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Abstract—Neural image coding represents now the state-of-the-
art image compression approach. However, a lot of work is still
to be done in the video domain. In this work, we propose an end-
to-end learned video codec that introduces several architectural
novelties as well as training novelties, revolving around the
concepts of adaptation and attention. Our codec is organized
as an intra-frame codec paired with an inter-frame codec. As
one architectural novelty, we propose to train the inter-frame
codec model to adapt the motion estimation process based on
the resolution of the input video. A second architectural novelty
is a new neural block that combines concepts from split-attention
based neural networks and from DenseNets. Finally, we propose
to overfit a set of decoder-side multiplicative parameters at in-
ference time. Through ablation studies and comparisons to prior
art, we show the benefits of our proposed techniques in terms of
coding gains. We compare our codec to VVC/H.266 and RLVC,
which represent the state-of-the-art traditional and end-to-end
learned codecs, respectively, and to the top performing end-to-end
learned approach in 2021 CLIC competition, E2E_T_OL. Our
codec clearly outperforms E2E_T_OL, and compare favorably to
VVC and RLVC in some settings.

Index Terms—learned video codec, split attention, content-
adaptive, overfitting, finetuning

I. INTRODUCTION

Nowadays, image codecs based on deep learning represent
the state-of-the-art when considering MS-SSIM [1] and PSNR
[2] visual quality metrics. The typical architecture is based
on the auto-encoder, where the encoder and decoder neural
networks perform non-linear forward and inverse transform,
respectively. The output of the encoder is typically lossless
encoded by an arithmetic encoder, using a learned probability
model. In the video domain, however, the state-of-the-art is
represented by traditional codecs such as VVC/H.266 [3]
and HEVC/H.265 [4] standards, which follow the prediction-
transform paradigm: intra-frame and inter-frame prediction,
followed by transform-coding of prediction residuals. We
propose a learned codec that follows a common design [5], [6]
inspired by traditional codecs, where a learned image codec
performs intra-frame coding, and a conditional interpolation
model interpolates the other frames based on reconstructed
intra frames. Based on the observation that the extent by which
objects move in terms of pixels depends also on the spatial
resolution, in our inter-frame codec, the output of motion
estimation is adapted by the input video’s resolution. Recently,
efficient attention blocks have been proposed, such as the
Split Attention block (or ResNeSt block) [7], which applies
the squeeze-and-attention concept [8] [9] to groups of feature
maps. ResNeSt blocks have already been successfully used in

[2] as one of the blocks within a learned image codec. We
further extend the ResNeSt block idea by designing the Dense
Split Attention (DSA) block, that combines the efficiency
of split attention with the power of dense connections [10]
between each of a set of ResNet blocks and the output of split
attention. To further optimize part of the codec to the input
content at inference time, several prior works have proposed to
optimize or overfit some of the encoder’s parameters [11] [12]
[13], or the latent tensor output by the encoder [14] [15], or
some or all the decoder’s parameters [16] [17], or both latent
tensor and decoder’s parameters [18]. Overfitting decoder’s
parameters would incur into a bitrate overhead for providing
the weight-update to the decoder side. To limit such overhead
in the case of a VVC codec augmented with a decoder-side
post-processing neural network, the authors of [17] propose to
overfit only the bias terms of all the convolutional layers on
all the frames in a Group of Pictures (GOP). Our overfitting
process is applied on multiplicative parameters instead of
additive bias terms. Also, we argue that (i) the layers of a
neural network are not equally important, thus we overfit only
a selected subset of parameters, and (ii) overfitting on a single
frame is enough for short sequences without scene changes.

In summary, we propose a highly-adaptive neural video
codec, which includes the following contributions: (i)
resolution-adaptive motion estimation, (ii) Dense Split Atten-
tion blocks, (iii) overfitting of multiplicative parameters on
a single frame per video, (iv) adapting the combination of
forward and backward predictions on each frame.

II. PROPOSED METHODS

Our video codec is organized as an intra-frame codec and
an inter-frame codec. The intra-frame codec processes one
frame every eight frames, without using any information from
other frames. The seven frames between two consecutive intra-
frames are coded by the inter-frame codec in a hierarchical
sequential manner. I.e., first the frame with index 4 (relative
to the start of the intra-frame period) is coded based on intra-
coded frames {0, 8}, then frame 2 and frame 6 are coded based
on intra or inter-coded frames {0, 4} and {4, 8}, respectively,
finally frames 1, 3, 5 and 7 are coded based on intra or inter-
coded frames {0, 2}, {2, 4}, {4, 6} and {6, 8}, respectively.

A. Intra-Frame Codec

Our intra-frame codec, shown in Figure 1, has an autoen-
coder architecture similar to other end-to-end learned image
codecs [1], [19], [20]. The encoder transforms the input frame
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Fig. 1: Our intra-frame codec, with the proposed Dense Split Attention (DSA) block. ”ConvK×K,c,s” and ”UpConvK×K,c,s”
stand for 2D convolutional layer and 2D transposed convolutional layer, respectively, with kernel size K×K, c output channels,
and an optional stride value s if it is not 1.

to a latent representation, which is quantized using uniform
scalar quantization (the quantizer is not shown for simplicity).
The Probability Model component estimates the probability of
each element in the latent representation, and provides it to the
entropy codec, which is an arithmetic codec. The decoder has
a mirrored architecture with respect to the encoder.

One novel component of our intra-frame codec is the Dense
Split Attention (DSA) block, which is shown in detail in
Figure 1. This block combines the efficiency of split channel
attention [7] with the power of dense connections [10]. In
particular, DSA consists of an initial set of convolutional
layers and ResBlock layers, followed by a core attention
block whose output is concatenated with dense connections
coming from the initial set of layers, before being processed
by a final convolutional layer. The core attention block can
be any attention-based block, such as non-local attention
[19]. However, in order to keep computational and memory
consumption low, we opted for the efficient Split Attention
block [7] with k = 1 group and r = 2 splits of features.

Another novel aspect of our intra-frame codec is the
Overfittable Multiplicative Parameters (OMPs). An OMP is
a learnable parameter that multiplies a feature map output
by a certain kernel of a convolutional layer. The OMPs are
initialized to 1 and then optimized at inference time. However,
we chose to use OMPs only within the last DSA block of the
intra-decoder, more specifically on the output of the following
layers: the first convolutional layer, the first convolutional
layer of the first ResBlock, the second convolutional layer of
the second and fourth ResBlock. These layers were selected
empirically based on an evaluation on validation data.

B. Inter-Frame Codec

An overview of the inter-frame codec is provided in Figure
2. The inputs to the encoder are two reconstructed reference
frames x̂t−d, x̂t+d and the target frame xt. In practice, we
define d as the distance from the target frame xt, which is
randomly chosen among {1, 2, 4}. A reconstructed reference
frame may be an intra-coded frame or a inter-coded frame.
First, the Encoder Feature Pyramid Net extracts multi-scale

features from the input frames. Next, the multi-scale features
are aggregated by the Feature Encoder Net and transformed to
a latent representation of the target frame. Then, the Entropy
Encoder, in this case an arithmetic encoder, compresses the
latent representation into a bitstream by using the output of
the Probability Model. Our probability model is conditioned
on features extracted from the reconstructed reference frames,
by using the Entropy Feature Pyramid Net. The decoder takes
the compressed bitstream of the latent representation as its
input. The bitstream is first decompressed and dequantized by
the Entropy Decoder to generate a reconstruction of the latent
representation. The latent representation implicitly embeds
forward motion information (from x̂t−d to x̂t), backward
motion information (from x̂t+d to x̂t), and information about
a residual signal. The reconstructed latent tensor is passed
to the Feature Decoder Net that generates multi-scale motion
features and a residual signal et. The Decoder Feature Pyramid
Net extracts multi-scale features from reference frames. The
Motion Estimation module takes in the multi-scale motion
features and reference frame’s multi-scale features to output
motion information. The Motion Estimation has a similar
architecture as FlowNet [6], [21]. Different from other systems
[22], the Motion Estimation is randomly initialized and end-
to-end learned together with other components in our system.
The resolution information, represented by the height h and
width w of the video frames, is embedded into feature space by
the Resolution Embedding module. The embedded resolution
is used to scale the motion information. The scaled motion
information is then used by the Frame Prediction module to
warp the reference frames into a forward prediction f̂fwd

t

and a backward prediction f̂ bwd
t of the target frame. These

predictions are then combined with the residual and with the
two closest intra-coded frames by the Combiner component
to produce the final reconstructed target frame x̂t. We leave
out details about several of the above modules because of
space limitations. They are based on known neural network
architectures and do not include major novelties. The Resolu-
tion Embedding module consists of two fully-connected layers
followed by a Leaky ReLU layer. Regarding the Combiner, the
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Fig. 2: Architecture of the inter-frame codec. In this figure, components that share weights are shown with the same color.

input forward and backward predictions of the target frame
f̂fwd
t and f̂ bwd

t are concatenated with the closest intra-coded
frames x̂intra1 and x̂intra2, and then processed by a sequence
of convolutional layers and ResNet blocks [23], obtaining
a temporary prediction x̃t. Then, x̃t, f̂

fwd
t , f̂ bwd

t and the
decoded residual et are combined by a linear combination
x̂t = stmp

t x̃t + sbwd
t f̂ bwd

t + sfwd
t f̂fwd

t + setet, where stmp
t ,

sbwd
t , sfwd

t , set are scalars that are trained during the training
stage of the inter-frame codec, and overfitted at inference time.

C. Probability Model

Our probability models used in the intra-frame and inter-
frame codec are based on the state-of-the-art probability
model for lossless image compression described in [24]. An
input latent representation is first downscaled to multiple
resolutions. The representation in the lowest resolution is
compressed/decompressed using a non-conditional distribution
model with the assumption that the elements are independent
and identically distributed. The distributions of the representa-
tions in other resolutions are conditioned on the representation
in lower resolutions. At the encoding and decoding stage, the
system first processes the representation in the lowest resolu-
tion. Then, the system moves to the next higher-resolution
representation, using the low-resolution representation as a
context to derive the distribution function. This procedure
continues until the original latent representation is processed.
To further improve the performance, we partition the elements
in each representation into several groups. The elements in
one group are processed together using the elements that
have been processed as a context. We adopt the conditional
Gaussian distribution model as used in [25] for the sake of
accuracy and computational efficiency. The parameters of the
distribution model, i.e., means and scales, are estimated using
a deep neural network given the input of the low-resolution
representation and the elements in the same resolution that
have been processed. The probability model used in the
inter-frame codec is enhanced by taking features extracted
from the reconstructed reference frames as extra context for
representations in resolutions other than the lowest one.

D. Training and Inference Aspects

Both the intra-frame codec and the inter-frame codec were
trained on 256x256 patches, by using MS-SSIM and rate loss

as the training objectives: L = D + λR, where the distortion
D is the negative MS-SSIM, R is the rate derived from the
probability model, and λ is a hyper-parameter. The intra-frame
codec was trained only as a stand-alone module. The inter-
frame codec was first pretrained as a stand-alone module, by
using uncompressed reference frames, and then finetuned by
using a similar pipeline as at inference time, i.e., by using
intra-coded frames and inter-coded frames as reference frames
in hierarchical sequential processing.

At inference time and for each intra frame, the latent tensor
output by the intra-frame encoder is overfitted as in [15].
After that, the OMPs of the intra-frame decoder are optimized
on the first intra frame of each video, and used for all intra
frames of that video. This strategy leverages the high temporal
redundancy of videos when there is no scene change. A
strategy that overfits the OMPs jointly on all intra frames of
a video would be more time-consuming, and the coding gains
may not be worth the extra time. Another alternative strategy
would overfit a separate set of OMPs for each intra frame.
However, coding gains would be negatively affected by a much
higher bitrate overhead required by the overfitted parameters.
In the experimental section, we provide comparisons for some
of these strategies. Based on our comparisons, we choose the
first optimization strategy mentioned above for our intra codec
decoder. After overfitting, the overfitted OMPs are uniformly
quantized to 8 bits. If the quantized OMPs provide coding
gains in terms of the overall loss over a video, the parameters
would work as separate bitstreams together with latent tensor
bitstreams for decoding. Otherwise, we do not include them
into the bitstreams. We also propose to overfit, at inference
time, the scaling parameters used within the Combiner module
of the inter-frame decoder. These parameters are adapted
separately on each inter-coded frame.

III. EXPERIMENTS

The codec was trained on the CLIC 2021 video dataset.
The intra-frame codec was trained by using all the frames
of all the training videos for 60 epochs, with a learning
rate of 5e−5 and batch-size of 60 frames. The inter-frame
codec was first pretrained on uncompressed reference frames
for which the distance from the target frame was randomly
chosen among {1, 2, 4}. This pretraining was performed for
34 epochs, a learning rate of 5e−5 and a batch-size of 63



samples, where each sample consists of two reference frames
and one target frame. The inter-frame codec is then finetuned
on all frames of all videos in the dataset, for 10 epochs, with
a learning rate of 2e−5 and batch-size of 56 sets of 7 inter
frames. We follow the evaluation framework of the CVPR
workshop and challenge CLIC (video track), which is the most
recent learned video coding conference, to allow for an easier
comparison with prior art learned codecs. According to this
framework, the combined size of the decoder and bitstreams,
calculated as decodersize + bitstreams/0.019, should not
exceed 1309MB. We tested our codec on the CLIC test set
and on the JVET-CTC sequences. For JVET-CTC sequences,
we excluded Class A due to the high resolution causing high
memory consumption, and we converted 10 bits sequences to
8 bits for simplicity. We compared our codec to the state-of-
the-art traditional and learned video codec, i.e., VVC/H.266
and RLVC [26], respectively.

For VVC, the VTM-12.0 software was used in our com-
parison. We tuned its hyper-parameters to achieve the target
combined size on the CLIC dataset as close as possible. We
evaluated it with an intra period of 8 frames (same as our
codec) on CLIC test set, and both an intra period of 8 frames
and an intra period of 1 second (default setting) on JVET-CTC
sequences. To evaluate RLVC, the bi-IPPP GOP structure with
default settings was adopted in our experiments. Additionally,
we used their MS-SSIM model with lambda value of 8 which
provides the smallest bitrate. Nonetheless, RLVC still cannot
achieve the target combined size, as showed in Table I. As
RLVC was trained on RGB data, and the test datasets are in
YUV 4:2:0 color format, we converted the videos to RGB
by using FFmpeg. We measured the quality drop caused
by the conversion as the MS-SSIM and the peak signal-to-
noise ratio (PSNR) computed on the original YUV data and
corresponding YUV data obtained after converting to RGB and
back to YUV. For CLIC test set, the MS-SSIM was 0.994, and
the PSNR was 55.9 dB. For JVET-CTC sequences, the MS-
SSIM was 0.999, and the PSNR was 50.5 dB. We provide test
results both in RGB and YUV domains.

Table I reports the results for the above experiments. NNVC
refers to the proposed codec. VVC8 is VVC with intra period
of 8 frames. RLVC-RGB and RLVC-YUV are RLVC evaluated
in RGB and YUV domain, respectively. We also report the per-
formance of the top performing end-to-end learned approach
in 2021 CLIC competition, E2E_T_OL. NNVC surpasses
their performance. We measure the speed of NNVC on one
NVIDIA Tesla V100 SXM2 GPU. For an 1280x720 CLIC
video, our encoding (including the overfitting) and decoding
run on average at 0.006 and 1.2 frames/sec, respectively. For
the same video, VVC encodes and decodes on average at 0.022
and 23.6 frames/sec, respectively, with one Intel Xeon Gold
6154 CPU.

Regarding the intra-frame codec, we compare our DSA
block with the ”group-separated attention (GSA)” block used
in the prior art learned image codec [2]. To this end, we de-
signed a codec which is as similar as possible to our proposed
codec, but which uses the GSA block. While DSA’s ResBlock

TABLE I: Experimental results.

Model Data BPP MS-SSIM Combined Size
NNVC CLIC 0.03095 0.97347 1306MB
VVC8 CLIC 0.03487 0.97105 1298MB
RLVC-RGB CLIC 0.06752 0.97056 2663MB
RLVC-YUV CLIC 0.06752 0.97494 2663MB
E2E T OL CLIC 0.03395 0.97167 1306MB
NNVC JVET 0.03772 0.97001 2197MB
VVC8 JVET 0.03693 0.97461 1999MB
VVC JVET 0.03788 0.98576 2051MB
RLVC-RGB JVET 0.07332 0.96927 4120MB
RLVC-YUV JVET 0.07332 0.98178 4120MB

TABLE II: Comparison between DSA and GSA blocks.

Model BPP MS-SSIM Score Parameters
DSA-2 0.13168 0.98857 0.97540 55M
DSA-3 0.13182 0.98883 0.97565 76M
GSA-2 0.13355 0.98837 0.97502 52M
GSA-3 0.13046 0.98843 0.97538 73M

uses two convolutional layers, in [2] the residual block uses
three convolutional layers. In our study, we compared both of
these two cases. Table II describes the results of comparison.
The ”Score” values are derived as the negative of the loss
values computed on the evaluation set by using λ = 0.1. A
higher score value indicates better performance. DSA-N and
GSA-N refer to the proposed NNVC’s intra codec and the
NNVC’s intra codec where DSA blocks were replaced with
GSA blocks [2], respectively. N is the number of convolutional
layers in the ResBlock of DSA or GSA. The models were
trained on 30 videos of the CLIC training set, and evaluated
on 10% of the frames in those videos (similar setup as in
CLIC competition). The results clearly show that DSA block
performs better than GSA, even when GSA uses more layers
and parameters (i.e., DSA-2 vs GSA-3).

In another experiment (see Intra codec only part in Table
III), we compared different strategies of overfitting the OMPs.
For simplicity, we trained on a subset of the CLIC training set,
and evaluated on the CLIC validation set. In one strategy (c1),
that we adopted in our final codec, we overfit a few selected
layers of last DSA block in the intra-frame decoder by using
the first intra frame of each video, and then employ the OMPs
for all intra frames of that video; in another strategy (c2), we
overfit the OMPs of all layers of last DSA block, and the
very last layer of the decoder, separately on each intra frame.
The Score was computed by using λ = 0.15. In the strategy
c2, the overfitted OMPs still required a much higher bitrate
overhead after quantization. Since we include the quantized
OMPs into bitstream only if the parameters provide coding
gains in terms of the overall loss (over a video for c1 and over
the considered frame for c2), the strategy c1 provided smaller
bitrate overhead and better MS-SSIM than c2 on average.
Compared to the size of latent tensor bitstreams, the size of
quantized-OMPs bitstreams is only approximately 0.06% for
the CLIC test set and 0.008% for the JVET-CTC sequences.
Moreover, we evaluated the performance of the intra-frame



TABLE III: Additional studies.

Intra codec only
ID Overfit Overfit BPP MS-SSIM Score

layers frames
c1 Few First 0.11190 0.98550 0.96872
c2 All All 0.11196 0.98544 0.96864
c3 None None 0.11175 0.98539 0.96863

Inter codec only
ID Overfit Scaling BPP MS-SSIM Score

Combiner motion
c4 - - 0.01201 0.98487 0.98367
c5 - X 0.01913 0.99179 0.98988
c6 X - 0.01216 0.98589 0.98468

codec without overfitting the OMPs (c3 in Table III), which
confirms the benefits of our proposed technique.

We also performed another ablation study involving the inter
frame codec (see Inter codec only part in Table III), which
was trained on a subset of the CLIC training set, and eval-
uated on 5 separate videos. We evaluated the contribution of
overfitting the scaling parameters and of resolution adaptation.
c4 is our inter-frame codec without overfitting the Combiner’s
scaling parameters and without resolution-adaptation scaling
of motion; c5 is our inter-frame codec without overfitting the
Combiner’s scaling parameters but with resolution-adaptive
scaling of motion; c6 is our inter-frame codec with overfitting
the Combiner’s scaling parameters but without resolution-
adaptive scaling of motion. λ = 0.1 was used to measure the
Score. The ablation study results demonstrate that the proposed
techniques clearly improve the coding performance.

IV. CONCLUSIONS

In this paper, we proposed a set of techniques for enabling a
learned video codec to be highly adaptive to the input content,
thus overcoming potential limitations caused by domain shift.
Via extensive experiments, we showed the benefits of our
techniques, and compared our codec to state-of-the-art video
codecs in different settings and for different datasets.
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image interpolation,” in ECCV, 2018.

[6] R. Yang, F. Mentzer, L. Van Gool, and R. Timofte, “Learning for video
compression with hierarchical quality and recurrent enhancement,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[7] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He,
J. Mueller, R. Manmatha, M. Li, and A. Smola, “Resnest: Split-attention
networks,” 2020.

[8] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 7132–7141.

[9] X. Li, W. Wang, X. Hu, and J. Yang, “Selective kernel networks,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 510–519.

[10] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269.

[11] C. Aytekin, X. Ni, F. Cricri, J. Lainema, E. Aksu, and M. Hannuksela,
“Block-optimized variable bit rate neural image compression,” in The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2018.

[12] C. Aytekin, F. Cricri, A. Hallapuro, J. Lainema, E. Aksu, and M. Han-
nuksela, “A compression objective and a cycle loss for neural image
compression,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2019.

[13] G. Lu, C. Cai, X. Zhang, L. Chen, W. Ouyang, D. Xu, and Z. Gao,
“Content adaptive and error propagation aware deep video compression,”
ArXiv, vol. abs/2003.11282, 2020.

[14] J. Campos, S. Meierhans, A. Djelouah, and C. Schroers, “Content
adaptive optimization for neural image compression,” in The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Work-
shops, June 2019.

[15] N. Zou, H. Zhang, F. Cricri, H. R. Tavakoli, J. Lainema, M. Hannuksela,
E. Aksu, and E. Rahtu, “L2c – learning to learn to compress,” in 2020
IEEE 22nd International Workshop on Multimedia Signal Processing
(MMSP), 2020, pp. 1–6.

[16] Y. H. Lam, A. Zare, C. Aytekin, F. Cricri, J. Lainema, E. Aksu,
and M. Hannuksela, “Compressing weight-updates for image artifacts
removal neural networks,” in The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2019.

[17] Y.-H. Lam, A. Zare, F. Cricri, J. Lainema, and M. Hannuksela,
“Efficient adaptation of neural network filter for video compression,”
arXiv:2007.14267 [eess], 2020.

[18] T. van Rozendaal, I. A. M. Huijben, and T. S. Cohen,
“Overfitting for Fun and Profit: Instance-Adaptive Data Compression,”
arXiv:2101.08687 [cs], Jan. 2021, arXiv: 2101.08687. [Online].
Available: http://arxiv.org/abs/2101.08687

[19] H. Liu, T. Chen, P. Guo, Q. Shen, X. Cao, Y. Wang, and
Z. Ma, “Non-local attention optimized deep image compression,”
arXiv:1904.09757 [cs, eess], Apr 2019. [Online]. Available: http:
//arxiv.org/abs/1904.09757
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