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Abstract A ring R is defined to be J-normal if for any a, r ∈ R and idempotent e ∈ R, ae = 0 implies
Rera ⊆ J (R), where J (R) is the Jacobson radical of R. The class of J-normal rings lies between the classes
of weakly normal rings and left min-abel rings. It is proved that R is J-normal if and only if for any idempotent
e ∈ R and for any r ∈ R, R(1 − e)re ⊆ J (R) if and only if for any n ≥ 1, the n × n upper triangular matrix
ring Un(R) is a J-normal ring if and only if the Dorroh extension of R by Z is J-normal. We show that R is
strongly regular if and only if R is J-normal and von Neumann regular. For a J-normal ring R, it is obtained
that R is clean if and only if R is exchange. We also investigate J-normality of certain subrings of the ring of
2 × 2 matrices over R.

Mathematics Subject Classification 16D25 · 16N20 · 16U99

1 Introduction

Throughout this work, every ring is associative with identity unless otherwise stated. Recently, some kinds of
normality for rings have been investigated in the literature. For instance, the notion of quasi-normality of rings
was defined in [13], that is, a ring R is called quasi-normal if ae = 0 implies eaRe = 0 for every nilpotent
element a and idempotent e of R. On the other hand, another kind of normality was introduced in [14], namely,
a ring R is said to be weakly normal if for all elements a, r and e2 = e of R, ae = 0 implies that Rera is a nil
left ideal of R. It is seen that the notion of a weakly normal ring is a generalization of that of a quasi-normal
ring.

The Jacobson radical is an important tool for studying the structure of a ring. In the light of aforementioned
concepts, it is a reasonable question that what kind of properties does a ring gain when it satisfies normality
in terms of its Jacobson radical? This question is one of the motivations to deal with the notion of normality
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in terms of the Jacobson radical. In this direction, motivated by the works on quasi-normal rings and weakly
normal rings, we introduce and study a class of rings, called J-normal rings, which is a generalization of that
of weakly normal rings. We call a ring R J-normal if for all elements a, r and e2 = e of R, ae = 0 implies that
Rera is contained in the Jacobson radical of R. By [13, Theorem 2.1] and [14, Theorem 2.1], quasi-normal
rings and weakly normal rings are characterized by a condition on eR(1 − e) for an arbitrary idempotent e.
We also give a characterization of J-normality of rings in terms of eR(1 − e) where e2 = e ∈ R as follows.

R is

⎧
⎨

⎩

quasi-normal
weakly normal
J-normal

⇔ eR(1 − e) is

⎧
⎨

⎩

a right ideal
contained in N∗(R)
contained in J (R)

for any e2 = e ∈ R.

Since the Jacobson radical of R is a semiprime ideal, R is J-normal if and only if for all elements a, r and
idempotent e of R, ae = 0 implies that areR is contained in the Jacobson radical of R. We prove that some
results of weakly normal rings can be extended to J-normal rings. We supply some examples to show that a
J-normal ring need not be quasi-normal. We determine the position of the class of J-normal rings in the ring
theory by investigating the relations between the class of J-normal rings and certain classes of rings such as
abelian rings, min-abel rings, central reversible rings, central semicommutative rings, directly finite rings. We
obtain characterizations of J-normal rings from different aspects. We discuss properties of J-normal rings and
also give structure theorems. Moreover, we work on extensions of this class of rings such as trivial extensions,
polynomial extensions and Dorroh extensions. Using inspected extensions, we present more characterizations
of J-normal rings.

Furthermore, some applications of J-normal rings are performed. In this direction, this concept is considered
for the ring of matrices. Morita context rings, full matrix rings, triangular matrix rings and generalized matrix
rings are investigated with regard to J-normality. On the other hand, it is known that a clean ring is an exchange
ring, but the converse need not hold in general. It is proved that the converse of this statement is true for weakly
normal rings. This paper is an attempt to give some weaker conditions such as a J-normal ring is clean if and
only if it is exchange. These connections make the concept of J-normal rings more attractive to study.

Let Mn(R) denote the full matrix ring over R and Un(R) the upper triangular matrix ring over R and the
subring

{
(ai j ) ∈ Un(R) | all diagonal entries of (ai j ) are equal

}
is denoted by Dn(R) where n is a positive

integer. Also, J (R), P(R) and C(R) stand for the Jacobson radical, the prime radical and the center of R,
respectively.

2 J-normal rings

In [13], Wei and Li defined and investigated quasi-normal rings. A ring R is defined to be quasi-normal if
ae = 0 implies eaRe = 0 for any nilpotent a and idempotent e of R. In [14], they defined and investigated
weakly normal rings. A ring R is weakly normal if for all a, r ∈ R and any idempotent e, ae = 0 implies
Rera is a nil left ideal of R. Clearly every quasi-normal ring is weakly normal. There exists a weakly normal
ring which is not quasi-normal. See for example [14]. In this note, we study another kind of normality using
the Jacobson radical of a ring.

Definition 2.1 A ring R is called J -normal if for any idempotent e and any a, r ∈ R, ae = 0 implies
Rera ⊆ J (R).

We give a characterization of J-normal rings.

Theorem 2.2 Let R be a ring. Then, the following are equivalent.

(1) R is J-normal.
(2) eR(1 − e) ⊆ J (R) for any idempotent e.
(3) (1 − e)Re ⊆ J (R) for any idempotent e.
(4) Every idempotent is central modulo J (R).

Proof (1) ⇒ (2) Assume that R is J-normal and e2 = e ∈ R. Then, (1− e)e = 0 implies Rer(1− e) ⊆ J (R)
for r ∈ R. Since R has an identity, eR(1 − e) ⊆ J (R).

(2) ⇔ (3) is clear since if e is idempotent then so is 1 − e.
(3) ⇒ (4) Let e2 = e ∈ R. Then, for any x ∈ R, ex(1 − e) ∈ J (R) and (1 − e)xe ∈ J (R). Hence,

ex − xe ∈ J (R).
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(4) ⇒ (1) Let a ∈ R and e2 = e ∈ R with ae = 0. Write R̄ = R/J (R). Then, ē = e + J (R) is central in R̄.
So R̄ēr̄ ā = R̄r̄ āē = 0̄ for any r ∈ R. Hence, Rera ⊆ J (R).

�	
Corollary 2.3 If R/J (R) is abelian, then R is J-normal. The converse holds if idempotents lift modulo J (R).

We combine Theorem 2.2 and Corollary 2.3 as follows.

Theorem 2.4 Let R be a ring such that the idempotents lift modulo J (R). Then R is J-normal if and only if
R/J (R) is abelian.

Corollary 2.5 Let R be a ring with J (R) = 0. Then, R is J-normal if and only if it is abelian.

There are J-normal rings R such that R/J (R) need not be abelian.

Example 2.6 Let R denote the localization of Z at 3Z and Q the set of quaternions over the ring R as in [11,
Example 2.3]. Then, Q is a domain and, therefore, J-normal. On the other hand, Q/J (Q) is isomorphic to
M2(Z3). Therefore, Q/J (Q) is not abelian.

Note that since J (R) is a semiprime ideal, then R is J-normal if and only if for all a, r ∈ R and any idempotent
e ∈ R, ae = 0 implies areR ⊆ J (R). Abelian rings, semicommutative rings and commutative rings are
J-normal rings. There are more sources of examples for J-normal rings as the following lemma shows.

Lemma 2.7 The following hold.

(1) Every weakly normal ring is J-normal.
(2) Every quasi-normal ring is J-normal.
(3) Every ring R with R/J (R) J-normal is J-normal.
(4) Every feckly reduced ring is J-normal.
(5) Every weakly reversible ring is J-normal.
(6) Every central reversible ring is J-normal.
(7) Every central semicommutative ring is J-normal.

Proof (1) Let R be a weakly normal ring, a ∈ R and e2 = e ∈ R with ae = 0. Then, Rera is a nil left ideal
of R for all r ∈ R. So Rera ⊆ J (R).

(2) Let R be a quasi-normal ring, by [14, Corollary 2.3], R is weakly normal. So by (1), R is J-normal.
(3) Let a, e2 = e ∈ R with ae = 0. Then, ae = 0 in R. So for any r ∈ R, Rera = 0 since R/J (R) is

J-normal. Hence, Rera ⊆ J (R).
(4) In [11], a ring R is called feckly reduced if R/J (R) is a reduced ring. Let a, e2 = e ∈ R with ae = 0. In

the ring R/J (R), ae = 0. It implies that for any r ∈ R, era is nilpotent. By hypothesis, era = 0. Thus,
Rera ⊆ J (R) for all r ∈ R.

(5) In [5], a ring R is said to be weakly reversible if for all a, b, r ∈ R such that ab = 0, Rbra is a nil left
ideal of R. Assume that R is a weakly reversible ring. Let e2 = e ∈ R and a ∈ R be an arbitrary element
with ae = 0. By assumption, Rera is a nil left ideal. As it is contained in J (R), R is a J-normal ring.

(6) In [4], a ring R is called central reversible if for any a, b ∈ R, ab = 0 implies ba is central in R. Let
e2 = e ∈ R and a ∈ R be an arbitrary element with ae = 0. The ring R being central reversible implies that
era is central for each r ∈ R. Then, eraRera = R(era)2 = 0. Hence, (Rera)2 = 0. Thus, Rera ⊆ J (R).

(7) In [9], a ring R is called central semicommutative if for any a, b ∈ R, ab = 0 implies arb is a central
element of R for each r ∈ R. Assume that R is a central semicommutative ring. Let ae = 0 for any
idempotent e ∈ R and any element a ∈ R. The ring R being central semicommutative implies that eraRe
is central in R for each r ∈ R. Then, (Rera)2 = (Rera)(Rera) = RraeraRe = 0 and so Rera ⊆ J (R)
for each r ∈ R. Hence, R is J-normal. �	

There are rings which do not satisfy the converse statements in Lemma 2.7.

Examples 2.8
(1) Let F be a field. The upper triangular matrix ring R = U3(F) is not quasi-normal by [14, Theorem 2.1].
But R is J-normal since R is weakly normal by [14, Example 2.13].
(2) Consider the ring Q in Example 2.6. Then, Q is J-normal but Q/J (Q) is neither feckly reduced nor abelian
nor J-normal.

Let R be a ring and I an ideal of R. The ideal I is called J-normal if it has the J-normality as a ring without
identity.
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Proposition 2.9 The following hold.

(1) Let R be a J-normal ring. Then, every ideal I of R is J-normal.
(2) Any direct product of rings {Ri }i∈I is J-normal if and only if each ring Ri (i ∈ I ) is J-normal.

Proof (1) Let I be an ideal of a J-normal ring R and a ∈ I , e2 = e ∈ I with ae = 0. Then, Rera ⊆ J (R) for
all r ∈ R. Since J (I ) = J (R) ∩ I , I exa ⊆ J (I ) for all x ∈ I .

(2) Let {Ri }i∈I be a class of rings. Assume that for each i ∈ I , Ri is J-normal. Let R = �Ri and a = (ai ),
e2 = e = (ei ) ∈ R with ae = 0. Then, e2i = ei and ai ei = 0 for each i ∈ I . By hypothesis Rieibiai ⊆
J (Ri ) for each bi ∈ Ri . For any bi ∈ Ri , set b = (bi ). Then, Reba ⊆ J (R) since J (R) = �J (Ri ). For
the converse, suppose that R = �Ri is a J-normal ring. Then, each Ri is an ideal of R. By (1) each Ri is
a J-normal ring.

�	
Theorem 2.10 Let R be a ring. Consider the following conditions.

(1) R is a J-normal ring.
(2) For any idempotent e ∈ R and for any r ∈ R, R(1 − e)re ⊆ J (R).
(3) For a central idempotent e ∈ R, eR and(1 − e)R are J-normal rings.
(4) For any idempotent e ∈ R, eR(1 − e) ⊆ P(R).

Then, (1) ⇔ (2) ⇔ (3) and (4) ⇒ (1).

Proof (1) ⇒ (2) Let e2 = e ∈ R. By Theorem 2.2, for any r ∈ R, (1 − e)re ∈ J (R). Hence, R(1 − e)re ⊆
J (R).

(2) ⇒ (1) Clear.
(1) ⇒ (3) Let ea ∈ eR and ( f e)2 = f e ∈ eR with eae f e = 0. Then, for any er ∈ eR, eR f e(erea) ⊆ J (eR)

since ae f = 0 and e is central.
(3) ⇒ (1) Note that eR and (1 − e)R are J-normal rings and R is a direct sum of ideals eR and (1 − e)R. So

R is J-normal by Proposition 2.9 (2).
(4) ⇒ (1) Let e2 = e ∈ R and a ∈ R. Assume that ae = 0. Let f = 1 − e. By (4), (1 − f )R f ⊆ P(R).

Then, eR(1 − e) ⊆ P(R). Hence, era(1 − e) ∈ P(R) for each r ∈ R. Since P(R) ⊆ J (R),
Rera(1 − e) ⊆ J (R) for each r ∈ R. So R is J-normal.

�	
Recall that an idempotent e in a ring R is called left semicentral if for every element r ∈ R, re = ere, and
e is called left minimal if the left ideal Re is a minimal left ideal of R. Also, in [12], a ring is said to be left
min-abel if every left minimal idempotent is left semicentral.

Theorem 2.11 J-normal rings are left min-abel.

Proof Let R be a J-normal ring and e a left minimal idempotent of R. For any r ∈ R, set x = re − ere.
Assume that x �= 0. Then, ex = 0 and xe = x and x(1− e) = 0. The fact that e(1− e) = 0 and (1− e)e = 0
implies Rer(1 − e) ⊆ J (R) and R(1 − e)re ⊆ J (R) for all r ∈ R. So xe = x implies Rx ⊆ Re. Since e
is left minimal idempotent, Re = Rx . But Rx = R(1 − e)xe ⊆ J (R). Hence, e ∈ J (R). This contradicts
x �= 0. Thus, re = ere for all r ∈ R and R is left min-abel. �	
Theorem 2.12 Let R be a J-normal ring. Then for any maximal left or right ideal M and for any e2 = e ∈ R,
either e ∈ M or 1 − e ∈ M.

Proof Let M be a maximal left ideal of R with e /∈ M , then Re+ M = R. There exist r ∈ R and m ∈ M such
that 1 = re + m. Since R is J-normal, we have (1 − e)se ∈ J (R) for all s ∈ R. Thus, 1 − e = (1 − e)1 =
(1 − e)re + (1 − e)m ∈ M . �	

123



Arab. J. Math. (2020) 9:123–135 127

Theorem 2.13 J-normal rings are directly finite.

Proof Let a, b ∈ R with ab = 1. Let e = 1 − ba. Since R is J-normal and ae = 0, Rera ⊆ J (R) for all
r ∈ R. Since R has the identity, ea ∈ J (R). Multiplying the latter from the right by b and using ab = 1, we
have e ∈ J (R). So e = 0 and then 1 = ba. �	
J-normal property for rings does not extend to matrix rings.

Example 2.14 We consider the rings Z2 and M2(Z2). Then, Z2 is J-normal, but M2(Z2) is not J-normal.

Indeed,

[
0 0
0 1

] [
1 0
0 0

]

= 0. But

[
1 1
1 0

] [
1 0
0 0

] [
1 1
1 1

] [
0 0
0 1

]

=
[
0 1
0 1

]

is not contained in J (M2(Z2)).

A ring R is called clean if every element in R is the sumof an idempotent and a unit, and it is called exchange
provided that for any a ∈ R, there exists an idempotent e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R (see for
detail [1,8]). Clean rings are always exchange. The converse holds if all idempotents of R are central. Also
note that a ring R is an exchange ring if and only if idempotents can be lifted modulo every left (resp., right)
ideal (see [8]). If u is an invertible element of a ring R and r ∈ J (R), then u + r is invertible. For if a = u + r ,
then u−1a − 1 = u−1r ∈ J (R). As 1 + u−1r is invertible, u−1a is invertible and so is a. Also for an element
a ∈ R, a is invertible in R if and only if a is invertible in R/J (R).

Theorem 2.15 Let R be a J-normal ring. Then, R is clean if and only if R is exchange.

Proof One direction is trivial from [8, Proposition 1.8]. Assume that R is an exchange ring. Then, so is R/J (R).
According to Corollary 2.5, R/J (R) is abelian. In the light of [8], R/J (R) is clean. Let x ∈ R. There exist an
idempotent ē ∈ R/J (R) and a unit ū ∈ R/J (R) such that x̄ = ē + ū where ē refers to the element e + J (R)
of R/J (R). By assumption, we may suppose e is an idempotent in R. So u is invertible in R and we can find
r ∈ J (R) such that x = e + u(1 + u−1r), where u(1 + u−1r) is a unit element of R. So R is clean. �	

Note that in [14] an element e of a ring R is called op-idempotent if e2 = −e. An op-idempotent need not

be an idempotent. For example, 4
2 = 1 = −4 in Z5. However, 4 is not an idempotent.

Theorem 2.16 Let R be a J-normal ring. Then, for all a, r ∈ R and any op-idempotent e ∈ R, ae = 0 implies
Rera ⊆ J (R).

Proof Let a, r ∈ R and e ∈ R an op-idempotent with ae = 0. Then, e4 = e2. Since R is J-normal, we have
Re2ra ⊆ J (R) for all r ∈ R. Since e2 = −e, Rera ⊆ J (R). �	

3 Extensions

In [10], generalized matrix ring Ks(R) over a ring R is defined and investigated in detail. Addition in Ks(R)
is componentwise and multiplication is given by

[
a b
c d

] [
x y
z t

]

=
[
ax + sbz ay + bt
cx + dz dt + scy

]

.

Then, Ks(R) is an associative ring if and only if s is central. And ideal structures of Ks(R) are given as follows:

Lemma 3.1 [10, Lemma 4.2] Let R be a ring and s a central element of R.

(1) K is an ideal of Ks(R) if and only if K =
[
I1 I2
I3 I4

]

where each Ii is an ideal of R with I1 + I4 ⊆ I2 ∩ I3

and s(I2 + I3) ⊆ I1 ∩ I4.

(2) J (Ks(R)) =
[

J (R) (s : J (R))
(s : J (R)) J (R)

]

, where (s : J (R)) = {r ∈ R | sr ∈ J (R)}.
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Theorem 3.2 If Ks(R) is J-normal, then R is J-normal.

Proof Assume that Ks(R) is a J-normal ring. Let a, e2 = e ∈ R with ae = 0. Consider A =
[
a 0
0 0

]

and

E =
[
e 0
0 0

]

, B =
[
b 0
0 0

]

for any b ∈ R. We have E2 = E and AE = 0. By assumption, Ks(R)EBA ⊆
J (Ks(R)). By comparing (1, 1) entries, we have Reba ⊆ J (R) for each b ∈ R. Hence, R is J-normal. �	
Note that Example 2.14 shows that the converse statement of Theorem 3.2 need not be true in general for any
s ∈ Z2.

Proposition 3.3 The following hold for a ring R.

(1) If R[x] is J-normal, then R is J-normal.
(2) If R is abelian, then R[x] is J-normal.
Proof (1) Assume that R[x] is J-normal. Let e2 = e ∈ R and a ∈ R be an arbitrary element of R with

ae = 0. Then, R[x]e f (x)a ⊆ J (R[x]). Hence, rea0a ∈ J (R[x]) ∩ R ⊆ J (R) for all r ∈ R where a0 is
the constant term of f (x), for all a0 ∈ R. So R is J-normal.

(2) Suppose that R is abelian. By [2, Theorem 5], every idempotent of R[x] is contained in R. Let f (x) =∑n
i=0 ai x

i ∈ R[x] and e2 = e ∈ R[x] with f (x)e = 0. Then, ai e = 0 for i = 0, 1, 2, . . . , n. By
supposition, R is J-normal. This implies that Rerai ⊆ J (R) for any r ∈ R and i ∈ {0, 1, 2, 3, . . . , n}. Since
x commutes with every element of R, Rxexrxai x ⊆ J (R)[x]. J (R)[x] being an ideal of R[x] implies
R[x]eg(x) f (x) ⊆ J (R)[x] for all g(x) ∈ R[x]. By Amitsur Theorem, J (R[x]) = (J (R[x]) ∩ R)[x]
implies J (R)[x] ⊆ J (R[x]). This completes the proof.

�	
In the next result, we show that J-normality of rings is inherited by the corner rings.

Proposition 3.4 If R is a J-normal ring, then eRe is J-normal for any e2 = e ∈ R.

Proof Let eae, (e f e)2 = e f e ∈ eRe with (eae)(e f e) = 0. Since R is J-normal, R(e f e)r(eae) is contained
in J (R) for all r ∈ R. Hence, e(R(e f e)r(eae))e ⊆ eJ (R)e = J (eRe). So (eRe)(e f e)(ere)(eae) ⊆ J (eRe).
Thus, eRe is J-normal. �	

Let S and T be any rings, M an S-T -bimodule and R the formal triangular matrix ring

[
S M
0 T

]

. It is well

known that J (R) =
[
J (S) M
0 J (T )

]

.

Proposition 3.5 Let R =
[
S M
0 T

]

. Then, R is J-normal if and only if S and T are J-normal.

Proof The necessity is obvious by Proposition 3.4. Assume that S and T are J-normal. Let A =
[
a m
0 b

]

,

E =
[
e n
0 f

]

∈ R such that E2 = E and AE = 0. Then, e and f are idempotent elements of S and T ,

respectively. Hence, we have ae = 0 and b f = 0 in S and T , respectively. By hypothesis, Sexa ⊆ J (S) and
T f yb ⊆ J (T ) for any x ∈ S and y ∈ T . We get REX A ⊆ J (R) for all X ∈ R. Thus, R is J-normal. �	
Corollary 3.6 R is a J-normal ring if and only if for any n ≥ 1, the n×n upper triangular matrix ring Un(R)
is a J-normal ring.

Given a ring R and a bimodule M , the trivial extension of R by M is the ring T (R, M) = R ⊕ M with the
usual addition and the multiplication (r1,m1)(r2,m2) = (r1r2, r1m2 + m1r2). This is isomorphic to the ring

of all matrices

[
r m
0 r

]

, where r ∈ R and m ∈ M when the usual matrix operations are used.

Corollary 3.7 R is a J-normal ring if and only if its trivial extension is a J-normal ring.

Corollary 3.8 R is a J-normal ring if and only if for any n ≥ 1, R[x]/(xn) is a J-normal ring, where (xn) is
the ideal of R[x] generated by (xn).
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Proposition 3.9 Let R be a J-normal ring. Then, the following hold.

(1) If e2 = e ∈ R satisfies ReR = R, then e = 1.
(2) If e2 = −e ∈ R satisfies ReR = R, then e = −1.

Proof (1) For any e2 = e ∈ R, we have (1− e)e = 0. Since R is J-normal, Rer(1− e) ⊆ J (R) for all r ∈ R.
By assumption, 1 − e ∈ J (R) and so 1 − e = 0. We have e = 1.

(2) For any e2 = −e ∈ R, e2 is an idempotent. Sowe have (1−e2)e2 = 0. Since R is J-normal, Re2r(1−e2) ⊆
J (R) for all r ∈ R. By assumption, R(1 + e) ⊆ J (R). Then, 1 + e ∈ J (R) and so e = −1.

�	
Recall that a ring R is called von Neumann regular if for any a ∈ R, there exists b ∈ R such that a = aba.

A ring R is said to be unit-regular if for any a ∈ R, a = aua for some unit element u ∈ R. A ring R is called
strongly regular if for any a ∈ R, a = a2b for some b ∈ R. Clearly,

{strongly regular rings} � {unit-regular rings} � {von Neumann regular rings}.

In the next result, we characterize strongly regular rings in terms of J-normality.

Theorem 3.10 Let R be a ring. Then, the following conditions are equivalent.

(1) R is strongly regular.
(2) R is J-normal and von Neumann regular.

Proof (1) ⇒ (2) Assume that R is strongly regular, hence R is von Neumann regular. Also, R is reduced.
Thus, R is J-normal.

(2) ⇒ (1) Since R is von Neumann regular, for any a ∈ R we have a = aba for some b ∈ R. Write e = ba.
Hence a = ae and so a(1 − e) = 0. Since R is J-normal, for all r ∈ R, R(1 − e)ra ⊆ J (R). We
have 1(1 − e)1a ∈ J (R). As J (R) = 0, a = ea = (ba)a = ba2 and so R is strongly regular.

�	
For any ring R, Vn(R) is the subring of Mn(R) where n is a positive integer:

Vn(R) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 a2 a3 . . . an−1 an
0 a1 a2 . . . an−2 an−1
0 0 a1 . . . an−3 an−2
...

...
...

. . .
...

...
0 0 0 . . . a1 a2
0 0 0 . . . 0 a1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

| ai ∈ R, 1 ≤ i ≤ n

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

The Jacobson radicals of Vn(R) and Dn(R) are given by

J (Vn(R)) = {(ai ) ∈ Vn(R) | a1 ∈ J (R)} ,

J (Dn(R)) = {
(ai j ) ∈ Dn(R) | aii ∈ J (R), 1 ≤ i ≤ n

}
,

respectively.
Let R be a ring and D(Z, R) denote the Dorroh extension of R by the ring of integers Z. Then, D(Z, R)

is the ring defined by the direct sum Z ⊕ R with componentwise addition and multiplication (n, r)(m, s) =
(nm, ns + mr + rs) where (n, r), (m, s) ∈ D(Z, R). By [7], J (D(Z, R)) = (0, J (R)).

Theorem 3.11 The following are equivalent.

(1) R is J-normal.
(2) D(Z, R) is J-normal.
(3) For any positive integer n, Un(R) is J-normal.
(4) For any positive integer n, Dn(R) is J-normal.
(5) For any positive integer n, Vn(R) is J-normal.
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Proof (1) ⇒ (2) Let (n, r), (m, s)2 = (m, s) ∈ D(Z, R) and assume (n, r)(m, s) = (0, 0). Hence,
(nm, ns + mr + rs) = (0, 0). Then, nm = 0 and ns + mr + rs = 0. We divide the proof into two cases.
Case I: Assume that m = 0. We get s2 = s ∈ R. Thus, we have (n1R + r)s = 0 in R. Since
R is J-normal, Rst (n1R + r) is contained in the Jacobson radical of R for all t ∈ R. For any
(l, y), (k, x) ∈ D(Z, R), (l, y)(0, s)(k, x)(n, r) = (0, (l1R + y)s(k1R + x)(n1R + r)) ∈ J (D(Z, R)).
Hence, D(Z, R)(m, s)(k, x)(n, r) ⊆ J (D(Z, R)) for any (k, x) ∈ D(Z, R).
Case II: Assume that m = 1. In this case, n = 0, s2 = −s ∈ R and r(1R + s) = 0. Then,
1R + s is an idempotent element of R. By hypothesis, R(1R + s)tr ⊆ J (R) for any t ∈ R. For any
(l, y), (k, x) ∈ D(Z, R), (l, y)(1, s)(k, x)(0, r) = (0, (l + y)(1R + s)(k + x)r) ∈ J (D(Z, R)). Hence,
D(Z, R)(m, s)(k, x)(n, r) ⊆ J (D(Z, R)) for any (k, x) ∈ D(Z, R).

(2) ⇒ (1) Suppose that D(Z, R) is J-normal. Note that J-normal property is preserved under a ring
isomorphism. As R is isomorphic to the ideal {(0, r) | r ∈ R} ⊆ D(Z, R), we have R is J-normal.
(1) ⇒ (3) Suppose that R is J-normal. To prove Un(R) is J-normal, let A = (ai j ), E2 = E = (ei j ) ∈ Un(R)
with AE = 0. Then, aii eii = 0 for all i with 0 ≤ i ≤ n. By (1), Reii raii ⊆ J (R) for all r ∈ R and i with
0 ≤ i ≤ n. The Jacobson radical of Un(R) is

J (Un(R)) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

J (R) R R . . . R R
0 J (R) R . . . R R
0 0 J (R) . . . R R
...

...
...

. . .
...

...
0 0 0 . . . J (R) R
0 0 0 . . . 0 J (R)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Hence, Un(R)EBA ⊆ J (Un(R)) for all B ∈ Un(R).
(3) ⇒ (4) Let A = (ai j ), E2 = E = (ei j ) ∈ Dn(R) with AE = 0. Set a11 = a, e11 = e. Then, ae = 0.

By (3), Un(R)EX A ⊆ J (Un(R)) for all X ∈ Un(R). By comparing (1, 1) entries, we have Rera ⊆ J (R) for
all r ∈ R. Hence, Dn(R)EX A ⊆ J (Dn(R)) for all X ∈ J (Dn(R)).

(4) ⇒ (5) Let A = (ai ), E2 = E = (ei ) ∈ Vn(R) with AE = 0. By (4), Dn(R)EX A ⊆ J (Dn(R)) for
all X ∈ Dn(R). Then, the diagonal entries of matrices of Dn(R)EX A are contained in J (Dn(R)); the same
holds for the matrices of Vn(R)EX A for all X ∈ Vn(R). Hence, Vn(R)EX A ⊆ J (Vn(R)).

(5) ⇒ (1) Let a, e2 = e ∈ R with ae = 0. Let A denote the matrix in Vn(R) having diagonal entries a
elsewhere 0 and E the idempotent matrix in Vn(R) having diagonal entries e elsewhere 0. Then, AE = 0. By
(5), Vn(R)EX A ⊆ J (Vn(R)) for all X ∈ Vn(R). The diagonal entries of matrices in Vn(R)EX A belong to
J (Vn(R)). Hence, Rexa ⊆ J (R) for all x ∈ R. This completes the proof. �	
Proposition 3.12 Let R be a ring. If all nilpotent elements of R are in J (R), then R is J-normal.

Proof Let a, e2 = e ∈ R with ae = 0. For any r ∈ R, aer = 0. We have era is a nilpotent element of R. By
hypothesis, era ∈ J (R). So Rera is contained in J (R) for all r ∈ R. Hence, R is J-normal. �	
Let R be a ring and S a subring of R and

T [R, S] = {(r1, r2, . . . , rn, s, s, . . .) : ri ∈ R, s ∈ S, n ≥ 1, 1 ≤ i ≤ n}.
Then, T [R, S] is a ring under the componentwise addition and multiplication. We use the following charac-
terization of the Jacobson radical. Let R be a ring and r ∈ R. Then, r is called right quasi-regular (r.q.r for
short) in R if there exists s ∈ R such that r ◦ s = 0, where r ◦ s = r + s − rs. In terms of right quasi-regular
elements of R, J (R) = {a ∈ R | aR is right quasi-regular in R}, see also [6, Definition 6.6 and Chapter 6] for
details. In [3], it is shown that J (T [R, S]) = T [J (R), J (R) ∩ J (S)]. In the following, we give necessary and
sufficient conditions for T [R, S] to be J-normal.

Proposition 3.13 Let R be a ring and S a subring of R. Then, the following are equivalent.

(1) T [R, S] is J -normal.
(2) R and S are J -normal.

Proof (1) ⇒ (2) Let a ∈ R, e2 = e ∈ R with ae = 0. Set X = (a, 0, 0, . . .) and Y = (e, 0, 0, . . .).
Then, XY = 0 and Y 2 = Y . By (1), T [R, S]Y Z X ⊆ J (T [R, S]) for each Z ∈ T [R, S]. Let r ∈ R
and Z = (r, 0, 0, . . .) ∈ T [R, S]. For this Z , T [R, S]Y Z X ⊆ J (T [R, S]) implies Rera ⊆ J (R) since
J (T [R, S]) = T [J (R), J (R) ∩ J (S)]. Let s, f 2 = f ∈ S with s f = 0. Set X1 = (0, 0, s, s, s, s, . . .) ∈
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T [R, S] andY1 = (0, 0, f, f, f, . . .) ∈ T [R, S]. ThenY1 is an idempotent in T [R, S] and X1Y1 = 0. Let s′ ∈ S
and Z1 = (0, s′, s′, s′, . . .). By (1), T [R, S]Y1Z1X1 ⊆ T [J (R), J (R) ∩ J (S)]. Then, S f s′s ⊆ J (R) ∩ J (S),
in particular, S f s′s ⊆ J (R) ∩ J (S) for each s′ ∈ S. Hence, R and S are J-normal.

(2) ⇒ (1) Let a = (a1, a2, . . . , an, b, b, · · · ), c2 = c = (c1, c2, . . . , cm, d, d, . . .) ∈ T [R, S] with
ac = 0. Then, all components c1, c2, . . . , cm of c are idempotents in R and d is an idempotent in S. We prove
T [R, S]cza ⊆ T [J (R), J (R) ∩ J (S)] for any z ∈ T [R, S]. Let g = (g1, g2, . . . , gt , s, s, . . .) ∈ T [R, S]. We
divide the proof into some cases:
Case I: n < m. Then, ai ci = 0 for 1 ≤ i ≤ n, bc j = 0 for n+1 ≤ j ≤ m and bd = 0. By (2), Rcirai ⊆ J (R)
for 1 ≤ i ≤ n, Rc jrb ⊆ J (R) for n + 1 ≤ j ≤ m and Rdrb ⊆ J (R) for any r ∈ R. In particular,
Sdsb ⊆ J (R) ∩ J (S) for any s ∈ S. Hence, T [R, S]cga ⊆ J (T [R, S]) for any g ∈ T [R, S].
Case II: n = m. Then, ai ci = 0 for 1 ≤ i ≤ n and bd = 0. By (2), Rcirai ⊆ J (R) for 1 ≤ i ≤ n and Rdrb ⊆
J (R) for any r ∈ R. In particular, Sdsb ⊆ J (R) ∩ J (S) for any s ∈ S. Hence, T [R, S]cga ⊆ J (T [R, S]) for
any g ∈ T [R, S].
Case III: n > m. Then, ai ci = 0 for 1 ≤ i ≤ m, a jd = 0 for m + 1 ≤ j ≤ n and bd = 0. By (2),
Rcirai ⊆ J (R) for 1 ≤ i ≤ m, Rdrai ⊆ J (R) for m + 1 ≤ j ≤ n and Rdrb ⊆ J (R) for any r ∈ R. In
particular, Sdsb ⊆ J (R) ∩ J (S) for any s ∈ S. Hence, T [R, S]cga ⊆ J (T [R, S]) for any g ∈ T [R, S]. This
completes the proof. �	

4 J-normality of some subrings of matrix rings

Let R be a ring, C(R) be the center of R and I nv(R) be the set of all invertible elements of R. Let s ∈ C(R)
and set

L(s)(R) =
{[

a b
sc d

]

∈ M2(R) | a, b, c, d ∈ R

}

where the operations are defined as those in M2(R). Then, L(s)(R) is a subring of M2(R).

Proposition 4.1 Let R be a ring and s ∈ R be a central invertible element. Then, L(s)(R) ∼= M2(R).

Proof The homomorphism α : L(s)(R) → M2(R) defined by α

[
a b
sc d

]

=
[
a sb
c d

]

where

[
a b
sc d

]

∈
L(s)(R) is an isomorphism. �	
Lemma 4.2 Let R be a ring and s ∈ C(R) ∩ J (R). Then, I nv(L(s)(R)), the set of all invertible elements of

L(s)(R), is S =
{[

a x
sy d

]

∈ M2(R) | a, d ∈ I nv(R), x, y ∈ R

}

.

Proof We show I nv(L(s)(R)) = S. Let A =
[
a b
sc d

]

∈ I nv(L(s)(R)). There exists B =
[
x y
su v

]

∈
I nv(L(s)(R)) such that AB = BA = I identity matrix. Then, AB = I implies

ax + bsu = 1

ay + bv = 0

scx + dsu = 0

scy + dv = 1

(1)

(2)

(3)

(4)

Since s ∈ J (R), (1) implies that ax is invertible and (4) implies that dv is invertible. Similarly, BA = I
implies that xa and vd are invertible. Hence, a and d are invertible. So A ∈ S.
Conversely, let A =

[
a b
sc d

]

∈ S. We prove A ∈ I nv(L(s)(R)). To complete the proof, we look for a

B =
[
x y
su v

]

∈ L(s)(R) such that AB = BA = I identity matrix. Assume that such B exists and we

determine entries of B in terms of entries of A and a−1 and d−1. Note that AB = I implies the Eqs. (1)–(4).
Let r = 1− a−1bd−1sc and t = 1− d−1sca−1b. Then, r and t are invertible in R since s ∈ J (R). From Eqs.
(1)–(4), we have x = r−1a−1, y = −a−1bt−1d−1, su = −d−1scr−1a−1, v = t−1d−1. Similarly, any matrix
C ∈ L(s)(R) satisfying CA = I has entries which are expressible in terms of entries of A and a−1 and d−1.
It follows that A ∈ I nv(L(s)(R)). �	
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Lemma 4.3 Let R be a ring and let s ∈ C(R) ∩ J (R). Then

J (L(s)(R)) =
{[

a b
sc d

]

∈ M2(R) | a, d ∈ J (R), b, c ∈ R

}

.

Proof Let A =
[
a b
sc d

]

∈ J (L(s)(R)) and r and z be arbitrary elements in R. Set B =
[
r 0
0 z

]

. Let I denote

the 2 × 2 identity matrix. Then, I − AB is invertible. By Lemma 4.2, 1 − ar and 1 − dz are invertible in R
for each r , s ∈ R. So a, d ∈ J (R).

For the converse inclusion, let A =
[
a b
sc d

]

∈ L(s)(R). Assume that a, d ∈ J (R). Then, 1 − ar and 1 − dz

are invertible in R for each r , z ∈ R. Since s ∈ J (R), for any B =
[
r u
st z

]

, I − AB has 1 − ar − sbt and

1 − dz − scu as main diagonal entries which are invertible for each r , z ∈ R. By Lemma 4.2, I − AB is
invertible in L(s)(R). Hence, A ∈ J (L(s)(R)). This completes the proof. �	
Theorem 4.4 Let R be a ring and let s ∈ C(R) ∩ J (R). If L(s)(R) is J-normal, then R is J-normal. If s = 0
and R is J-normal, then L(0)(R) is J-normal.

Proof Suppose that L(s)(R) is J-normal. Let e2 = e, a ∈ R with ae = 0. Set A =
[
a 0
0 0

]

, E =
[
e 0
0 0

]

.

Then, AE = 0 and E2 = E . By supposition, L(s)(R)EBA ⊆ J (L(s)(R)) for all B ∈ L(s)(R). Comparing
entries and invoking Lemma 4.3, we have Rera ⊆ J (R) for all r ∈ R. Assume that s = 0 and R is J-normal.
Then L(0)(R) is isomorphic to U2(R). By Theorem 3.11, L(0)(R) is J-normal. �	

The rings L(s,t)(R) : Let R be a ring, and let s, t ∈ C(R). Let L(s,t)(R)=
⎧
⎨

⎩

⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ M3(R) | a, c,

d, e, f ∈ R}, where the operations are defined as those in M3(R). Then, L(s,t)(R) is a subring of M3(R).

Lemma 4.5 Let R be a ring, and let s, t ∈ C(R). Then, the set of all invertible elements of L(s,t)(R) is

I nv(L(s,t)(R)) =
⎧
⎨

⎩

⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ M3(R) | a, d, f ∈ I nv(R), c, e ∈ R

⎫
⎬

⎭
.

Proof Let A =
⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ I nv(L(s,t)(R)) and B =
⎡

⎣
x 0 0
su v t z
0 0 r

⎤

⎦ ∈ L(s,t)(R) with AB = BA = I

the 3 × 3 identity matrix over R. An easy calculation shows that xa = ax = 1, vd = dv = 1, f r = r f = 1.
These equations show that a, d and f are invertible in R.

For the converse inclusion, let A =
⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ L(s,t)(R) with a, d and f are invertible in R. Assume

that there exists a matrix B =
⎡

⎣
x 0 0
sr u tv
0 0 z

⎤

⎦ ∈ L(s,t)(R) with AB = I where I is the 3 × 3 identity matrix.

The fact that AB = I implies

ax = 1

scx + dsr = 0

du = 1

dtv + tez = 0

f z = 1

(1)

(2)

(3)

(4)

(5)

Let a−1, d−1 and f −1 denote the inverses of a, b and f , respectively.We look for solutions for these equations in
terms of entries of A and a−1 = x , d−1 = u and f −1 = z. Equations (2) and (4) give rise to sr = −d−1sca−1,

123



Arab. J. Math. (2020) 9:123–135 133

tv = −d−1te f −1. Similarly, existence of a matrix C ∈ L(s,t)(R) having diagonal entries invertible and
satisfying CA = I is proved. It follows that A is invertible. �	
Lemma 4.6 Let R be a ring and let s, t ∈ C(R) ∩ J (R). Then

J (L(s,t)(R)) =
⎧
⎨

⎩

⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ M3(R) | a, d, f ∈ J (R), c, e ∈ R

⎫
⎬

⎭
.

Proof Let A =
⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ J (L(s,t)(R)) and r , u and z be arbitrary elements in R. Set B =
⎡

⎣
r 0 0
0 u 0
0 0 z

⎤

⎦.

Let I denote the 3 × 3 identity matrix. Then, I − AB is right invertible. By Lemma 4.5, 1 − ar , 1 − du and
1 − f z are right invertible in R for each r , u, z ∈ R. So a, d , f ∈ J (R).

For the converse inclusion, let A =
⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ L(s,t)(R). Assume that a, d , f ∈ J (R). Then, 1 − ar ,

1 − du and 1 − f z are right invertible in R for each r , u, z ∈ R.

Let B =
⎡

⎣
r 0 0
sl m tp
0 0 q

⎤

⎦ ∈ L(s,t)(R). I − AB =
⎡

⎣
1 − ar 0 0

−scr − dsl 1 − dm −dtp − teq
0 0 1 − f q

⎤

⎦ is right invertible

in L(s,t)(R) for each B ∈ L(s,t)(R). Hence, A ∈ J (L(s,t)(R)). �	
Theorem 4.7 Let R be a ring and let s, t ∈ C(R) ∩ J (R). Then, R is J-normal if and only if L(s,t)(R) is
J-normal.

Proof Necessity: Assume that R is J-normal and let A =
⎡

⎣
a 0 0
sc d te
0 0 f

⎤

⎦ ∈ L(s,t)(R) and E2 = E =
⎡

⎣
x 0 0
su y tv
0 0 z

⎤

⎦ ∈ L(s,t)(R) with AE = 0. Then, E2 = E implies x2 = x , y2 = y and z2 = z. We have

ax = 0, dy = 0 and f z = 0. By assumption, for any x ′, y′ and z′ ∈ R, Rxx ′a ⊆ J (R), Ryy′d ⊆ J (R) and
Rzz′ f ⊆ J (R). For any B ∈ L(s,t)(R), the diagonal entries of L(s,t)(R)EBA are contained in J (L(s,t)(R)).
By Lemma 4.6, L(s,t)(R)EBA ⊆ J (L(s,t)(R)).

Sufficiency: Assume that L(s,t)(R) is J-normal. Let a ∈ R and e2 = e ∈ R with ae = 0, and A =
⎡

⎣
a 0 0
0 0 0
0 0 0

⎤

⎦ ∈ L(s,t)(R) and E2 = E =
⎡

⎣
e 0 0
0 0 0
0 0 0

⎤

⎦ ∈ L(s,t)(R).

Then, AE = 0. By assumption, L(s,t)(R)EBA ⊆ J (L(s,t)(R)) for all B ∈ L(s,t)(R).

For all r ∈ R,

⎡

⎣
r 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
e 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
b 0 0
0 0 0
0 0 0

⎤

⎦

⎡

⎣
a 0 0
0 0 0
0 0 0

⎤

⎦ ∈ J (L(s,t)(R)) for each b ∈ R. ByLemma

4.6, Reba ⊆ J (R) for each b ∈ R. So R is J-normal. �	
The rings H(s,t)(R): Let R be a ring and let s, t ∈ C(R). Let

H(s,t)(R) =
⎧
⎨

⎩

⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ M3(R) | a, c, d, e, f ∈ R, a − d = sc, d − f = te

⎫
⎬

⎭
.

Then, H(s,t)(R) is a subring of M3(R).
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Lemma 4.8 Let R be a ring, and let s ∈ C(R) ∩ J (R). Then, the set of all invertible elements of H(s,t)(R) is

I nv(H(s,t)(R)) =
⎧
⎨

⎩

⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ H(s,t)(R) | a, d, f ∈ I nv(R), c, e ∈ R

⎫
⎬

⎭
.

Proof Let A =
⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ I nv(H(s,t)(R)) and B =
⎡

⎣
x 0 0
u v z
0 0 r

⎤

⎦ ∈ H(s,t)(R) with AB = BA = I the

3 × 3 identity matrix over R. An easy calculation shows that xa = ax = 1, vd = dv = 1, f r = r f = 1.
Therefore, a, d and f are invertible in R.

For the converse inclusion, let A =
⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ H(s,t)(R)with a, d and f are invertible in R. Assume that

there exists a matrix B =
⎡

⎣
x 0 0
r u v
0 0 z

⎤

⎦ ∈ H(s,t)(R) such that AB = I where I is the 3 × 3 identity matrix.

AB = I implies

ax = 1

cx + dr = 0

du = 1

dv + ez = 0

f z = 1

(1)

(2)

(3)

(4)

(5)

Let a−1, d−1 and f −1 denote the inverses of a, d and f , respectively.We look for solutions for these equations in
terms of entries of A and a−1 = x , d−1 = u and f −1 = z. Equations (2) and (4) give rise to sr = d−1sca−1,
tv = −d−1te f −1. Similarly, existence of a matrix C ∈ H(s,t)(R) having diagonal entries invertible and
satisfying CA = I is proved. It follows that A is invertible. �	
Lemma 4.9 Let R be a ring and let s, t ∈ C(R) ∩ J (R). Then,

J (H(s,t)(R)) =
⎧
⎨

⎩

⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ H(s,t)(R) | a, d, f ∈ J (R), c, e ∈ R

⎫
⎬

⎭
.

Proof Let A =
⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ J (H(s,t)(R)) and r , u and z be arbitrary elements in R. Set B1 =
⎡

⎣
r 0 0
0 r 0
0 0 r

⎤

⎦,

B2 =
⎡

⎣
u 0 0
0 u 0
0 0 u

⎤

⎦, B3 =
⎡

⎣
z 0 0
0 z 0
0 0 z

⎤

⎦ ∈ H(s,t)(R). Let I denote the 3 × 3 identity matrix. Then I − ABi

is invertible where i = 1, 2, 3. By Lemma 4.5, 1 − ar , 1 − du and 1 − f z are invertible in R for each r , u,
z ∈ R. So a, d , f ∈ J (R).

For the converse inclusion, let A =
⎡

⎣
a 0 0
c d e
0 0 f

⎤

⎦ ∈ H(s,t)(R). Assume that a, d , f ∈ J (R). Then, 1 − ar ,

1 − du and 1 − f z are invertible in R for each r , u, z ∈ R.

Let B =
⎡

⎣
r 0 0
l m p
0 0 q

⎤

⎦ ∈ H(s,t)(R). I − AB =
⎡

⎣
1 − ar 0 0

−cr − dl 1 − dm −dp − eq
0 0 1 − f q

⎤

⎦ is invertible in H(s,t)(R)

for each B ∈ H(s,t)(R). Hence, A ∈ J (H(s,t)(R)). �	
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Theorem 4.10 Let R be a ring and let s, t ∈ C(R) ∩ J (R). Then, R is J-normal if and only if H(s,t)(R) is
J-normal.

Proof Necessity: To prove H(s,t)(R) is J-normal; let A =
⎡

⎣
a 0 0
b d e
0 0 f

⎤

⎦ ∈ H(s,t)(R) and E2 = E =
⎡

⎣
x 0 0
u y v
0 0 z

⎤

⎦ ∈ H(s,t)(R) with AE = 0. Then, E2 = E implies x2 = x , y2 = y and z2 = z. We have

ax = 0, dy = 0 and f z = 0. By assumption, for any x ′, y′ and z′, Rxx ′a ⊆ J (R), Ryy′d ⊆ J (R)
and Rzz′ f ⊆ J (R). Then, all the diagonal entries of H(s,t)(R)EBA belong to J (R). By Lemma 4.9,
H(s,t)(R)EBA ⊆ J (H(s,t)(R)). This completes the proof.

Sufficiency: Assume that H(s,t)(R) is J-normal. Let a ∈ R and e2 = e ∈ R with ae = 0, and A =
⎡

⎣
a 0 0
0 a 0
0 0 a

⎤

⎦ ∈ H(s,t)(R) and E2 = E =
⎡

⎣
e 0 0
0 e 0
0 0 e

⎤

⎦ ∈ H(s,t)(R).

Then, AE = 0. By assumption, H(s,t)(R)EBA ⊆ J (H(s,t)(R)) for all B ∈ H(s,t)(R).

For all r ∈ R,

⎡

⎣
r 0 0
0 r 0
0 0 r

⎤

⎦

⎡

⎣
e 0 0
0 e 0
0 0 e

⎤

⎦

⎡

⎣
b 0 0
0 b 0
0 0 b

⎤

⎦

⎡

⎣
a 0 0
0 a 0
0 0 a

⎤

⎦ ∈ J (H(s,t)(R)) for each b ∈ R. By

Lemma 4.9, Reba ⊆ J (R) for each b ∈ R. So R is J-normal. �	
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