ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

Method of increasing the reliability of knowledge-oriented
systems software through code reuse mechanisms
MeToA nigBULWEHHA HAAIMHOCTI NPOrpPamMmHoOro
3abe3neyeHHA 3HAHHE-OPIEHTOBAHUX CUCTEM 33
PaXyHOK MeXaHi3MiB NOBTOPHOro BUKOPUCTAHHA Koay

Serhii Osiievskyi ! A
Oleksii Kolomiitsev 2 8
Pavlo Open’ko * 3 ¢
Viacheslav Tretiak % #
Oleksii Petrenko ° A

Olha Petrenko ¢ P

1 Candidate of Technical Science, Associate Professor, Lead Reseacher
of the Scientific-research Department of Air Force Scientific Center, e-
mail: stivi61272 @gmail.com, ORCID: 0000-0003-0861-9417

2 Dr of Technical Science, Professor, Professor of the Department, e-
mail: alexus_k@ukr.net, ORCID: 0000-0001-8228-8404
*Corresponding author: 3 Candidate of Technical Science, Senior
Researcher, Head of the Scientific-research Department, e-mail:
pavel.openko@ukr.net, ORCID: 0000-0001-7777-5101

4 Candidate of Technical Science, Associate Professor, Lead Reseacher
of the Scientific-research Department, e-mail: Slava_tr@ukr.net,
ORCID: 0000-0003-2599-8834

5 Candidate of Technical Science, Senior Reseacher, Deputy Chief of the
Scientific-research Department, e-mail: alexwgs78@gmail.com, ORCID:
0000-0001-9903-7388

6 Candidate of Technical Science, Associate Professor, Information
Technologies Security, e-mail: petrenkooe73@gmail.com, ORCID:
0000-0002-7862-5399.

Alvan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine
8 The National Technical University “Kharkiv Polytechnic Institute”,
Kharkiv, Ukraine

¢ The National Defense University of Ukraine named after Ivan
Cherniakhovskyi, Kyiv, Ukraine

PThe National University of Radio Electronics, Kyiv, Ukraine

Cepriit OcieBcbKuin 1 A
Onekciit Konomiiiyes 28
Masno OneHbKo * 3¢
B'auecnas Tperak 4 A
Onekciit NetpeHko A
Onbra NeTtpeHko A

! KaHAMAAT TEXHIYHMX HAYK, AOLEHT, NPOBIAHWIA HAYKOBMIA CRIBPOBITHUK
HayKoBo-gocnigHoro siaainy, e-mail: stivl61272 @gmail.com, ORCID: 0000-
0003-0861-9417

2 [OKTOp TexHiYHWMX Hayk, npodecop, npodecop Kadbeapu, e-mail:
alexus_k@ukr.net, ORCID: 0000-0001-8228-8404

*Corresponding author: 3 KaHAWAAT TEXHIYHUX HAYK, CTapLIMIA HAyKOBWIA
CniBpobiTHMK, 3aBigyBa4y HayKoBo-goc/nigHoro Bigginy, e-mail:
pavel.openko@ukr.net, ORCID: 0000-0001-7777-5101

4 KaHAMAAT TEXHIYHUX HayK, AOLEHT, NPOBIAHUIA HAYKOBMIA CMIBPOBITHUK
HayKoBO-gocniaHoro Biaainy, e-mail: slava_tr@ukr.net, ORCID: 0000-0003-
2599-8834

5 KaHAMOAT TEXHIYHWX HayK, CTapLUMIA HAyKOBMI CNiBPOBITHUK, 3aCTyNHMK
HayaslbHWKa HayKoBO-gocnigHoro Biadiny, e-mail: alexwgs78@gmail.com,
ORCID: 0000-0001-9903-7388

6 KaHAMOAT TeXHIYHUX HayK, AoueHT Kadeapu Gesneku iHGopMaLLiHMX
TexHonorin, e-mail: petrenkooe73@gmail.com, ORCID: 0000-0002-7862-
5399.

A XapKiBCbKMIA HaLiOHaNbHWI yHiBepcuTeT MoBiTpAHKUX Cun imeHi IBaHa
Korkenyba, Xapkis, YkpaiHa

8 HauioHanbHWit TEXHIYHMI yHiBEPCUTET “XapKiBCbKMIM MONITEXHIYHUIA
iHCTUTYT”, XapkiB, YKpaiHa

¢ HauioHanbHuit yHiBepcuTeT 060pOHM YKpaiHu
YepHaxoscbKoro, Kuis, YKpaiHa

© HauioHanbHWiA yHiBEPCUTET PasioeNneKTPoHiKK, Kuis, YKpaiHa

imeHi |BaHa

Received: February 3, 2022 | Revised: February 22, 2022 | Accepted: February 28, 2022

DOI: 10.33445/sds.2022.12.1.6

Purpose: The problem, that has been considered in the paper,
caused by the process of large-scale application of the
knowledge-based information systems (KBIS) in critical
infrastructure. Research have shown that for KBIS the
critical are the errors that can cause harm which
significantly exceeds the positive effect of their use. High
requirements for the quality and reliability of software for
such systems sometimes cannot be adhered to the same
due to the real limitations of all types of resources. This
has given rise to the occurrence, development and
dynamic use of automation methods and tools that
ensure the creation of KBIS with the specified high-quality
indicators with real limitations on use of the development
resources.

Design/Method/Approach: In our opinion, one of the successful
ways to achieve the specified quality indicators of
software is the development of methods based on code
reuse mechanisms. The issues of possibility of application
of the code reuse mechanism in the process of designing

Meta pobotu: MNpobnema posrnsaHyTa y CTaTTi, NMOPOAMKEHA NPOLECOM

LWMpoKomacLuTabHoro 3aCcTOCYBaHHA 3HaHHA-OPIEHTOBAHMX
iHbopmauiiHux cuctem (30IC) Ha 06’ekTax KPWUTUYHOI
iHppacTpykTypu. fAK nokasanu pocnigkeHHa, ana 30IC

KPUTUYHUMW AIBNAIOTBCA NOMUJIKM, LLLO MOKYTb 3aBAATU LIKOAM,
AIKa 3HAYHO MepeBULLYE NO3UTUBHUI edeKT Big, iX BUKOPUCTAHHA.
Bucoki BUMOrM A0 AKOCTi Ta HaAiMHOCTI NporpamHoro
3abe3neyeHHs AnA NoAibHMX cUCTEM IHOAI NPUHLMMNOBO HE MOXKYTb
6yTM BUKOHaHI Yepes peasibHi 0BMeXKeHHs BCix BUAiB pecypcis. Lie
3yMOBW/IO MOABY, PO3BUTOK Ta aKTMBHE 3aCTOCYBAaHHA METOAIB Ta
3acobiB aBTOMaTtu3auii, Wwo 3abesnedyoTb cTBOpeHHAa 30IC i3
33JaHUMU BMCOKMMM MOKA3HWKaMM AKOCTI MpU peasibHuX
06MeKEHHAX HAa BUKOPUCTAHHA pecypcis po3pobKu.

Auzaitn/Metog/MNipxia aocnigKeHHa: Ha Hawy AyMKY, OAHWUM i3 yCRilLHMUX

WNAXIB AOCATHEHHA 3aaHUX MOKa3HWKIB AKOCTI MPOrpamHoOro
3abe3neyeHHa ABNAETbCA PO3POOKA METOAB B OCHOBY AKMX
NOKNAZlEHO MeXaHi3MM MOBTOPHOrO BWKOPWUCTaHHA Koay. B
HaBegeHin ny6nikayii PO3rNAHYTO MUTAHHA MOXX/IMBOCTI
3aCTOCYBaHHA MeXaHi3My MOBTOPHOTO BMKOPWUCTAHHA KoAy B

47

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228
mailto:pavel.openko@ukr.net
http://ORCID:%200000-0001-7777-5101
mailto:Slava_tr@ukr.net
mailto:petrenkooe73@gmail.com
http://ORCID:%200000-0001-7777-5101
http://ORCID:%200000-0001-7777-5101

ISSN 2522-9842

Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

and developing software of KBIS have been considered in
the paper.

Findings: In frame of the developed method of improving the
reliability of knowledge-oriented systems software
through the of code reuse mechanisms, a new visual form
of function libraries representation in the shape of a
single software shell has been proposed.

Theoretical implications: The obtained theoretical provisions are
imaged into a running example, which shows one of the
possible options for organizing libraries of functions as an
element of the information resource.

Practical implications (if applicable the use case diagrams,
interaction diagrams, sequence diagrams, class diagrams
have been developed and justified.

Originality/Value: Based on the obtained practical results, a block
diagram of the method, which, in contrast to existing
solutions, includes a procedure for generating of
proofreads for basic UML-diagrams in accordance with
requirements of the programming environments has
been proposed.

Research limitations/Future research: As a basic framework for
solving the problem of information resource
development, usage of Unified Modeling Language
(UML), which is based on the paradigm of object-oriented
programming has been proposed. Mentioned choice is
justified by the fact that UML is an integral part of a
unified software development process and is essentially
an open standard that uses graphical notation to create
an abstract model of the system.

Paper type: Theoretical.

Key words: UML-diagram, software, source code, information
resource, class, function, model.

npoueci NPOeKTyBaHHA Ta po3pobKM nporpamHoro 3abesneyeHHA
30IC.

PesynbTatv gocnigpkeHHa: B pamkax pospobneHoro meTtody NiagBULLEHHA
HaginHoCTi nporpamHoro 3abesneyeHHA 3HAHHE-OPIEHTOBAHUX
CUCTEM 32 PaxyHOK MeXaHi3miB NMOBTOPHOrO BMKOPWUCTaHHA Koay
3anponoHoBaHa HOBAa Bi3yanbHa ¢opma nogaHHA 6ibnioTek
bYHKUjN y BUrNA4i EAUMHOT NPOrpamHoi 060/10HKM.

TeopeTyHa UiHHICTb AocnimkeHHA: OTPMMaHi TEOPEeTUYHI NONOMKEHHA
Bigo6paKeHi B HAacKpisHOMY NpuMKNai, Wo Bigobparkae oAHWH 3
MOXX/IMBMX BapiaHTiB opraHisaii 6i6nioTek PyHKLIN AK enemeHTy
iHdopmauiiHoro pecypcy.

MpakTMyHa UiHHICTD AochipKeHHA: Po3pobneHo Ta 06rpyHTOBAHO
Ajiarpamu BapiaHTIB BUKOPWUCTaHHA, B3aEMOZji, MOCNIAOBHOCTI Ta
Aiarpamu Knacis.

OpuriHanbHicTb/LLiHHICTb AoCniaXKeHHsA: Ha OCHOBI OTPMMAHMX MPaKTUUHMX
pes3ynbTaTiB 3anpoONOHOBAHO CTPYKTYPHY CXEMY MeTody, fiKa, Ha
BiAMIHY Bif iCHYlOUMX pilleHb BK/OYAE npoueaypy BUPOBAEHHA
KOpEeKTyp Ana ocHosHux UML-giarpam 3a BUmoramu cepegosuiy,
nporpamyBaHHs.

O6merkeHHA pocnigykeHHa/MaibyTHi gocnigykeHHa: B akocti 6asosoro
iHCTpyMeHTapito BUpilLeHHA 3aBAaHHA Po3pobKku iHbopmaLiiHoro
pecypcy 3anpornoHoBaHo Bukopuctosysat UML (aHrn. Unified
Modeling Language) — yHipikoBaHy MOBa MOAENOBaHHSA, B OCHOBY
AKol noknaseHo napagurmy 06'eKTHO-OpiEHTOBAHOrO
nporpamysaHHsA. 3a3HayeHunit BUGip 06rpyHTOBaHMI TUM, Wwo UML
€ HeBiA'EMHOI0 4YacTUHOW YHidiKkoBaHOro npouecy po3pobku
nporpamHoro 3abesneyeHHA Ta MO CyTi ABNAETbCA BiAKPUTUM
CTaHAAPTOM, WO BWKOPWUCTOBYE rpadiyHi MNO3HaAYeHHA ana
CTBOPEHHA abCTpaKTHOI Mmoaeni cuctemu.

Tun crarTi: TeopeTnyHa.

Kntouosi cnoea: UML-giarpama, nporpamue 3abesneyeHHs, BUXigHMI Ko,
iHbopMmaLiiHWit pecypc, Knac, GyHKUif, Moaenb.

1. Introduction

The knowledge-based information systems (KBIS) software is characterized by focusing on the
subject area for which it is developed and, accordingly, the implementation of complex
mathematical models (often unique and inherent in only a certain subject area), which are an
algorithmic representation of real physical processes. Quite often, real problems that solvation
needs to be implemented in KBIS require using the joint means of several branches of knowledge,
which significantly complicates the process of mathematical description and, as a consequence, the
software implementation of these tasks. Moreover, a large number of logical-mathematical models
are based on algebraic expressions, which requires the use of different methods of calculus
mathematics to get the possibilities to obtain numerical calculations with them, which requires
professional knowledge of calculus mathematics and is crucial in the software implementation of
these mathematical models. Moreover, a significant number of logical-mathematical models are
based on algebraic expressions, which requires the use of various methods of computational
mathematics to be able to obtain numerical calculations. This point requires the presence of
professional knowledge of methods of computational mathematics and is crucial in the software
implementation of these mathematical models (Pavlenko, M. A.,2021; Dominguez, Oscar, 2010).

Put in other words KBIS software development consists not only in software implementation
of complex application functions that allow to implement system functionality, but also in
development of numerous software mechanisms, which assure reliability and correctness of
computing process, user-friendly interface, rational usage of computing resources, interoperability
of different types of programs within a single project frame. In addition, the software
implementation of mathematical models, provides knowledge of relevant applied theories, which
related to the specificity of subject areas, by the developers.

The current practice of software development configures with the delimitation of
responsibility areas in the process of software development. That means, software developers
should be primarily responsible for the implementation of common software mechanisms that

48

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228
https://uk.wikipedia.org/wiki/%D0%90%D0%BD%D0%B3%D0%BB%D1%96%D0%B9%D1%81%D1%8C%D0%BA%D0%B0_%D0%BC%D0%BE%D0%B2%D0%B0
https://uk.wikipedia.org/wiki/%D0%9E%D0%B1%E2%80%99%D1%94%D0%BA%D1%82%D0%BD%D0%BE-%D0%BE%D1%80%D1%96%D1%94%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D0%BD%D0%B5_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9E%D0%B1%E2%80%99%D1%94%D0%BA%D1%82%D0%BD%D0%BE-%D0%BE%D1%80%D1%96%D1%94%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D0%BD%D0%B5_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81_%D1%80%D0%BE%D0%B7%D1%80%D0%BE%D0%B1%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B7%D0%B0%D0%B1%D0%B5%D0%B7%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81_%D1%80%D0%BE%D0%B7%D1%80%D0%BE%D0%B1%D0%BA%D0%B8_%D0%BF%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE_%D0%B7%D0%B0%D0%B1%D0%B5%D0%B7%D0%BF%D0%B5%D1%87%D0%B5%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%92%D1%96%D0%B4%D0%BA%D1%80%D0%B8%D1%82%D0%B8%D0%B9_%D1%81%D1%82%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D1%82
https://uk.wikipedia.org/wiki/%D0%92%D1%96%D0%B4%D0%BA%D1%80%D0%B8%D1%82%D0%B8%D0%B9_%D1%81%D1%82%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D1%82
https://uk.wikipedia.org/wiki/%D0%90%D0%B1%D1%81%D1%82%D1%80%D0%B0%D0%BA%D1%82%D0%BD%D0%B0_%D0%BC%D0%BE%D0%B4%D0%B5%D0%BB%D1%8C
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

ensure the correct behavior of the program within the operating system, as well as the correct
interaction of software blocks with each other. At the same time, the task of creating software
algorithms that implement the necessary logical and mathematical models is made to a separate
task, which should be solved by knowledge engineers, architects and experts. The high complexity
and scientific content of this process, as well as the necessity for ensuring the interaction of
specialists in different fields of knowledge leads to significant efforts for this process.

That particular circumstance, first of all, shows the necessity for mechanisms for reuse of
previously developed and verified program code using as an element of information resources. Put
in other words the KBIS development process with usage of current available software design and
development approaches is an extremely complex and time-taking process. Despite the fact that on
the one hand new approaches to programming allow to significantly increase the efficiency of
software development, on the other hand the ever-increasing requirements for functional
complexity, program interoperability, ergonomics, etc. of this class of systems require longer
periods of their development.

2. Data and methods

Since the occurrence of the first approaches to programming in order to reduce the time
consumption for software development, the so-called mechanisms of reusable code have begun to
be used and developed (Turinskyi, 2020; Serifi, Veis, 2013; Taylor, Richard, 2007). The essence of
these mechanisms is the idea of reusing previously developed software code in new developments.

At the present moment the mechanisms of reusable code include databases or libraries of
functions, procedures, classes, objects and agents. To determine a more general category that
terminologically combines mentioned above databases and libraries, the paper introduced the term
“the information resource”.

It should be noted that in the development of general-purpose application software (which
does not contain elements of intelligent systems) it is customary to use information-analytical
resource that contains theoretical descriptions of tasks with using the points of known
methodologies and their practical implementation in known software development environments.
Formally, as mentioned above, the information-analytical resource contains databases of functions,
agents, class libraries and objects. It is comprehended that object databases contain visual and non-
visual components, ActiveX objects, as well as objects of cross-platform implementation. That is,
object databases are an assembly of multilevel software mechanisms from making the visualization
of properties of instances of the classes in development environments possible to conforming
mechanisms for interprogram interaction within both unified and heterogeneous environments.
Databases of agents (Vann Tassel, 1995) are a set of implemented agents of different functionality.

Analysis of existing solutions for the development of KBIS showed that using the traditional
approach, in which the content of information and analytical resources is an integral part of
supporting the development process (Bragina, T. |., 2010; Levykin, V. M., 2013; Osipova, T. F., 2015)
is not always appropriate given the diversity of functional needs of participants in the KBIS software
development process and needs further research.

3. Research question or Research hypothesis or Problem statement

The objectives of the research will be defined from the perspective of the concept of separate use
of analytical and information resources. The issue of forming an analytical resource is elaborated in
(Turinskyi, O., 2020; Pavlenko, M. A., 2020; Osiyevs'kyy, S. V.). At the same time the mechanism of
information resource formation needs to be researched separately in order to effectively organize
the process of KBIS software development at the developers’ level.

49

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

As a basic tool for solving problem determine above usage of Unified Modeling Language
(UML), which is based on the paradigm of object-oriented programming, have been proposed. This
choice is justified by the fact that UML is an integral part of the unified software development
process and it is essentially an open standard that uses graphical notation to create an abstract
model of the system (Maylawati, D. S., 2018; Mouheb D. et al., 2015). In fact, the solution is to
implement a mechanism for reusing program (source) code in the KBIS software development
process. Namely all applied mathematical expressions and corresponding calculation algorithms are
implemented in the form of databases of software functions, classes and objects and establish the
core of the information resource for supporting of the process of developing KBIS software at the
developer’s level.

This will allow:

- create a database of software components for solving typical application problems and
ensure the possibility of their reuse in the development of application KBIS software;

- to focus the main efforts of KBIS application software on the implementation of internal
software solutions rather than on the implementation of complex application calculations;

- to increase the reliability of the developed KBIS software through the use of already
debugged and tested components, and to minimize the possibility of errors due to the “block”
nature of KBIS software development.

It is assumed that the creation and widespread usage of databases of software components
on the basis of the mechanisms of reusable code in the technological process of application KBIS
software developing will provide:

- reliability, unification and standardization of the developed application software;

- increase the efficiency of software development and maintenance by reducing the time
spent on direct coding, testing and debugging software.

The structure of the method of improving the reliability of KBIS software through code reuse
mechanisms, as a set of relevant models of development, accumulation and usage of software
components, as well as a description of the methodology for developing software components
databases (as a core information resource) is shown in Fig. 1. This structure gives a generalized idea
of the essence of the method and will be detailed due to the developed UML diagrams.

- Computer Technology
c
£ DLL Objects SOAP, JSON Agents
(]
E IR 7 17 N 17 Y
1
tE Y N
2 2 —N
5 <:> Function Library 1| Application Library | Object Repository
£ c
= 8 I [
e 5
§ ¢ A _ A A
=
> Hardware-in-the-loop Semantically Semantically Applicative
%_ analytical theoretical
<

Figure 1 — The structure of the method of improving the reliability of KBIS software
through code reuse mechanisms

4. Results and discussion

The very idea of the necessity to develop an information resource containing a database of code
reuse software components, and in particular, function libraries for different areas of applied
knowledge in the interests of creating different levels software is currently beyond dispute. This is
related to the fact that such libraries are the most accessible and at the same time it is a common

50

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

way to reuse code. This in turns increases the reliability and efficiency of new software development
by reducing the time spent on direct coding, testing and debugging software applications (Lipaev,
V. V., 2002). First of all, usage of function libraries and other types of databases of code reuse
software components increases reliability of newly created software (Levykin, V. M., 2013).

The recent rapid development of computers and no less rapid development of programming
methodologies have not reduced the needs of KBIS software developers in function libraries as one
of the main mechanisms for code reuse.

This requirement is most often offset by the development of software that includes the most
commonly used libraries, such as mathematical, statistical, string, and other functions.

However, the need for directly applied functions, i.e., functions that solve the problems of
applied areas of knowledge, which required for the implementation of KBIS software (for instance,
such as radar-location, aerodynamics, etc.), still remains unsatisfied. The complexity of the situation
is that the existing standards for software development are not customary to be used in the
development of function libraries, because of function libraries do not associate as the final product.
They are used within the means of development, and their separate standardization has not yet
been fundamental. On the other hand, the usage of a common approach to the development of
libraries of functions that implement complex mathematical dependencies of applied fields of
knowledge may not always be justified. It is related to the fact of sufficient complexity and
uniqueness of the fields of knowledge. Moreover, the textual description of such functions used in
the documentation for libraries may not always be complete and related to the personal vision of
the developer.

That is, source listings and documentation cannot be informative and complete descriptions
for application function libraries. There is a need for a new form of presentation of function libraries
arises, with taking into account the capabilities of modern programming languages, current
requirements and the needs of developers. This issue is especially critical in the distribution of
information and analytical resources to support the process of developing KBIS.

In addition, the most applied functions, as off-the-shelf components of program code, are
inherent in a contradiction, which is contained in not enough sufficiently clear-cut logical and
mathematical description of the domain of function on the one hand, and on the other hand explicit
description of the domain of function in software implementation. This contradiction causes a
significant number of errors in the synthesis of software code for KBIS software based on software
component databases. This situation is usually got worse with the fact that it is impossible to require
in-depth knowledge in applied theories in the interests of which software is created from software
developers. In addition to the above, the existing function libraries also have internal disadvantages,
namely the lack of computer-assisted mechanisms for testing functions, lack of one-way
presentation of functions, lack of convenient search mechanisms.

For the foregoing reasons, in the framework of the developed method of improving the KBIS
software reliability through the code reuse mechanisms, a new visual presentation form of function
libraries by way of a single software shell has proposed. This will allow:

- display a list of all functions implemented in the library;

- display mathematical description and list of arguments for each function;

- carry out the calculation of any of the functions implemented in the library (both with
default values and with any values entered by the user) directly in the software shell;

- create a text description of functions in Windows Help format;

- create a listing function with comments in two or more programming languages at the
developer's choice.

Such a visual representation of application functions libraries is able to completely satisfy
the needs of project developers in the creation and maintenance of software for KBIS.

51

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

As was mentioned above, within the framework of the proposed method of increasing the
reliability of KBIS software through code reuse mechanisms there will be object-oriented analysis
and design of software components, such as visual libraries of application functions, is carried out
with using visual tools of Unified Modeling Language UML. A distinctive feature of this approach is
the creation of visual models of the developed software application in UML in the process of analysis
and design, which is characterized by high semantic saturation. Before starting to create any
software, developers must be completely familiarized with the customers’ requirements for the
created system. Over extended periods in the process of both object-oriented and traditional
software development typical scripts have been used, that allow developers to be more aware of
the requirements for the system. However, these scripts were usually interpreted informally,
because they were almost always used, but quite rarely documented. This situation was changed in
the Objectory software-technological approach (Maylawati, D. S., 2018; Mouheb D. et al., 2015).
Such importance has given to scripts (use cases), that they became one of the main elements of
analysis and planning of software development project. That is, the use case is a description of a
typical user interaction with a computer system. The notation used in UML for describing the
requirements for the system makes putting to use of use cases convenient and with sufficient detail
level. There is a diagram of use cases for using the function library in Fig. 2.

@
Select function

Architect
- Developer
Knowledge engineer o c c
. Get the source - Get IiAsting Get a description

code R

Expe* I:'N\\fuq'ction of function

Authorization
System

Figure 2 — UML diagram of function library usage options

When use cases diagrams are created an increased focus should be put on implementing
and solving specific developers’ tasks. The only limitation is running of external information
resources. In this case, the use cases diagrams should show not the user’s tasks but the system
interactions that reflect the processes (how the system should perform the designated for user
tasks). Each use case is supplemented by a textual description — an event flow. The event flow in
standard form describes the events with their intercoupling caused by the implementation of user’s
tasks. Nominally given description is the first step in the method of improving the reliability of KBIS
software through code reuse mechanisms.

Description of the flow model in the UML notation for each use case is performed on the
second stage. Standard format of the event flow model description for one of the use cases, namely
the use flow event model of the “Get Function Listing” use case, as an example has shown in Fig.3.

Brief description of this model is as follows. The model allows the user to select the needed
function by its name from the list of available options. For the selected function, the main event
flow is as follows: the use case starts when the user selects the name of a specific function from the
proposed list. When a function is picked out by user, its listing and argument list are displayed. In
this case, an alternative flow is to block the task of obtaining a function listing under condition that
authorization failed.

Presentation of the requirements for the base of software components in this form allows
not only to take into account the requirements for the KBIS software, but also to develop specific
options for their implementation, already at the stages of analysis and design.

52

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

4 /O‘ -- G
- Get listing function

Developer Authorization

e e b

Print listing Edit listing save listing

System

Figure 3 — Diagram of the “Get Function Listing” use case

The diagram of use cases, which given in Fig. 2, displays the highest level of abstraction that
contains the project for displaying user tasks. For lower levels of tasks, use cases diagrams are also
used and reveal the essence of top-level use cases. Hence, a hierarchical structure of uses of the
required degree of detail is created. In particular, in the considered example in Fig. 3 diagram reveals
the essence of the “Get Function Listing” use case.

Based on the data from the diagrams of use cases, the elaboration of the main functional
blocks of the database of software components for the synthesis of KBIS software is carried out. It
means that usage diagrams provide the necessary information for further analysis and design. Such
elaboration makes it easy to trace not only the purpose but also the interaction of software blocks.
With the view to determine the order of interaction among software modules and their interaction
with the system the development of sequence diagrams for each of the main and alternative uses
is provided. At its core these are models of program implementation of the project elements
interaction.

For instance, for the flow event “Get Function Listing” has been developed a sequence
diagram, which is shown in Fig. 4. and the interaction diagram (Fig. 6)

—
—
. Interface: Function: —
System: DBMS Module: DB
Select function Authorization)
Developer ' OD 1
1 i
2: :
Ny,
3.

4;

8

]
1
1
1
1
'
1
1
' T
1 '
1
1 '
1 '
' '
'
1]
'
1 '
1 '
L
b
1 L
' '
' H e '
' 1 1

Figure 4 — UML diagram for the flow event “Get Function Listing”

The advantage of using sequence diagrams is the ability to select any acceptable level of
abstraction. This is illustrated in Figure 5, which shows a model of the same sequence diagram for
the “Get Function Listing” event flow, but at the design phase level of abstraction, which is
performed immediately before the start of the software implementation.

53

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

. Interface: Function: System: Module: DB
- Select function Autkqrization DBMS
Developer 1: open ()

2:request() _ |
7

L 3:reply ()
=<

'
'
'
'
'
'
'
'
]
1
'
'
'
'
'

4: query ()
! 5: SELECT

6: read

-1

7: RETURN

8: result ()

Figure 5 — UML sequence diagram for the “Get Function Listing” event flow
with the determining of functions and classes

It should be noted that, as a rule, UML diagrams do not show all actually used or present
blocks, classes, objects, connections, entities, etc. Otherwise, this is extremely overloading of
diagrams and consequently degrades the quality of their perception. Therefore, the diagrams are
used to display only the most important elements, that reveal the essence of the respective

software processes.
As a matter of fact, the center link of the all object-oriented methods are class diagrams, as

shown in (Mouheb D. et al., 2015; Manuel, Sojer, 2008; Haefliger, S., 2008; Osis J., 2015; Sejans J.,
2011). Class diagrams are used to display the types of software implementation objects and the
various static relationships that exist among these objects. Class diagrams are able to display the
attributes of classes, operations, and constraints that are imposed on coupling between objects as
well.

2: request ()

1: open ()
----- > >
. Interface: | Function:
p Select function Authorization
Developer

8: result ()

/ 4: query () 6: read

>
&
5: SELECT

System: Module:

7: RETURN
DBMS DB

Figure 6 — UML interaction diagram for the “Get Function Listing” use case

Direct design of classes within the framework of the proposed method begins with the
highest level of abstraction, where it is convenient to use class diagrams to present a vocabulary of
the problem domain. The attributes, operations and connections are determined in the process. In
view of the above, the class diagram, which reveals the scheme of the assignment of the main
classes of the function libraries, as a typical variant of the database of reusable code software
components is shown in Fig. 7.

54

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

Functionalities:
- master screen components management;
- function list management;

/O 7777777777777777777 - function list representation;
Main Form - dlsplay of ma.thematlcal model;
- ensuring the input of argument values;

- call auxiliary forms;
- implementation of general-purpose utility functions

Functionalities:

Q ,,,,,,,,,,,,,,,,,,,, - function listing representation;
- implementation of general-purpose utility functions

Listing Form
\ Functionalities:
O ,,,,,,,,,,,,,,,,,,,,, - function description representation;
Description Form - implementation of general-purpose utility functions

Figure 7 — Class diagram of the Main Form of visual representation
of function libraries for the highest level of abstraction

Transition to lower levels of abstraction allows to develop a hierarchy of system classes,
forming a complete list of classes, that are directly a part of each screen forms with certain names,
attributes, operations and couplings. Hence, the class diagram with the addition of lower hierarchy
classes will look like in Fig. 8.

Functionalities:
- master screen components management;
- function list management;
- function list representation;

/C} ****************** - display of mathematical model;

Main Form - ensuring the input of argument values;

- call auxiliary forms;

’ - implementation of general-purpose utility functions.

Functionalities:
777777777777777777 - function listing representation;
Listing Form - implementation of general-purpose utility functions.

Functionalities:
- function description representation;
- implementation of general-purpose utility functions.

Functionalities:

- creation of database applications in the form of screen forms,
reports, queries, macros, software modules, button menu;

- database administration (protection of data from unauthorized
access, backup of the database, analysis of application results,
database recovery);

- integration with external information systems.

Functionalities:

Figure 8 — Class diagram of the Main Form of visual representation of function
libraries with the inclusion of system classes Control and Table

In this case, the names of the classes are already linked to a specific software
implementation, which on the one hand makes it somewhat difficult to read, but on the other hand
more convenient in the transition to direct software implementation. Class diagram is a type of
static diagram, and it is advisable to use it to explain the static couplings of the projected software
components database for the synthesis, development and maintenance of KBIS software.

The most important role in the proposed solution is played the TFunctions class,
implemented in the Descript Functions module, and the class diagram of which is shown in Fig. 9.

55

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

This module is designed to describe the functions that are directly implemented in the
component database of the information resource. Moreover, this module solves the problem of
storing the necessary information to represent the implemented application functions.

TFunctions

&»FuncName : String

& FuncNameRes : String
&»FNumberFunc : Integer
&»FuncindexHelp : Integer
&»FuncStartListingA : Integer
&»FuncStopListingA : Integer
& FuncStartListingB : Integ...
& FuncStopListingB

<l/ *Name()
*NameRes()
*NumberFunc()
¥IndexHelp()
®DescriptVar()
S StartListingA(
~HNumber() ¥StopListingA(
“*Name() Y StartListingB(
“Mean() “StoplistingB(

TObject

Trecords

)
)
)
)

Figure 9 — UML class diagram of the Descript Functions module

Mentioned class is in relation to the association, which directly shows the dependencies
among project structures. The TFunctions class diagram shows the fields and properties of this class,
each of which shows the visibility type, name, and representation type. As may be inferred from the
diagram, according to the object-oriented paradigm, the class fields have got the type of public
visibility, and the properties got the type of private visibility. Beside the classes in this diagram, the
types of data used in the project are also presented. The final stage in designing a visual library of
functions for the synthesis, development and maintenance of KBIS software is the final breakdown
of the intended program code into the modules. With this aim in view, within the frame of the
proposed method the component diagrams are used.

Hence, the proposed method of increasing the reliability of KBIS software through code
reuse mechanisms allows to create deeply verified databases of software components of reused
code within the general visual shell. By virtue of certain functionality, the proposed method allows
to effectively solve the problem of improving the reliability of mentioned software.

Consistent presentation of the essence of the method in some way eliminates the complex
structure (logical sequence) of its implementation. For the avoidance of this fact, a generalized
structure of the proposed method of increasing the reliability of KBIS software through mechanisms
of code reuse has been presented in Fig. 10.

The proposed method provides not only increasing of reliability, but also reducing span time
and increasing the efficiency of KBIS software development on the basis of similar databases of
software components (including visual function libraries), as typical representatives of the
methodology of developed and verified code reuse.

56

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

Development (refinement) of
classes diagrams, states diagrams,
components diagrams

Development of a
hierarchy of use cases

Development and
specification of
sequence diagrams

Designing class
diagrams

»

y

Study of the main and additional environments of the software
implemented base of the information resource software
components

Requirements

Specification

v

v

Formation of specific
requirements of the software
implementation environment

Formation of a pool of graphic
and additional materials of the
model description

v

v

The procedure for making
corrections for the main ULM
diagram according to the
requirements of programming

Procedure for direct software
implementation, building,
assembling and debugging

environments

Software component of the information resource

Figure 10 — Block diagram of the method of improving the reliability of KBIS software
through code reuse mechanisms

5. Conclusions

The proposed method of improving the reliability of KBIS software through code reuse mechanisms has
a number of features, both methodological and instrumental, that distinguish it from known and
alternative solutions.

In particular, the structural method is designed to ensure the functioning of the system
information component to support the development of knowledge-oriented systems. It means that the
obtained solutions do not apply to the unstable analytical component. This will allow software
developers:

- adequately assess the current quality of KBIS software, in order to develop a corrective effect
on design and development flow;

- use the proposed framework at all stages of the life cycle of KBIS software;

- to reduce the level of iterativeness of the technological process of KBIS software development;

- increase the level of complexity of the implemented tasks and, as a consequence, reduce the
labour intensity;

- to increase the KBIS accuracy in general.

Reuse of software code, due to the system-defined creation and usage of various databases of
software components (libraries of functions, classes, objects and services), provides a significant
reduction in the labour intensity of the creating new software process as well as a significant increase in
verification and reliability of KBIS as a software product.

The proposed method of improving the reliability of KBIS software through code reuse
mechanisms allows to create deeply verified databases of code reuse software components within a
common visual shell, which also allows to effectively solve the problem of improving the software
reliability.

57

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842 Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

6. Funding

This study received no specific financial support.

7. Competing interests

The authors declare that they have no competing interests.

References Cnucok suKopucmdHux oxepesn

1. Pavlenko, M. A., Osiyevs'kyy, S. V., Daniuk Y. 1.MNaBneHko M. A., OcieBcbkuiti C. B., daHtoK 0.

Methodological Foundation for Improving
the Quality of Intelligent Decision-Making
System Software. Information Processing
Systems. 2021. Ne 1(164). P. 55-64. DOI :
10.30748/50i.2021.164.06.

. Dominguez, Oscar & Torres, L. M. (2010).
Technology intelligence: Methods and
capabilities for generation of knowledge
and decision making. 1-9.

. Turinskyi, O., Pievtsov, H., Pavlenko, M.,
Osievskiy, S., Herasimov, S., Djus, V. (2020).
The problem of structuring indicators of
quality of decision software support
system. International Journal of Advanced
Trends in Computer Science and
Engineering, 9(5), 7916-7923. DOl :
10.30534/ijatcse/2020/144952020.

. Serifi, Veis & Dasi¢, Predrag & Je¢menica, R. & D.
Labovic. (2013). Functional and information
modeling of production using IDEF
methods. Strojniski Vestnik. 55. 131-140.

. Taylor, Richard & van der Hoek, Andre. (2007).
Software Design and Architecture The once
and future focus of software engineering.
FoSE 2007: Future of Software Engineering.
226-243. DOl : 10.1109/FOSE.2007.21.

.Vann Tassel, D. Style, development, efficiency,
debugging and testing of programs [Text]:
trans. from English. Moscow: Mir, 1995.
248 p. (In Russian)

.Bragina, T. I., Tabunshchik, G. V. (2010).
Comparative analysis of iterative models of
software development. Radioelectronics,
Informatics, Management. 2010. Issue. 2
(23). P.130-139. (In Russian).

. Levykin, V. M., Evlanov, M.V. (2013). Model of the
architectural framework of accelerated
development of the information system.
New technologies. Ne 1-2 (39-40). P.51-57.

. Osipova, T. F. (2015). Modeling of the process of
designing an automated information
system with the structural method. Actual

. Turinskyi, O.,

.bparmha T. W,

MeToa0n0riYHi OCHOBM NiABULLEHHSA AKOCTI

nporpamHoro 3abe3neyeHHn
iHTeNeKTyanbHOi cuctemm NPUIAHATTA
piweHb. Cucmemu 06pobKuU iHpopmayil.
2021. Neo 1(164). C. 55-64. DOI:
10.30748/50i.2021.164.06.

.Dominguez, Oscar & Torres, L.M. (2010).
Technology intelligence: Methods and

capabilities for generation of knowledge
and decision making. 1-9.

Pievtsov, H., Pavlenko, M.,
Osievskiy, S., Herasimov, S., Djus, V. (2020).
The problem of structuring indicators of
quality of decision software support
system. International Journal of Advanced
Trends in Computer Science and
Engineering, 9(5), 7916-7923. DOI:
10.30534/ijatcse/2020/144952020.

. Serifi, Veis & Dasi¢, Predrag & JeCmenica, R. & D.

Labovic. (2013). Functional and information
modeling of production using IDEF
methods. Strojniski Vestnik. 55. 131-140.

. Taylor, Richard & van der Hoek, Andre. (2007).

Software Design and Architecture The once
and future focus of software engineering.
FoSE 2007: Future of Software Engineering.
226-243. DOI : 10.1109/FOSE.2007.21.

.BaHH Taccen, A. Crtunb (1995). paspaboTka,

3¢ PEKTMBHOCTb, OT/NAgZKa M UCNbITaHWUE
nporpamm [TeKcT]: nep. ¢ aHrn. / . BaHH
Taccen. — Mocksa: Mup, 1995. 248 c.
TabyHwmk T[. B. (2010).
CpaBHUTE/IbHLIA @aHANU3 UTEPaATUBHbIX
Mmogenen paspaboTkM NpPOrpammHOro
obecneyeHus. Padioenekmporika,
iHpopmamuka, ynpasniHHA. Bun. Ne 2 (23).
C.130-139.

. leBukin B. M., €EsnaHos M.B. (2013). Mogaenb

APXiTEKTYPHOI OCHOBM MPUCKOPEHOro
PO3BUTKY iHbOpPMaLiHOI cuctemu. Hosi
mexHosnoeiji. Ne 1-2 (39-40). P.51-57.

58

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842

Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

10.

problems of economics and management.
Ne 2(6). P. 89-96.

Pavlenko, M. A., Osiyevs'kyy, S. V., Zolotukhina,
O. A. Model of support of development
processes of intelligent decision-making
support systems. 2020. Ne 4 (69) 130-139 s.
DOl : 10.31673/2412- 4338.2020.045051

11. Osiyevs'kyy, S. V., Tretiak, V. F. Model of

12.

13.

14.

15.

16.

17.

18.

information-analytical support of
knowledge-oriented information systems
development processes. Collective
monograph: The current state of research
in IT-technologies, electronics, engineering,
nanotechnology and transport / edited by
Goldenblatt M.A. and Valerenko G..

Vinnytsia: European Scientific Platform.
ISBN: 978-617-7991-47-1, DOl :
10.36074/csriteenat.ed-2.03.

Maylawati, D. S., Darmalaksana, W. &
Ramdhani, M. A. Systematic Design of
Expert System Using Unified Modelling
Language, IOP Conf. Ser. Mater. Sci. Eng.,
vol. 288, no. 1, p. 012047, 2018.

Mouheb D. et al. (2015). Unified Modeling

Language. In: Aspect-Oriented Security
Hardening of UML Design Models. Springer,
Cham. DOI : 10.1007/978-3-319-16106-8_2
Lipaev, V. V. Software quality guarantee.
Methods and standards [Text]. Moscow:

Moscow State Technical University
“Stankin”, 2002. 302 p. (In Russian).
Pleskach, V. L., Rogushina, Y. V. Agent

technologies: Monograph. Kyiv: Kyiv. nat.
trade and economy University, 2005. 344 p.

Manuel, Sojer & Joachim, Henkel. 2010. Code
Reuse in Open-Source Software
Development: Quantitative Evidence,

Drivers, and Impediments. SSRN Scholarly
Paper ID 1489789. Social Science Research
Network, Rochester, NY. Available from :
https://papers.ssrn.com/abstract=1489789

Haefliger, S., Krogh, G. V. and Spaeth, S. (2008).
Code Reuse in Open-Source Software.
Management Science, 54(1), pp. 180-193.
DOl : 10.1287/mnsc.1070.0748

Osis J., Asnina E. Is modeling a treatment for the
weakness of software engineering? in:
Garcia Diaz V., Cueva Lovelle J., Garcia-
Bustelo B. (Eds.), Handbook of Research on
Innovations in Systems and Software
Engineering, Gl Global, Hershey, NY, 2015,
pp. 411-427.

9. Ocunosa, T. ®. (2015). MogentoBaHHA npouecy

aBTOMATM30BaHOI
iHpOpMaLMHOI CcUCTEMM CTPYKTYPHUM
METOA0M. AKMyasnoHi npobaemu
eKoHOMIKU ma meHeoxmeHmy. Ne 2(6). P.
89-96.

10. MaBneHko M.A., OcieBcbkuii C.B., 3010TyxiHa
O.A. Mogenb niaTPUMKM nNpouecis
pPO3p0bKM iHTeNeKTyanbHUX cucTem
NiATPUMKN NPURHATTA piweHb. 2020. Ne 4
(69) 130-139 s. DOI: 10.31673/2412-
4338.2020.045051

11. OcieBcbkuit C. B., Tpetak B. ®. Mogenb
iHpopMaLiiHO-aHaNITUYHOrO 3abesne-
YeHHA npoLeciB po3pobKn iHbopmauinHo-
OpIiEHTOBAHUX iHOOPMALIMHUX CUCTEM.
KonektneHa moHorpadia: CyyacHuit cTaH
pocnigeHb B ranysi IT-TexHonorin,
E€NEeKTPOHIKN, iHXeHepii, HAHOTeXHO/OriM Ta
TpaHcnopTy / 3a pea. lonaeHbnatT M.A. Ta
BanepeHko TI.l. — BiHHMUA : EBponelicbKa
HaykoBa nnatdopma. ISBN: 978-617-7991-
47-1, DOI : 10.36074/csriteenat.ed-2.03.

12. Maylawati, D. S., Darmalaksana, W. &
Ramdhani, M. A. Systematic Design of
Expert System Using Unified Modelling
Language, IOP Conf. Ser. Mater. Sci. Eng.,
vol. 288, no. 1, p. 012047, 2018.

13. Mouheb D. et al. (2015). Unified Modeling
Language. In: Aspect-Oriented Security
Hardening of UML Design Models. Springer,
Cham. DOI : 10.1007/978-3-319-16106-8_2

14. Nlvnaes B. B. apaHTXA KayecTBa NPOrpaMmmHOro

NPOEKTYBaHHSA

obecneveHns. MeToabl W cTaHAAPTbI
[Tekct]. MockBa: MITY «CtaHKuH»., 2002.
302 p.

15.MNneckau B. J1., PorywwuHa . B. AreHTHi
TexHonorii: MoHorpadisa. Kuis: Kuis. Hau,
TOProBO-eKOHOMIYHMI yHiBepcuTeT, 2005.
344 p.

16. Manuel Sojer and Joachim Henkel. 2010. Code
Reuse in Open-Source Software
Development: Quantitative Evidence,
Drivers, and Impediments. SSRN Scholarly
Paper ID 1489789. Social Science Research
Network, Rochester, NY. Available from:
https://papers.ssrn.com/abstract=1489789

17. Haefliger, S., Krogh, G. V. and Spaeth, S. (2008).
Code Reuse in Open-Source Software.
Management Science, 54(1), pp. 180-193.
DOI : 10.1287/mnsc.1070.0748

18. Osis J., Asnina E. Is modeling a treatment for the
weakness of software engineering? in:

59

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

ISSN 2522-9842

Journal of Scientific Papers “Social Development and Security”, Vol. 12, No. 1, — 2022

19. Sejans J., Nikiforova N. Practical Experiments

with Code Generation from the UML
ClassDiagram. Proceedings of the 3rd
International Workshop on Model-Driven
Architectureand Modeling-Driven Software
Development, SciTePress, Beijing, China,
2011, pp. 57-67.

Garcia Diaz V., Cueva Lovelle J., Garcia-
Bustelo B. (Eds.), Handbook of Research on
Innovations in Systems and Software
Engineering, 1GI Global, Hershey, NY, 2015,
pp. 411-427.

19. Sejans J., Nikiforova N. Practical Experiments

with Code Generation from the UML
ClassDiagram. Proceedings of the 3rd
International Workshop on Model-Driven
Architectureand Modeling-Driven Software
Development, SciTePress, Beijing, China,
2011, pp. 57-67.

60

https://portal.issn.org/resource/issn/2534-9228
https://portal.issn.org/resource/issn/2534-9228

