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Abstract

LetGbe a context-free grammar and letL be the language of all the words derived from any variable
of G. We prove the following generalization of Higman’s theorem: any division order onL is a well
quasi-order onL. We also give applications of this result to some quasi-orders associated with unitary
grammars.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A quasi-orderon a setSis called awell quasi-order(wqo) if every non-empty subsetXof
Shas at least one minimal element inXbut no more than a finite number of (non-equivalent)
minimal elements.

Well quasi-orders have been widely investigated in the past. In[9] Higman gives a very
general theorem on division orders in abstract algebras that in the case of semigroups
becomes:Let S be a semigroup quasi-ordered by a division order� . If there exists a
generating set of S well quasi-ordered by� , then S will also be so.From this one derives
that thesubsequence orderingin free monoids is a wqo.
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In [12] Kruskal extends Higman’s result, proving that certain embeddings on finite trees
are well quasi-orders. In the last years many papers have been devoted to the applications
of wqo’s to formal language theory. The most important result is a generalization of the
famous Myhill–Nerode theorem on regular languages. In[6] Ehrenfeucht et al. proved that
a language is regular if and only if it is upward-closed with respect to a monotone well
quasi-order. From this result many regularity conditions have been derived (see for instance
[2–5]).

In [6] unavoidable sets of words are characterized in terms of the wqo property of a
suitable unitary grammar: a setI is unavoidable if and only if the derivation relation⇒∗

I of
the unitary semi-Thue system associated with the finite setI ⊆ A+ is a wqo. An extension
of the previous result has been given by Haussler in[8], considering set of words which are
subsequence unavoidable.

In [11] some extensions of Higman and Kruskal’s theorem to regular languages and
rational trees have been given. Further applications of the wqo theory to formal languages
are given in[7,10].

In this paper we give a new generalization of Higman’s theorem. First of all we define
the notion ofdivision orderon a languageL: a quasi order� onA∗ is called adivision
orderonL if it is monotone and for anyu, v ∈ L if u is factor ofv thenu�v. WhenL is
the whole free monoidA∗ this notion is equivalent to the classical one, but, in general, a
quasi-order onA∗ could be a division order on a setL and not onA∗. Then, given a context-
free grammarGwith set of variablesV = {X1, X2, . . . , Xn}, letLi be the language of the
words generated settingXi as start symbol and letL = ⋃n

i=1Li . Our main theorem states
that any division order onL is a well quasi-order onL. In particular, ifL is a context-free
language generated by a grammar with only one variable, then any division order onL is a
wqo onL. This generalizes Higman’s theorem on finitely generated free monoids, since for
any finite alphabetA, the setA∗ can be generated by a context-free grammar having only
one variable. We also introduce the notion ofweak division orderon a language and we
extend the previous result, under the additional hypothesis that� ∈ Li for any i.

In the second part of the paper we study the wqo property in relation to some quasi-orders
associated with unitary grammars. LetI be a finite set of words and let⇒∗

I be the derivation
relation associated with the semi-Thue system

{� → u, u ∈ I }.
One can also consider the relation�∗

I as the transitive and reflexive closure of�I where
v�Iw if

v = v1v2 · · · vn+1,

w = v1a1v2a2 · · · vnanvn+1,

where theai ’s are letters, anda1a2 · · · an ∈ I .
We setL�

I = {w ∈ A∗ | � ⇒∗
I w}, L�

�I
= {w ∈ A∗ | ��∗

Iw} and prove that
• There exists a finite setI such that⇒∗

I is not a wqo onL�
I ;

• There exists a finite setI such that�∗
I is not a wqo onL�

�I
;

• For any finite setI the relation�∗
I is a wqo onL�

I .
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2. Preliminaries

The main notions and results concerning quasi-orders and languages are shortly recalled
in this section. LetA be a finitealphabetandA∗ the free monoid generated byA. The
elements ofAare usually calledlettersand those ofA∗ words. The identity ofA∗ is denoted
� and called theempty word.

A nonempty wordw ∈ A∗ can be written uniquely as a sequence of letters as
w = a1a2 · · · an, with ai ∈ A, 1� i�n, n > 0. The integern is called thelengthof w
and denoted|w|. For all a ∈ A, |w|a denotes the number of occurrences of the lettera
in w. Let w ∈ A∗. The wordu ∈ A∗ is a factor of w if there existp, q ∈ A∗ such that
w = puq. If w = uq, for someq ∈ A∗ (resp.w = pu, for somep ∈ A∗), thenu is
called aprefix (resp. asuffix) of w. The set of all prefixes (resp. suffixes, factors) ofw is
denotedPref (w) (resp.Suf (w), Fact (w)). A word u is a subsequenceof a wordv if
u = a1a2 · · · an, v = v1a1v2a2 · · · vnanvn+1 with ai ∈ A, vi ∈ A∗.

A subsetL of A∗ is called alanguage. If L is a language ofA∗, then alph(L) is the
smallest subsetB of A such thatL ⊆ B∗. A binary relation� on a setS is aquasi-order
(qo) if � is reflexive and transitive. Moreover, if� is symmetric, then� is an equivalence
relation. The meet� ∩ �−1 is an equivalence relation∼ and the quotient ofSby ∼ is a
poset(partially ordered set).

An elements ∈ X ⊆ S is minimal in X with respect to� if, for every x ∈ X, x�s

impliesx ∼ s. Fors, t ∈ S if s� t ands is not equivalent tot mod∼, then we sets < t . A
partX of S is upper-closed, or simplyclosed, with respect to� if the following condition
is satisfied:

if x ∈ X and x�y then y ∈ X.

We shall denote by Cl(X) theclosureof X,

Cl(X) = {s ∈ S | ∃ x ∈ X such thatx�s},
so thatX is closed if and only ifX = Cl(X). For anyX ⊆ S one hasX ⊆ Cl(X). Moreover,
if Y ⊆ X, then Cl(Y ) ⊆ Cl(X). A closed setX is calledfinitely generatedif there exists a
finite subsetF of X such that Cl(F ) = X.

A quasi-order inSis called awell quasi-order(wqo) if every non-empty subsetXofShas
at least one minimal element but no more than a finite number of (non-equivalent) minimal
elements. We say that a setS iswell quasi-ordered(wqo) by � , if � is a well quasi-order
onS.

There exists several conditions which characterize the concept of well quasi-order and
that can be assumed as equivalent definitions (cf.[5]).

Theorem 1. Let S be a set quasi-ordered by� . The following conditions are equivalent:
(i) � is a well quasi-order;

(ii) the ascending chain condition holds for the closed subsets of S;
(iii) every infinite sequence of elements of S has an infinite ascending subsequence;
(iv) if s1, s2, . . . , sn, . . . is an infinite sequence of elements of S, then there exist integers

i, j such thati < j andsi �sj ;
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(v) thereexists neither an infinite strictly descendingsequence inS(i.e.� iswell founded),
nor an infinity of mutually incomparable elements of S;

(vi) S has the finite basis property, i.e. every closed subset of S is finitely generated.

Let � = {si}i�1 be an infinite sequence of elements ofS. Then� is calledgood if it
satisfies condition iv of Theorem1 and it is calledbadotherwise, that is, for all integersi, j
such thati < j , si � sj . It is worth noting that, by condition iv above, a useful technique
to prove that� is a wqo onS is to prove that no bad sequence exists inS.

If � and� are two relations on setsSandT, respectively, then the direct product� ⊗ �
is the relation onS × T defined as

(a, b) � ⊗ � (c, d) ⇐⇒ a � c and b � d.

The following lemma is well known (see[5, Chap. 6]).

Lemma 1. The following conditions hold:
(i) Every subset of a wqo set is wqo;

(ii) If S and T are wqo by�S and�T , respectively, thenS × T is wqo by�S ⊗ �T .

Let us now suppose that the setS is a semigroup. LetS1 = S if S is a monoid, otherwise
S1 is the monoid obtained by adding the identity toS.

Definition 1. A quasi-order� in a semigroupSismonotone on the right(resp. on the left)
if for all x1, x2, y ∈ S

x1�x2 implies x1y � x2y (resp.yx1 � yx2).

A quasi-order ismonotoneif it is monotone on the right and on the left.

Definition 2. A quasi-order� in a semigroupS is adivision orderif it is monotone and,
for all s ∈ S andx, y ∈ S1,

s � xsy.

The ordering by division in abstract algebras was studied by Higman[9] who proved a
general theorem that in the case of semigroups becomes:

Theorem 2. Let S be a semigroup quasi-ordered by a division order� . If there exists a
generating set of S well quasi-ordered by� then so will be S.

If n is a positive integer, then the set of all positive integers less or equal thann is denoted
[n]. If f is a map then Im(f ) denotes the set of the images off.

3. Main result

In this section we prove our main result. For this purpose, it is useful to give some
preliminary definitions and results. We assume the reader to be familiar with the basic
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theory of context–free languages. It is useful to recall few elements of the vocabulary
(cf. [1]).

A context-free grammaris a tripletG = (V ,A, P ) whereV andA are finite sets of
variablesandterminals, respectively.P is the set ofproductions: each element ofP is of
the formX → u with X ∈ V andu ∈ {V ∪ A}∗.

The relation⇒G, simply denoted by⇒, is the binary relation on the set{V ∪A}∗ defined
as:w1 ⇒ w2 if and only if w1 = w′Xw′′, w2 = w′uw′′ whereX → u is a production
of G andw′, w′′ ∈ {V ∪ A}∗. The relation⇒∗ is the reflexive and transitive closure of
⇒. Let V = {X1, X2, . . . , Xn}. For everyi = 1, . . . , n, the language generated byXi

is L(Xi) = {u ∈ A∗ | Xi⇒∗u}. We shall adopt the convention to denoteL(Xi) by Li

whenever no ambiguity or confusion arises.

Definition 3. Let � be a quasi-order onA∗. Then � is said to becompatiblewith G
if the following condition holds: for every production ofG of the kind
Xi −→ u1Y1u2Y2 · · · umYmum+1, whereuk ∈ A∗, for k = 1, . . . , m + 1, andYk ∈ V ,
k = 1, . . . , m, one has

xk � u1x1u2x2 · · · umxmum+1,

for any choice ofxi ∈ L(Yi), for i = 1, . . . , m and for anyk ∈ {1, . . . , m}.

The following result holds.

Proposition 1. If � is a monotone quasi-order compatible with G, then� is a wqo on
L = ⋃n

i=1 Li .

Proof. In this proof, for the sake of simplicity, we assume that the grammarG contains
neither unitary productions nor�-productions. The proof is by contradiction. Hence there
exists a bad sequence inL. Following an idea of Nash–Williams (see[12]), we construct a
bad sequence� = {vi}i�1 in L, which is “minimal” in the sense we shall explain later.

Selectv1 ∈ L such thatv1 is the first term of a bad sequence inL and its length|v1| is as
small as possible.

Suppose, by induction, that we have constructed the elementsv1, . . . , vn−1 of � such that
there is a bad sequence ofLwhose firstn−1 elements arev1, . . . , vn−1. Then select a word
vn ∈ L such thatv1, . . . , vn−1, vn (in that order) are the firstn elements of a bad sequence
in L and|vn| is as small as possible. This construction yields a bad sequence� = {vi}i�1
in L. This sequence is minimal in the following sense: let� = {zi}i�1 be a bad sequence of
L and letk be a positive integer such that, fori = 1, . . . , k, zi = vi , then|vk+1|� |zk+1|.

Since the set of productionsP is finite, we may consider a subsequence� = {vi)}i)�1 of
the sequence above, which satisfies the following property:

∀ )�1, Xk ⇒ p ⇒∗ vi) , (1)

whereXk → p is a production andp = u1Y1u2Y2 · · · umYmum+1. By the sake of simplicity,
let us rename the terms of� as: for every)�1, w) = vi) . Hence, by Eq. (1), for every
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)�1, one has

w) = u1x
)
1u2x

)
2 · · · umx)mum+1,

with x)1 ∈ L(Y1), x
)
2 ∈ L(Y2), . . . , x

)
m ∈ L(Ym).

For everyj = 1, . . . , m, setFj = {xij }i�1. The following claim is crucial.

Claim. For everyj = 1, . . . , m, Fj is well quasi-ordered by� .

Proof of the Claim. By contradiction, letj be a positive integer with 1�j�m such that
Fj is not well quasi-ordered by� . Let � = {yi}i�1 be a bad sequence inFj .

We first observe that, for alli�1, there exists a positive integerg(i) such thatyi = x
g(i)
j .

Without loss of generality we may assume that for everyi�1, g(i)�g(1). Indeed, if the
above condition is not satisfied one can consider a subsequence of� satisfying this property.

Consider now the sequence

v1, v2, . . . , vig(1)−1, y1, y2, . . . , yi . . . .

By construction, every term of the above sequence belongs toL. Moreover one easily
proves the latter sequence is bad. Since� and{yi}i�1 are bad sequences inL, this amounts
to show that forh, k, 1�h� ig(1)−1,k�1, one hasvh�yk. Indeed, supposevh�yk. Since

yk = x
g(k)
j , thenvh�x

g(k)
j . Since for every) = 1, . . . , m, x

g(k)
) ∈ L(Y)), the fact that�

is compatible withG entails

x
g(k)
j � u1x

g(k)
1 u2 · · · umxg(k)m um+1 = wg(k) = vig(k) .

Hencevh�vig(k) . Sinceg(1)�g(k), one hash < ig(1)� ig(k) and this contradicts that� is
bad. Hencevh�yk.

Now we observe thaty1 is a proper factor ofwg(1) = vig(1) , since the grammar contains
neither unitary productions nor�-productions. Thus|y1| < |vig(1) | and this contradicts
that � is minimal. Hence, no bad sequence inFj exists and soFj is well quasi-ordered
by � . �

Let F = F1 × F2 × · · · × Fm. By condition (ii) of Lemma1 and the claim above, one
has that the setF is well quasi-ordered by the canonical extension of� on F . Consider
now the sequence ofF defined as

{ (xi1, xi2, xi3, . . . , xim)}i�1.

SinceF is well quasi-ordered, the latter sequence is good so there exist two positive integers
i, j such thati < j and, for every) = 1, . . . , m, xi) � x

j
) . The previous condition and the

monotonicity of� entailswi �wj . The latter contradicts that� is bad. This proves thatL
is well quasi-ordered by� .

If the grammarGcontains either unitary productions or�-productions, the proof is almost
the same. One has only to consider minimal bad sequences, assuming as a parameter the
minimal length of a derivation of a word, instead of its length.�
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The corollary below immediately follows from condition (i) of Lemma1 and
Proposition1.

Corollary 1. LetG = (V ,A, P )beacontext-freegrammarwhereV = {X1, X2, . . . , Xn}.
If � is a monotone quasi-order compatible with G, thenLi is well quasi-ordered by� for
everyi = 1, . . . , n.

The following notion is a natural extension of that of division order in the free monoid.

Definition 4. LetL ⊆ A∗ be a language and let� be a quasi-order. Then� is adivision
order on Lif � is monotone and the following condition holds:

u�xuy for everyu ∈ L, x, y ∈ A∗ with xuy ∈ L.

WhenL is the whole free monoidA∗, the above notion coincides with the standard one of
division order. On the other hand there exist orderings which have the division property on
some languageL and not onA∗. The following theorem holds.

Theorem 3. LetG = (V ,A, P ) be a context-free grammar and, according to the previous
notation, letL = ⋃n

i=1 Li be the union of all languages generated by the variables of G.
If � is a division order on L, then� is a well quasi-order on L.

Proof. It is easily checked that� is compatible withG. Indeed, letXi → p be a produc-
tion ofG. Supposep = u1Y1 · · · umYmum+1 withui ∈ A∗, for i = 1, . . . , m+1 andYi ∈ V ,
for i = 1, . . . , m. Let xi ∈ L(Yi) for everyi = 1, . . . , m. Henceu1x1 · · · umxmum+1 ∈ L.
Since� is a division order onL, one has

xi � (u1x1 · · · xi−1ui)xi(ui+1xi+1 · · · umxmum+1),

for everyi = 1, . . . , m. The result follows from Proposition1. �
Now we give a slight generalization of the notion of division order on languages.

Definition 5. Let L ⊆ A∗ be a language and let� be a monotone quasi-order. Then�
is aweak division order on Lif for any u, x, y ∈ A∗ such thatu, xuy, xy ∈ L, one has
u�xuy.

Remark 1. We observe that any division order onL is a weak division order onL but the
converse is false (see Remark2). Moreover, any weak division order onA∗ is a division
order.

The following proposition is a slight extension of Theorem3.

Theorem 4. LetG = (V ,A, P ) be a context-free grammar and, according to the previous
notation, letL = ⋃n

i=1 Li be the union of all the languages generated by the variables of
G. Suppose that� ∈ Li , for any i = 1, . . . , n. If � is a weak division order on L, then�
is a well quasi-order on L.
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Proof. The proof of the claim is similar to that of Theorem3. Indeed it is easily
checked that� is compatible withG. Let Xi → p be a production ofG. Supposep =
u1Y1 · · · umYmum+1 with ui ∈ A∗, for i = 1, . . . , m+ 1 andYi ∈ V , for i = 1, . . . , m. Let
xi ∈ L(Yi) for everyi = 1, . . . , m. Henceu1x1 · · · umxmum+1 ∈ L. Moreover, since� ∈ Li

for anyi = 1, . . . , n, one has also(u1x1 · · · xi−1ui)(ui+1xi+1 · · · umxmum+1) ∈ L for any
i = 1, . . . , m. Since� is a weak division order onL, one has

xi � (u1x1 · · · xi−1ui)xi(ui+1xi+1 · · · umxmum+1),

for everyi = 1, . . . , m.
Again, by Proposition1, one has that� is wqo onL. �
An immediate consequence of Theorem3 and Theorem4 is the following.

Corollary 2. Let L be a context-free language generated by a context-free grammar with
only one variable.Then any division order on L is a wqo on L.Moreover, if � ∈ L, then any
weak division order on L is a wqo on L.

4. Well quasi-orders and unitary grammars

We now prove an interesting corollary of Proposition1 concerning unitary semi-Thue
systems. Following[5], we recall that arewriting system, orsemi-Thuesystemon an alphabet
A is a pair(A, �) where� is a binary relation onA∗. Any pair of words(p, q) ∈ � is called
aproductionand denoted byp → q. Let us denote by⇒� the derivation relation of�, that
is, for u, v ∈ A∗, u ⇒� v if

∃ (p, q) ∈ � and ∃ h, k ∈ A∗ such thatu = hpk, v = hqk.

Thederivation relation⇒∗
� is the transitive and reflexive closure of⇒�. One easily verifies

that⇒∗
� is a monotone quasi-order onA∗.

A semi-Thue system is calledunitary if � is a finite set of productions of the kind

� → u, u ∈ I, I ⊆ A+.

Such a system, also calledunitary grammar, is then determined by the finite setI ⊆ A+.
Its derivation relation and its transitive and reflexive closure are denoted by⇒I (or, simply,
⇒) and⇒∗

I (or, simply,⇒∗), respectively. We setL�
I = {u ∈ A∗ | � ⇒∗ u}.

Unitary grammars have been introduced in[6], where the following theorem is proved.

Theorem 5. Let I ⊆ A+ and assume thatA = alph(I ). The following conditions are
equivalent:
(i) the derivation relation⇒∗

I is a wqo onA
∗;

(ii) the set I is subword unavoidable inA∗, that is there exists a positive integer k such that
any wordu ∈ A∗, with |u|�k, contains as a factor a word of I;

(iii) the languageL�
I is regular.

For any finite setI ⊆ A+, the languageL�
I is context-free. The construction of the

grammar generatingL�
I belongs to the folklore. We report it for completeness.
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Definition 6. Let I be a finite subset ofA+. Let GI = (V ,A, P ) be the context-free
grammar whereV = {X}, A = alph(I ) andP is the set of productions defined as

–X −→ �,
– for everyu = a1 · · · an ∈ I , whereai ∈ A, 1� i�n,

X −→ Xa1Xa2X · · ·XanX.

Lemma 2. Let I be a finite subset ofA+. ThenL(GI ) = L(X) = L�
I .

Let I be a finite subset ofA+. Then we denote by�I the binary relation ofA∗ defined as:
for everyu, v ∈ A∗, u�I v if

u = u1u2 · · · un+1,

v = u1a1u2a2 · · · unanun+1,

with ui ∈ A∗, ai ∈ A, anda1 · · · an ∈ I .
The relation�∗

I is the transitive and reflexive closure of�I . One easily verifies that�∗
I is

a monotone quasi-order onA∗. MoreoverL�
�I

denotes the set of all words derived from the
empty word by applying�∗

I , that is

L�
�I

= {u ∈ A∗ | ��∗
I u}.

The relation�∗
I has been considered in[8] where the following extension of Theorem5 has

been proved.

Theorem 6. Let I ⊆ A+ and assume thatA = alph(I ). The following conditions are
equivalent:

(i) the derivation relation�∗
I is a wqo onA

∗;
(ii) the set I is subsequence unavoidable inA∗, that is there exists a positive integer k such

that any wordu ∈ A∗, with |u|�k, contains as a subsequence a word of I;
(iii) the languageL�

�I
is regular.

Generally⇒∗
I is not a wqo onL�

I . In fact letA = {a, b, c}, I = {ab, c}, and consider the
sequence� = {acb, aacbb, aaacbbb, . . . , ancbn, . . .}. It is easy to see that the elements
of � are pairwise incomparable with respect to⇒∗

I , so that� is bad. We observe that� is
not bad with respect to�∗

I . Indeed for anyn,m, n�m, one hasancbn�∗
I a

mcbm.

Lemma 3. Letx, y ∈ A∗ such thatxy ∈ L�
�I

. Then, for anyu ∈ A∗, u�∗
I xuy.

Proof. Sincexy ∈ L�
�I

, one has��nI xy with n�0. We proceed by induction onn. The

basis of the induction is trivially checked. Suppose��nI xy with n�1 so that��n−1
I w�I xy.

Hencew = w1 · · ·wk+1 andxy = w1a1 · · ·wkakwk+1 with a1 · · · ak ∈ I andwi ∈ A∗, for
any i = 1, . . . , k + 1. Thenx = w1a1 · · · ai−1w

′
i andy = w′′

i ai+1 · · ·wk+1 wherewi =
w′
iw

′′
i . Now let x′ = w1 · · ·w′

i andy′ = w′′
i · · ·wk+1. Hencex′y′ = w so, by the induc-

tion hypothesis, one hasu�∗
I x

′uy′ which yieldsu�∗
I x

′uy′ = (w1 · · ·w′
i )u(w

′′
i · · ·wk+1)�I

(w1a1 · · · ai−1w
′
i )u(w

′′
i ai · · ·wk+1) = xuy. The claim is thus proved. �
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The following proposition immediately follows from Lemma3.

Proposition 2. Let I ⊆ A+. Then�∗
I is a weak division order onL

�
I andL

�
�I

.

Remark 2. We observe that, in general,�∗
I is not a division order onL�

I . Indeed, let
A = {a, b} and letI = {ab, babb}. Setu = ab andbabb = xuy with x = y = b. Then it
is easily checked thatu, xuy ∈ L�

I butu � �∗
I xuy.

The following theorem holds.

Theorem 7. Let I be a finite set of words. Then�∗
I is wqo onL�

I .

Proof. By the latter proposition, one has that�∗
I is a weak division order onL�

I . Now the
claim follows from Lemma2 and Corollary2. �

Finally we consider another application of Corollary2. For this purpose, we find it
convenient to introduce some notions. Atuple tis a finite sequence(t1, . . . , tn) of words of
A+ wheren�1. LetT be a finite and non-empty set of tuples. Then we denote by�T the
reflexive and transitive closure of the binary relation defined as

{ (u, v) ∈ A∗ × A∗ | ∃ t = (t1, . . . , tn) ∈ T |

v = u1t1u2t2 · · · untnun+1, u = u1u2 · · · unun+1, ui ∈ A∗, i = 1, . . . , n+ 1}.

The relation�T has been introduced by Haussler in[8] and it is easily checked that it
generalizes both relations�∗

I and ⇒∗
I .

Now we adopt the following notation. LetI be a subset ofA+. Then I denotes the
following set of tuples of words

I = {(u, v) | u, v ∈ A+, uv ∈ I } ∪ I.

Lemma 4. Letx, y ∈ A∗ such thatxy ∈ L�
I . Then, for anyu ∈ A∗, one hasu � I xuy.

Proof. Sincexy ∈ L�
I , one has� ⇒n

I xy, n�0. We proceed by induction onn. The
basis of the induction is trivially checked. Let us prove the induction step. Suppose� ⇒n

I

xy, n�1 so that� ⇒n−1
I U ⇒I xy. Then we have the following cases:

1. xy = (x′wx′′)y, U = x′x′′y, where x′, x′′ ∈ A∗, andw ∈ I . By the induction
hypothesis, one hasu� I x

′x′′uy. By the definition of� I , one hasx′x′′uy � I x
′wx′′uy =

xuy. Thereforeu � I xuy.
2. xy = x(y′wy′′), U = xy′y′′, where y′, y′′ ∈ A∗, w ∈ I . One proceeds as in (1).
3. xy = x′wy′, U = x′y′, where x′, y′ ∈ A∗, w ∈ I and x = x′w1, y =

w2y
′, w = w1w2. We can supposew1, w2 �= �, otherwise we are in case 1 or 2. By

the induction hypothesis one hasu � I x′uy′. Again, by the definition of� I , one has
x′uy′ � I x

′w1uw2y
′ = xuy which implies the result.

The proof of the claim is thus complete.�
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An immediate consequence of the latter lemma is the following.

Proposition 3. The relation� I is a weak division order onL
�
I .

Corollary 3. The relation� I is a wqo onL
�
I .

Proof. By the latter proposition, one has that� I is a weak division order onL�
I . Now

the claim follows from Lemma2 and Corollary2. �

5. A counterexample

In the previous section we proved that for any subsetI of A+ the relation�∗
I is a weak

division order onL�
I . From this we derived that�∗

I is a wqo onL�
I . Therefore it is natural

to ask whether�∗
I is a wqo onL�

�I
or not. The answer is negative. In fact, we now exhibit a

setI such that the quasi-order�∗
I is not a wqo onL�

�I
. For this purpose, letA = {a, b, c, d}

be a four-letter alphabet and letĀ = {ā, b̄, c̄, d̄} be a disjoint copy ofA. Let Ã = A ∪ Ā

and letI = {aā, bb̄, cc̄, dd̄}.
Now consider the sequence{Sn}n�1 of words ofÃ∗ defined as: for everyn�1,

Sn = adbb̄cc̄ā(ad̄dcc̄cc̄ā)nad̄bb̄ā.

The following result holds.

Proposition 4. The sequence{Sn}n�1 is bad with respect to�∗
I .Moreover, the elements of

{Sn}n�1 belong toL�
�I
and so�∗

I is not a wqo onL
�
�I

.

Remark 3. We observe that one can easily prove that�∗
I is a division order onL�

�I
. There-

fore, if one drops the hypothesis on the structure ofL, Theorem3 does not hold any more.
On the other hand the languageL�

�I
is not context-free.

In order to prove Proposition4, we need some preliminary definitions and lemmas.

Lemma 5. Letu ∈ L�
�I

. For everyp ∈ Pref (u) andx ∈ A, |p|x̄ � |p|x .

Proof. u ∈ L�
�I

implies ��kI u, for somek�0. By induction onk, one easily derives the
assertion. �

The following definitions will be used later.

Definition 7. Let u = a1 · · · an andv = b1 · · · bm be two words overÃ with n�m. An
embeddingof u in v is a mapf : [n] −→ [m] such thatf is increasing and, for every
i = 1, . . . , n, ai = bf (i).
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Definition 8. Let u, v ∈ Ã∗ and letf be an embedding ofu in v. Let v = b1 · · · bm. Then
〈v − u〉f is the subsequence ofv defined as

〈v − u〉f = bi1 · · · bi) where, for everyk = 1, . . . , ),

ik /∈ Im(f ).

The word〈v − u〉f is called thedifference of v and u with respect to f.

It is useful to remark that〈v − u〉f is obtained fromv by deleting, one by one, all the
letters ofu according tof.

Example 1. Let u = aā and v = abāb̄aā. Let f andg be two embeddings ofu in v
defined respectively as:f (1) = 1, f (2) = 3, andg(1) = 5, g(2) = 6. Then we have
〈v − u〉f = bb̄aā and 〈v − u〉g = abāb̄.

Remark 4. A word u is a subsequence ofv if and only if there exists an embedding of
u in v.

Remark 5. An embeddingf of u in v is uniquely determined by two factorizations ofuand
v of the form

u = a1a2 · · · an, v = v1a1v2a2 · · · vnanvn+1

with ai ∈ Ã, vi ∈ Ã∗.

In the sequel, according to the latter remark,〈v − u〉f may be written as

〈v − u〉f = v1v2 · · · vnvn+1.

Lemma 6. Letu, v ∈ L�
�I
such thatu�∗

I v. Then there exists an embedding f of u in v such
that

〈v − u〉f ∈ L�
�I
.

Proof. The proof is by induction. By hypothesis there existsk�0 such thatu�kI v. If k = 0,
thenu = v so〈v − u〉f = � ∈ L�

�I
. Supposek = 1. Thusu = u1u2u3 andv = u1xu2x̄u3

wherex ∈ A andu1u2u3 ∈ L�
�I

. Hence〈v − u〉f = xx̄ ∈ L�
�I

. The basis of the induction
is proved.

Let us prove the induction step. Supposeu�k+1
I v with k�1. Then there existsw ∈ L�

�I

such thatu�kIw andw�I v. By the induction hypothesis, there exists an embeddingf of u inw
such that〈w−u〉f ∈ L�

�I
. Supposeu = a1 · · · an andw = u1a1u2a2 · · · uiai · · · unanun+1

with ai ∈ Ã, ui ∈ Ã∗. Hence〈w − u〉f = u1u2 · · · un+1 ∈ L�
�I

. Sincew�I v, suppose that

v = u1a1u2a2 · · · uix · · · uj x̄ · · · unanun+1,
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withx ∈ A (the other cases determined by different positions ofxandx̄ are treated similarly).
From the latter condition, one easily sees thatf may be extended to an embeddingg of u in
v such that

〈v − u〉g = u1u2 · · · uix · · · uj x̄ · · · unun+1.

Since〈w − u〉f ∈ L�
�I

and〈w − u〉f �I 〈v − u〉g, one has〈v − u〉g ∈ L�
�I

. �

Lemma 7. For everym, n�1 one has:
(i) Sn ∈ L�

�I
;

(ii) Sn ∈ Fact (Sm) if and only ifn = m;
(iii) Supposen�m. LetQ = adbb̄cc̄ā(ad̄dcc̄cc̄ā)nad̄.ThenQ ∈ Pref (Sn)∩Pref (Sm).

Proof. By induction onn, condition (i) is easily proved. Conditions (ii) and (iii) immedi-
ately follow from the structure of words of{Sn}n�1. �

Lemma 8. Letn,m be positive integers such thatn�m. If Sn�∗
I Sm thenSn = Sm.

Proof. Let n�m be positive integers. Then

Sn = adbb̄cc̄ā(ad̄dcc̄cc̄ā)nad̄bb̄ā and

Sm = adbb̄cc̄ā(ad̄dcc̄cc̄ā)n(ad̄dcc̄cc̄ā)kad̄bb̄ā, with k�0.

By Lemma6, the hypothesisSn�∗
I Sm implies there exists an embeddingf of Sn in Sm such

that〈Sm − Sn〉f ∈ L�
�I

.
We now prove the following claim.

Claim. The following conditions hold:

(1)For all i = 1, . . . ,9+ 8n, f (i) = i. In particular, by condition(iii) of Lemma7, f is
the identity on the common prefixQ = adbb̄cc̄ā(ad̄dcc̄cc̄ā)nad̄ of Sn andSm.

(2) f (|Sn| − i) = |Sm| − i, f or i = 0,1,2.

Proof of the Claim. First we observe that, for alln�1,bb̄ occurs exactly twice as a factor
of Sn. This immediately entails condition (2) andf (i) = i for all i = 1, . . . ,4.

The proof of condition (1) is divided into the following two steps.
Step1: Let i be a positive integer such thati�9+8n. If ai ∈ {a, ā, d, d̄}, thenf (i) = i.
We first observe that, for alli such that 4� i�9 + 8n, one has:

– If ai = d (resp.ai = d̄) theni = 10+ 8) (resp.i = 9 + 8)), with )�0;
– If ai = a (resp.ai = ā) theni = 8()+ 1) (resp.i = 8()+ 1)− 1), with )�0.
Now we prove Step 1 by induction on)�0. One easily checks thatf (2) = 2 yieldsf (9) =
9. Indeed, iff (9) > 9 then〈Sm−Sn〉f = v′v′′, withv′, v′′ ∈ Ã∗ and|v′|d̄ = 1 > |v′|d = 0.
By Lemma5, 〈Sm − Sn〉f /∈ L�

�I
which contradicts the choice off. Hencef (9) = 9. This

entailsf (7) = 7 andf (8) = 8.
By using a similar argument, conditionsf (10) = 10 andf (15) = 15 follow from

f (8) = 8. The basis of the induction is proved.
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Let us prove the induction step. Leti = 10+ 8() − 1). Thenai = d and, by induction
hypothesis,f (i) = i. This yieldsf (9 + 8)) = 9 + 8). Indeed, otherwise,〈Sm − Sn〉f =
v′v′′, with v′, v′′ ∈ Ã∗ and|v′|d̄ = 1 > |v′|d = 0. As before,〈Sm − Sn〉f /∈ L�

�I
which

contradicts the choice off. Hencef (9+8)) = 9+8)which entailsf (8()+1)) = 8()+1)
andf (8()+ 1)− 1) = 8()+ 1)− 1. By using a similar argument from the latter condition
one derivesf (10+ 8)) = 10+ 8). This proves Step 1.
Step2: Let i be a positive integer such thati�9 + 8n. If ai ∈ {c, c̄}, thenf (i) = i.
First we observe that every occurrence ofcc̄ in Sn is a factor of an occurrence ofdbb̄cc̄ā

or dcc̄cc̄ā. Let us consider the second case (the first is similarly treated). Setdcc̄cc̄ā =
ai · · · ai+5 with i�1. By Step 1,f (i) = i andf (i + 5) = i + 5 which immediately entails
f (i + )) = i + ), for ) = 1, . . . ,4. This proves Step 2.

Finally, Condition (1) follows from Steps 1 and 2. �
Suppose nowk > 0. Then the previous claim implies

〈Sm − Sn〉f = dcc̄cc̄ā(ad̄dcc̄cc̄ā)k−1ad̄.

Let p = dcc̄cc̄ā. Sincep ∈ Pref (〈Sm − Sn〉f ) and |p|ā > |p|a , Lemma5 implies
〈Sm − Sn〉f /∈ L�

�I
. Hence the casen < m is not possible. This proves the Lemma.�

Proof of Proposition 4. We prove the claim by contradiction. Thus there existn,m�1
such thatn < m andSn�∗

I Sm. By Lemma8, Sn = Sm. Hence, by condition (ii) of Lemma
7, n = m which is a contradiction. This proves that the sequence{Sn}n�1 is bad.
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