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Abstract

LetG be a context-free grammar andldte the language of all the words derived from any variable
of G. We prove the following generalization of Higman’s theorem: any division ordérisra well
quasi-order oh.. We also give applications of this result to some quasi-orders associated with unitary
grammars.
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1. Introduction

A quasi-orderon a seSis called avell quasi-order(wqo) if every non-empty subsetof
Shas at least one minimal elemendibut no more than a finite number of (hon-equivalent)
minimal elements.

Well quasi-orders have been widely investigated in the pa$@]IHigman gives a very
general theorem on division orders in abstract algebras that in the case of semigroups
becomesiet S be a semigroup quasi-ordered by a division order If there exists a
generating set of S well quasi-ordered ky, then S will also be sd=rom this one derives
that thesubsequence orderirig free monoids is a wqo.
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In [12] Kruskal extends Higman'’s result, proving that certain embeddings on finite trees
are well quasi-orders. In the last years many papers have been devoted to the applications
of wqgo's to formal language theory. The most important result is a generalization of the
famous Myhill-Nerode theorem on regular language§6]iiEhrenfeucht et al. proved that
a language is regular if and only if it is upward-closed with respect to a monotone well
quasi-order. From this result many regularity conditions have been derived (see for instance
[2-5]).

In [6] unavoidable sets of words are characterized in terms of the wqo property of a
suitable unitary grammar: a seis unavoidable if and only if the derivation relatien; of
the unitary semi-Thue system associated with the finité setA™ is a wgo. An extension
of the previous result has been given by Haussl@BJinconsidering set of words which are
subsequence unavoidable

In [11] some extensions of Higman and Kruskal’s theorem to regular languages and
rational trees have been given. Further applications of the wqo theory to formal languages
are given in7,10].

In this paper we give a new generalization of Higman'’s theorem. First of all we define
the notion ofdivision orderon a languagé.: a quasi order< on A* is called adivision
orderonlL if it is monotone and for any, v € L if uis factor ofv thenu <v. WhenL is
the whole free monoidi* this notion is equivalent to the classical one, but, in general, a
quasi-order om* could be a division order on a detaind not omA*. Then, given a context-
free grammafG with set of variabled = {X1, X», ..., X,,}, let L; be the language of the
words generated setting as start symbol and lét = (J/_; L;. Our main theorem states
that any division order ok is a well quasi-order oh. In particular, ifL is a context-free
language generated by a grammar with only one variable, then any division ordés an
wgo onL. This generalizes Higman’s theorem on finitely generated free monoids, since for
any finite alphabeA, the setA* can be generated by a context-free grammar having only
one variable. We also introduce the notionvwadak division ordeon a language and we
extend the previous result, under the additional hypothesis thdt; for anyi.

Inthe second part of the paper we study the wqo property in relation to some quasi-orders
associated with unitary grammars. L&k a finite set of words and let; be the derivation
relation associated with the semi-Thue system

{e > u, uell

One can also consider the relatighas the transitive and reflexive closurerofwhere
vhrw if

UV =1010V2" " Up41,
W = v1a1v24a2 - - - VpQpVp41,

where they;’s are letters, andias - --a, € 1.
We setLf = {w € A* | ¢ =7 w}, Lﬁ[ = {w € A" | erjw} and prove that
e There exists a finite sétsuch that= 7 is not a wqo onLj;
e There exists a finite sétsuch that-; is not awqo onL.{ ;
e For any finite set the relation-; is a wgo onLj.
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2. Preliminaries

The main notions and results concerning quasi-orders and languages are shortly recalled
in this section. LetA be a finitealphabetand A* the free monoid generated By The
elements oA are usually calletkttersand those ofA* words The identity ofA* is denoted
¢ and called thempty word

A nonempty wordw € A* can be written uniquely as a sequence of letters as
w = aiaz---a,, With a; € A, 1<i<n,n > 0. The integemn is called thelengthof w
and denotedw|. For alla € A, |w|, denotes the number of occurrences of the ledter
inw. Letw € A*. The wordu € A* is afactor of w if there existp, ¢ € A* such that
w = puq. If w = ugq, for someq € A* (resp.w = pu, for somep € A*), thenu is
called aprefix (resp. asuffiy of w. The set of all prefixes (resp. suffixes, factorsyois
denotedPref (w) (resp.Suf(w), Fact(w)). A word u is asubsequencef a wordv if
U=aiaz---d,, V = 01410242 - - - Va1 With a; € A, v; € A*.

A subsetL of A* is called alanguage If L is a language ofA*, then alpkiL) is the
smallest subsd® of A such thatL € B*. A binary relation< on a setSis aquasi-order
(qo) if < isreflexive and transitive. Moreover, 4 is symmetric, ther< is an equivalence
relation. The mee N <1 is an equivalence relatior and the quotient o8 by ~ is a
poset(partially ordered set).

An elements € X C S is minimalin X with respect to< if, for everyx € X, x <s
impliesx ~ s. Fors, r € S if s <t andsis not equivalent t@ mod ~, then we set < r. A
partX of Sis upper-closedor simplyclosed with respect to< if the following condition
is satisfied:

if xeX andx<y theny e X.
We shall denote by CK) the closureof X,
Cl(X) ={s € §|3x € X suchthatx <s},

so thatXis closed if and only ifY = CI(X). ForanyX < S one hask C CI(X). Moreover,
if Y C X, then ClY) C CI(X). A closed seK is calledfinitely generatedf there exists a
finite subsef of X such that QlF) = X.
A quasi-order irSis called avell quasi-orde(wqo) if every non-empty subsitof Shas
at least one minimal element but no more than a finite number of (non-equivalent) minimal
elements. We say that a sgis well quasi-ordereqwqo) by < , if < is a well quasi-order
onS
There exists several conditions which characterize the concept of well quasi-order and
that can be assumed as equivalent definitiond%¢).

Theorem 1. Let S be a set quasi-ordered ky. The following conditions are equivalent
(i) < isawell quasi-order
(i) the ascending chain condition holds for the closed subsets of S
(iif) every infinite sequence of elements of S has an infinite ascending subsequence
(iv) if s1,s2,...,8,, ... 1S an infinite sequence of elements pftfen there exist integers
i, jsuchthat < j ands; <sj;
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(v) there exists neither aninfinite strictly descending sequencé.m X is well founded,
nor an infinity of mutually incomparable elements of S
(vi) S has the finite basis properiye. every closed subset of S is finitely generated

Let ¢ = {s;};>1 be an infinite sequence of elementsSfThene is calledgoodif it
satisfies condition iv of Theorefhand it is callecbadotherwise, that is, for all integersj
such that < j,s; £ s;. Itis worth noting that, by condition iv above, a useful technique
to prove thatg is a wgo onSis to prove that no bad sequence existS.in

If p anda are two relations on seandT, respectively, then the direct prodyctz o
is the relation or§ x T defined as

(a,b) pR0c (c,d) < apc andbod.

The following lemma is well knownsge[5, Chap. 6).

Lemma 1. The following conditions hold
(i) Every subset of a wgo set is wgo
(i) If Sand T are wgo by s and < 7, respectivelythenS x T iswqo by<s ® <r.

Let us now suppose that the &it a semigroup. Les! = § if Sis a monoid, otherwise
$1is the monoid obtained by adding the identitySo

Definition 1. A quasi-order< in a semigrousis monotone on the righ{tesp. on the lejt
if forall x1,x2,y €S

x1<xz implies x1y < xzy (resp.yxy < yx2).

A quasi-order isnonotonéf it is monotone on the right and on the left.

Definition 2. A quasi-order< in a semigrousis adivision orderif it is monotone and,
foralls € S andx, y € S,

s < Xxsy.

The ordering by division in abstract algebras was studied by Higi@pwho proved a
general theorem that in the case of semigroups becomes:

Theorem 2. Let S be a semigroup quasi-ordered by a division orderlf there exists a
generating set of S well quasi-ordered gythen so will be S

If nis a positive integer, then the set of all positive integers less or equahibalenoted
[n]. If fis @a map then Iraf) denotes the set of the imagesfof

3. Main result

In this section we prove our main result. For this purpose, it is useful to give some
preliminary definitions and results. We assume the reader to be familiar with the basic
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theory of context—free languages. It is useful to recall few elements of the vocabulary
(cf. [2]).

A context-free grammaris a tripletG = (V, A, P) whereV andA are finite sets of
variablesandterminals respectivelyP is the set ofproductions each element o is of
the formX — uwith X € V andu € {V U A}*.

The relation= g, simply denoted by, is the binary relation on the sgf U A}* defined
as:wi = wy if and only if w1 = w'Xw”, wy = w'uw” whereX — u is a production
of Gandw’, w” € {V U A}*. The relation=* is the reflexive and transitive closure of
=. LetV = {X1, X2, ..., X,,}. For everyi = 1,...,n, the language generated Ky
is L(X;) = {u € A* | X;=*u}. We shall adopt the convention to dendteX;) by L;
whenever no ambiguity or confusion arises.

Definition 3. Let < be a quasi-order od*. Then < is said to becompatiblewith G
if the following condition holds: for every production ofG of the kind
X; — wurYiuoYo - upYpuyi1, Whereu, € A*, fork =1,...,m+ 1, andY; € V,
k=1,...,m,one has

Xk < ULXIUXD * + Uy XU +1,
for any choice ofy; € L(Y;),fori =1,...,m and foranyk € {1, ..., m}.
The following result holds.

Proposition 1. If < is a monotone quasi-order compatible with Ben < is a wgo on
L= Li.

Proof. In this proof, for the sake of simplicity, we assume that the granttheontains
neither unitary productions nerproductions. The proof is by contradiction. Hence there
exists a bad sequencelinFollowing an idea of Nash—Williams (s¢E2]), we construct a
bad sequence= {v;};>1 in L, which is “minimal” in the sense we shall explain later.

Selectv; € L such that is the first term of a bad sequenced.imand its lengthv1 | is as
small as possible.

Suppose, by induction, that we have constructed the elemgnts , v,_1 of y such that
there is a bad sequencelofvhose firsiz — 1 elements arey, . . ., v,—1. Then select a word
v, € L suchthatby, ..., v,—1, v, (in that order) are the first elements of a bad sequence
in L and|v,| is as small as possible. This construction yields a bad sequeace;};>1
in L. This sequence is minimal in the following senseulet {z;}; > 1 be a bad sequence of
L and letk be a positive integer such that, o= 1, ..., k, z; = v;, then|vg41| <|zg+1]-

Since the set of productiofisis finite, we may consider a subsequence {v;, };, > 1 of
the sequence above, which satisfies the following property:

Vel Xp= p=Fu, 1)

whereX; — pisaproductionang = u1Yq1u2Y2 - - - u;, Yyu11. By the sake of simplicity,
let us rename the terms eofas: for everyl >1, w, = v;,. Hence, by Eq.X), for every
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£>1, one has

T ¢
Wy = ULIX{U2X5 * U Xy Um 41,

with x{ € L(Y1), x5 € L(Y2), ..., x5 € L(Yy).
Foreveryj =1,...,m, setF; = {x§},~>1. The following claim is crucial.
Claim. Foreveryj =1, ..., m, F; is well quasi-ordered by.

Proof of the Claim. By contradiction, lej be a positive integer with & j <m such that
F; is not well quasi-ordered byC. Lett = {y;}; > 1 be a bad sequence iy.

We first observe that, for all> 1, there exists a positive integefi) such thaty, = x8®.
Without loss of generality we may assume that for everyl, ¢(i) > ¢(1). Indeed, if the
above condition is not satisfied one can consider a subsequensatisfying this property.

Consider now the sequence

V1, V2, «oos Viggy=1, Y1, Y25 «ovs Vi onn -

By construction, every term of the above sequence belonds Moreover one easily
proves the latter sequence is bad. Sipead{y;}; > 1 are bad sequenceslinthis amounts
to show that fon, k, 1< <ig1) —1,k>1, one hasy, ;éyk. Indeed, supposg, < y¢. Since
Vi = xf(k), thenv, <x¥*. Since for every = 1, ..., m, xf(k) € L(Yy), the fact that<
is compatible withG entails

289 < Ouz w1 = Wy = iy,
Hencevy, Sy - Sinceg(1) <g(k), one hasi < iz 1) <igk) and this contradicts thatis
bad. Hencey, £ yx.

Now we observe that; is a proper factor ofvga) = v; ,,, since the grammar contains
neither unitary productions nerproductions. Thugyi| < |v;,, | and this contradicts
thaty is minimal. Hence, no bad sequencefh exists and sad”; is well quasi-ordered
by <. ©

Let F = F1 x Fp x --- x Fy,. By condition (ii) of Lemmal and the claim above, one
has that the sef is well quasi-ordered by the canonical extension<obn F. Consider
now the sequence ¢f defined as

{ (¥, x5, x5, ..., x)}i>1.

SinceF is well quasi-ordered, the latter sequence is good so there exist two positive integers
i, jsuchthai < jand,forevery =1,...,m, x;} < X'é. The previous condition and the
monotonicity of < entailsw; <w;. The latter contradicts thatis bad. This proves that
is well quasi-ordered by< .

If the grammafG contains either unitary productionssproductions, the proof is almost
the same. One has only to consider minimal bad sequences, assuming as a parameter the
minimal length of a derivation of a word, instead of its lengti
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The corollary below immediately follows from condition (i) of Lemnih and
Propositionl.

Corollary 1. LetG = (V, A, P)beacontext-free grammarwhére= {X1, X», ..., X,}.
If < is.amonotone quasi-order compatible witht@enL; is well quasi-ordered by for
everyi =1,...,n.

The following notion is a natural extension of that of division order in the free monoid.

Definition 4. Let L € A* be a language and leg be a quasi-order. Thegq is adivision
order on Lif < is monotone and the following condition holds:

u<xuy foreveryu € L, x, y € A* with xuy € L.

WhenL is the whole free monoid*, the above notion coincides with the standard one of
division order. On the other hand there exist orderings which have the division property on
some languagk and not onA*. The following theorem holds.

Theorem 3. LetG = (V, A, P) be a context-free grammar apaccording to the previous
notation let L = [ J!_; L; be the union of all languages generated by the variables.of G
If < isadivision order on | .then < is a well quasi-order on L

Proof. Itis easily checked that is compatible withG. Indeed, letX; — p be a produc-
tion of G. Suppose = u1Y1 - uy Yupmra Withu; € A*,fori =1,...,m+1landy; € V,
fori =1,...,m.Letx; € L(Y;) foreveryi =1, ..., m. Henceuyxy - - - upXjptim+1 € L.
Since< is a division order o, one has

Xi < (waxy- - X)X (Ui11Xi41 - - U XmUm+1),

foreveryi = 1, ..., m. The result follows from Propositioh [
Now we give a slight generalization of the notion of division order on languages.

Definition 5. Let L € A* be a language and let be a monotone quasi-order. Theh
is aweak division order on lif for any u, x, y € A* such thatt, xuy, xy € L, one has
u<Lxuy.

Remark 1. We observe that any division order aris a weak division order oh but the
converse is false (see Rem&k Moreover, any weak division order ofi* is a division
order.

The following proposition is a slight extension of Theor8m

Theorem 4. LetG = (V, A, P) be a context-free grammar apaccording to the previous
notation let L = | J?_; L; be the union of all the languages generated by the variables of
G. Suppose that € L;, foranyi = 1,...,n. If < is aweak division order on,lthen <

is a well quasi-order on L



262 F. D'Alessandro, S. Varricchio / Theoretical Computer Science 327 (2004) 255-268

Proof. The proof of the claim is similar to that of Theore® Indeed it is easily
checked that< is compatible withG. Let X; — p be a production of5. Supposep =
urY1 - up Ymer Withu; € A*,fori =1,...,m+1andy; € V,fori =1,...,m. Let
x; € L(Y;)foreveryi =1,..., m.Henceu1x1 - - - uyxum+1 € L. Moreover, since € L;
foranyi =1,...,n,0ne has als@xy - - - xj—1u;) (U; 41X 41 - - UmXmUm+1) € L fOr any
i =1 ..., m Since< is a weak division order oh, one has

Xi < (waxy - xi—au) X (Ui11Xi41 - - U XmUm+1)

foreveryi =1,...,m.
Again, by Propositiori, one has thak iswqo onL. [
An immediate consequence of Theor8rand Theorend is the following.

Corollary 2. Let L be a context-free language generated by a context-free grammar with
only one variableThen any division order on L is a wqo onMoreover if ¢ € L, then any
weak division order on L is a wgqo on L

4. Well quasi-orders and unitary grammars

We now prove an interesting corollary of Propositibigoncerning unitary semi-Thue
systems. Followingb], we recall that @ewriting systemorsemi-Thue systeam an alphabet
Ais apair(A, ) wherer is a binary relation om*. Any pair of words(p, ¢) € nis called
aproductionand denoted by — ¢. Let us denote by, the derivation relation o, that
is, foru,ve A*, u=,v if

3(p,q) e and I h, k € A* suchthatu = hpk, v = hqk.

Thederivation relation= is the transitive and reflexive closure-ef;. One easily verifies
that=7 is a monotone quasi-order oti".
A semi-Thue system is callathitary if 7 is a finite set of productions of the kind

e—>u, uel, I C AT,

Such a system, also calleaitary grammay is then determined by the finite setc A™.
Its derivation relation and its transitive and reflexive closure are denoteg;lpr, simply,
=) and=7 (or, simply,=*), respectively. We selt{ = {u € A* | ¢ =" u}.

Unitary grammars have been introduced6h where the following theorem is proved.

Theorem 5. Let I € AT and assume thatt = alph(/). The following conditions are
equivalent
(i) the derivation relation=7 is a wgo onA*,
(i) the setlis subword unavoidable itt, that is there exists a positive integer k such that
any wordu € A*, with |u| >k, contains as a factor a word of |
(iii) the language.{ is regular.

For any finite se? < AT, the languagd.} is context-free. The construction of the
grammar generating; belongs to the folklore. We report it for completeness.
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Definition 6. Let | be a finite subset ofA*. Let G; = (V, A, P) be the context-free
grammar wheré/ = {X}, A = alph(I) andP is the set of productions defined as

-X — ¢,

—foreveryu =ai---a, € I, wherea; € A, 1<i<n,

X — Xar XaxX --- Xa,X.

Lemma 2. Let | be a finite subset of . ThenL(G;) = L(X) = Lj.

Let| be afinite subset of . Then we denote by, the binary relation oft* defined as:
for everyu, v € A*, ukjv if

U=Uujuz: - -Un41,
UV =uiajuadaz - - -Updyllny41,

withu; € A*,a; € A,anday---a, € 1.

The relationt7 is the transitive and reflexive closurelgf. One easily verifies thai; is
a monotone quasi-order otf. MoreoverLﬁI denotes the set of all words derived from the
empty word by applying, that is

Lil = {u € A* | e-ju}.

The relatiornt; has been considered[8] where the following extension of Theoresmas
been proved.

Theorem 6. Let I € AT and assume thatt = alph(/). The following conditions are
equivalent
(i) the derivation relatiort-; is a wgo onA*,
(i) the setlis subsequence unavoidabldinthat is there exists a positive integer k such
that any wordu € A*, with |u| >k, contains as a subsequence a word;of |
(iii) the IanguageLﬁI is regular.

Generally=7 is notawqo orL;. InfactletA = {a, b, ¢}, I = {ab, c}, and consider the
sequence = {ach, aacbb, aaacbbb, ..., a"cb", ...}. Itis easy to see that the elements
of ¢ are pairwise incomparable with respecttdg;, so thats is bad. We observe thatis
not bad with respect to*;. Indeed for any:, m, n <m, one has:"cb"+ja™ cb™.

Lemma 3. Letx, y € A* such thatxy € Lil.Then foranyu € A*, utjxuy.

Proof. Sincexy € LSI, one has:Hxy with n>0. We proceed by induction am The

basis of the induction is trivially checked. Suppeséxy with n>1 so thal‘sl—'}_lwl—lxy.
Hencew = wy - - - w1 @andxy = wiag - - - wrag w1 With as - - - a, € I andw; € A*, for
anyi =1,...,k+ 1. Thenx = wiay---a;—qw; andy = w/a;;1- - - wiy1 Wherew; =
ww!. Now letx” = wy---w} andy’ = w/ - -- wgy1. Hencex'y’ = w so, by the induc-
tion hypothesis, one hag-jx'uy” which yieldsut-jx'uy” = (w1 - - w)u(w! - - - wri1)k;
(wiay - - - aj—1w)u(w]a; - - - wiy1) = xuy. The claim is thus proved. [
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The following proposition immediately follows from Lemn3a
Proposition 2. Let € A*. Thent] is a weak division order oi.} and L.

Remark 2. We observe that, in general}; is not a division order orLj. Indeed, let
A = {a, b} and letl = {ab, babb}. Setu = ab andbabb = xuy with x = y = b. Then it
is easily checked that, xuy € L butu f*;xuy.

The following theorem holds.
Theorem 7. Let | be a finite set of word3hent*; is wqo onLj.

Proof. By the latter proposition, one has thdy is a weak division order on§. Now the
claim follows from Lemma& and Corollary2. [

Finally we consider another application of Corolla2y For this purpose, we find it
convenient to introduce some notionstuple tis a finite sequenceéy, . . ., t,) of words of
AT wheren > 1. LetT be a finite and non-empty set of tuples. Then we denote hythe
reflexive and transitive closure of the binary relation defined as

{v)e A" x A* | 3t=(r1,.... 00 €T |
V= uitUtp - Uptyliyl, W= UUD---Uplps1, U; € AT, i=1,...,n+1]}.

The relation< 7 has been introduced by Haussler[&) and it is easily checked that it
generalizes both relatiog and = 7.

Now we adopt the following notation. Ldtbe a subset ofi™. Then7 denotes the
following set of tuples of words

T = {uv) | u,veAt,uvel} U I
Lemma 4. Letx, y € A* such thatry e L%. Then for anyu € A*, one hasy <7 xuy.

Proof. Sincexy € L7, one has: =/ xy, n>0. We proceed by induction om The
basis of the induction is trivially checked. Let us prove the induction step. Suppege
xy, n>1sothat :>’}’1 U = xy. Then we have the following cases:

1.xy = Cwx")y, U = x'x"y, where x’, x” € A*, andw € I. By the induction
hypothesis, one has<;x'x"uy. By the definition of<;, one has’x"uy <7 x'wx"uy =
xuy. Thereforeu <7 xuy.

2.xy = x(y'wy”), U = xy’y”, where y’, y” € A*, w € 1. One proceeds as in (1).

3.xy = xwy’, U = x'y/, where x’, y € A*, w € I andx = x'w1, y =
w2y, w = wiwz. We can suppose, wy # &, otherwise we are in case 1 or 2. By
the induction hypothesis one has<; x'uy’. Again, by the definition of<, one has
x'uy’ <7 x'wiuwzy” = xuy which implies the resuilt.

The proof of the claim is thus complete[]
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An immediate consequence of the latter lemma is the following.
Proposition 3. The relation<; is a weak division order oi.;.
Corollary 3. The relation<7 is a wgo onLj.

Proof. By the latter proposition, one has that; is a weak division order oi.;. Now
the claim follows from Lemma and Corollary2. [

5. A counterexample

In the previous section we proved that for any sulbsstA™ the relationt} is a weak
division order onL{. From this we derived that; is a wgo onL. Therefore it is natural
to ask whetheFj is a wgo onLﬁI or not. The answer is negative. In fact, we now exhibit a
setl such that the quasi-ordef is not a wgo orLﬁI. For this purpose, leA = {a, b, ¢, d}
be a four-letter alphabet and lat= {a, b, ¢, d} be a disjoint copy oAA. LetA = AU A
and letl = {aa, bb, c¢, dd)}.

Now consider the sequen¢s, }, > 1 of words of A* defined as: for every>1,

Sy = adbbcca(addcecea)" adbba.
The following result holds.

Proposition 4. The sequencgs, }, > 1 is bad with respect tb}. Moreover the elements of
{Sn}n>1 belong toLﬁ[ and sot-7 is not a wgo onLﬁI.

Remark 3. We observe that one can easily prove thais a division order orLﬁ There-
fore, if one drops the hypothesis on the structurk,dfheoren3 does not hold any more.
On the other hand the Ianguagél is not context-free.

In order to prove Propositiof, we need some preliminary definitions and lemmas.

Lemma 5. Letu € Lfl. For everyp € Pref(u) andx € A, |plz <|plx.

Proof. u € Lﬁl implieSgF’;u, for somek >0. By induction ork, one easily derives the
assertion. [
The following definitions will be used later.

Definition 7. Letu = ay---a, andv = by - - - b,, be two words oved with n <m. An
embeddingof uin vis a mapf : [n] —> [m] such thaff is increasing and, for every
I = 1,...,n,a,~ = bf(,').
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Definition 8. Letu, v € A* and letf be an embedding afin v. Letv = by - - - b,,. Then
(v —u) s is the subsequence vilefined as

(v—u)r =bj---bj, where,foreveryk =1,...,¢,

i ¢ Im(f).

The word(v — u) ; is called thedifference of v and u with respect to f

It is useful to remark thatv — u) r is obtained fromv by deleting, one by one, all the
letters ofu according td".

Example 1. Let u = aa andv = ababaa. Let f andg be two embeddings afi in v
defined respectively agi(1) = 1, f(2) =3, andg(l) =5, g(2) = 6. Then we have
(v—u)s=bbaa and (v—u), = abab.

Remark 4. A word u is a subsequence ofif and only if there exists an embedding of
uinv.

Remark 5. An embedding of uin vis uniquely determined by two factorizationsuoénd
v of the form

u=ayay---ay, V = 01410242 -+ - Vpdy Vp41
with a; € A, V; € A*
In the sequel, according to the latter remgik- u) » may be written as
(V—u)f=v102 - VyU41.

Lemma 6. Letu, v € L{ such thatutjv. Then there exists an embedding f of u in v such
that

(v—u)y € Lil.

Proof. The proofis by induction. By hypothesis there exists0 such that: I—’;v. Ifk =0,
thenu =vso(v—u)y =ce Lﬁ]. Supposé = 1. Thusu = ujuouz andv = uixusxus
wherex € A anduquousz € Lf_l. Hence(v —u) s =xx € Lﬁl. The basis of the induction
is proved.

Let us prove the induction step. Suppas§ v with k >1. Then there exists € L
such that F’;w andwt;v. By the induction hypothesis, there exists an embedifigin w
suchthatw —u) s € Lﬁl .Suppose = a1 ---a, andw = uiaiuzaz - --u;a; - - - UpQyliy+1
witha; € A, u; € A*. Hence(w — u) f = uiup - - p11 € L{ . Sincewt v, suppose that

UV =Uuiajuaaz ---ujx ---U;jx---Upldyllny1,
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with x € A (the other cases determined by different positionsofdx are treated similarly).
From the latter condition, one easily sees thaty be extended to an embeddingf u in
v such that

(V—u)g =uqup---UjX - -UjX - Upllpi].

Since(w —u)y € Lﬁl and(w —u) pky (v — u),, one hagv — u), € Lﬁl. O

Lemma 7. For everym, n>1one has
@) S, e LS];
@iy S, € Fact(S,,) ifand only ifn = m;
(i) Suppose <m.LetQ = adbbcéa(addcécéa)ad. ThenQ € Pref(S,) N Pref (Sy).

Proof. By induction onn, condition (i) is easily proved. Conditions (ii) and (iii) immedi-
ately follow from the structure of words ¢§,},>1. 0O

Lemma 8. Letn, m be positive integers such thatlm. If S,+;S,, thensS, = S,,,.

Proof. Letn<m be positive integers. Then
S, = adbbcéa(addcecéa)" adbba and
Sy = adbbcéaladdcécea) (addcécca)*adbba, with k >0.

By Lemmas, the hypothesis,,+; S,, implies there exists an embeddifgf S, in S, such
that (S, — Su)r € Lﬁl.
We now prove the following claim.

Claim. The following conditions hold

(D Foralli =1,...,9+8n, f(i) = i.In particular, by condition(jii) of Lemmav, fis
the identity on the common prefiXx = adbbcca(addcceca)" ad of S, and S,,.
@) fUSul = i) =1Sul —i, fori=0,12.

Proof of the Claim. First we observe that, for all>> 1, bb occurs exactly twice as a factor
of S,. This immediately entails condition (2) andi) =i foralli =1, ..., 4.

The proof of condition (1) is divided into the following two steps.

Stepl: Leti be a positive integer such that 9+8n. If a; € {a, a,d, d},thenf(i) =i.

We first observe that, for allsuch that 4i <9 + 8n, one has:
—If a; = d (resp.a; = d) theni = 10+ 8¢ (resp.i = 9 + 8¢), with £ >0;
—If a; = a (resp.a; = a) theni = 8(¢ + 1) (resp.i = 8(¢ + 1) — 1), with£>0.
Now we prove Step 1 by induction @3> 0. One easily checks thgt(2) = 2 yields f(9) =
9.Indeed, iff (9) > 9then(S,,—S,) = v'v”, withv’, v” € A*and|v'|; =1 > |[v/|4 = O.
By Lemmas, (S, — S,) s ¢ Lf_l which contradicts the choice 6fHencef(9) = 9. This
entailsf(7) = 7 andf(8) = 8.

By using a similar argument, condition10) = 10 and f (15 = 15 follow from
f(8) = 8. The basis of the induction is proved.
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Let us prove the induction step. Let= 10+ 8(¢ — 1). Thena; = d and, by induction
hypothesisf (i) = i. This yields f (9 4+ 8¢) = 9 + 8¢. Indeed, otherwisgS,, — S,.) r =
v'v”, withv', v € A* and|v'|; = 1 > [v/|4 = 0. As before(S,, — S,) s ¢ L{ which
contradicts the choice éfHencef (9+8¢) = 9+ 8¢ which entailsf (8(¢+ 1)) = 8(£+ 1)
and f(8(¢ +1) — 1) = 8(¢ + 1) — 1. By using a similar argument from the latter condition
one derivesf (10+ 8¢) = 10+ 8¢. This proves Step 1.

Step2: Leti be a positive integer such thia{ 9+ 8n. If a; € {c, ¢}, thenf (i) =i.

First we observe that every occurrenceofn S, is a factor of an occurrence @bbcca
or dcccca. Let us consider the second case (the first is similarly treated¥ Seta =
a;---aiysWithi >1. By Step 1,/ (i) =i and f (i +5) = i + 5 which immediately entails
fG+0) =i+¢,fore=1,...,4. This proves Step 2.

Finally, Condition (1) follows from Steps 1 and 2. o

Suppose now > 0. Then the previous claim implies

(Sm — Su) f = dcecea(addcécea)ad.

Let p = dcccca. Sincep € Pref((Sy — Sa)f) and|plz > |pls, Lemmab implies
(Sm—Su)s ¢ Lﬁl. Hence the case < m is not possible. This proves the Lemmal]

Proof of Proposition 4. We prove the claim by contradiction. Thus there exist: > 1
such thai < m andS,+;S,. By Lemmas, S, = S,. Hence, by condition (ii) of Lemma
7, n = m which is a contradiction. This proves that the sequdiSgé, > 1 is bad.
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