \mathbb{Z}_n is the ring of integers modulo n. Also U(R) and nil(R) stand for the group of units and the set of all nilpotent elements of R. We write $M_n(R)$ for the ring of all $n \times n$ matrices, $U_n(R)$ for the ring of all upper triangular matrices over R for a positive integer $n \ge 2$ and $D_n(R)$ is the ring of all matrices in $U_n(R)$ having main diagonal entries equal. For a ring R, P(R) and J(R) denote the prime radical and the Jacobson radical of R, respectively.

2. Properties of *e*-semicommutative rings

In [13] *e*-symmetric rings and *e*-reduced rings are introduced and investigated. Let *R* be a ring and $e^2 = e \in R$. Then *R* is called *e*-symmetric if whenever abc = 0, then acbe = 0 for every $a, b, c \in R$. The ring *R* is *right* (resp. *left*) *e*-reduced if ae = 0 (resp. ea = 0) for each nilpotent $a \in R$. By motivated these *e*-contexts, in that vein, in this section we will introduce and study the structures of right *e*-semicommutative rings generalizing *e*-symmetric rings and right *e*-reduced rings [13]. Throughout this paper, *e* denotes an idempotent element of a ring *R* which is under consideration.

Definition 2.1. Let *R* be a ring and *e* an idempotent of *R*. Then *R* is called *right* (resp. *left*) *e-semicommutative* if for any $a, b \in R$, ab = 0 implies aRbe = 0 (resp. eaRb = 0). The ring *R* is called *e-semicommutative* in case *R* is both right and left *e-semicommutative*.

The following example shows that the notion of *e*-semicommutativity is not left-right symmetric, that is, there are left *e*-semicommutative rings which are not right *e*-semicommutative and vice versa. Moreover, any right (left) *e*-semicommutative ring may not be semicommutative and the concept of right (left) *e*-semicommutativity depends on the idempotent.

Example 2.2. Let *R* be a semicommutative ring and $e = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} \in U_2(R)$. Then $e^2 = e$. Let $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, $B = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \in U_2(R)$ with AB = 0. Then ax = 0, ay + bz = 0, cz = 0. Then aRx = 0 and cRz = 0. For any $C = \begin{bmatrix} u & v \\ 0 & r \end{bmatrix} \in U_2(R)$, we get $ACB = \begin{bmatrix} 0 & auy + avz + brz \\ 0 & 0 \end{bmatrix}$. Hence eACB = 0 for all $C \in U_2(R)$. So $U_2(R)$ is left *e*-semicommutative. Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \in U_2(R)$. Then Ae = 0. For any $B = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in U_2(R)$, $(ABe)e = \begin{bmatrix} 0 & -a + b + c \\ 0 & 0 \end{bmatrix}$. We may find elements *a*, *b* and $c \in R$ such that $-a + b + c \neq 0$. Then $(ABe)e = \begin{bmatrix} 0 & -a + b + c \\ 0 & 0 \end{bmatrix} \neq 0$ for some *a*, *b*, $c \in R$. Hence $U_2(R)$ is not right *e*-semicommutative. This yields $U_2(R)$ is also not semicommutative. Now consider the idempotent $f = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \in U_2(R)$. Let $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, $B = \begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \in U_2(R)$ with AB = 0. As in above discussion, $ACB = \begin{bmatrix} 0 & auy + avz + brz \\ 0 & 0 \end{bmatrix}$, and so ACBf = 0for every $C = \begin{bmatrix} u & v \\ 0 & r \end{bmatrix} \in U_2(R)$. Therefore $U_2(R)$ is right *f*-semicommutative. But $U_2(R)$ is not left *f*semicommutative because for $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \in U_2(R)$, we have AB = 0, but $fAfB \neq 0$. **Proposition 2.3.** Let R be a ring, $0 \neq e^2 = e \in R$ and n > 1 an integer and $E = (e_{ij}) \in U_n(R)$ where $e_{1j} = e$ and $e_{ij} = 0$ for $i \neq 1$. Then R is right e-semicommutative if and only if $U_n(R)$ is right E-semicommutative.

Proof. First note that $E^2 = E \in U_n(R)$. Assume that *R* is right *e*-semicommutative. Let $A = (a_{ij}), B = (b_{ij}) \in U_n(R)$ with AB = 0. Then $a_{11}b_{11} = 0$. By assumption, $a_{11}Rb_{11}e = 0$. Let $C = (c_{ij}) \in U_n(R)$. Then $a_{11}c_{11}b_{11}e = 0$. This yields ACBE = 0. Thus $U_n(R)$ is right *E*-semicommutative.

Conversely, suppose that $U_n(R)$ is right *E*-semicommutative. Let $a, b \in R$ with ab = 0. Consider the matrices $A = (a_{ij}), B = (b_{ij}) \in U_n(R)$ where $a_{11} = a, b_{11} = b$ and other entries of *A* and *B* are zero. Then AB = 0. Hence $AU_n(R)BE = 0$. It follows that aRbe = 0. Therefore *R* is right *e*-semicommutative. \Box

An idempotent *e* is called *left* (resp. *right*)-*semicentral* if (1-e)Re = 0 (resp. eR(1-e) = 0). So *e* is left (resp. right)-semicentral if and only if re = ere for all $r \in R$ (resp. er = ere for all $r \in R$). We now characterize right *e*-semicommutativity of a ring *R* in terms of *e* being left-semicentral and semicommutativity of the corner ring *eRe*.

Theorem 2.4. Let *R* be a ring and $e^2 = e \in R$. Then the following hold.

- (1) R is right e-semicommutative if and only if e is left-semicentral and eRe is semicommutative.
- (2) *R* is left e-semicommutative if and only if e is right-semicentral and eRe is semicommutative.

Proof. (1) Assume that *R* is right *e*-semicommutative. Then (1 - e)e = 0 implies (1 - e)Re = 0. So *e* is left-semicentral. Let *eae*, *ebe* \in *eRe* with *(eae)(ebe)* = 0. By assumption *eaeRebe* = 0. It implies that (eae)(eRe)(ebe) = 0. Hence *eRe* is semicommutative. Conversely, let *a*, *b* \in *R* with *ab* = 0. Then *eabe* = 0. Since *re* = *ere* for each *r* \in *R*, *eabe* = 0 implies *(eae)(eRe)(ebe)* = 0. This and *re* = *ere* for each *r* \in *R* yield *aRbe* = 0. This completes the proof.

(2) Similar to the proof of (1). \Box

We now present an *e*-semicommutative ring with $0 \neq e^2 = e \in R$, but not semicommutative.

Example 2.5. Let *k* be a field, A = k < x, y, z > be the free algebra with indeterminates *x*, *y*, *z* over *k* where *x* commutes with both of *y*, *z*, and *y*, *z* are noncommuting. Consider the ideal $I = \langle x^2 - x, xy, y^2, xz \rangle$ of *A* and the ring R = A/I. Let *x*, *y*, *z* coincide with their images in *R* for simplicity. Then $0 \neq x \in R$ is a central idempotent. We claim that *xR* is semicommutative and (1 - x)R is not semicommutative. On the one hand, let $a, b \in R$ with xab = 0. Since xy = xz = 0 and *x* is central, considering the form of the elements of *R*, we have xaRb = 0. Thus *xR* is semicommutative. On the other hand, (1 - x)yy = 0 but $(1 - x)yzy \neq 0$. Therefore (1 - x)R is not semicommutative. By Theorem 2.4, *R* is *x*-semicommutative.

The concept of right *e*-semicommutativity is a generalization of that of α -semicommutativity introduced in [1]. A ring *R* with an endomorphism α is called α -semicommutative if for any $a, b \in R$,

- (i) ab = 0 implies aRb = 0,
- (ii) ab = 0 if and only if $a\alpha(b) = 0$.

Every α -semicommutative ring is semicommutative, and so it is right *e*-semicommutative. There are esemicommutative rings but not α -semicommutative. For example, the ring $U_2(R)$ considered in Example 2.2 is right *e*-semicommutative but not semicommutative, and so not α -semicommutative. Another kind of α -semicommutativity was introduced in [3]. Let *R* be a ring and α be a nonzero non identity endomorphism of *R*. Then *R* is called α -semicommutative if whenever ab = 0 for $a, b \in R$, $aR\alpha(b) = 0$. Clearly, α -semicommutativity in the sense of [3] is a generalization of α -semicommutativity in the sense of [1]. We have the following relationship between right *e*-semicommutativity and α -semicommutativity in the sense of [3].

Proposition 2.6. A ring R is right e-semicommutative if and only if

(i) $\alpha: R \to R$ defined by $\alpha(r) = re$ where $r \in R$ is an endomorphism,

(ii) R is α -semicommutative.

Proof. Assume that *R* is right *e*-semicommutative. Let $a, b \in R$. Clearly, $\alpha(a + b) = \alpha(a) + \alpha(b)$. Since *e* is left-semicentral by Theorem 2.4(1), we have $\alpha(ab) = abe = aebe = \alpha(a)\alpha(b)$. Hence α is an endomorphism of *R*. Now assume that $a, b \in R$ with ab = 0. Then aRbe = 0, and so $aR\alpha(b) = 0$. Thus *R* is α -semicommutative. The converse is obvious. \Box

It is well known that every semicommutative ring is abelian, i.e., every idempotent is central.

Corollary 2.7. Let *R* be a ring and $e^2 = e \in R$. If *R* is right *e*-semicommutative and $f^2 = f \in R$, then the following hold.

- (1) eRe is an abelian ring.
- (2) afe = fae for any $a \in R$.
- (3) If $f \in eRe$, then f is left-semicentral in R.

Proof. (1) By Theorem 2.4(1), *eRe* is semicommutative. Then *eRe* is abelian.

(2) Let $a \in R$. Then afe = (eae)(efe)e since e is left-semicentral and fe = efe is an idempotent in eRe. By the abelianness of eRe, (eae)(efe) = (efe)(eae). The idempotent e being left-semicentral implies afe = (eae)(efe)e = (efe)(eae)e = fae.

(3) Let $f = efe \in eRe$. For any $a \in R$, af = (eae)(efe)(efe)e = (efe)(eae)(efe) = faf. Hence f is left-semicentral in R. \Box

Obviously, *R* is a semicommutative ring if and only if *R* is a 1-semicommutative ring. The notion of an *e*-semicommutative ring is an extension of semicommutative rings as well as a generalization of *e*-reduced rings. Right *e*-reduced rings are *e*-symmetric by [13, Corollary 4.3]. We show that every *e*-symmetric ring is right *e*-semicommutative.

Proposition 2.8. *Every e-symmetric ring is right e-semicommutative.*

Proof. Assume that *R* is an *e*-symmetric ring. Let $a, b \in R$ with ab = 0. For any $r \in R$, we have abr = 0. By assumption *arbe* = 0. Hence *R* is right *e*-semicommutative. \Box

There are right *e*-semicommutative rings which are not *e*-symmetric as shown below.

Examples 2.9. (1) There are semicommutative rings which are not symmetric.

(2) Let *R* be a semicommutative ring which is not symmetric considered in (1). Then $U_2(R)$ is right *e*-semicommutative but not *e*-symmetric where $e = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in U_2(R)$.

Proof. (1) Let $Q_8 = \{1, x_{-1}, x_i, x_{-i}, x_j, x_{-j}, x_k, x_{-k}\}$ be the quaternion group and consider the group ring $R = \mathbb{Z}_2 Q_8$. The elements of $\mathbb{Z}_2 Q_8$ as \mathbb{Z}_2 -linear combinations of $\{x_g : g \in Q_8\}$. By Marks [12, Example 7], R is a right duo ring, equivalently, $Rr \subseteq rR$ for all $r \in R$. Let $a, b \in R$ with ab = 0. Then $Rb \subseteq bR$. Hence $aRb \subseteq abR$. Since ab = 0, aRb = 0. Therefore, R is semicommutative and so R is e-semicommutative. But R is not symmetric by taking $a = 1 + x_j$, $b = 1 + x_i$ and $c = 1 + x_i + x_j + x_k$. Then abc = 0 but $bac \neq 0$. In fact $bac \neq 0$ as in [12, Example 7]. Hence R is not symmetric.

(2) Let *R* be a semicommutative ring which is not symmetric considered in (1). Let $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in U_2(R)$. Then

 $Ae = \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} = eAe$. Hence *e* is left semicentral. Since $R \cong eU_2(R)e$, $eU_2(R)e$ is not symmetric. By [13, Theorem 2.2], $U_2(R)$ is not *e*-symmetric. Since *e* is left semicentral and $eU_2(R)e \cong R$, $U_2(R)$ is right *e*-semicommutative by Theorem 2.4(1). \Box

A ring *R* is *prime* if for any $a, b \in R$, aRb = 0 implies a = 0 or b = 0, and *R* is *semiprime* if for any $a \in R$, aRa = 0 implies a = 0.

Proposition 2.10. For a semiprime ring R, the following are equivalent.

- (1) *R* is right e-semicommutative.
- (2) *R* is right e-reduced.
- (3) *R* is e-symmetric.

Proof. (1) \Rightarrow (2) Let $a^n = 0$ for $a \in R$. We may assume that n is even and n = 2t. Since e is left-semicentral, $(a^{t}e)R(a^{t}e) = 0$. By hypothesis, $a^{t}e = 0$. Again we may assume that t = 2k. Similarly, $a^{k}e = 0$. Continuing on this way, we may reach $a^2e = 0$. Hence (ae)R(ae) = 0. By hypothesis again, ae = 0.

 $(2) \Rightarrow (3)$ is clear from [13, Corollary 4.3].

(3) \Rightarrow (1) is clear from Proposition 2.8.

Let *R* be a ring and $e^2 = e, g^2 = g \in R$. By [17], *e* and *g* are called *isomorphic* if $Re \cong Rg$ as left *R*-modules, equivalently, $eR \cong qR$ as right *R*-modules (see [10, Proposition 21.20]).

Theorem 2.11. Let R be a ring and $e^2 = e$, $q^2 = q \in R$. If e and q are isomorphic, then the following hold.

- (1) If R is right e-semicommutative, then R is right q-semicommutative.
- (2) If R is left e-semicommutative, then R is left g-semicommutative.
- (3) If R is right e-semicommutative, then eR = qR.

Proof. (1) Let $\alpha: Re \to Rg$ be the left *R*-module isomorphism and $g = \alpha(xe)$ for some $x \in R$ since α is an epimorphism. Then $eq = \alpha(exe) = \alpha(xe) = q$ since R is right e-semicommutative. To prove R is right *q*-semicommutative, let $a, b \in R$ with ab = 0. By hypothesis, aRbe = 0, so aRbeq = aRbq. Thus R is right *q*-semicommutative.

(2) Let $\sigma: eR \to qR$ be the right *R*-module isomorphism and $q = \sigma(ex)$ for some $x \in R$ by the surjectivity of σ . Multiplying the latter from the right by *e* we have qe = q since *R* is left *e*-semicommutative. Let $a, b \in R$ with ab = 0. Then eaRb = 0, and so geaRb = 0, this implies gaRb = 0. Therefore R is left g-semicommutative. (3) As in the proof of (1), the isomorphism $\alpha \colon Re \to Rg$ implies eg = g. On the other hand, the isomorphism α^{-1} : $Rq \rightarrow Re$ implies qe = e. Hence eR = qR.

Proposition 2.12. Let R be a right e-semicommutative ring with $e^2 = e \in \mathbb{R}$. Then the following hold.

- (1) If *P* is a prime ideal of *R*, then $e \in P$ or $1 e \in P$.
- (2) $eR(1-e) \subseteq P(R)$.
- (3) If M is a maximal left ideal of R, then $e \in M$ or $1 e \in M$.
- (4) $eR(1-e) \subseteq J(R)$.
- (5) If ReR = R, then e = 1.
- (6) $\overline{e} = e + J(R) \in R/J(R)$ is central in R/J(R).

Proof. Note that *R* being a right *e*-semicommutative ring implies (1 - e)Re = 0. We use this property without refer in the proof.

(1) Let *P* be a prime ideal. Then (1 - e)Re = 0 implies $(1 - e)Re \subseteq P$. So $1 - e \in P$ or $e \in P$. (2) Clear by (1).

(3) Let *M* be a maximal left ideal. Assume that $e \notin M$. We have Re + M = R. Then 1 = xe + m for some $x \in R$ and $m \in M$. Then $1 - e = (1 - e)(xe + m) = (1 - e)m \in M$.

(4) Clear by (3).

(5) Assume that ReR = R. There exist $r_i, s_j \in R$ such that $1 = \sum_{i,j} r_i es_j$. By right *e*-semicommutativity of *R*, $1 = \sum_{i,j} er_i es_j$. Multiplying the latter from the left by 1 - e, we have 1 - e = 0.

(6) By (4), $eR(1-e) \subseteq J(R)$, and $(1-e)Re = 0 \subseteq J(R)$. Hence $ea - ae \in J(R)$ for each $a \in R$. \Box

In [6], a ring is called *right principally quasi-Baer* (or simply, *right p.q.-Baer*) if the right annihilator of a principal right ideal is generated (as a right ideal) by an idempotent. A left principally quasi-Baer ring is defined similarly.

Proposition 2.13. Let R be a right e-semicommutative ring. Then the following hold.

- (1) If *R* is a prime ring, then it is a right e-reduced ring.
- (2) If *R* is a right principally quasi-Baer ring, then it is a right e-reduced ring.
- (3) If *R* is a left principally quasi-Baer ring, then it is a left e-reduced ring.

Proof. (1) Let $a \in R$ with $a^n = 0$ for some positive integer n. We may assume that n = 2k. By hypothesis $a^k a^k = 0$ implies $a^k R a^k e = 0$. Since e is left-semicentral and R is prime, $(ae)^k = a^k e = 0$. Again we may assume that k is even and k = 2t. Then $(ae)^t (ae)^t = 0$. By hypothesis, $(ae)^t R(ae)^t e = 0$. Hence $(ae)^t = 0$. In this way we may reach ae = 0.

(2) Let $a \in R$ with $a^n = 0$ for some positive integer *n*. There exists $f^2 = f \in R$ such that $a^{n-1}e \in r_R(aR) = fR$ where $r_R(aR)$ is the right annihilator of aR in *R*. Then $a^{n-1}f = 0$, $fa^{n-1}e = a^{n-1}e$. By Corollary 2.7(1), *efe* is an idempotent in *eRe* and *eRe* is abelian, $fa^{n-1}e = (efe)(ea^{n-1}e)e = (ea^{n-1}e)(efe)e = a^{n-1}fe = 0$. This and $fa^{n-1}e = a^{n-1}e$ imply $a^{n-1}e = 0$. Let b = ae. Since *e* is left-semicentral, $b^{n-1} = 0$. As it is proved we get $b^{n-2}e = 0$. Hence $a^{n-2}e = 0$. By reduction in this way we get ae = 0. Hence *R* is right *e*-reduced. (3) Similar to (2). \Box

By [21], an element *r* of a ring *R* is called *left minimal* if *Rr* is a minimal left ideal of *R*, an idempotent $e \in R$ is called *left minimal idempotent* if *e* is a left minimal element in *R*. In [21], a ring *R* is called *left min-abel* if every left minimal idempotent element of *R* is left-semicentral. A ring *R* is said to be NI [12] if the set of all nilpotent elements nil(*R*) is an ideal of *R*. In [5], a ring *R* is called *2-primal* if nil(*R*) coincides with its prime radical *P*(*R*). Clearly, a 2-primal ring is NI. A ring *R* is called *strongly left min-abel* [21] if for every left minimal idempotent element $e \in R$, Re = eR. For example, an abelian ring is strongly left min-abel.

Theorem 2.14. If R is right e-semicommutative for each left minimal idempotent e of R, then R is left min-abel.

Proof. Assume that *R* is right *e*-semicommutative for each left minimal idempotent *e* of *R*. By Theorem 2.4(1), *e* is left-semicentral. \Box

The converse statement of Theorem 2.14 need not be true in general as shown below.

Example 2.15. There are left min-abel rings which are not right *e*-semicommutative.

Proof. We consider the ring

$$R = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{Z}) \mid a \equiv d(mod2), b \equiv c \equiv 0(mod2) \right\}.$$

The idempotents of *R* are zero and identity matrices. If AE = 0 for any idempotent *E* of *R*, then ARE = AER = 0. So the condition holds. However *R* is not right *E*-semicommutative where E = I is the identity of *R*. Indeed, for $A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix} \in R$, we have AB = 0 but $ACBI \neq 0$ where $C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \in R$. \Box

One may ask whether or not an *e*-semicommutative abelian ring is I-finite, if it is possible. Recall that a ring *R* is called *I-finite* if it contains no infinite set of orthogonal idempotents (see [16]). Every semiperfect ring is I-finite. In the next example, we show that there are *e*-semicommutative abelian rings that are not I-finite.

Example 2.16. Let $\mathbb{Z}_{(2)}$ denote the ring of all rational numbers with odd denominators (when written in lowest terms) and *R* be the infinite direct product $\mathbb{Z}_{(2)} \times \mathbb{Z}_{(2)} \times \cdots$ of $\mathbb{Z}_{(2)}$. Let e_i denote the element of *R* having *i*th entry is 1, all other entries are 0. Then *R* is a commutative ring and the set $S = \{e_i \in R \mid i = 1, 2, ...\}$ contains infinitely many orthogonal idempotents. Hence *R* is an abelian and *e*-semicommutative ring for any idempotent *e* that is not I-finite.

By [18, Theorem 1.5], it is known that every semicommutative ring is 2-primal. But there is no implication between being a 2-primal ring and being an *e*-semicommutative ring with $1 \neq e^2 = e \in R$ as shown below.

- **Example 2.17.** (1) Consider the ring R = A/I given in Example 2.5. Then R is *x*-semicommutative but not 2-primal. In fact, for $y \in nil(R)$ and $z \in R$, $yz \notin nil(R)$. Hence nil(R) is not an ideal of R, thus R is not NI. Therefore R is not 2-primal.
 - (2) The ring of all $n \times n$ upper triangular matrices over a 2-primal ring *R* are also 2-primal by [5], but it may not be right (left) *e*-semicommutative for some idempotent *e* by Example 2.2.

Lemma 2.18. Let *R* be a ring with $e^2 = e \in R$. If *R* is both right *e*-semicommutative and right (1-e)-semicommutative, then

- (1) R is semicommutative,
- (2) *e* is a central idempotent.

Proof. (1) Let $a, b \in R$ with ab = 0. Then aRbe = 0 and aRb(1-e) = 0. For any $r \in R$, arbe = 0 and arb(1-e) = 0. Hence 0 = arb(1-e) = arb - arbe and arbe = 0 imply arb = 0. Thus aRb = 0.

(2) Assume that *R* is a both right *e*-semicommutative and right (1 - e)-semicommutative ring. Since *R* is right *e*-semicommutative, we have (1 - e)Re = 0, and so ere = re for any $r \in R$. Similarly, since *R* is right (1 - e)-semicommutative, we have eR(1 - e) = 0, and so ere = er for any $r \in R$. Hence er = re for all $r \in R$. Thus *e* is central in *R*. \Box

Theorem 2.19. *If R is a right e-semicommutative ring, then the following hold.*

- (1) ae = 0 implies aRe = 0 for all $a \in R$.
- (2) ea = 0 implies eRae = 0 for all $a \in R$.

Proof. (1) Let for any $a \in R$ with ae = 0. Since *R* is right *e*-semicommutative, (aRe)e = aRe = 0. (2) Let for any $a \in R$ with ea = 0. Then (eRa)e = 0. \Box

There are rings satisfying (1) of the preceding theorem but not right *e*-semicommutative.

Example 2.20. The ring in Example 2.15 satisfies Theorem 2.19(1) but not *e*-semicommutative for some idempotent *e*.

Proposition 2.21. *Let* R *be a right e-semicommutative ring. Then for any* $a \in nil(R)$ *, ae and ea are nilpotent elements of* R*.*

Proof. Let $a \in \operatorname{nil}(R)$ and $e^2 = e \in R$. Then there exists a positive integer *m* such that $a^m = 0$. We have $a^{m-1}Rae = 0$ since *R* is right *e*-semicommutative. Then $a^{m-1}eae = 0$, and so $a^{m-2}aeae = 0$. Since *R* is right *e*-semicommutative, $a^{m-2}Raeaee = 0$. Similarly, $a^{m-2}eaeae = 0$. Continuing on this way, we get $ae \in \operatorname{nil}(R)$ and $ea \in \operatorname{nil}(R)$. \Box

We now give another characterization of a right *e*-semicommutative ring.

Proposition 2.22. Let *R* be a ring. Then the following are equivalent.

- (1) *R* is a right e-semicommutative ring.
- (2) AB = 0 implies ARBe = 0 for any nonempty subsets A and B of R.

Proof. (1) \Rightarrow (2) Assume that the condition (1) holds. Let AB = 0 for any nonempty subsets A and B of R. Then for any $a \in A$ and $b \in B$, we have ab = 0. Since R is right e-semicommutative aRbe = 0 for $e^2 = e \in R$. Thus we get $ARBe = \sum_{a \in A, b \in B} aRbe = 0$.

$$(2) \Rightarrow (1) \text{ Clear.} \quad \Box$$

Proposition 2.23. Let I be an index set and $(R_i)_{i \in I}$ be a class of rings with $e_i^2 = e_i \in R_i$ and let $R = \prod_{i \in I} R_i$ be the direct product of $(R_i)_{i \in I}$ with $e^2 = e = (e_i) \in R$. Then R is right e-semicommutative if and only if R_i is right e_i -semicommutative for each $i \in I$.

Proof. Necessity: Let $i \in I$ and $a_i, b_i \in R_i$ with $a_ib_i = 0$. Consider $a = (..., a_i, ...), b = (..., b_i, ...) \in R$. Then ab = 0. Hence aRbe = 0. So $a_iR_ib_ie_i = 0$. Thus R_i is right e_i -semicommutative.

Sufficiency: Let $a = (a_i)_{i \in I}$ and $b = (b_i)_{i \in I} \in R$ such that ab = 0. Then we have $a_i b_i = 0$ for each $i \in I$. Since R_i is right e_i -semicommutative, $a_i R_i b_i e_i = 0$ and $e_i^2 = e_i$ for each $i \in I$. Let $c = (c_i) \in R$. Then $a_i c_i b_i e_i = 0$ for all $i \in I$. Hence acbe = 0 for each $c \in R$. So R is right e-semicommutative. \Box

Corollary 2.24. Let *n* be a positive integer, $I = \{1, 2, 3, ..., n\}$ and $(R_i)_{i \in I}$ be a class of rings with $e_i^2 = e_i \in R_i$ and let $R = \bigoplus_{i \in I} R_i$ be the direct sum of $(R_i)_{i \in I}$ with $e^2 = e = (e_i) \in R$. Then *R* is right e-semicommutative if and only if R_i is e_i -semicommutative for each $i \in I$.

el senticommutative for each r C 1.

Proof. The proof of Proposition 2.23 works verbatim here. \Box

Lemma 2.25. Let *R* be a ring with a subring *S* and $e^2 = e \in S$. If *R* is right *e*-semicommutative, then so is *S*.

Proof. Let $s_1, s_2 \in S$ with $s_1s_2 = 0$. Then $s_1Rs_2e = 0$. Since $s_1Ss_2e \subseteq s_1Rs_2e$, $s_1Ss_2e = 0$. \Box

In [15], a ring is called *clean* if every element is the sum of a unit and an idempotent.

Proposition 2.26. *Let* R *be a right e-semicommutative ring and* $a \in R$ *. If a is clean, then ae is clean.*

Proof. Since *a* is clean, there exist $f^2 = f \in R$ and $u \in U(R)$ such that a = f + u. Then ae = fe + ue. Since *R* is a right *e*-semicommutative ring, $(fe)^2 = fe$. On the other hand, we have $(ue-(1-e))(eu^{-1}e-(1-e)) = 1$. Since ae = fe + ue, we have ae = (fe + (1-e)) + (ue-(1-e)). So *ae* is clean. \Box

In general, if *R* is a clean ring, then *eRe* need not be clean. This is a question posed in [8]. But in the case of *e*-semicommutativity of *R*, we have the following result.

Theorem 2.27. Let R be a right e-semicommutative ring. If R is clean, then eRe is clean.

Proof. Let $eae \in eRe$. By hypothesis, *a* is clean, so *ae* is clean by Proposition 2.26. Since ae = eae for each $eae \in eRe$, eRe is clean. \Box

Proposition 2.28. *If* R *is a right e-semicommutative ring, then* 1 + ea - ae *is clean for any* $a \in R$ *.*

Proof. By Proposition 2.12(4), $ea - ae \in J(R)$ for each $a \in R$. Then 1 + ea - ae is invertible for each $a \in R$.

Proposition 2.29. Let R be a right e-semicommutative ring. Then R(ae - 1) + Ra = R and (ea - 1)R + aR = R for any a in R.

Proof. By Proposition 2.12(4), ae - ea is in J(R). Then 1 - ae + ea and 1 + ae - ea are invertible. Thus, the conclusions are obtained.

Let *R* be a ring and $e \in R$. In [20], *e* is called *op-idempotent* if $e^2 = -e$. Not every op-idempotent is idempotent in general. For example, let $R = M_2(\mathbb{Z})$ and $e = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Then $e^2 = -e$ and *e* is an op-idempotent, but not idempotent.

Proposition 2.30. *Let e be an op-idempotent in R and R be a right* (1 + e)*-semicommutative ring. If* ReR = R*, then* e = -1.

Proof. Assume that *R* is a right (1 + e)-semicommutative ring and ReR = R. Then eR(1 + e) = 0. Hence ReR(1 + e) = 0, which implies e = -1. \Box

We now study some kinds of extensions of *e*-semicommutative rings. Let *R* be a ring. The Dorroh extension $D(R, \mathbb{Z}) = \{(r, n) \mid r \in R, n \in \mathbb{Z}\}$ of a ring *R* is the ring defined by the direct sum $R \oplus \mathbb{Z}$ with the ring operations $(r_1, n_1) + (r_2, n_2) = (r_1 + r_2, n_1 + n_2)$ and $(r_1, n_1)(r_2, n_2) = (r_1r_2 + n_1r_2 + n_2r_1, n_1n_2)$, where $r_i \in R$ and $n_i \in \mathbb{Z}$ for i = 1, 2.

Proposition 2.31. A ring R is right e-semicommutative if and only if $D(R, \mathbb{Z})$ is right (e, 0)-semicommutative.

Proof. For the forward implication, assume that *R* is right *e*-semicommutative. Let (r, n), $(s, m) \in D(R, \mathbb{Z})$. If (r, n)(s, m) = 0, then rs + mr + ns = 0 and nm = 0. nm = 0 implies n = 0 or m = 0. We divide in two cases: Case I. m = 0. Then rs + ns = 0. So (r + n1)s = 0. By assumption (r + n1)Rse = 0. Let $(t, k) \in D(R, \mathbb{Z})$. Then

(r, n)(t, k)(s, 0)(e, 0) = ((r + n1)(t + k1)se, 0). Since (r + n1)Rse = 0, (r, n)(t, k)(s, 0)(e, 0) = 0. Case II. n = 0. Then (r, 0)(s, m) = 0 implies r(s + m1) = 0. By assumption, rR(s + m1)e = 0. Let $(t, k) \in D(R, \mathbb{Z})$. Then (r, 0)(t, k)(s, m)(e, 0) = ((r(t + k1), 0)((s + m1)e, 0). Since rR(s + m1)e = 0, (r, 0)(t, k)(s, m)(e, 0) = (r(t + k1), 0)((s + m1)e, 0) = 0. Hence $D(R, \mathbb{Z})$ is right (e, 0)-semicommutative.

For the reverse implication, suppose that $D(R, \mathbb{Z})$ is right (e, 0)-semicommutative. Let $a, b \in R$. Set ab = 0. So $(a, 0), (b, 0) \in D(R, \mathbb{Z})$ and (a, 0)(b, 0) = 0. By supposition (a, 0)(t, k)(b, 0)(e, 0) = 0 for each $(t, k) \in D(R, \mathbb{Z})$. Since (a, 0)(t, k)(b, 0)(e, 0) = (a(t + k1)be, 0) and (a, 0)(t, k)(b, 0)(e, 0) = 0, a(t + k1)be = 0 for all $t \in R$. By taking k = 0, we get atbe = 0 for all $t \in R$. Hence R is right e-semicommutative. \Box

Let *R* be a ring and $r \in R$ with $r^2 + r = 0$. Then 1 + r is an idempotent in *R* and (r, 1) is an idempotent in $D(R, \mathbb{Z})$. By the proof of Proposition 2.31, it is obvious the following proposition.

Proposition 2.32. Let R be a ring and $r \in R$ with $r^2 + r = 0$. Then R is right (1 + r)-semicommutative if and only if $D(R, \mathbb{Z})$ is right (r, 1)-semicommutative.

3. e-semicommutativity of some subrings of matrix rings

The rings $L_{(s,t)}(R)$: Let *R* be a ring and $s, t \in C(R)$. Let $L_{(s,t)}(R) = \begin{cases} \begin{bmatrix} a & 0 & 0 \\ sc & d & te \\ 0 & 0 & f \end{bmatrix} \in M_3(R) \mid a, c, d, e, f \in R \end{cases}$, where the operations are defined as those in $M_3(R)$. Then $L_{(s,t)}(R)$ is a subring of $M_3(R)$.

Lemma 3.1. Let R be an integral domain.

(1) Let
$$E = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in L_{(1,1)}(R)$$
. Then $L_{(1,1)}(R)$ is right E-semicommutative.
(2) Let $E = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \in L_{(1,1)}(R)$. Then $L_{(1,1)}(R)$ is not right E-semicommutative.

Proof. (1) Let
$$A = \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix}$$
, $B = \begin{bmatrix} x & 0 & 0 \\ y & z & t \\ 0 & 0 & u \end{bmatrix} \in L_{(1,1)}(R)$ with $AB = 0$. Then $dz = 0$. Let $C = \begin{bmatrix} g & 0 & 0 \\ h & i & k \\ 0 & 0 & l \end{bmatrix} \in L_{(1,1)}(R)$ with $AB = 0$.

$$L_{(1,1)}(R). \text{ Then } ACB = \begin{bmatrix} * & 0 & 0 \\ * & 0 & * \\ 0 & 0 & * \end{bmatrix}. \text{ So } ACBE = 0 \text{ for all } C \in L_{(1,1)}(R). \text{ Hence } L_{(1,1)}(R) \text{ is right } E \text{-semicommutative.}$$

(2) Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 1 \end{bmatrix} \in L_{(1,1)}(R)$. Then $AB = 0$. Let $C = \begin{bmatrix} a & 0 & 0 \\ c & d & g \\ 0 & 0 & f \end{bmatrix} \in L_{(1,1)}(R)$.

Then $ACBE = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -d+g+f \\ 0 & 0 & 0 \end{bmatrix}$ is nonzero for d = g = 0 and f = 1. Hence $L_{(1,1)}(R)$ is not right *E*-semicommutative. \Box

The rings $H_{(s,t)}(R)$: Let *R* be a ring and $s, t \in C(R)$. Let

$$H_{(s,t)}(R) = \left\{ \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix} \in M_3(R) \mid a, c, d, e, f \in R, a - d = sc, d - f = te \right\}$$

Then $H_{(s,t)}(R)$ is a subring of $M_3(R)$.

Theorem 3.2. Let *R* be a semicommutative ring. Then $H_{(1,1)}(R)$ is right *E*-semicommutative where $E = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

Proof. We claim that *E* is a left-semicentral idempotent. For if $A = \begin{bmatrix} a & 0 & 0 \\ c & d & e \\ 0 & 0 & f \end{bmatrix}$, then $AE = \begin{bmatrix} a & 0 & 0 \\ c + d & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and

 $EAE = \begin{bmatrix} a & 0 & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Since a - d = c, AE = EAE. Hence E is a left-semicentral idempotent. It is easy to check

that $EH_{(1,1)}(R)E$ is semicommutative. In fact, let $EAE = \begin{bmatrix} a & 0 & 0 \\ a & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $EBE = \begin{bmatrix} b & 0 & 0 \\ b & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in EH_{(1,1)}(R)E$ with $\begin{bmatrix} c & 0 & 0 \end{bmatrix}$

(EAE)(EBE) = 0. Then ab = 0. Let $ECE = \begin{bmatrix} c & 0 & 0 \\ c & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in H_{(1,1)}(R)$. By hypothesis, ab = 0 implies, acb = 0. It follows that (EAE)(ECE)(EBE) = 0. By Theorem 2.4 (1), $H_{(1,1)}(R)$ is right *E*-semicommutative. \Box

Generalized matrix rings: Let *R* be a ring and *s* a central element of *R*. Then $\begin{bmatrix} R & R \\ R & R \end{bmatrix}$ becomes a ring denoted by $K_s(R)$ with addition defined componentwise and multiplication defined in [9] by

$$\begin{bmatrix} a_1 & x_1 \\ y_1 & b_1 \end{bmatrix} \begin{bmatrix} a_2 & x_2 \\ y_2 & b_2 \end{bmatrix} = \begin{bmatrix} a_1a_2 + sx_1y_2 & a_1x_2 + x_1b_2 \\ y_1a_2 + b_1y_2 & sy_1x_2 + b_1b_2 \end{bmatrix}$$

In [9], $K_s(R)$ is called a generalized matrix ring over R.

Lemma 3.3. Let F be a field. Then the following hold.

(1) The set $Inv(K_0(F))$ of all invertible elements of $K_0(F)$ is

$$Inv(K_0(F)) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in K_0(F) \mid a \neq 0, d \neq 0 \right\}.$$

(2) $C(K_0(F))$ consists of all scalar matrices.

Proof. (1) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \text{Inv}(K_0(F))$. There exists $B = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \in K_0(F)$ such that AB = BA = I, where *I* is the identity matrix. Then we have

$$ax = xa = 1, ay + bt = 0, cx + dz = 0, dt = td = 1.$$

So $x = a^{-1}$, $t = d^{-1}$, $z = -d^{-1}ca^{-1}$ and $y = -a^{-1}bd^{-1}$. Conversely, assume that a and d are nonzero with inverses $x = a^{-1}$ and $t = d^{-1}$, $y = -a^{-1}bd^{-1}$ and $z = -d^{-1}ca^{-1}$. Then $B = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$ is the inverse of A in $K_0(F)$. (2) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in C(K_0(F))$. By commuting A in turn with the matrices $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ in $K_0(F)$ we reach at $A = \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$. For the converse, any matrix A having a form as $\begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix}$ commutes with every element of $K_0(F)$. **Lemma 3.4.** Let *F* be a field and $E = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be an idempotent matrix in $K_0(F)$. Then *E* is the zero matrix, *E* is the identity matrix or $E = \begin{bmatrix} 1 & b \\ c & 0 \end{bmatrix}$ or $E = \begin{bmatrix} 0 & b \\ c & 1 \end{bmatrix}$ where $b, c \in F$.

Proof. Let $E^2 = E = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then $a^2 = a$, (a + d)b = b, (a + d)c = c and $d^2 = d$. We divide in some cases: (1) $b \neq 0$ or $c \neq 0$. Then a + d = 1 implies a = 0 and d = 1 or a = 1 and d = 0. Hence $E_1 = \begin{bmatrix} 1 & b \\ c & 0 \end{bmatrix}$ or $E_2 = \begin{bmatrix} 0 & b \\ c & 1 \end{bmatrix}$.

(2) b = c = 0. Then *E* is one the following matrices: *E* is the zero matrix or *E* is the identity matrix or $E_3 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ or $E_4 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. \Box

Theorem 3.5. *Let F be a field. Then the following hold.*

- (1) $K_0(F)$ is not right e-semicommutative for idempotents other than zero matrix in $K_0(F)$.
- (2) $K_0(F)$ is not left e-semicommutative for idempotents other than zero matrix in $K_0(F)$.

Proof. (1) The idempotent matrices *E* other than zero matrix and identity matrix do not satisfy the equality AE = EAE for all *A* in $K_0(F)$. It is enough to check the equality AE = EAE for $E = E_1$ and $E = E_2$.

(i) Let
$$E_1 = \begin{bmatrix} 1 & b \\ c & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$. Then $AE_1 = \begin{bmatrix} x & xb \\ z+tc & 0 \end{bmatrix}$ and $E_1AE_1 = \begin{bmatrix} x & xb \\ cx & 0 \end{bmatrix}$. So $AE_1 \neq E_1AE_1$.
(ii) Let $E_2 = \begin{bmatrix} 0 & b \\ c & 1 \end{bmatrix}$ and $A = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$. Then $AE_2 = \begin{bmatrix} 0 & xb+y \\ ta & t \end{bmatrix}$ and $E_2AE_2 = \begin{bmatrix} 0 & bt \\ ta & t \end{bmatrix}$. This yields $AE_2 \neq E_2AE_2$.

(11) Let $E_2 = \begin{bmatrix} c & 1 \end{bmatrix}$ and $A = \begin{bmatrix} z & t \end{bmatrix}$. Then $AE_2 = \begin{bmatrix} tc & t \end{bmatrix}$ and $E_2AE_2 = \begin{bmatrix} tc & t \end{bmatrix}$. This yields $AE_2 \neq E_2AE_2$. Hence E_1 and E_2 are not left-semicentral idempotents. By Theorem 2.4(1), $K_0(F)$ is not right *e*-semicommutative for idempotents other than zero.

(2) Also it is enough to check the equality EA = EAE for $E = E_1$ and $E = E_2$ as in the proof of (1).

(i) Let
$$E_1 = \begin{bmatrix} 1 & b \\ c & 0 \end{bmatrix}$$
 and $A = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$. Then $E_1A = \begin{bmatrix} x & y + bt \\ cx & 0 \end{bmatrix}$ and $E_1AE_1 = \begin{bmatrix} x & xb \\ cx & 0 \end{bmatrix}$. Hence $E_1A \neq E_1AE_1$.
(ii) Let $E_2 = \begin{bmatrix} 0 & b \\ c & 1 \end{bmatrix}$ and $A = \begin{bmatrix} x & y \\ z & t \end{bmatrix}$. Then $E_2A = \begin{bmatrix} 0 & bt \\ cx + z & t \end{bmatrix}$ and $E_2AE_2 = \begin{bmatrix} 0 & bt \\ tc & t \end{bmatrix}$. Hence $E_2A \neq E_2AE_2$.

Thus E_1 and E_2 are not right-semicentral idempotents. By Theorem 2.4(2), $K_0(F)$ is not left *e*-semicommutative for idempotents other than zero.

Acknowledgement: The authors would like to express their sincere thanks to the referee for his/her helpful suggestions and comments which have greatly improved the presentation of this paper.

References

- [1] N. Agayev, A. Harmanci, S. Halicioglu, On abelian rings, Turk. J. Math. 34 (2010) 456-474.
- [2] N. Agayev, T. Ozen, A. Harmanci, On a class of semicommutative rings, Kyungpook Math. J. 51 (2011) 283–291.
- [3] M. Baser, A. Harmanci, T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean Math. Soc. 45(2) (2008) 285–297.
- [4] H. E. Bell, Near-rings in which each element is a power of itself, Bull. Austral. Math. Soc. 2 (1970) 363–368.
- [5] G. F. Birkenmeier, H. E. Heatherly, E. K. Lee, Completely prime ideals and associated radicals, in: S. K. Jain, S. T. Rizvi, editors, Proceedings of the Biennial Ohio State-Denison Conference (1992), World Scientific, Singapore (1993) 102–129.
- [6] G. F. Birkenmeier, J. Y. Kim, J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29(5) (2001) 639–660.
- [7] W. Chen, On nil-semicommutative rings, Thai J. Math. 9(1) (2011) 39-47.
- [8] J. Han, W. K. Nicholson, Extensions of clean rings, Comm. Algebra 29(6) (2001) 2589-2595.
- [9] P. A. Krylov, On the isomorphism of generalized matrix rings, Algebra Logika 47(4) (2008) 456–463.
- [10] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, vol. 131, Springer-Verlag, New York, 2001.
- [11] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971) 359–368.
- [12] G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174(3) (2002) 311–318.
- [13] F. Meng, J. Wei, e-symmetric rings, Comm. Contemp. Math. 20(3) (2018) 8 pp.

- [14] L. Motais de Narbonne, Anneaux semi-commutatifs et unis riels anneaux dont les id aux principaux sont idempotents, Proceedings of the 106th National Congress of Learned Societies (Perpignan, 1981), Bib. Nat., Paris (1982) 71–73.
- [15] W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977) 269–278.
- [16] W. K. Nicholson, M. F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, 2003.
 [17] M. Osima, Notes on basic rings, Math. J. Okayama Univ. 2 (1953) 103–110.
- [18] G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973) 43-60.
- [19] J. Šter, Corner rings of a clean ring need not be clean, Comm. Algebra 40(5) (2012) 1595–1604.
- [20] S. Wang, On op-idempotents, Kyungpook Math. J. 45(2) (2005) 171–175.
 [21] J. C. Wei, Certain rings whose simple singular modules are nil-injective, Turk. J. Math. 32 (2008) 393–408.