
Tampere University Dissertations 706

706/2022
M

IK
K

O
 PU

O
N

TI    C
ontinuous D

elivery in D
ata W

arehousing 

Continuous Delivery in 
Data Warehousing 

MIKKO PUONTI





 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  

Tampere University Dissertations 706 

MIKKO PUONTI 

Continuous Delivery in Data Warehousing 

ACADEMIC DISSERTATION 
To be presented, with the permission of 

the Faculty of Information Technology and Communication Sciences 
of Tampere University, 

for public discussion in the auditorium RG202 
of the Rakennustalo, Korkeakoulunkatu 5, Tampere, 

on 9 December 2022, at 12 o’clock. 



 

 

 
 
 

 

 

 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 

 
 

 
 
 

 
 

ACADEMIC DISSERTATION 
Tampere University, Faculty of Information Technology and Communication 
Sciences 
Finland 

Responsible 
supervisor 
and Custos 

Professor Hannu-Matti Järvinen 
Tampere University 
Finland 

Pre-examiners Professor emeritus Bernhard Thalheim Professor Jérôme Darmont 
University of Kiel 
Germany 

University of Lyon 2 
France 

Opponent Professor Pekka Abrahamsson 
University of Jyväskylä 
Finland 

The originality of this thesis has been checked using the Turnitin OriginalityCheck 
service. 

Copyright ©2022 author 

Cover design: Roihu Inc. 

ISBN 978-952-03-2652-4 (print) 
ISBN 978-952-03-2653-1 (pdf) 
ISSN 2489-9860 (print) 
ISSN 2490-0028 (pdf) 
http://urn.fi/URN:ISBN:978-952-03-2653-1 

Carbon dioxide emissions from printing Tampere University dissertations 
have been compensated. 

PunaMusta Oy – Yliopistopaino 
Joensuu 2022 

http://urn.fi/URN:ISBN:978-952-03-2653-1


PREFACE

Mydissertationproject startedwhenTimo "Rafu"Raitalaakso invitedme to a Solita Science
meeting. Rafu, your support made this dissertation complete – thank you for everything.
Since then, we have become true friends. Our collaboration is so complete that it is no
longer possible to specify which one came up with the idea. In that Solita Science meeting,
I also met Timo Aho, Tommi Mikkonen and Timo Lehtonen, each of you deserve men-
tion in this book. Timo Aho has been inspiring and guiding me on this journey. Tommi
Mikkonen has followed and boosted my scientific career, you have been the co-author in
several articles withme, and it has been delightful to co-operate with you. Timo Lehtonen,
in hockey terms, you have fed in the blade everything needed to graduate PhD.

My supervisor Hannu-Matti Järvinen has guided me through studying for the doctor-
ate. Elina Orava, you have helped me fill out the required documents at the right time, and
in what a friendly way you did it. Writing a dissertation is full of ups and downs. Thank
you,NiinaHerttuala andEssi Peltonen, for sharing and caringwith thewriting process. My
family, you are my support when needed. Thanks for getting support for this dissertation.

Real project cases are the best places to solve problems. Juha-Petri Järvi, you created an
environment where a team could achieve success, and I could test the theory in practice.
Solita has created an inspiring atmosphere working and writing publications. Just to men-
tion few of you: Pekka Ahola, Manu Setälä, Aki Aapaoja and TimoHonko.

Special thanks I would like to give to the following crew: Laura Hokkanen literature
review and general support, Paavo Toivanen proofreading, Kari Systä arranged inspiring
seminars to obtain credit points.

Mikko Puonti, 15.10.2022, Tampere, Finland

Dedicated to the memory of Janne Pirkkanen.

iii



Some Further Acknowledgements

The scientificwork that led to this PhD. thesiswasprimarily supportedbySolita andFinnish
Funding Agency for Innovation (TEKES) projects: DIGILE Need for Speed program,
Gateway to Mercury Business. Today, TEKES is Business Finland, government organiza-
tion for innovation funding and trade, travel and investment promotion. I have received a
grant from the city of Tampere Science Grant Committee for the publication and printing
costs of my dissertation.

iv



ABSTRACT

Continuous delivery is an activity in the field of continuous software engineering. Data
warehousing, on the other hand, lie within information systems research. This dissertation
combines these two traditionally separate concerns of continuous delivery and data ware-
housing.

This dissertation’s motivation stems from a practical problem: how to shorten the time
from a reporting idea until it is available for users. Data warehousing has traditionally been
considered tedious and delicate. In data warehousing, distinct steps take place one after an-
other in a predefined unalterable sequence. Another traditional aspect of data warehousing
is bringing everything at once to a production environment, where all the pieces of a data
warehouse are in place before production use. If development follows agile iterations, why
are the releases in production not following the same iterations?

This dissertation introduceshowreporting anddatawarehouse teams can synchronously
build business intelligence solutions in increments. Joint working enhances communica-
tion between developers and shortens the feedback cycle from an end-user to developers,
and makes the feedback more direct. Continuous delivery practices support releasing fre-
quently to a production environment. A two-layer data warehouse architecture separates
analytical and transactional processing. Separating different processing targets enables bet-
ter testing and, thus, continuous delivery. When frequently deploying with continuous
delivery practices, automating transformation creation in data warehousing reduces the de-
velopment time. This dissertation introduces an information model for automating the
implementation of transformations, getting data into a data warehouse and getting data
out of it.

The research evaluation followed the design science guidelines. Research for this dis-
sertation collaborated with the industry. These ideas have been tested on real projects with
promising results, and thus they have been proven to work.
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TIIVISTELMÄ

Jatkuva käyttöönotto (continuous delivery) on ohjelmistokehityksen tutkimusala. Tieto-
varastointi (datawarehousing)puolestaankuuluu informaatio- ja tietojärjestelmätutkimuk-
sen alaan. Tässä väitöskirjassa yhdistyvät nämä kaksi perinteisesti erillistä tutkimusaluetta
jatkuva käyttöönotto ja tietovarastointi.

Tämän väitöskirjan motivaatio kumpuaa käytännön ongelmasta: kuinka lyhentää aikaa
ideasta analysoida jotain siihen, että analyysi on käyttäjien saatavilla. Tietovarastointia on
perinteisesti pidetty monimutkaisena ja siten herkkänä virheille. Tietovarastoinnissa eril-
liset vaiheet tapahtuvat peräkkäin ennalta määritellyssä järjestyksessä. Perinteinen tapa ti-
etovarastoinnissa on ottaa koko ratkaisu kerralla tuotantokäyttöön, jossa kaikki tietovaras-
ton palaset ovat paikoillaan ennen tuotantokäyttöä. Mikäli kehitys seuraa lyhyitä iteraa-
tioita, miksi käyttöönotot tuotantoon eivät seuraa näitä iteraatioita?

Tämä väitöskirja esittelee kuinka raportointi- ja tietovarastointitiimit voivat rakentaa
yhtäaikaa raportointiratkaisuja (business intelligence) vaiheittain. Yhteistyö tehostaa kehit-
täjien välistä kommunikaatiota ja lyhentää palautesykliä loppukäyttäjältä kehittäjille mikä
tekeepalautteesta suorempaa. Jatkuvankäyttöönotonkäytännöt tukevat julkaisemistausein
tuotantoympäristöön. Kaksikerroksinen tietovarastoarkkitehtuuri erottaa analyyttisen ja
tapahtumapohjaisenkäsittelyn. Erilaistenkäsittelyjen erottaminenmahdollistaaparemman
testauksen ja siten jatkuvan käyttöönoton. Käytettäessä jatkuvaa käyttöönottoa, voidaan
kehitysaikaa lyhentää myös automatisoimalla tietomuunnosten toteutustyötä. Tämä väi-
töskirja esittelee tietomallin tietomuunnosten automatisoinnin toteuttamista varten, niin
tiedon saattamiseksi tietovarastoon kuin tiedon hyödyntämiseen tietovarastosta.

Tutkimuksen arvioinnissanoudatettiin suunnittelutieteen suuntaviivoja. Tutkimus teh-
tiin yhteistyössä teollisuuden ja yliopistojen kanssa. Näitä ideoita on testattu todellisissa
projekteissa lupaavin tuloksin ja siten ne on todistettu toimiviksi.
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ABBREVIATIONS

BI Business intelligence (BI) solutions combine data gathering, data
storage, and knowledgemanagementwith analytical tools to present
complex internal and competitive information to planners and deci-
sion makers [41].

DV The Data Vault (DV) is a detail oriented, historical tracking and
uniquely linked set of normalized tables that support one or more
functional areas of business [32].

DW A data warehouse (DW) is a subject-oriented, integrated, non-
volatile, and time-variant collection of data to support management
decisions [21].

DWA Data warehouse automation (DWA) automate data warehouse im-
plementation with the principles of design patterns and using a
metadata repository. .

EDW Enterprise Data Warehouse (EDW) create an integrated and stan-
dardized data foundation that facilitates improved analytics and re-
porting [49]. The enterprise data warehouse is a layer in the data
warehouse in this dissertation, whereas other may use EDW in the
meaning of the data warehouse.

ELT Extract, load, transform (ELT) load data directly into the data ware-
house without external transformations, data cleansing or normal-
ization [10]. The target is to convert the compute-intensive parts of
the ETL process into database processing.

ETL Extract, transform, load (ETL) is set of processes to read,modify and
store data into a database or into a file.
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1 INTRODUCTION

How long does it take to add one new attribute to an existing report and publish that for
production use? This dissertation’s motivation stems from practical problems: how to
shorten the timeframe from a reporting idea to that it is in production use and how to
do it in a reliable and repeatable way. Business intelligence tools almost invariably require
manual steps when moving code from one environment to another. Deployment to pro-
duction is a stress-filled moment and requires a maintenance break to the data warehouse
and reporting portal. On the other hand, we get genuine feedback from users when reports
are available in a production environment. This frame our research: How to release often
to production, even if the tools do not support continuous delivery.

1.1 Motivation

Data warehousing contains a collection of tools integrating data from operational systems
in one place for decision support [56]. Data warehousing has traditionally been consid-
ered tedious and delicate [21]. Distinct steps take place one after another in a predefined
unalterable sequence. Another traditional aspect of data warehousing is implementing all
the pieces of a data warehouse first and taking them into production use at the end of a
project. This approach is no longer justified. Traditional practices are preventing people
from changing their way of building data warehouses.

Business intelligence is a collection of activities to understand business situations and
based on analysis making decisions [47]. In a business intelligence solution, both data and
that it is correct are essential. The key user is the best person to validate that business in-
telligence solutions offer correct information [48]. Unfortunately, the key user is a human
and has only limited resources to validate the data in a business intelligence solution. What
if we utilize the expertise of a key user, but instead of a person performing the testing, we
would automate the tests?

The root cause of failure in data warehousing projects is disconnected understanding
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and expectations between developers and users [7]. Feedback is a source of satisfaction to
developers and the end-user (client) [15]. At the beginning of the research work, it took a
long time to get a report available for users. Users of a report involved in the development
work provided feedback only after it was available for users. Business intelligence develop-
ers are developing new all the time. When they received feedback, it focused on the past
implementation, which they did not fully remember. It was frustrating to the developers.

Traditional datawarehousing uses development, test,QA (QualityAssurance), andpro-
duction environments. In the test environment, technical tests are executed by a developer.
TheQA environment is for key user, and it shouldmatchwith the data used in production.
If we automate the tests, we could start using continuous delivery. Continuos delivery [20]
incorporates build, test, and release phases. The key is to concentrate on your cycle time, or
actually that you can release as often as you want. Poppendieck asked, “How long would it
take your organization to deploy a change that involves just one single line of code? Do you
do this on a repeatable, reliable basis?” [45, page 92].

In business intelligence solutions, shared environments usually mean shared version
control, if version control is in use at all. There are different tools for different tasks; data
modelling, ETL loadings, and the actual report development. These tools almost invari-
ably require manual steps whenmoving code from one environment to another. The tools
do not work together but separately. Deployment to production is a stress-filled weekend,
rather than executing a couple of scripts from your own computer. It leads to the state that
cycle time is weeks or months.

There exist several tools for data warehouse automation (see Section 2.3). However, the
tools use development, test, QA, and production environments where developers share
these environments. Technically we have tools that enable us to deploy in different envi-
ronments. Still, we are hanging in shared environments.

The question is how long it takes to add one new attribute to a report, which includes
all needed steps - at least following.

• Create a backlog item for adding an attribute to the report

• Implement changes in a database

• Create transformations to populate that attribute

• Modify a report

• Validated that modified report have added attribute

• Publish modified report to the end-users

2



Modifications are done first in a development environment. Then the report is deployed to
a test environment where it is validated. After validation, publish the report in the produc-
tion environment. Is this in a specific organisation days, weeks, or even several months?

1.2 Research Problem

In business intelligence, we get genuine feedback after users access the reports. Several tasks
must be finished before a reporting idea is a ready-made report. These tasks include at least
data modelling, data integration, report implementation and deployment for users. The
traditional workflow follows these tasks sequentially, so the time from idea to a finished re-
port is long. We aim to shorten this cycle time: from idea to a report available in production
use.

We can’t bite the moon out of the sky, so we focus on how to get reports more often for
production use. The continuous delivery approach releases software often with build, test
and deployment automation. We focus our work mitigation efforts on data integration,
which is the most laborious task [25]. With the scope of data integration, we frame our
research to continuous delivery in data warehousing.

This dissertation combines continuousdelivery todatawarehousing, see Figure 1.1. Con-
tinuous delivery is an activity in the field of continuous software engineering [9]. Infor-
mation systems research includes business intelligence [41] and especially data warehouses
[21]. Business intelligence combines data gathering and presenting information for users as
planners or decision-makers. The dissertation research question is how to shorten the time
from a reporting idea until it is available for users? Implementing reports is part of business
intelligence. Research focuses on the most laborious phase of business intelligence, data
gathering. The data warehouse automation mitigates the work effort needed in data ware-
housing. In Figure 1.1, the related concepts for the researchproblemare business intelligence
and data warehouse automation.

1.3 Research Environment

Research work for this dissertation started in the Need for Speed program [22]. Need for
Speed programwas an industry-driven research program in Finland for the years 2014-2017.
The budget exceeded 80 million euros, annually around 20 million euros, which makes it
the biggest national investment in software-related research. The program was executed

3
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Figure 1.1 The research problem is continuous delivery in data warehousing, related
concepts are business intelligence and data warehouse automation.

jointly by the industry and academia. Numerous research institutes and companies partici-
pated in theprogram. Theprogramhadbusiness case driven short-termgoals [38]. Theonly
restrictions for a business case were that there should always be more than one participant
and that no business case is populated by only research institutions. Research for publica-
tions [P1, P3] was part of business cases. There were quarterly reviews in the N4S program.
Each quarterly review consisted of workshops, training events, presentations, strategy dis-
cussions and planning sessions. The idea for publishing our publication [P3] came up in
one of the quarterly reviews.

Datawarehouseprojects are very labour-intensive; therewas aneed to improve themeth-
ods, tools, and processes, for example, by automating tasks. In research program Solita de-
cided to seek a way to increase the degree of automation in these projects. In addition, good
practices and tools to manage project resources, such as version control tools, needed to be
put into more active and systematic use. The goal was to increase the productivity of the
data warehouse and analytics projects with the aim of gaining at least a six-fold increase in
the speed of development. The initial problem originated from the industry. For solving
the problem, some solution candidateswere created and validated in collaborationwith aca-
demic partners. Validation for the feasibility of the solutions came directly from applying
the solution candidates in real client projects. [38]
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1.4 Objectives and Scope

We aim to create meaningful reporting in a managed way. Meaningful reporting answers
to questions that reporting users ask. In a managed way means that we release often, and
reporting requirements guide the development backlog. When the reports are available for
users, we get feedback from the users. In a traditional sequential workflow, the time from a
reporting idea to the report available in production is long. Our unifying research question
is: how to shorten the time from a reporting idea until it is available for users?

The continuous delivery approach releases software often with build, test and deploy-
ment automation. We research how to use continuous delivery in the domain of business
intelligence. To reduce the time from a reporting idea to the report available, we mitigate
the manual work with automation (see Figure 1.2). Data warehouse implementation is the
most laborious phase in a business intelligence solution implementation. Automating the
data warehouse implementation reduces the time used in report implementation. This fo-
cus scopes our work to continuous delivery in data warehousing. We divided this intomore
detailed research questions. Research questions are grouped in Figure 1.2 to enablers and
automating implementation.

• RQ1: How to implement a business intelligence solution in increments jointly with
reporting and data warehousing teams?

• RQ2: What is suitable architecture for a business intelligence solution to enable con-
tinuous delivery?

• RQ3: How to automate the implementation of getting data into an enterprise data
warehouse, modelled with data vault methodology?

• RQ4: How to automate the implementation of getting data out from an enterprise
data warehouse, modelled with data vault methodology?

Research about business intelligence systems is limited, although the industry uses busi-
ness intelligence systems widely [41]. A business intelligence system fetches data from dif-
ferent sources to an integrated data warehouse and visualises the information from the data
warehouse with an analytical tool. After the reports are available, we get feedback from the
users. Unfortunately, getting the reports available containsmanywork phases andmay take
a long time. We are interested in shortening the time from a reporting requirement to pub-
lishing a report to the users. The problem is that developers will get feedback from users
only after the report is available to users. We noted that a reporting team can only imple-
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Enablers By automating implementation

How to implement 
a business intelligence solution in increments 

jointly with reporting and data warehousing teams?

What is suitable architecture 
            for a business intelligence solution            

to enable continuous delivery?

How to automate the implementation 
of getting data into an enterprise data warehouse,

modelled with data vault methodology?

How to automate the implementation 
of getting data out from an enterprise data warehouse,

modelled with data vault methodology?

How to shorten time 
from a reporting idea 

until it is available for users?

Figure 1.2 Research questions as enablers or by automating implementation work

ment reports that have data available in a data warehouse. There is a dependency between
a data warehouse team and a reporting team. Because of the dependency first, a data ware-
house team needs to make data available in a data warehouse. After the data was available,
the reporting team continued implementing the report. In agile development, especially
in the scrum, this needs two increments (sprints) to publish a report to the users. This
raised us the research question 1: How to implement a business intelligence solution in in-
crements jointly with reporting and data warehousing teams? Tomitigate the need for two
increments, we conformed the research question 1 (RQ1).

A solution to research question 1 would shorten developing time from a reporting re-
quirement to a published report to the users. Currently, this is an issue in the industry. The
users do not want to be involved in the development of reports due to the development
timeline.

Traditionally business intelligence projects use shared environments to develop and test
the solution before deploying it to production. Deploying implementation between envi-
ronments often requires manually copying binary files from one place to another. Manual
file copying is error-prone. There may be different configurations between different envi-
ronments. Using shared environments allows only one implementation at a time. Shared
environments cause a dependency on implementations and things can only be taken into
production when the previous implementation is ready in production. Shared environ-
ments complicate development work. Deployment withmanual steps is not repeatable and
reliable. Lack of a repeatable and reliable way of deploying to production leads to sched-
uled service interruptions. Depending on the frequency of service interruptions, the de-
ployment may contain several items, and the problem is how to verify that everything will
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go smoothly. Continuous delivery [20] is quite the opposite, releasing software with a re-
peatable and reliable process. We started to investigate how to enable continuous delivery
in business intelligence projects. Fort that purpose is research question 2: What is suitable
architecture for a business intelligence solution to enable continuous delivery? Suitable ar-
chitecture for continuous delivery in business intelligence would allow us to release often,
perhaps without the service interruptions. At least there is no extra delay getting a report
available for users.

The most laborious phase of building a data warehouse is to create data transforma-
tions. These data transformations are called the extract, transform load (ETL) process. As
a rule of thumb, ETL consumes 70 per cent of the resources in a typical data warehouse
implementation [25]. The data vault modelling technique [32] has become more common
in data warehousing. Data vault splits themodel into different entity types, which increases
the number of tables and thus the amount of ETL work. The usage of the data vault en-
courages templating or even automating the transformation implementation [19, 36]. Un-
fortunately, majority of the automation tools are proprietary and intended only for specific
technologies. Because of this, each project uses different templating or different script sets
to automate data vault loadings. Each project creates its way of automating data vault load-
ings, and they all start from scratch. There is not much scientific research literature about
data vault automatisation. Tomitigate work, we present research question 3: How to auto-
mate the implementation of getting data into an enterprise data warehouse, modelled with
data vault methodology? Automating implementation should decrease the needed effort
to create ETL loads. By generating the implementation code, we reduce the possibilities for
human errors, and we enable deployments with a reliable process. By publishing the results
to a scientific audience, we enable others to automate their solutions, and they will not start
from scratch nor be dependent on a proprietary solution.

Getting data into a data warehouse is widely automated. There are proprietary automa-
tion solutions available. Automating getting data out from a data vault is not so much
studied. There exists scientific literature regarding the design of a dimensional model from
a data vault [12, 27]. As we are following the model-first approach, we have in place the
dimensional model, and we do not benefit from design automation. We should automate
the mapping between a source (data vault) and a target (dimensional model). Mappings
between a data vault and a dimensional model based on a hub or a link granularity, there-
fore, data flow is possible to suggest. The actual transformation code is generated based on
mapping information. The generated transforms can be XML-files for ETL-tool, or SQL-
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queries or other programming language code. In this research, the generated codewas SQL-
queries. Getting data out contains manual work, and implementation varies depending on
who has written the SQL query. To automate this part and harmonise the implementation
code, we raised research question 4: How to automate the implementation of getting data
out from an enterprise data warehouse, modelled with data vault methodology? Similarly
to getting data in phase, automating implementation should decrease the needed effort to
create ETL loads. By generating the implementation code, we reduce the possibilities for
human errors and enable deployments with a reliable process. Currently, there is a lack of
generated code in the getting data out phase. There is a wide variance in implementation
logic in the manually written SQL queries.

1.5 Research method

Design science research focuses on developing an artefact with the explicit intention of im-
proving the functional performance of the artefact. The purpose of information systems
implementation is to improve that organisation [16]. The behavioural science paradigm
seeks to develop and verify theories that explain organisational behaviour. The design sci-
enceparadigm seeks to extendhumanboundaries andorganisational capabilities by creating
new and innovative artefacts [16]. Information system research may focus on defining an
idea, a practice or a technical solution, which all are different types of artefacts.

The design science research process is iterative. Nunamaker et al. [42] present a systems
development research methodology (SDRM). SDRM intends to include elements of both
the social and engineering approaches. Five phases in SDRM are: construct a conceptual
framework, develop a system architecture, analyze & design the system, build the system,
and observe & evaluate the system. Vaishnavi et al. [57] present a design science research
process model (DSRPM). Their model is an adaption of the Takeda et al. [55] computable
design process model. The process steps are the following: awareness of problem, sugges-
tion, development, evaluation, and conclusion. From each step it is possible to go back to
the first step, awareness of problem. The process iterates until the last step, conclusion out-
put, is suitable to the problem. Peffers et al. [43] introduce design science researchmethod-
ology (DSRM) that has multiple possible entry points. The DSRM process can start with:
problem centered initiation, objective centered solution, design & development centered
initiation, or be client/context initiated. This research originated from problems identified
in the industry. Design science research creates a suitable framework for conducting the
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research process and evaluating the artefacts. Venable et al. [58] suggest choosing an ob-
jectivist, positivist methodology such as SDRM [42], DSRPM [57], or DSRM [43], when
planning and organising research where scientific results have to be objective. This research
used the design science research process model (DSRPM). The evaluation of the designed
artefacts uses Hevner et al. [16] guidelines. For each artefact, the research followed the gen-
eral design cycle [6, Figure 3.2] [57, Figure 3].

1.6 Dissertation Structure

Chapter 1 motivates why continuous delivery is beneficial in data warehousing. It presents
the research problem and the research environment. Objectives and scope introduce the
research questions. The used research method is design science research.

Chapter 2 is a literature review of key concepts. It introduces continuous delivery fol-
lowing howHumble and Farley present it. Then it draws the business intelligence and data
warehousing landscape, definitions, architectures and modelling techniques. Next, it ex-
plains agile in business intelligence and data warehousing. Lastly, it presents an overview of
data warehousing automation.

Chapter 3 presents research contribution. We use design science guidelines to evaluate
introduced artefacts. After evaluation, each research question has separated sections. After
individual research questions, it concludes the research contribution.

Chapter 4 presents theoretical and practical implications. The reliability and validity are
estimated based on literature and using the design science research method.

At the end of the dissertation, conclude a summary in Chapter 5.
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2 BACKGROUND AND RELATED WORK

Continuous delivery is a set of practices to enable reliable process release of new function-
alities in production use. Continuous delivery uses phases of build, test, and deploy to en-
sure the quality of new functionality. Traditionally business intelligence projects use shared
environments to develop and test the solution before deploying new functionality to a pro-
duction environment. Testing the solution happens manually, and deployments are often
manual processes. Business intelligence solutions implementations use agile methodology.
Although, there are opinions that data-centric projects are troublesome tomanage with ag-
ile methodologies. Data warehouse implementation consumes most of the work needed
in business intelligence solutions. There is a place for automating different phases of data
warehouse implementation.

2.1 Continuous Delivery

Jez Humble and David Farley presented continuous delivery in their book Continuous de-
livery: reliable software releases through build, test, and deployment automation [20]. Note
the viewpoint "If somebody thinks of a good idea, how dowe deliver it to users as quickly as
possible?" [20, page 3]. The most important is the deployment pipeline, which starts after
a developer has committed his code to a version control system. Yes – after every commit,
which is the minimal change to your system. We simplify the deployment pipeline in Fig-
ure 2.1. In the commit, stage code is compiled and built in the deployable software artefacts.
The commit stage is shortly also referred to as a build phase. The test phase validates that
everything works and, it includes acceptance testing, capacity testing and optional manual
testing. Testing is a seminal part of continuous delivery. Deployment update an environ-
ment with the compiled artefacts. After a successful test phase, in every needed environ-
ment, we deploy to production, which we refer to as a release. The deployment pipeline
is, in essence, an automated implementation of your business intelligence solutions build,
deploy, test and release processes.
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Commit stage Testing Release

Figure 2.1 Simplified deployment pipeline.

Very often, we hear the term continuous deployment used. Continuous deployment
differs from continuous delivery – deployment is fully automated and does not contain a
manual phase. In the beginning, it sounds that the difference isminimal – one button press.
After rethinking, youmay notice that the difference is a giant leap from continuous delivery
to fully automatic testing and deployment.

Continuousdelivery allowsmanual phases. We encourage automating themanual phases,
at least those that repeat often. Continuous delivery is a set of practices to enable reliable
release. A desirable release duration is a short timeframe from idea to production use.

2.2 Agile Business Intelligence / Data Warehousing

Business intelligence converts data into useful information. If contains data processing and
decision making. A data warehouse is the core component of business intelligence. There
are several data modelling techniques for data warehousing. In a structure-oriented data
warehouse there are different layers. For each layer there is a purposeful data modelling
technique. Agile analytics cover agile methods as well as activities towards continuous de-
livery.

2.2.1 Business Intelligence

Business intelligence solutions combine operational data with analytical tools to present
complex and competitive information to planners and decision-makers [41]. Business intel-
ligence converts data into useful information and, through human analysis, into knowledge
[41]. The main idea for business intelligence is identifying information needs and process-
ing the data and information gathered, into valuablemanagerial knowledge and intelligence
[44]. Processing data is getting data available and presenting it in a functional format.
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Figure 2.2 Typical business intelligence architecture

Combining data is to fetch data and integrate that to a central repository in business
intelligence to the data warehouse. There is a discussion on how important it is to gain
knowledge from semi-structured data. Thus the foundation of business intelligence must
be relational data. Figure 2.2 presents typical business intelligence architecture. Adataware-
house is the core component of business intelligence. However, business intelligence is a
broader term than the data warehouse. In addition to data warehousing, business intelli-
gence includes information usage tools and decision making.

2.2.2 Data Warehousing

A data warehouse is a subject-oriented, integrated, nonvolatile, and time-variant collection
of data to support management decisions [21]. The data warehouse contains a database,
metadata about the data and data transfer and modifications, i.e. extract, transform, load
process. The following data warehouse requirements follow those written by Kimball [26].
The data warehouse must make an organization’s information easily accessible in an un-
derstandable form. It presents the organization’s information consistently [21, 26, 56]. The
data warehouse must be adaptative and resilient to change [26, 56]. The data warehouse
must effectively control access to the organization’s confidential information. The data
warehouse must have the correct data to support decision making [21, 26, 56]. The report-
ing users must accept the data warehouse if it is to be deemed successful [26]. The data
warehouse usage is sometimes optional. User acceptance has more to do with simplicity
than anything else.
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An essential part of the data warehouse is the extract, transform, load process [25]. The
first step is extracting data from source systems. The second step is the data quality and
cleansing operations. Third, integrating data with other data sources. Finally, delivering
data for information usage purposes. ETL data processing happens in a specific server be-
fore loading to the data warehouse. Another way to handle the data transformations is to
use database operations . The data is first loaded to the database and then transformed in-
side the database, called extract, load, transform (ELT) as the order of the loading differs
from the ETL process [10].

2.2.3 Data Warehouse Architectures

There are two groups of data warehouse architectures: structure-oriented and department-
oriented [14, 4]. The structure-oriented architectures have a variable number of layers.
Single-layer architecture is virtual and implemented as dimensional views over operational
data [14, 4]. Single-layer architecture is rare in practice. The two-layer architecture separates
analytical and transactional data processing [14, 4]. Although it is called two-layer architec-
ture, there are four data flow stages: source layer, data staging, data warehouse layer and
analysis [14, 4]. Typical business intelligence architecture in Figure 2.2 follows two-layer
architecture. In three-layer architecture layers are implemented physically: source layer, rec-
onciled layer and data warehouse layer [4]. Department-oriented architectures are: inde-
pendent data marts, bus architecture, hub and spoke architecture, centralized architecture
and distributed architecture [4, 2] .

A data lake is a centralized data repository that can store a multitude of data ranging
from structured or semi-structured data to completely unstructured data [54].

Traditionally business intelligence projects use shared environments to develop and test
the solution before deploying it to production. A development environment is for devel-
opment. A test environment is for technically testing that everything works as defined. A
quality assurance (QA) environment cover test caseswith actual data and ensures that every-
thing is ready for production use. Each environment has costs and needs for management.
In some cases, the project uses the test environment for quality assurance tests. Usually,
there is limited access for reporting users to the QA environment. The last environment is
the production environment, where all the actual users are.
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2.2.4 Data Modelling Techniques for Data Warehousing

It is essential to understand the phases of data warehouse design as it is part of the business
intelligence solution. Data modelling generally involves three stages, conceptual, logical,
and physical [17, 53]. Conceptual models focus on business concepts as entities and their
associations with other business concepts. Logical modelling adds attributes to the enti-
ties. Physical modelling goes even deeper, while it gives exact data type definitions to the
attributes and how the data physically is stored.

At thebeginningof adatamodellingprocess, the approachmaybe top-downorbottom-
up [51]. In a bottom-up approach, modelling starts with gathering details, mostly from ex-
isting systems. A modeller classifies the gathered information. Based on the classification,
modeller identifies the things or entities. The top-down approach is the opposite. Modeller
educates a group of people on what an entity is. Then this group identify entities. Regard-
ing Sharp and McDermott [51] with the top-down, there are still needs for some sorting
and synthesis. In the context of data warehouse design, the data model design can be data
first or a model first approach. The model-first approach creates a data warehouse model
with the top-down or the bottom-upmodelling approach. After a datamodels exists, starts
the data loadings implementation. In a data-first approach, a modeller adds entities to the
model to fit the data sources when implementing the data loadings. The data sources drive
the modelling of the data warehouse in the data-first approach.

Inmon and Kimball are the pioneers of data warehousing. According to Inmon, in the
operational environment there is present information, and the data warehouse contains
the present and the historical information [21]. Note that the records in the data warehouse
do not overlap, and time is associated with each record in the data warehouse.There is no
point in bringing data over several operational environments into the data warehouse with-
out integrating it.In Figure 2.2, the enterprise data warehouse is the same as Inmon’s data
warehouse. Datamarts are for departmental usage of the datawarehouse data [21]. The data
mart model uses dimensional modelling. According to Kimball, dimensional modelling is
the most viable technique for delivering data to data warehouse use [26, page 10].

A dimensional model is also known as a star schema. The model looks like a star, where
the fact table is the centre of a star and dimension tables forms the star claws. Kimball [26]
presents a methodology to design a dimensional data warehouse.

1. Select the business process to model.

2. Declare the grain of the business process.
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3. Choose the dimensions that apply to each fact table row.

4. Identify the numeric facts that will populate each fact table row.

Change in a business requirement requires far too much re-engineering and data mod-
ifications when using only star schemas [17, Page 329]. For this reason, the enterprise data
warehouse (EDW) layer is added to the data warehouse before data marts, see Figure 2.2.
The EDW layer generally is designed with ensemble modelling principles. Ensemble mod-
elling principles support changing business requirements. Hyper normalization is a family
of data modelling techniques that all employ ensemble data modelling [17]. According to
Hughes, using hyper modelling can eliminate 30-90 per cent of the labour required to im-
plement an EDW [17].

Themostwidely used ensemblemodelling technique is data vaultmodelling. Data vault
modelling uses three core entity types: hub, link and satellite[18, 19, 30, 31, 32, 33, 35, 36]. In
addition to these, there are entity type reference (stand-alone) and query assistant tables
[19, 33]. The natural business key is a unique identifier for a business concept [19]. A hub
presents the business key for the business concept [30]. A link is an intersection of business
keys [30]. Just like the hub, it contains no descriptive information [18]. A satellite is an
entity that holds descriptive information for a hub or a link [18, 30]. The satellite stores the
whole history of the descriptive data by storing a new data rowwith a timestamp every time
there is a change to any of its attributes [18, 30]. A reference is a lookup table that includes
valid code values and their corresponding definitions [19]. A reference table is a separate
table and refers to other tables logically, but it will not have any foreign key references [30].

2.2.5 Agile Analytics

This section concentrates on the question, how to create a business intelligence solution
with agile methodologies. Successful business intelligence projects must follow an agile ap-
proach [8, 46]. In a traditional sequential approach, planning took place for all steps before
the project started. Agile analytics development is iterative, incremental and evolutionary,
in short, iterations that are generally one to three weeks long. Each small increment adds
user value functionality to the system. Each developed increment must be tested and de-
bugged during the development iteration. A user valued functionality is "Done" when it
is of production quality, it is part of the system and, developers are proud of their work
[7, Chapter 1]. For everyone, the "Done" definition does not require the release to the pro-
duction. Still, each agile iteration aims to provide potentially shippable products after the
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iteration, even if those are not released to production [46].
Batra [3] executed a survey onwhich factors contribute to the success ofDW/BIA (busi-

ness intelligence and analytics). Research revealed two different groups: agile-plan balanced
and agile-heavy. Agile-plan balanced represented 68.5% of the respondents, and agile-heavy
accounted for 31.5% of the sample. Batra alsomentioned that the plan-only approachwould
be rare if not altogether absent.

The plan-only approach is the traditional sequential way. The main difference between
traditional plan-only and agile is that database design and implementation is ready before
the analytical tool implementation work starts. As a worst-case, the entire data warehouse,
including data marts, was implemented before the reporting work started.

Teorey et al. [56] presented the activities of a data warehouse life cycle. The process
starts with project planning and business requirements definition. When the plan and the
requirements are aligned, design and implementation canproceed in three different threads.
One of the threads covers platform issues. The second thread covers data issues, including
modelling and physical design, with data processing development. The third thread han-
dles analytic application specification and development. These three threads join before
deployment. After deployment comemaintenance and growth, and detecting requirement
changes. If adjustments are needed, the cycle repeats. [56, Figure 10.2]

There are opinions that data-centric projects are troublesome tomanagewith agilemethod-
ologies. To take care of issues in data quality, some bi teams wait until the data is ready in
the EDW (placed there by a separate EDW team) before starting the report development
[50]. Shamsi [50] presents an opinion that Scrum and Extreme Programming (XP) will not
workwhen building the end-to-end business intelligence solution, including expanding the
necessary EDW components. However, he continues that this does not mean that you can
not go agile [50].

2.3 Data Warehouse Automation

Data warehouse automation (DWA) aims to automate data warehouse implementation.
Automation supports the agile approach by offering an ability to deliver faster and with
fewer resources. However, using automation does not require any agile methodology.

In this dissertation, data warehouse automation means automating the builds and de-
ployments of a data warehouse. Build automation creates the actual implementation code
by generating it based on ametadatabase. Deployment automationmakes deploying to dif-
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ferent environments easier. Deployment Automation can be implemented with a tool or
by creating migration scripts from one version to another, where we prefer the latter. The
continuous delivery build phase creates an artefact. That same artefact deploys to different
environments. When the automation tool manages the migrations from one version to an-
other, the automation tool itself may create an error, which is almost impossible to test in
advance.

Data warehouse automation focuses on automating every step in data warehousing.
One of the steps is to automate the modelling (design) phase. There is research on how
to automatically design a dimensional star schema from an operational database [5, 13, 40]
or a data vault [12, 27]. Jovanovic andBojicic introduce the idea of converting patterns from
an entity-relationshipmodel to a data vault model [23]. Although these methods automate
the design phase, they require human intervention.We have separated modelling from au-
tomation because we believe modelling brings value and needs to be done with people, not
as suggested automatically by an algorithm.

It seems that productsmade for datawarehouse automationhave a short life cycle. Prod-
ucts have their limitations and are suitable for aparticular technologyor amodellingmethod.
Ajilius competitor web page lists 24 products for data warehouse automation in Table A.1.
In the year 2015, there were only 14 products listed. Growth in 4 years has been ten products
(71%). There are also leavers: BIReady did not exist in 2019, and currently, Ajilius does not
exist in the market. The data map tool presented in publication [P3] uses Oracle database
technology. It was in use by several customers. Those customers havemigrated from aOra-
cle database to a cloud database, and consequently there are no active users for the datamap
anymore. Maybe the first tool for data warehouse automation with data vault modelling
was Rapidace. Rapidace has the capability to forward engineer data models from source to
staging, from staging to data vault, from data vault to star schema [34]. Sixteen products
support dimensional methodology, nine data vault in 2015 only three support that. There
are also some products outside the Ajilius listing example, since, for instance, Vaultspeed
existed in 2018 [11].
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3 RESULTS

Design science research develops an artefact in the form of a construct, a model, a method,
or an instantiation [16]. This research introduces five artefacts and two artefacts tomention
as proof of concept artefacts. The artefacts are assessed with guidelines to evaluate: the
artefact itself, problem relevance, and research process. Artefacts are validated based on
research questions. Finally, the research contributes to how to shorten the time from a
reporting idea until it is available for users?

3.1 Designed Artefacts

Hevner et al. present 7 guidelines in their process [16, Table 1]. Guideline 1: design as an
artefact produces an artefact in the form of a construct, a model, a method, or an instan-
tiation. Guideline 2: problem relevance: addressing unsolved and relevant business prob-
lems. Guideline 3: design evaluation: rigorously demonstrating how the utility, quality and
efficacy of a design artefact is evaluated. Guideline 4: research contributions of design arte-
fact, design foundations or designmethodologies. Guideline 5: research rigour requires the
application of rigorous methods in the construction and evaluation of the design artefact.
Guideline 6: design as a search process to discover an effective solution to a problem. Guide-
line 7: communication of research: present designed artefact both to technology-oriented
and management-oriented audiences. Next, we use the Hevner et al. seven guidelines to
introduce and evaluate artefacts included in this dissertation.

3.1.1 Guideline 1: Design as an Artefact

The result of design science research in information science is a purposeful IT artefact [16].
Publication [P1] proposes a process change from serial to parallel working. Creating a di-
mensionalmodel basedon a conceptualmodel and an interface specification enables parallel
working [P1]. Publication [P2] contains the parallel working between reporting and data
warehouse implementation. In addition, publication [P2] starts with the step plan incre-
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ment package and implementation ends in the deployment step [P2, Figure 2]. To present
how the populate example dataset depends on source system interface specification and
what sub-steps are in the data integration step, we have extended the process diagram in
the Figure 3.1. Information usage development is defined mainly as creating a report. Such
a report will not work if it cannot display data. The designed publish layer is populated or
generated with data for report development purposes. In the best case, sample data is from
the source system. Data integration starts with the step Investigate data source, where the
data is identified at the source system table level. Based on investigation results, the data is
already integrated earlier in the enterprise data warehouse, or then it is a new source sys-
tem table to the data warehouse. If the source system table is new, insert table information
into the ETL software. Data transformation development follows the process introduced
in publication [P3]. Development happens with themodel first approach, modelling layers
before implementing transformations.

Once we have developed a method, we need an architecture that supports it. A simpli-
fied version of the architecture in publication [P2] is in Figure 3.2. This architecture follows
a common practice, separating persistent storage from information usage [7, 19, 18, 21, 26].
Blažić et al. and Golfarelli and Rizzi use different naming, where the functionality of two
layer architecture is the same than architecture presented in the Figure 3.2. In addition to the
common architecture, our architecture includes the virtualization layer. The virtualization
layer has two primary goals: data access and user access control. Instead of implementing
user access in each information usage tool, it is recommendable to implement it in the virtu-
alization layer. The data warehouse layers distinguish the usage and the storage. Separating
storage (enterprise data warehouse) from the staging area enables automating transforma-
tions creation [P3]. The publish layer enables different interpretation and use for the same
data from the enterprise data warehouse. Dimensional modeling is the de facto modeling
at the publish layer, or the presentation layer as Hughes [17] call it.

For automating transformations implementation, we need an information model. In
publication [P3], we introduced the data map information model for automating transfor-
mations from the staging layer to the data vault. In this dissertation, we extend this informa-
tion model with the addition of SQL join. For the join addition, we added EntityMapping
and JoinMapping to the information model in Figure 3.3. EntityMapping stores informa-
tion of Entity’s role in Transformation. JoinMapping describe the EntityMapping relation
with the attribute level. Our extended information model enables automating implemen-
tation from the staging to the data vault and from the data vault to the publish layer. Thus,
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Figure 3.1 Methodology process diagram with data integration presented in detail
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Figure 3.2 Architecture of data warehouse layers for continuous delivery

there is a requirement to implement complex transformations in the business data vault
[18, 30]. Our information model is simplified and does not include aggregations such as
Kuznetcov et al. [28].

When automating transformations to get out data from a data warehouse, we need an
algorithm to deduce the correct database tables. Publication [P4] introduces two schema
matching algorithms, the name based and the data flow based mapping. Data flow based
schema matching is a novel addition to current schema matching literature. On the other
hand, name based mapping is an existing technique in ontology matching. Routine design
means using using existing knowledge to organisational problems [16]. The name based
mapping is a crucial part of solving the problem of finding correct database tables for au-
tomating transformations.

In addition to the presented artefacts, publication [P3] describes how to develop a data
warehouse with automated transformations and a proof of concept code generator. Al-
though the code generator is not publicly available, there is a detailed description of the
code generator operations. These artefacts have been used successfully in real projects.

We have presented five artefacts in this dissertation for further evaluation and two arte-
facts to mention as proof of concept artefacts. The process diagram for developing parallel

22



Figure 3.3 Information model for automated transformation implementation

information usage and data integration layers is in Figure 3.1. The architecture diagram of
the data warehouse layers for continuous delivery is in Figure 3.2. The information model
to generate the transformation implementation is in Figure 3.3. Two algorithms that we use
are the attribute names based and the data flow mapping based schema matchings. Next,
we evaluate these artefacts in the following sections.

3.1.2 Guideline 2: Problem Relevance

Design science research requires the creation of an innovative, purposeful artefact for a spe-
cific problem domain [16]. It is seminal that the problem is researchable and addresses a
relevant issue. The problem can be defined as the differences between a goal state and the
current state of a system [16]. We compare each artefact with respect to their goal state and
a current state.

Inpublication [P1], wepresent the current state of report development. Typically, build-
ing a business intelligence solution is allocated to two teams. ADWteam implements a data
model, and loadings into that model. The reporting team takes it forward from the imple-
mented data model with the actual report implementation. Prouza et al. presented a simi-
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lar development cycle in 2020, where staging and integration are implemented in iteration
n and then information and visualisation layers in the iteration n+1 [46]. The presented
methodology is sequential, and it is required to implement all the steps, to get a report to
the production environment for end-users. A Sequential workflow extends the implemen-
tation time for a report and thus lengthens the feedback cycle from users to developers.
When using an agile method like Scrum, a reporting team requires a data model with data.
Thus, the implementation for a report requires two sprints: first, one with the DW team
developing the data model and data loadings, and second, another sprint where actual re-
port development is done. Methodology suggested by us that allows implementation in
parallel with the data integration (DW team) and information usage (report development)
is in Figure 3.1. Target state is joint working with DW team and reporting development in
the same increment.

Operations involving data warehouses have traditionally been considered tedious and
delicate [P2]. The current state follows these operations in the following order: build, de-
ploy, then validate the solution. An alternative model is to apply the principles of contin-
uous software engineering in the domain of data warehousing. There are not many tools
for business intelligence that support continuous delivery [7]. Tools used for continuous
delivery are less mature than those used for software development [7]. We need an archi-
tecture that supports continuous delivery. With the architecture presented in Figure 3.2,
we enable continuous delivery in data warehousing and business intelligence. In the target
state, development uses continuous delivery order, that is, build, test and deploy; and the
architecture supports this order.

In data warehousing, creating the transformations is the most labour intensive work
phase. Current tools are proprietary and store the transformations code inside the soft-
ware without transparency. When using the data vault modelling technique, the number
of transformations grows as the data vault uses more tables in a data warehouse [P3]. How
to automate implementation when using the data vault modelling technique? Data ware-
houses that use data vault modelling are becoming more common. There are proprietary
tools for automating transformations. Unfortunately, they restrict only specific technolo-
gies, and the automation is not transparent. With an information model to automate data
vault transformations, we add transparency and enable data vault modelling to be more
common.

A typical data warehouse contains hundreds of tables, even thousands of tables. When
getting data out, specialists need to know the source data model, which in the case of pub-
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lication [P4] is a data vault model. That is a practical problem that, the publication solves.
The solution, in this case, is to present a subset of source model entities for specialists. So
that the specialist can focus on the implementation of the publish layer and not spend time
investigating the source model entities.

These are all practical problems. They ease up the developer’s work. When the feedback
is more direct, communication between teams is fluent and there is less fragmentation of
work. Automating the currentmanual work from labour intensivework phases reduces the
workload and improves quality.

3.1.3 Guideline 3: Design Evaluation

Evaluating a designed artefact for utility, quality, and efficacy that it must demonstrate, is
accomplished via evaluationmethods in design science [16]. One aim is to shorten the feed-
back cycle of business intelligence projects. Furthermore, one idea is to execute DW and
reporting teams work simultaneously [P1]. As evaluation goes, shortening in the feedback
cycle is evaluated with an observational field study [16]. The observation results are not
reported publicly nor made publicly available. However, there is a project that used the
methodology successfully in the literature [24]. In [24], the implementation was parallel
with the data warehouse and the publishing data developers. In addition to this, the paral-
lel working idea used in a project where developed the continuous delivery framework [P2].
Publication [P2] observe that, the first time to start implementation with the publish layer
design is difficult for a project. After a few iterations, the method is in use. Publication
[P2] claim that with the method, the implementation time is shorter and, the developers
are more satisfied because they receive direct feedback.

Architecture (see Figure 3.2) is developed in the context of several industrial business
intelligence projects [P2]. Architecture follows a common practice where where there is a
separation between persistent storage and information usage [7, 19, 21, 26]. Collier presents
principles and practices which are not specific to any particular architecture in his agile an-
alytics book [7]. The presented architecture is in Figure 3.2, and practices presented in pub-
lication [P2] enable deployments to the data warehouse several times a day. Hence, we can
state that the architecture is functional, high quality and efficient.

In data warehousing, creating the transformations is the most labour intensive work
phase. Our informationmodel is presented in Figure 3.3; one functional aim is to automate
getting data in and out from a data vault data warehouse. Using the information model-
based approach can mitigate manual work in the data transformation development [P3].
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Transformations from the staging layer to the data vault are readily available in commer-
cial production usage [P3]. However, we introduce the additional part of the information
model in this dissertation, thus it has not been used in any real-life project. The additional
part enables storing information for SQL joins. The information model SQL joins enable
the creation of SQL queries. The created SQL queries construct the getting data out phase
implementation.

Thephase of gettingdata out fromadatawarehousephase starts byfinding the source ta-
bles from the data warehouse. In publication [P4], the example is the Northwind database.
This descriptive scenario points out that both schema matching algorithms are needed to
find correct entities. The presented example in publication [P4] is an experimental simula-
tion that gives the expected results.

3.1.4 Guideline 4: Research Contributions

Design science research holds the potential for three different research contributions: the
design artefact, foundations, and methodologies [16]. The design artefact is most often
the contribution itself. The creative development of novel constructs, models, methods, or
instantiations that extend and improve the existing foundation in the knowledgebase, are all
possible contributions. Developing design science methodologies may be the contribution
too.

The process diagram is a design artefact in Figure 3.1. The architecture in Figure 3.2 is an
existingdatawarehouse architecture thatwehaveproved tobe suitable for continuousdeliv-
ery. The informationmodel in Figure 3.2 is a novel design artefact, which adds transparency
in data warehouse automation. Even though the attribute name based schema matching is
an existing algorithm, together with the data flow based schema matching, they constitute
a novel solution to find correct entities.

3.1.5 Guideline 5: Research Rigor

Design science research requires the application of rigorous methods in both the build-
ing and evaluation of a designed artefact [16]. In behavioural science, evaluation of re-
search rigour means assessing data collection and analysis techniques. We have not used
behavioural science research methods to collect and analyse the relevance of the artefacts in
publications. Real-life projects assess the relevance of artefacts. The artefact is developed
based on real-life project team feedback.
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Figure 3.1 process diagram tested in the case project in publication [P2]. The architec-
ture in Figure 3.2follows a general data warehouse architecture division where storage and
information usage are separated. The information model in Figure 3.2 is used to get data
into a data vault. However, we do not have evidence of how it works in real life when gener-
ating transformations to get data out from a data vault to a publish layer. Publication [P4]
demonstrates schema matching algorithms with the Northwind example.

3.1.6 Guideline 6: Design as a Search Process

Hevner et al. state that design is essentially a search process to discover an effective solution
to a problem [16]. Hevner et al. cite to Simon that we can see problem-solving as using
means to reach an end while satisfying the laws. Simon goes through different logics to
rationalise a decision [52]. A process for seeking a problem solution is a search process.
More generally, it is a process for gathering information about problem structure that will
be valuable when solving the problem [52].

Publication [P1] gathers information about problem structure by describing the current
state. From the current state is derived a problem description. The problem is the long
feedback cycle from the customer to the developers. Partly the long feedback cycle is because
the implementation happens in sequential phases. As a solution to enable parallel working,
the publication proposes dimensional modelling as the first task in a sprint.

A continuous delivery framework for business intelligence states problems in traditional
data warehousing without describing those in more detail [P2]. As a solution, it suggests
applying the principles of continuous software engineering in the domain of data ware-
housing.

Publication [P3] introduces that the data vault creates many structurally similar data
processing modifications in the transform phase of ETL work. However, it does not de-
scribe the problem in more detail. The problem is that the transformations are structurally
similar, and if donemanually, they are susceptible tohuman error. A solution is to automate
transformation creation. The developed data map tool is implemented based on feedback
from developers in real projects.

Publication [P4]explains s the process driven by business requirements. The process
starts with designing a dimensional model. In publications [P1] and [P2] the same pro-
cess is introduced. The current situation requires a specialist who knows the source model
creating transformation to the publish layer. The research problem is how to ease up the de-
velopers’ work. We noted that schemamatching techniques are functional. Schemamatch-
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ing based on attribute names performs well when the data vault model has only a limited
amount of tables or attribute names do not exist several times. In real-life data warehouses,
this is not the case. We investigated more and found a method of using the data flow infor-
mation as a schemamatching technique. By combining both schemamatching techniques,
we noted that it proposes the correct entities all the time. The combined schema matching
algorithm offers correct source entities for transformation and eases the developers work.

As a whole, publications [P1] and [P4] describe the current state and the problem. The
proposed solution follows the search process. On the other hand, publications [P2] and
[P3] do not follow this search process but directly solve an existing problem.

3.1.7 Guideline 7: Communication of Research

Design science research should present the outcomes to researchers and business audiences.
All the publications [P1, P2, P3, P4]have been in scientific conferences. Publications [P2,
P3] are presented first in the European – Japanese Conference on Information Modelling
and Knowledge Bases (EJC). After the conference, the publications are published in the
Series of "Frontiers in Artificial Intelligence" by IOS Press. Publications [P1] and [P3] are
part of the Dimecc programNeed for Speed [22]. The research work ideas are presented to
companies that participated in the program.

The authorworks for Solita. The authorpresented researchwork in internal information-
sharing meetings. In particular, the idea of publication [P1] to start with a dimensional
model and do parallel work has become widespread in company projects.

This dissertation introduceshowreporting anddatawarehouse teams can synchronously
build business intelligence solutions in increments. To use continuous delivery, we need an
architecture for business intelligence solution that enables continuous delivery. When we
use continuous delivery practices to deploy often, we may boost the development speed
by automating transformation creation in data warehousing. Data vault modelling gives
us certain principles to automate transformation creation get data into a data warehouse.
The same principles allow us to suggest the mappings when getting data out. A human-
in-the-loop needs to accept these suggestions and add more complex transformations in a
suggested code. The actual implementation code is generated based on the mapping infor-
mation in the metadata. The generated code includes at least the following advantages no
human-made mistakes, the code is similar and contains fewer errors.

Themain research contribution from this thesis, is to combine continuous deliverywith
data warehousing. To make it easier to grasp, we go through each research question. After
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each research question, we concludewith a summary of how these research questions into a
bigger whole. The research enables deploying new reports and their code to the production
several times a day.

Research for this dissertation collaborated with the industry. These ideas have been
tested on real projects and thus proven to work. The scientific evaluation uses the design
science research method defined by Hevner et al. [16]. Transformations generated with the
datamap are readily available for commercial production environments [P3]. In the project
where the continuous delivery framework for business intelligence was tested, it took less
than a day to add an attribute to a report – from the requirement to that it was available in
the production environment.

3.2 Contribution to Research Questions

Publication [P1] presents an idea of how two different teams can together build a business
intelligence solution in increments. It presents one solution to research question 1:How to
implement a business intelligence solution in increments jointly with reporting and data
warehousing teams? Publication [P2] introduces the architecture and a methodology for
using continuous delivery in business intelligence. The architecture is a solution to research
question 2: What is suitable architecture for a business intelligence solution to enable con-
tinuous delivery?

Publication [P3] presents how to automate getting data into a (data vault) data ware-
house, which is research question 3. When automating getting data out from a data vault
data warehouse (RQ4), we need the metadatabase from publication [P3].

How publications contribute to the research questions is presented in Table 3.1. There
is one publication for each research question in questions 1-3. To research question 4, pub-
lications [P3] and [P4] contributed.

3.2.1 Shorten the Report Feedback Cycle

In the scrum, each development sprint has a planning step. In the planning phase, the team
creates a sprint backlog. They list sprint items and map them to product packets. The
reporting team picks reporting requirements that are available in a database, which the data
warehouse team has already implemented. There is a dependency between implementation
from the data warehouse team, and the reporting team. Due to this dependency affecting
report creation, includingdatabase and report development, two sprints areneeded to ship a
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Publication P1 P2 P3 P4
Research question
RQ1 X
RQ2 X
RQ3 X
RQ4 X X

Table 3.1 Publications contribution to research questions.

reporting feature. Furthermore, it is possible to get customer feedback only after the report
exists. All this creates the fragmentation of work and a long feedback cycle.

Report development has the requirement that data exists in the database. Report devel-
opment uses a metadata layer. A metadata layer is created based on a data source definition
for the reporting. Report development requires a database connection where there is a data
model. The data model used in reporting follows dimensional modelling. Publication [P1]
proposes to create the dimensional model based on a conceptual model that contains in-
formation on the source systems. The conceptual model presents the associations between
dimensional model entities, whereas a source system specification presents the attributes
and their data types. In addition to the data model, it needs sample data for helping the re-
port visualisations. For this purpose, sample data for the data model needs to be generated.

Based on a datamodel created at the beginning of a sprint, both teams canwork in paral-
lel. With this action, teams can build together business intelligence solutions in increments
(RQ1). For the actual report use, the data must be in a database. Both the report and data
warehouse teams need to finalise their work. The parallel working makes it easier for the
teams to communicate since they concentrate on the same main goal, finishing the report
in one sprint. A report user can give feedback to both teams directly after the sprint. The
feedback is relevant when it is received directly and without delay. A user involved in re-
port development waits the implementation time to get the report available. Parallel work
shortens implementation time from two sprints to one sprint. The user involved in report
development is more likely to participate since there is no delay in the process. Working
in parallel shortens the feedback cycle, improves communication, and the work is not frag-
mented.
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3.2.2 Business Intelligence Architecture for Continuous Delivery

In a typical business intelligence solution, developers use shared environments. The shared
environments create a dependency chain to manage development activities and deploy-
ments to different stages. When an implementation item is in a specific stage, that stage is
reserved until the implementation is verified. Reserving stage leads to deploying broader im-
plementation items. Broader implementation items increase the needed verification time.
Thus the deployments are made less frequently. The shared environments reduce the num-
ber of deployments to production, which is contrary to continuous delivery. In publica-
tion [P2] we present a business intelligence architecture where the infrastructure as code
approach creates environments for specific purposes. The specific purpose may be a fea-
ture specific environment. Using feature specific environments removes scheduling and
dependency related constraints from development.

The infrastructure as code automates building a new environment. Continuous deliv-
ery practice automates build, test, anddeployment processes. Dividing the architecture into
different layers makes testing easier. Most importantly, the different architecture layers en-
able the automation of deployments. In publication [P2] and Figure 3.2 we present a layers:
source systems, data warehouse, and information usage. Inside the data warehouse, there
are layers: the staging area, enterprise data warehouse, publish layer, and virtualization.

Publication [P2] presents workflow where developer-specific environments are created
with automation. The presented architecture supports dividing the implementation into
independent increment packages. The packages can be tested and deployed separately.

Suitable architecture for continuous delivery enables automated build, test, and deploy-
ments. In the context of business intelligence, this means that architecture is divided into
layers that support automation, see Figure 3.2. The available tools for business intelligence
limit the architecture layers. The division with layers is to distinguish between usage and
storage. The separation occurs in the architecture presented in Figure 3.2. How the storage,
the data warehouse, is subdivided depends on the tools used.

Publication [P2] presents business intelligence architecture that enables continuous de-
livery (RQ2). Presented architecture and practices enable deployments to the data ware-
house several times a day.
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3.2.3 Reducing Manual Work with Automation

The most laborious phase of building a data warehouse is to create ETL loads. We fol-
low the model first approach, where a data warehouse model is designed based on business
requirements and available source data. Publication [P3] presents a data map tool for au-
tomating transformation creation. The first step is to populate the structure information
to themetadata. The tool can interpret structure information from a database information
schema. The next step is to populate data flow information to the metadata. The tool can
assist humans by suggesting data flowmappings, but creating the actual mappings between
attributes is human work. The tool can generate actual ETL loads code based on structure
rules and data flow information. The generating code relies on rules on how different data
vault entities are populated.

The data map tool works like a charm when following these. An enterprise data ware-
house modelling follows data vault rules. Secondly, a data vault satellite table uses the same
attribute names as the source interface. From each source system interface a staging area ta-
ble is created. Based on these staging tables actual mappings are done. Data flowmappings
are done one staging table at a time. The input data flow information starts by creating a
load between two entities. The source entity is a staging table, and the target entity is an en-
terprise data warehouse table. The data map tool can suggest appropriate attributes based
on attribute names. The only attributes that need manual mappings are between a hub
table and a staging table. In the hub table there are attributes that describe the business.
Usually, these differ from how the names are in an interface. The data map tool automates
the implementation of getting data into a data vault (RQ3).

With this approach, the neededmanual work is reduced but not completely eliminated.
By reducing manual work, we also reduce the possibilities for human errors. Generated
transformations for ETL loads are less error-prone than manually written code. Transfor-
mations generated with the data map are readily available for commercial production [P3].

3.2.4 Automating Getting Data Out from an EDW

Getting data out from an EDW is an inverse operation to getting it into the EDW. Data
vault modelling splits data into multiple tables, fromwhich they need to be combined into
a single data set. An EDW that has been in use for a long time contains hundreds or thou-
sands of entities. The first challenge is to find the correct entities from the big data model.
Publication [P4] introduces two different schema matching algorithms. The combined al-
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gorithm finds the correct entities from the data vault database.
The data vault tables can be joined automatically, based on rules and data model struc-

ture. However, there are cases when there are several possibilities and a human needs to
assist automation. Suggested joins are base for adding more complex join information. For
automation, joins must be stored in a metadatabase.

When the necessary data for the publish layer exists in the EDW layer, the presented
schema matching algorithms find the correct entities, and the joins are trivial. However,
this requires the data modelled in the EDW layer at a suitable granularity. If the needed
transformations are complex, it has to be done by a human. Therefore, we recommend
implementing the conversions in the data vault layer in the so-called business data vault.

By following the process driven by business requirements and starting designing a pub-
lish layer model with sample data as presented in publication [P1]. Then implement trans-
formations from the staging layer to the EDW [P3]. Then there is data flow and structure
information as described in publication [P4]. The schema matching algorithms find cor-
rect entities. In addition, based on source entities a source query is suggested. Thus, getting
data from an EDW can be automated, and implementation code generated (RQ4).

3.3 Results Summary

At the beginning of the research work, the development of a report took a long time. Each
research question shortens the time used in report development. The first improvement is
to organise the work of the reporting and data warehouse teams in parallel with the same
increment in the scrum as a sprint. With the interface specifications and the conceptual
model, it is possible to create the dimensional model used in reporting [P1]. Creating a di-
mensional model at the beginning of an increment, both teams can work in parallel. In
addition to the dimensional model, a database needs to populate with generated data for
report developers. Creating a database with generated data for report developers, both re-
porting and data warehousing teams can jointly build the business intelligence solution in
increments. It is a solution to research question 1 (RQ1). When teams are working together,
communication ismore efficient. Both teams receive feedback from the report users directly
after the development work.

When teams started to work parallel in the same increment, they added several reports
to the backlog. Multiple report development parallel benefits by creating feature specific
environments. Also, testing is efficient when each report is available in a feature-specific
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environment. The feature-specific environments creation uses the infrastructure as code
approach. Automating building environments is one continuous delivery practice. Also,
regarding continuous delivery, the testing and deployment should be possible to be auto-
mated. Automating build, test, and deployment processes are prerequisites for architecture
in research question 2 (RQ2). The business intelligence architecture contains different lay-
ers in publication [P2]. The architecture layers separate storing data to the data warehouse,
and information usage. Separation supports current business intelligence tools. Reporting
tools are different from databasemodelling and ETL tools. In addition, the data warehouse
contains layers staging area, enterprise data warehouse, publish layer, and virtualization.
The layers aim to separate the transformations into their respective stages. The presented
architecture enables building feature specific environments for executing testing before de-
ployment. Hence, the architecture presented enables continuous delivery and meets the
requirements of research question 2 (RQ2). In practice, the architecture works for contin-
uous delivery.

In the architecture, the enterprise data warehouse uses data vault methodology. The
data vault normalises the model using different entity types. Because of this, the data vault
database has lots of tables. There are a large number of transformations between the tables.
However, a single transformation is very straightforward to implement. A straightforward
task that is often repeated is to be automated, at least to take advantage of using templates
[19]. Publication [P3] introduces the answer to research question 3 (RQ3), how to automate
getting data into an enterprise data warehouse. Data vault modelling increases the number
of tables but reduces the time spent on implementationwork. Furthermore, generatedETL
loads are less error-prone than manually written code.

Getting data into an EDW is widely a well automated task. However, getting data out
from an EDW is not usually automated. Getting data out often involves complex transfor-
mations and consists of several tables. Following [18] we suggest breaking down complex
transformations as business data vault entities. Then we may use two presented schema
matching algorithms to choose desired entities from the data vault. From data vault tables,
the schemamatching algorithmfinds desired entities. The joins between desired entities are
suggested based on data vault rules. A human addsmore complex additions to the joins and
calculations if needed. Transformations from the data vault are generated based on meta-
data information. Automating the implementation of getting data out from an EDW is re-
search question 4 (RQ4). As for getting data out from an EDW, it is essential to implement
this by generating respective code. The generating code includes the following advantages:
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no human-made mistakes, code follows a unified style, fewer errors.
Research questions 3 and 4 focus on automating getting data into EDW and out from

EDW.We have shown how to automate the implementation. The idea is to split the imple-
mentation into simple transformations that are straightforward to implement, then com-
pile them to form a larger whole ETL load chain. In practical work, we have seen diffi-
culty for developers to understand how automation works. The automation tool is like a
black box that is doing magic stuff. When the developer creates the simple transformations
manually and compiles them to a larger whole, the developer understands how automation
works.

In researchquestion 1, we created a dimensionalmodel for enabling report development.
Thenwith themodel first approach, wemodelled the enterprise datawarehouse. After this,
we have the data models structures in all layers, the staging, the EDW and the publish layer.
Creating transformations between layers is creating data flow information between mod-
els. We introduced an informationmodel for storing structure and data flow information in
publication [P3]. Wehave extended this informationmodel in Figure 3.3 to store association
information for generating SQL joins and conditions used in joins. Implementation code
for transformations is generated based on data model structure and data flow information.
Automating data warehouse transformations creation save time from development efforts.
More importantly, generated implementation code has fewer errors and fewermistakes and
is easier to maintain. The code generation allows us to split the deployment into indepen-
dent deployment packages. The independent deployment packages are ready to deploy in
different environments. Deployment allows us to adhere to continuous delivery. In contin-
uous delivery in data warehousing, focus is on deliverables and customer communication
and not on technical ETL loads. Of course, technical ETL loads need to be in shape, but
the focus is on deliverables.

At the beginning of the research the development of a report took a long time because
the developers were in different teams and had a dependency on each other. In research
question 1 (RQ1) the first action is to break this dependency and allow parallel working.
The simultaneous development of multiple reports is possible using feature-specific envi-
ronments. The automation of the development environment was the first step of the con-
tinuous delivery approach. Research question 2 (RQ2) found an architecture that enables
continuous delivery. Together, research questions 1 and 2 allow the parallel development
of several reports and their deployment to use. Research question 3 (RQ3) concentrated
on the automating of getting data into an EDW. Creating ETL loads is the most laborious
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phase when building a data warehouse. We introduced an information model for storing
structure and data flow information. Based on the information model, we generate the im-
plementation code for ETL loads. Generating implementation code enables us to bundle
several transformations as a single deployment package. Deployment packages are easy to
deploy in different environments introduced in research question 2 (RQ2). Getting data
out from an EDW is still often manual work. Research question 4 concentrated on how
to mitigate this manual work. We introduced two different schema matching algorithms
to support creating transformations. With the schema matching algorithms and complex
logic implemented in the business data vault, needed data flow information is a straightfor-
ward task. Thus getting data out from an EDW can be automated. Yet in addition, getting
data into the EDW and getting data out from the EDW is implemented by generating the
code as deployment packages. Presented architecture and continuous deliverymodel enable
deploying new reports and their code to production use several times a day. The change is
staggering, from deployment once in an increment to deploying daily to production. Note
that in the beginning, developing the report took two increments, currently only a fewdays.
This change has happened in several customer projects, and their data warehouses are in
production use.
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4 DISCUSSION

In theoretical implications, we discuss how the research expands current knowledge. Practi-
cal implications viewpoints are report users and their organisations as business intelligence
developers and consulting companies. Research validity focuses on the quality of scientific
research and the dependability of the research findings. Research focuses on continuous
delivery in data warehousing. The next step is to add analytical tools in the deployment
pipeline and offer an end to end business intelligence solution with continuous delivery.
When all the phases are automated, we can move from continuous delivery to continuous
deployment.

4.1 Theoretical implications

Datawarehousing has been traditionally considered tedious and delicate [21]. Distinct steps
take place one after another in a predefined unalterable sequence. Especially the sequence
begins with data integration steps followed by the report implementation steps [46]. Our
approach changes this sequence, starting from thepublish layer design, see Figure3.1. Teorey
et al. present a similar workflow where dimensional modelling is the first step in the data
issues thread, and implementation is parallel with data issues and analytical implementation
[56]. It is important to note that Teorey et al.’s workflow ends with the deployment step. In
the traditional plan-only approach designing and implementing the database is done before
the analytical tool implementation work starts. In the worst case, the reporting (BI) team is
separate from the data warehouse (EDW) team [50].

Many have voiced the opinion that data projects are hard to manage with agile method-
ologies [50]. Despite that, agile development is used inbusiness intelligenceprojects andwill
be usedmore andmore in the future. Regarding survey, DW/BIA projects use an agile plan
for 68.5%, and 31.5% use an agile heavy [3]. Although development is in agile increments,
deployments often do not follow the same increments as development [46]. Each develop-
ment increment should create a new release, which is possible to deploy in production use!
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Collier [7] says that a user valued functionality is "Done"when it is of production quality, it
is integrated into the system and developers are proud of their work. Unfortunately, Collier
and we are in the minority.

There are not many tools for business intelligence that support continuous delivery [7].
Tools used are less mature for continuous delivery than those used for software develop-
ment [7]. When there is a lack of repeatable and reliable ways of deploying to production,
it leads to scheduled service interruptions. Depending on the frequency of service inter-
ruptions, a deployment may contain several items, and the problem is how to verify that
everything will go smoothly. Continuous delivery [20] is quite the opposite, releasing soft-
ware with a repeatable and reliable process. Continuous delivery in business intelligence
needs an architecture that supports it. One option is presented architecture in Figure 3.2.
This architecture follows a common practice where persistent storage is separated from in-
formationusage [7, 19, 21, 26]. According toCollier, principles and practices are not specific
to any particular architecture [7]. However, we note that current tools support architecture
where storage separates from usage. The architecture in Figure 3.2 supports continuous de-
livery with current tools.

In data warehousing, creating the transformations is the most labour intensive work
phase. We introduce an information model for structure and dataflow information in Fig-
ure 3.3. Our information model is not unique or a novelty as an information model for the
metadatabase [28]. Data warehouse automation, a solution to automate transformation
generation, is a novel addition in scientific literature. Modelling (design) phase automation
is widely studied [5, 12, 13, 23, 27, 40]. Although these methods automate the design phase,
they require human intervention. The informationmodel (see Figure 3.3) enabless automat-
ing implementation from the staging to the data vault and from the data vault to the publish
layer. Thus, there is a requirement to implement complex transformations in the so-called
business data vault. [18, 30]. Our information model is simplified and does not include
aggregations such as Kuznetcov et al. [28]. Our information model adds transparency to
automate transformation creation to a data warehouse that uses data vault methodology
compared to proprietary solutions.

Compared to other methods, the data vault technique uses more tables. A typical data
vault data warehouse contains hundreds of tables or even thousands. When getting data
out, specialists need to know the source data model. To solve this problem, we use a combi-
nation of two schema matching algorithms. An experimental simulation with the North-
wind database gives the expected results. The combination schema matcher approach re-
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duces the time needed for implementation.

4.2 Practical implication

This research focuses on shortening cycle time, from idea to a report available in produc-
tion. A report user benefits from the reduced cycle time. Beginning of the research, it took
a long time from an idea to a published report. Users did not want to be involved in the
development of reports because of the long-lasting timeline. Our methodology starts the
development from the conceptual model and reporting requirements. The user involved in
the development is actively participating in the report development. The report is ready in
one increment – usually within two weeks. Continuous delivery practice enables releasing
reports often for production use. We have noticed that users want to use new reports on
specific release dates, rather than daily.

Organisations that develop their business intelligence solutions benefit in several ways
from our approach. The generated code includes the following advantages: no human-
mademistakes, the code ismoreunified, and code contains fewer errors. Production releases
are done in a reliable and repeatable way. Every release has passed several tests before its de-
ployment to production. Tests include acceptance testing, capacity testing and optional
manual testing. Reliable production deployment is key to the transition from scheduled
service interruptions to frequent production deployments. Shortened cycle time allows
an organisation to try things out in production use. With continuous delivery, organisa-
tions are moving to shorter release dates. Besides releases, some reports are deployed to
production immediately. The biggest benefit is in maintenance. The generated code and
data warehouse principles produce robust implementations. However, a robust implemen-
tation does not fix data issues. There exist techniques to raise these to data stewards. A case
company that had aweekly error situation in its ETLprocesses, after switching to dataware-
house implementedwith the data vault and generated ETL code, only three error situations
occurred during a one year span. The same change in reducing error situations happened
based on developers’ feedback in another project where a data map tool was used to create
the ETL code.

Business intelligence developers benefit from joint working for the same report on data
integration and reporting implementation. They receive feedback fromreport users directly
after the development. When the feedback is relevant, developers are satisfied. Data ware-
house automation reduces the number of manually laborious tasks. Developers can focus
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on value-adding work, which increases job satisfaction. The generated code is more unified
and contains fewer errors. Consequently data problems or maintenance tasks are rare, and
developers can focus on new development tasks. Deployment to production takes execut-
ing a couple of scripts from your computer rather than a stress-filled weekend. All this does
not come free for developers, of course. Developers need to commit to continuous deliv-
ery principles. They need to switch their tools to those that support version control and
enable automation through scripting. They need to create testing practices and build the
automated deployment pipeline. It is all difficult but worth it.

Automation reduces work and thus hourly billing. Perhaps companies offering busi-
ness intelligence consultation do not want to adopt automation. Automation allows the
construction of a product or service, which increases billing. A client used the data map
in real project with a monthly fee. There are many proprietary products available for data
warehouse automation; seeAppendixA.Our research is an exception in themarket, openly
publishing how to automate data warehousing. There is a demand in the market for data
vault data warehouses. No one implements a data vault data warehouse without any au-
tomation. Developers are satisfied when they produce high quality (generated) code and
are able to do production deployments during office hours. Satisfied developers do quality
work, and customers communicate it forward, increasing demand and enabling growth.

To emphasize the cumulative practical importance, we interviewed a customer about a
project where the reference framework described in publication [P2] was tested. The cus-
tomer has a stable business with five domains. In 2015, they invested 2.5 million euros in
the development of the data warehouse and did not complete it during the year. We were
invited to test our approach the following year in 2016. Using themethodology described in
publication [P2], the data warehouse and reports were completed in six months. Addition
to targeted five domains, we also implemented salesmanagement reporting. Our billingwas
0,5 million euros, while it was 2,5 million euros a year earlier. Although these numbers are
significant, they do not tell the whole truth. We asked how long it would take to add one
new attribute and it was done in fifteen minutes!

4.3 Research validity

Research validity focuses on thequality of scientific research and thedependability of the re-
search findings. Research validity has two parts, internal and external [39]. Internal validity
evaluates research credibility. External validity evaluates the transferability of research re-
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sults. Understanding issues of internal and external validity in experiments, helps us under-
stand the broader problems of causal inference, generalizability and validity, in construction
and other types of research [1] . Discovery is the process of generating or proposing scien-
tific claims. Justification includes activities of testing such claims for validity [37]. Natural
or field experiments have lower internal validity but higher external validity [1]. The results
are more broadly generalisable to the real world. Design science focuses on assessing the
efficacy and utility of the developed artefacts [29]. We have followed Hevner et al. guide-
lines for evaluating the developed artefacts in Chapter 3. This section evaluates the research
results in their internal and external validity. According to Larsen et al., validity has been
underutilized to strengthen the claims of design science research [29].

When creating a data model used in reporting at the beginning of a sprint, reporting
and data warehouse teams can work in parallel to achieve a shared goal. We followed the
general design cycle [57, Figure 3]. Publication [P1] describes the current state, the problem,
the suggestion, the artefact and the results. There is a lack of testing the artefact with a
larger population. The result is transferable, as evidenced by Jussila et al. [24]. The result
generalises to projects where there are data transfers between two different technologies.

In Figure 3.2 we present a business intelligence architecture that enables continuous de-
livery. This architecture follows a commonpractice, where persistent storage separates from
information usage [7, 19, 21, 26]. Because the scientific literature presents a similar architec-
ture, we can consider the architecture to be internally reliable. According to Collier [7],
principles and practices are not specific to any particular architecture. There may be other
reasons why this architecture works with continuous delivery other than the architecture
itself. The architecture has proven to work in a real-life project, thus raising the external
validity. Architecture is suitable for business intelligence and is not transferable. The idea
of separating storage from usage is transferable to other domains.

With the data map tool, we have automated implementation getting data into a data
vault. Publication [P3] explains principles for automation, as well as the informationmodel
and the workflow when using such automation. The internal validity is high quality in
automating getting data into a data vault. The external validity is proven in real projects
as the transformations generated with the data map are readily available for commercial
production. However, there is no transferability, as the automation relies heavily upon the
data vault principles.

Automating getting data out from a data vault has three steps. First, finding correct
source entities for given target entities with the schema matching algorithms introduced
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in publication [P4]. Secondly, creating the transformations based on suggestions, and al-
lowing humans to add complex parts. The last step is generating the implementation code
for transformations. The first step is explained in detail in publication [P4]. However, two
other steps are briefly explained in this dissertation. Only an expert can implement automa-
tion, so the internal validity isweak. Publication [P4] contains a controlled experimentwith
the Northwind database. There is no real-life case project of the automation getting data
out. Described automation for getting data out is not transferable as it needs the data vault
model to the source database.

4.4 Recommendations for further research

Our research focuses on continuous delivery in data warehousing. The next step is to add
analytical tools in the deployment pipeline and to offer the business intelligence solution
with continuous delivery. As the data warehouse integrates the business information in
one place, in future, this integrated information should be available for machine use with
API interfaces.

Continuous delivery has three phases: the commit stage, the testing, and the release (see
Figure 2.1). Our focus is on the commit stage, building the increment package. We also
focus on how a release should be deployed to production. Testing is an important part,
although we have not addressed it in this dissertation. When all the phases are automated,
we can move from continuous delivery to continuous deployment.
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5 SUMMARY

The unifying research question in this dissertation is: how to shorten the time from a re-
porting idea until it is available for users? Shortening development time has obvious busi-
ness value, as it enables the business to take new reporting functionalities into use more
frequently. The research focuses on shortening the development process and automating
data warehouse implementation.

The main improvement in the development process is gained from applying contin-
uous delivery to data warehousing. Collier [7] introduced continuous delivery practices
to business intelligence and data warehousing. However, they are not used widely in data
warehousing. Traditionally, when developing a business intelligence solution, a database is
implemented before the implementation of reporting begins. The current study suggests
to change this sequential process to parallel. Assuming that a database implementation is
most of the work needed, parallel working shortens the duration of development by the
amount of reporting implementation time. Furthermore, the reportingdevelopers anddata
warehouse developers focus on the same goal, making it easier for the developers to com-
municate with each other. After releasing a report, reporting and data warehouse teams get
direct feedback from reporting users. Another way to shorten the development time frame
is automating implementationwork. Datawarehouse automation is divided into twoparts:
getting data into a data warehouse and getting data out of it. This dissertation presents an
information model for automating transformations in a data warehouse. The presented
information model enables automating the implementation from the staging to the data
vault and from the data vault to the publish layer.

The research has clear benefits in practical solutions. A notable change is joint work-
ing with reporting and data warehousing teams. Data warehouse automation improved
development efficiency. Automation removed manual tasks, improved the quality, and de-
creased time used in development. Continuous delivery creates a reliable process that en-
ables frequent production releases. These together can increase the frequency of releasing
new business intelligence solution functionalities frommonths to weeks or even to days.
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APPENDIX A DATA WAREHOUSE AUTOMATION

PRODUCTS

Ajiliuswas a datawarehouse automationproduct. That has been available between the years
2015 until 2019. Ajilius was an exception in themarket as they listed their competitors at the
http://ajilius.com/competitors/ web page. Unfortunately, that web page does no longer ex-
ist. Luckily there are an archive versions available at the https://web.archive.org. We found
61 snapshot for that page. We have taken snapshops February 23, 2015 1 and April 13, 2019 2

for presenting years 2015 and 2019 in our Table A.1.
The list is comprehensive in Table A.1. Still there are note at year 2019 web page "Matil-

lion and Panoply, originally included on this page, have been removed as they have clearly
evolved towards ETL, rather than data warehouse automation."

1https://web.archive.org/web/20150223102358/http://ajilius.com/competitors/
2https://web.archive.org/web/20190413125223/http://ajilius.com/competitors/
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Product Methodology Open Source 2015 2019
Ajilius Dimensional X X
AnalytiX DS Data Vault, 3NF, Dimensional X
Attunity Compose Data Vault X
BI Builder Dimensional X X X
BI builders Dimensional X
biGenius Unknown X
BIReady Data Vault X
Birst Dimensional X X
Centennium Automation Tool Data Vault X
Datavault Builder Data Vault X
DDM Studio Data Vault, Dimensional X X
Dimodelo Dimensional X X
Effektor 3NF, Dimensional X
Gamma Systems Dimensional X X
Halo BI Dimensional X
Insource Data Academy Dimensional X
Instant Business Intelligence (SeETL) Unclear X X
Kalido Dimensional X X
LeapFrogBI Dimensional X X
Optimal ODE Data Vault X X
Quipu Data Vault X X X
TimeXtender Dimensional X X
Varigence Dimensional X X
WhereScape Dimensional, 3NF (2015), X X

Data Vault? (2019)

Table A.1 List of products from Ajilius competitor web page

52



PUBLICATION

I

“Towards Agile Enterprise Data Warehousing”

Mikko Puonti, Timo Lehtonen, Antti Luoto, Timo Aaltonen, and Timo Aho

ICSEA 2016, The Eleventh International Conference on Software Engineering Advances (Aug. 2016),
pp. 228–232

Publication reprinted with the permission of the copyright holders.





Towards Agile Enterprise Data Warehousing

Mikko Puonti
and Timo Lehtonen

Solita, Tampere, Finland
Email: puonti@iki.fi

timo.lehtonen@solita.fi

Antti Luoto
and Timo Aaltonen

Department of Pervasive Computing,
Tampere University of Technology,

Tampere, Finland
Email: antti.l.luoto@tut.fi

timo.aaltonen@tut.fi

Timo Aho

Yle, The Finnish Broadcasting Company,
Helsinki, Finland

Email: timo.aho@iki.fi

Abstract—Traditional business intelligence and data warehouse
projects are very much sequential in nature. The process starts
with data preparation and continues with the reporting needed by
business measurements. This is somewhat similar to the waterfall
model of software development and also shares some of its
problems: the work is done in serial manner and the reaction
time for possible design changes is often long. Agile principles are
not well supported by the traditional serial workflow. By making
the data preparation and reporting tasks parallel, it is possible
to gain several advantages, such as shorter lead time and shorter
feedback cycle. The solution proposed in this paper is based on
enriched conceptual model that enables the business intelligence
implementation process of different teams to change from serial
to parallel workflow.

Keywords–data warehouses; business intelligence; agile soft-
ware development; scrum.

I. INTRODUCTION
Business Intelligence (BI) projects are traditionally fol-

lowing a pattern, where the work is actually done in serial
tasks, which are strongly dependent on each other. This leads
to long development cycles where some tasks need to be
done before the next tasks can be even started. The problems
of this approach include long feedback times and inefficient
working process. The working method does not support the
agile process models, such as scrum [1].

Scrum is an iterative project management approach to de-
liver software in incremental development cycles called Sprints
that usually last from two to four weeks. Its benefits come
from the ability to respond to the unpredictable environment
changes as every sprint is planned separately.

In this article, we propose a process improvement to avoid
the dependency of serial BI development tasks. The core of the
idea is to rearrange serial development sprints to parallel ones
by using a conceptual data model as a basis for a dimensional
data warehouse (DW) model. The dimensional model is, on
the other hand, an agreement between different development
teams with different skills and, thus, a basis for communication
between them. Research literature about combining BI with
agile mindset exists but to the best of our knowledge none of
them concentrate on how to organize work of teams in parallel
way in agile BI project.

The expected benefits of our approach include shorter
sprint cycle lengths, which leads to shorter customer feedback
time. Also, it helps the DW modelers and BI reporters to
concentrate on their work by reducing the fragmentation of

development sprints, because of easier allocation of work. As
a result, more development iterations can be done in the same
time frame as with a serial workflow.

The proposed process improvement can be seen as a first
step towards agile practices in BI projects and it can be later
on combined with other agile practices.

The rest of this paper is structured as follows. In Section II,
we introduce the necessary background for the paper by
addressing the related work in agile BI processes. Section III
presents the current and target states of the data warehousing
and reporting process while Section IV introduces the approach
from the viewpoint of data modeling. Finally, we draw some
concluding remarks in Section V and outline our strategy for
validating the expected benefits of the proposed approach in
Section VI.

II. RELATED WORK
The chosen related work concentrates on bringing miscel-

laneous agile practices to DW and BI processes. In general,
incremental and iterative approaches are seen as beneficial
in them but to the best of our knowledge, other authors
have not discussed about organizing different teams’ work in
parallel so that traditionally done serial work could be done
simultaneously. This is a gap we are trying to fill by improving
the DW modeling process.

In [2], the authors categorize different agile BI actions
in their literature review. Their categorization is based on
previous work presented in [3] and identifies four agile BI
action categories which are Principles (rules and assumptions
derived from extensive observation and evolved through years
of experience [4]), Process models (guidance to coordinate and
control different tasks systematically which must be performed
in order to achieve a specific goal [4]), Techniques (a way
or style of carrying out a particular task) and Technologies
(tools). The ideas presented in this paper fit to category Process
models as the idea is to parallelize DW design tasks. The
work in [2], also noted that agile principles are often discussed
in a relation to agile process models, and in Process models
category, Scrum can be seen as the most popular research topic
between the years 2007 and 2013. We go through some of this
previous work in the following paragraphs.

A process model called Four-Wheel-Drive (4WD) intro-
duced in [5] utilizes six agile DW design practices (incremental
process, iteration, user involvement, continuous and automated
testing, lean documentation) that are based on software en-
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gineering methods. According to them, the impacts of an
iterative and incremental process are better and faster feedback,
improved change and resource management, clearer require-
ments and early detection of errors. They discuss incremental
techniques in the light of risk analysis that balances between
the value to users and the risk of releasing early. Similarly, our
approach aims to enable ways of working more iteratively and
incrementally while also making customer feedback easier but
they don’t have the viewpoint of parallelization which would
also shorten the required time for DW projects.

In addition to direct process improvement, the work in [6]
presents an optimization model for sprint planning in agile DW
design, which is based on the team’s ability to estimate a set
of development constraints. In contrast to our work, we do not
concentrate on the planning phases of sprints even tough the
planning should be also easier in our parallel workflow where
teams are working more in close collaboration. They aim to
optimize the sprints by planning whereas we optimize time
usage with work parallelization.

The work in [7] gives a description of a DW project
that was executed in an agile manner. The lessons learned
include successful usage of agile Enterprise Data Models, tools
integrated to version control and continuous integration of the
database. Even though their usage of Enterprise Data Model
improved communication and collaboration by shortening
feedback loops between different teams, they don’t explicitly
mention about making the workflow parallel, which is our
goal. Our approach similarly improves the communication and
collaboration between teams.

III. DATA WAREHOUSING AND REPORTING PROCESS
According to [8], BI is a process that consists of two main

activities: getting data in and getting data out. The first activity,
i.e., (DW), is about collecting data from source systems to a
single DW that combines the data. The data is then extracted
to a useful form for decision support. Getting that data out is
the part that receives the most attention as it eventually brings
out the value even though the DW part is considered to be
more laborious.

The skills and the tools needed for the two activities are
different. Thus, the competence is diversed in DW and report-
ing teams. DW implementation work consists of modeling in
addition to Extract, Transform, Load (ETL) loads and data
integration with an ETL tool. An ETL developer needs techni-
cal knowledge of databases and data transformations while a
report specialist makes visualizations and needs understanding
of the data. The naming of the data items in report meta model
utilized for analysis is done using business terms. Hence,
a reporting specialist needs understanding of the customer’s
business process.

The data is the driver for the whole implementation of the
reports. For analytical purposes, data is stored in a dimensional
schema of a data mart [9, Chapter 1] by the DW team. Report
implementation consists of two steps. In the first step, a meta
model of data entities and the structure of the data is created,
while in the second step, the actual report is created with
a reporting tool. Testing of the reporting functionalities is
commonly done by an end-user with the actual customer data.
Thus, a prerequisite for the report development is an existing
DW utilizing dimensional schema which is populated with the
customer’s data.

The diverse expertise of the different teams and the need of

an existing DW before starting the report development results
in lengthy workflow in current BI processes.

A. Current State
Currently, the way of working divides the design and

implementation process of BI report into two teams, in which
one team finishes the DW design work and another team
continues by producing the specified report. Only after both
the teams have finished their serial sprints, it is possible to
gain feedback from the customer and start fixing the problems,
starting again from DW work and continuing to reporting. This
is presented in the Fig. 1.

Fig. 2 presents the current state of the workflow in a
timeline. In the figure, DW Sprint includes actions, such as
data integration, ETL and DW modeling (dimensional model)
while Reporting Sprint consists of actions, such as creating a
meta model for the report and creation of the actual report.
The specification describes the business requirements and the
visual guidelines for the report.

The result of the work in DW Sprint is a data mart
that utilizes dimensional schema. The data mart and data
loads in the data mart are done by an ETL developer. In
the scrum process model, the DW implementation is done
first in a DW sprint as can be seen in the Fig. 2. After the
DW sprint deliverable (the data mart with customer’s data) is
available, the report implementation will be able to start. This
dependency leads to a situation where there is first a DW sprint
after which a Reporting sprint will follow. Implementation of
a report requires at least two sprints, since in the first sprint
the data comes available to the DW (DW sprint) and the actual
report for the end user is implemented in the next sprint.

Figure 1. The current state of the process.

Figure 2. Workflow presented in a timeline.

B. Problem: Sequential Working
As a result of the diverse expertise in the teams and the

need of an existing DW before reporting work, the full report
development in Reporting sprint will not start before the first
DW Sprint is finished, as it is presented in Fig. 1. The situation
leads to a dependency between the DW implementation and
report implementation.

229Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-498-5

ICSEA 2016 : The Eleventh International Conference on Software Engineering Advances

                         243 / 355



The main problem of the current state is that getting
feedback from the customer, which is based on the report,
requires finishing both the sprints before it is possible to get
feedback. After the feedback is received, the teams can start
fixing the problems with new iterations of DW sprint and
Reporting sprint. This also leads to fragmentation of work
and excess waiting time between the sprints. Moreover, even
though the workload is not as big as in the first iteration, it
is still serial work and takes two sprints. If each sprint lasts
for two weeks then completing both the sprints takes four
weeks which multiplies to eight weeks after the feedback has
been received and the corrections have been made. This is also
illustrated in Fig. 2.

C. Solution: Parallel Working Enabled
As a solution to shorten the customer feedback cycle length

and to defragment the DW and reporting work, we are target-
ing to parallelization of the serial sprints. The parallel team
working is presented in Fig. 4. The parallelization is enabled
by dimensional model based on conceptual model that contains
information of the source systems. Based on the source system
information in conceptual model, the dimensional model can
designed at an attribute level with the support of interface spec-
ifications. A conceptual model presents associations between
the modeled entities while the interface specification presents
the attributes related to that association. The target state of the
DW development process is presented in Fig. 3. The following
aspects rise when comparing the current state to the target state.

1) Dimensional Model Based on Conceptual Model: Di-
mensional model represents facts which are business measures
of the dimensions. The dimensions are grouping the business.
Conceptual model consists of business entities and relation-
ships between those entities. By adding information about a
source system for an entity in a conceptual model, it is possible
to get enough information of that entity without doing an exact
logical data model. For creating the dimensional model, it is
vital to know all the attributes of the fact and dimension tables.
The attributes of each entity in a conceptual model can be
solved out by looking at the interface of that entity. Each entity
needs an interface from the source system to the DW and it
the interface has to exist before the DW Sprint can start. The
interface has the attribute information of the conceptual model
entity, which makes it possible to create a dimensional model
based on a combination of a conceptual model and an interface
documentation.

2) Parallel Work of Different Teams: In the current state,
the way of working was divided to serial sprints of different
teams. The result of the completed DW sprint was a dimen-
sional model which was utilized by reporting team. Thus, it
would be beneficial, if the team could receive the dimensional
model earlier to utilize it as a specification between them and
the DW team. With the help of a dimensional model that is
based on a conceptual model, it is possible to arrange the work
so that the reporting team can to start developing the meta
model for the reporting at the same time as the DW team starts
the ETL work. In addition, the parallel way of working makes
it easier for the teams to communicate with each other since
they are concentrating on the same main goal, and further,
the report can be produced in the end of the parallel sprints
enabling customer feedback.

3) Shorter Feedback Cycle and Shorter Delay of Modifica-
tions: Since end-user is using the reports, getting useful feed-

back based on the report requires the report to include actual
business data. Parallel working in DW sprint and Reporting
sprint enables finishing the report in one sprint of calendar
time. End-user can give feedback based on the report to both
teams directly after the sprint. This is a huge difference to
the DW team, which will get the feedback immediately after
the sprint when compared to serial work in current state when
the feedback was available only after the Reporting sprint was
finished. This is beneficial because receiving feedback is more
relevant when it is received directly and without delay. Faster
feedback will also shorten the delay of starting the modification
work. Therefore, making the modifications is easier since it
requires less fragmented work and context switching.

Furthermore, parallel working shortens implementation
time which also shortens the time that the end-user waits from
giving the business needs to getting a report. In addition, the
end-user is likely to be more participating in the process since
the implementation time is shorter. According to [10], the end-
user participation is such customer collaboration, which makes
the product better. As an example of the effects in time, if
a sprint lasts for two weeks, the parallel work ensures that
delivering a new version of the report takes only two weeks.
This is a notable improvement when compared to current state
when delivering a report needed four weeks.

Data modeling is the key for communication between the
teams and therefore it enables the parallelization of the work.

Figure 3. The target state of the process.

Figure 4. Sprints are parallel and feedback is faster.

IV. DATA MODELING
Well managed data modeling is a crucial task for a DW

project. Data modeling is about gathering the customers’ data
requirements and satisfying them with a DW solution.
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According to [11], data modeling work is done on three
design layers: logical, conceptual and contextual (by bottom-
up order). Out of those layers, in this article, we are mostly
interested in the conceptual and logical data modeling.

A. Conceptual Data Modeling
Conceptual data modeling is about modeling the user’s data

requirements in a conceptual manner using common concepts,
such as entities and relationships. It describes the data and
relationships between different data entities. Conceptual data
modeling is a quick way to create a model of the problem
domain with business representatives in a workshop, because
the main entities come from the business domain and thus they
have a business meaning. The collaboration between business
stakeholders and data modelers is very important in order to
tie the data intensive solution to the business processes.

Conceptual model can be utilized to ensure that all the
participants share the same conceptual understanding of the
modeled area [11]. In addition, it is a base that evolves to
logical data model.

B. Logical Data Modeling
Logical data model presents all entities and their attributes.

Each entity which has a primary key is marked in the model.
Many-to-many relationships between entities are specified by
creating an association entity between the entities. Creating a
logical data model requires the following steps [12]:

• Specifying primary keys for all the entities.
• Finding the relationships between different entities.
• Finding all the attributes for each entity.
• Resolving many-to-many relationships.
• Normalisation.
The purpose of the logical data model is to provide

a detailed specification for the physical relational database
design [11]. In our context a logical data model is a tool for
DW designers to produce a DW.

C. Dimensional Modeling
A dimensional model consist of fact and dimension tables

in which the main items generally are facts and dimensions
[9]. A fact represents a business measurement and is linked
to several dimensions. A dimension groups and labels the
measurements while it is also used to restrict the data set of
measurements. Dimensional modeling is widely used modeling
technique to offer data from DW to reporting tools.

D. Granularity of Data Modeling
The conceptual data model is important for communication

between each participant in the project, especially for the busi-
ness stakeholders, but it does not cover the detailed information
needed in the implementation. The logical model, on the other
hand, is more detailed but requires more work as it is relatively
slow to model all the attributes and relationships of each entity.

The kind of data modeling described so far, is missing
one critical piece of information as it does not tell where
the data actually exists. The source system information is the
most vital information in the reporting project. The needed
granularity of data modeling is a mix of conceptual and
logical data modeling enriched with information about the
location of different entities. The combination of conceptual
entities marked with the primary key attributes and information
of source systems is the minimum required granularity of
needed data model. A model should be enriched with the vital

attributes, but the amount of attributes depend on how well the
modelers know the domain. When the available information
is well known and the business entity is clear, it is possible
for everyone to understand the information even if it is not
modeled in detail.

V. CONCLUSIONS
In this paper, we presented an idea to shorten the feedback

cycle of BI projects. The proposed method consists of paral-
lelizing DW and reporting team sprints by using a dimensional
model as an agreement between the teams. Since modeling
plays a crucial part in BI process, it is important to provide
the dimensional model as early as possible. In this paper we
claim this to be possible by developing dimensional model
based on a combination of a conceptual model and the interface
documentation of a source system.

Traditionally, reporting team starts working after DW team
has offered a dimensional model with actual data. In our
approach, reporting team can start working in parallel with
DW team but initially without any actual data. The DW team
implements ETL processes with small increments which gives
then increasing amount of actual data to reporting team. It
is worth noting that making the specifications in the new
approach does not increase the overall process time. This is
because interface specification is created implicitly anyway and
conceptual model is very light weight to create.

As a result of the approach, the customer feedback cycle
shortens which moreover makes the feedback more direct.
Furthermore, because of parallel working, the communication
between teams is more efficient and reaction time to feedback
between teams is shorter. This is a step towards agile enterprise
data warehousing where a bigger team consists of two separate
teams with diverse competence.

VI. FUTURE WORK
As a future work, we are planning to conduct a case study

in which we will utilize our ideas in an industrial BI project
in a mid-sized Finnish software company. Moreover, we are
eventually aiming at integrating the different teams (DW team
and reporting team) so that the expertise of a person working in
a BI project would cover both the required perspectives. That
way, it is possible to reduce the amount of persons needed in
a project.

The proposed idea is our first step towards agile BI projects,
since it can be adopted with other agile principles, as well.
To make the BI process even more agile and faster, we are
studying how to shorten implementation time by generating
ETL processes automatically based on modeling principles
[13]. To get full advantage of these improvements, we also
aim at creating release management practices to get our BI
project closer to the continuous delivery.
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Abstract. In the context of business intelligence, data warehousing is of-

ten perceived as an integral component of concrete business intelligence
solutions. Since the nature of a traditional data warehouse is accumula-

tive – data from operational systems is fed in to the system when it is

ready for inclusion – and as the data from different component systems
is interrelated, operations involving data warehouses have been tradi-

tionally considered tedious and delicate. Distinct steps take place one

after another in a predefined, next to unalterable sequence. In this pa-
per, we present an alternative model for dealing with data warehouses,

where the goal is to apply principles of continuous software engineering

in the domain of business intelligence. To validate the methodology, we
present a tool chain that has been used in a real-life implementation

of a business intelligence solution, together with experiences from its
operations.

Keywords. business intelligence, continuous delivery, data warehouse,
process framework.

1. Introduction

A data warehouse system is a central component in business intelligence. Such
systems are used for reporting and analyzing data that originate from various
operational systems and data stores. Commonly implemented as central repos-
itories of integrated data, data warehouses contain current and historical data
that enables creating analytical reports for knowledge workers. To present some
concrete examples, a report could provide annual comparisons and trends or daily
sales analysis at a detailed level.

Since the nature of a traditional data warehouse is accumulative – data from
operational systems is fed in to the system when it is ready for inclusion – and as
the data from different component systems is interrelated, operations involving



data warehouses have been traditionally considered tedious and delicate. One may
even call them waterfalls in the sense that the series of operations that it takes
to create the system must typically be executed in sequence and in a fully fixed
order, resulting even more rigid a creation and update process.

In this paper, we present an alternative model for dealing with data ware-
houses. The goal is to apply the principles of continuous software engineering [3]
in the domain of data warehousing. More precisely, we present a warehouse ar-
chitecture (partly building on our earlier paper [13]) that enables a methodology
for data warehousing that is inspired by continuous delivery. In the field of soft-
ware engineering, continuous delivery comprehends a build – test – deploy cycle
of an application [5]. When the application in question is a business intelligence
solution, it includes database structures, data transfer implementations, reports,
and environment specific configurations. To validate the methodology, we present
a tool chain that has been used in a real-life implementation of a data warehouse
system, together with experiences from its operations. The main contribution
of this article is to introduce pieces of business intelligence solution that enable
continuous delivery.

The rest of this paper is structured as follows. In Section 2, we introduce the
background of the paper. In Section 3, we present the layers of the architecture
in the proposed framework. In Section 4, we describe the methodology used in
connection with the framework. In Section 5, we propose techniques how to im-
plement the methodology and create the landscape for the framework. In Sec-
tion 6, we analyze the overall work and our experiences more generally. Finally,
in Section 7 we draw some final conclusions.

2. Background

Within a relatively short period of time, agile development has become almost de
facto as a way to implement any software project [9]. Indeed, with the promise
of more satisfying outcome, shorter schedule, and lesser risks, agile development
is seen as a natural choice. When pushed to the extreme, an approach results
where engineering and deployment activities take place continuously [3].In con-
trast, business intelligence projects are still far from being agile, as they typically
follow a very rigid workflow, consisting of steps that transform data from source
systems into a format that is used in the business intelligence context. However,
there is no fundamental reason – apart from existing mainstream tools, processes,
and implementations – that business intelligence projects should be any different
from software projects. In our experience, executing business intelligence projects
in an agile fashion requires reconsideration of tools and methods used in the
process, as well as a totally new mindset.

A business intelligence solution consists of several different tools for different
purposes, including database modeling, database, ETL (extract, transform and
load, a set of functions combined into one tool or solution), reporting metamodel,
and eventual reporting itself. Working with these tools requires special skills, and
therefore a business intelligence project consists of roles based on these skills.
Typical roles include database modeler, ETL developer, reporting specialist, and



project manager. Corresponding roles in a typical software project are architect,
backend developer, frontend developer, and project manager.

A typical business intelligence setup is such that project teams only use one
development environment that is used by all the developers. Because this envi-
ronment is shared among all the team members, individual team members can-
not perform their tasks without considering others and their potentially ongo-
ing tasks. Therefore, in any business intelligence project of even a moderate size,
there are multiple dependencies that the team has to settle as a part of the pro-
cess. Furthermore, as current business intelligence best practices include manual
work steps when deploying implementation to a different environment, each tool
specialist has to take part in the deployment. To minimize the time window when
a deployment is executed, the people must schedule their daily work such that
they can participate in deployment at the same time. All this synchronization
and presence makes each deployment very costly. Consequently, the number of
deployments are to be minimized.

Due to the close relation to the field of software engineering, many business
intelligence developers are familiar with continuous delivery [6, 5]. By automating
the deployment process, any team member can do a deployment, including the
actual deployment as well as all the necessary quality assurance steps to validate
the correctness of the system [6]. This eliminates the need for tool specific skills
and enables the creation of several environments that can be targeted for different
needs, such as testing different feature sets independently. Then, by using devel-
oper or even feature-specific environments, the development no longer depends
on activities of other team members, thus effectively enabling parallel develop-
ment and removing scheduling and dependency related constraints from develop-
ment. Unfortunately, prevailing business intelligence practices are not considered
compatible with continuous delivery.

The difference between traditional and continuous business intelligence has
been identified as a key issue for creating a more agile approach to business in-
telligence [12]. Fundamentally, the problem in the traditional fashion boils down
to the fact that the workflow of implementation is serial in its nature, and thus
every new step in the process depends on all the previous steps and requires the
presence and availability of all the necessary skills. In contrast, agile information
infrastructure allows more liberal execution of the necessary operations. In the
following, we present a data warehouse architecture, which builds on the tradi-
tional features of data warehouse systems, but which is extended with extra layers
that supports more agile execution of operations.

3. Architecture of the Framework

Exploiting the ideas of continuous development in the context of business intelli-
gence projects requires using an underlying architecture, where the design goals
are set in preparation for change, continuous delivery, high degree of automa-
tion, and support for parallel activities, so that a single person can implement
new increments. The architecture we use in this paper has been developed in the
context of several industrial business intelligence projects (Figure 1). It consists



of the following logical layers: information usage, virtualization, publish layer,
enterprise data warehouse, staging area and source systems. Each logical part
in this architecture can be implemented in various ways, using different, readily
available implementation techniques. Depending on the technology selection, the
logical architecture may also be partitioned differently than proposed here, but
still every logical functionality is needed in the implemented architecture.

Figure 1. Different layers in data warehouse architecture

3.1. Information Usage

Information usage is a reason why data warehouses exists. A traditional business
intelligence system is more or less a portal where several reports exist.Tools used
in the information usage layer have to be available for each environment which
will be created for developing a business intelligence solution.

Today, it is common that data warehouse content is provided as a data service
via application programming interfaces. Data service gives the data warehouse an
operational role, and we may start speaking of a real time data warehouse.

Analytics is creating new, typically more refined information out of informa-
tion that is already acknowledged. This new information will be stored back to



the database, for other information usage applications as any other information
would be.

3.2. Virtualization

In the architecture we use in this paper, virtualization – a layer between informa-
tion usage and the actual information – has two primary goals. These are data
access and user access control. Van der Lans lists several technical advantages
related to data virtualization, and one of them is unified data access [15, Chap-
ter 1]. Information usage layer can have various technologies if the virtualization
layer offers several ways to connect to a publish layer.

It is common that data warehouses contain essential intellectual capital and
other proprietary information, and therefore access control must be introduced.
User access control guarantees that information is presented only to the right
users. This function is most naturally implemented at a centralized place at the
virtualization layer.

3.3. Publish Layer

The publish layer – also called an information mart [11, Chapter 2] – presents data
using a vocabulary that is familiar to the information users. The layer is analogous
to the presentation layer in OSI reference model [16].The same data may have
different interpretations in different business cases and in different context as
defined in the publish layer. Thus the publish layer is providing the information
out of the data warehouse in a fashion that is compatible with user needs.

The traditional modeling technique for data warehouse is dimensional mod-
eling [8]. In this context, publishing means transforming the data from enterprise
data warehouse model to the dimensional model. The publish layer also contains
data models for data services and data matrix for statistical analysis. Soft busi-
ness rules are executed when creating the publish layer. By executing the soft
business rules after storing the actual data in the data warehouse layer we do not
lose any data. Furthermore, this also fosters modularity, as the dependencies of
the soft business rules are only included in the publish layer.

The publish layer uses a dimensional model as an agreement that defines
which data set is published for reporting purposes, and in what kind of format.
Creating a dimensional model as a first step of implementation enables working
with information usage and enterprise data warehouse layers in parallel [14].

3.4. Enterprise Data Warehouse

An enterprise data warehouse is the persistent storage that integrates data and
stores the history of the incoming data sets. W. H. Inmon introduced term DW
2.0 where data warehouse is built a step at a time, over a long period of time [7,
Chapter 8]. In addition, he claims that DW 2.0 is built by many people, not just a
single person [7, Chapter 8]. These requirements – building the warehouse in steps
and having several people operating with it at same time – are crucial for the
data warehouse development approach. Inmon recommends using data vault as
a modeling technique in ”The Data Vault is the optimal choice for modeling the



EDW in the DW 2.0 framework.”1. Flexibility of change and incremental devel-
opment are the reasons why the authors recommends to use data vault modeling
as the modeling technique in enterprise data warehouse layer.

3.5. Staging Area

Staging area is a data storage area to assists data loadings. Data is copied as is
from source systems to the staging area. The staging area is transient [10, Chapter
2] and there is no persistence for staging area data. Instead, the data is persistent
in the enterprise data warehouse layer. Therefore, the whole staging area must be
automatically buildable with scripts, calling for additional information systems
such as a version control system to assist. We will return to this topic later in the
paper when describing the necessary tools.

Again, the implementation of the staging area can involve several differ-
ent technologies. Probably the most commonly used technology is a relational
database, in particular if the enterprise data warehouse is implemented in rela-
tional database, but file systems and distributed file system like Hadoop are also
often used.

Strictly speaking, the staging area is actually optional, as data upload to a
data warehouse may consist of a real-time feed. However, in batch based loading
cycle, there are some advantages of using staging area:

• Data is extracted only once from source system interface in a batch
• When data is available in same database we may use database functional-
ities for comparison what data is actually changed in source system com-
pared to the enterprise data warehouse layer

3.6. Source Systems

By definition, data warehouse’s data originates from several source systems. These
source systems typically offer interfaces with which the data can be fetched to the
data warehouse. As many software systems offer data from database or file ex-
ports, database connection and file transfer are the most commonly used data ex-
tract technologies, although web services are becoming a more and more common
way to extract data. In particular, when aiming at a real time data warehouse,
using web services has benefits over the other commonly used techniques.

4. Methodology

Next, we present a methodology to create a business intelligence solution in an
incremental fashion, where the goal is to release as often as possible. The method-
ology is based on the steps presented in Figure 2.

Each implementation increment starts with planning what to do in that par-
ticular increment. In the planning session, the specification of end-user needs is
analyzed, refined, decomposed, and scheduled in collaboration with end user and

1https://danlinstedt.com/solutions-2/quotes/



business intelligence team. Business value is used to prioritize each possible im-
plementation package, and packages should be implemented in order of business
value importance.

Publish layer design is the starting point for implementation. The publish
layer is designed to serve needs which are derived from information usage.

Data integration consist of getting data available and integrating that data
in the enterprise data warehouse layer. To enable parallel working for enterprise
data warehouse layer and information usage, we need DevOps [2] practices, where
development and operations act as a single unit working in collaboration.

Figure 2. Steps in Continuous Delivery Framework Methodology

4.1. Collaborate with End User

Collaboration with the end user – in essence, the customer of the business intel-
ligence team – is necessary to clarify what information is really needed. When
this information is refined, it reveals what data is needed and how that data is to
be presented to an end user. This constitutes detailed requirement gathering and
specification of the solution.

It is advisable that the whole team participates in the collaboration with the
end user, as then the whole team has a unified goal. In addition, understanding
end user needs motivates the whole team to solve the end user needs as well as it
can.

Business intelligence solution is not only a database or a dashboard, but the
whole end user experience with logins and waiting times altogether. To this end,
in addition to listening to the end user, it is also possible to deploy the solution in
a development environment and test the end user look and feel. Furthermore, if
in the development a deployment is quick to do, then it is possible to demonstrate
the end user experience in each revision of the solution.

4.2. Focus on Business Value

The benefits of continuous delivery practices become visible when an end-to-end
solution is composed such that it can be created in small pieces, each of which
creates business value to the end user. To accomplish this, each implementation
package that provides new functionality to a end user must be decomposed into
small enough packages, so that it is possible to implement them within the avail-
able time window. This forms a sharp contrast to the traditional approach, where
the creation of a data warehouse starts by integrating several source system data
in one data lake, potentially requiring huge amount of integration work. Only after



the data lake is complete, information usage can begin in the form of developing
reports and other information to the end user.

The proposed incremental fashion to compose data warehouses starts from
end user needs. Business value is used as the driver when partitioning the data
lake implementation into small packages which, when fully completed, will form
the end-to-end solution. The development is initiated by creating a small dataflow
pipeline from data source to a end user, we could describe these small dataflow
pipelines as data creeks. As more and more small creeks are composed, the im-
plementation is growing to a pond and further to a data lake. Furthermore, by
creating business value all the way, after each implementation increment the in-
vestment will pay back more and more.

4.3. Information Needs To Drive the Development

The development should start from the information usage layer. Information usage
yields specifications for the publish layer structures and their data content. The
development team makes detailed analysis of data content and creates list of
implementation activities to support required business use cases.

To enable parallel work, the first step is modeling a dimensional model in a
publish layer [14]. Creating publish layer structures and populating the structures
with real sample data enables development of reports and other information usage.
Populating can be a virtual implementation, where database views from a data
warehouse or a staging area are used. Information usage implementation can start
immediately after an publish layer has data available. This enables prototyping
and end user involvement in the development phase.

4.4. Parallel Development

As already discussed, we aim at dividing each implementation step in small tasks,
which can be implemented in parallel. For instance, when implementing a dash-
board that consists of several reports, these reports can be made at the same time
and as they are completed, the final dashboard is created in iterative fashion.

For obvious reasons, parallel development sets requirements to tools, but
the resulting improvement in flow efficiency usually exceeds these restrictions by
far. Parallel working in information usage and enterprise data warehouse layers
need DevOps practices to communicate the state of development and to integrate
different code pieces together.

4.5. DevOps Mindset for Data Warehousing

Fundamentally DevOps is about collaboration and communication – indeed, it a
way to implement continuous delivery in a fashion where developers and operators
work together to accomplish a joint mission. While originating from the field of
software engineering, the DevOps mindset is also a good match with data ware-
house projects, where communication is needed between different stakeholders
and developers and technical infrastructure must be in place to support changes
in the solution in automated fashion. Automating the build process means that



the developers will get immediate feedback if problems emerge when integrating
all the pieces needed for the complete solution.

A part of DevOps mindset is rapid creation of necessary infrastructure, so
that a new environment can be set up for a specific purpose, to the extent that
every developer can have her own environment. If so-called infrastructure-as-code
(IaC) approach [4, Chapter 9] is used, a version control system can be used to
create different instances of the same solution, allowing running development en-
vironments in the latest version of every developer and production environment
in the version which has passed quality assurance testing. Furthermore, if there
are any bugs in production, it is possible to duplicate the environment to examine
and fix those in a separately created environment. Furthermore, it is also possible
to validate the fixes separately, and incorporate the changes to the main solution
only after that. Rapid deployment pipeline leads to a situation where a fix for
production environment is done in the development environment, and the latest
development version is simply deployed to the production environment. At this
point we have DevOps practices to facilitate parallel development, and informa-
tion usage is going forward based on publish layer structures next is to find data
for information and implement historization for that data.

4.6. Get Data Available

The publish layer design is based on end user needs. The end user needs give
understanding of business rules, which is used for fetching data. The data can be
located in data warehouse, or, if it is not yet in data warehouse, then it is located
in source systems. Usually data is located partially in data warehouse, and a part
of the data is not available in data warehouse. If this is the case, source system
specialists specify what source system interfaces can be used to fetch the needed
dataset that is not yet in data warehouse, so that these datasets can be fetched
from source system to data warehouse staging area. After data is stored in data
warehouse, in enterprise data warehouse layer or in staging area, it is possible to
publish the data to the end user. The first version of the publish layer is created by
using database views upon data from staging area and enterprise data warehouse
layer.

4.7. Integrate Data to a Enterprise Data Warehouse

In the traditional warehouse approach, this is the actual phase where all the im-
plementation work is executed. In our approach this is clear – the specification is
understandable to everyone in the business intelligence team and needed dataset
is figured out and is available in staging area – but tedious phase. The Publish
layer has structures where to serve the data after it is persisted in enterprise data
warehouse layer. To clarify this, the input and output is known, only implemen-
tation is missing.

Implementation needs several steps, and this can require a huge amount of
working time. Database modeling creates structures to the enterprise data ware-
house layer. Data transfer creates data transformation from staging area to en-
terprise data warehouse and implements load chains of transformations to cache



data to data warehouse. Data transfer implementation can use template patterns
for data vault entities. Using templates will speed up implementation work, this
template thinking can go further even to automating implementation [13].

Persisted data from enterprise data warehouse will be fed to the publish layer.
Queries from enterprise data warehouse structures will include business logic.
These business logics are documented in the system that is available to end users.
Created queries have to be tested carefully. This testing is implemented so that
the tests can be executed automatically after each deployment.

4.8. Deployment Package

Each implementation is decomposed as so small pieces of implementation as is
possible. The developer creates a full implementation in her own environment,
which may be tricky when doing it for the first time. The goal of this piece of
implementation is to create a deployment package, which can be deployed to other
environments, and business intelligence tools are not designed to support this
kind of working method.

All deployment steps are written as operating system scripts. While each
separate tool has own script, these are put together in one main script. More
about how to design the script and separating configuration out of a code is in
Section 5.2.

When a deployment package is ready, it is tested and validated against new
environment. A successfully validated deployment package is communicated to
other team members.

5. Implementing the Methodology

The methodology described above has introduced the steps to achieve parallel
working and showed how those steps lead to rapid, incremental deployment. Next,
we explain the principles and tools to implement the methodology in practice.
The discussion is based on the following key items:

• Documentation is created in collaboration with end users, as information
exchange is two-way communication with team and stakeholders.

• Version control system usage is the key for achieving the continuous deliv-
ery.

• Business intelligence solution needs data transfer from place to place, but
it is more than ETL in traditional data warehouse.

• Automatization is a powerful tool to shorten the lead time. Deployment
pipeline automatization is the starting point, but there are several other
areas in business intelligence projects that can be automated.

• Data warehouse core is database, that can be incrementally built by using
SQL commands to migrate a database.

5.1. Document with End User

In addition to business representatives, it is important to be on the same page with
the end users. Therefore, it is advisable to document everything what is useful



for a end user or is needed in communication between end users and the team or
between the team and stakeholders. Documentation can take many forms. It can
be a guide for a end user, report specification, interface specification, business
rules documentation, or project review material, for instance.

A practical way to share such documentation is using a wiki, which provide
collaborative modification to content. In addition, with a wiki it is easy to start
with something small, and reorder layout and structure of documentation later,
if needed. Furthermore, wiki allows involving end users in the process of docu-
menting the business intelligence solution.

Figure 3. Data Warehouse Layers and Tools

5.2. Version Control System

While one might think that version control usage is common in business intelli-
gence projects, based on everyday experience we claim that in industrial business
intelligence projects a version control is rarely used. While some tools may offer
version control systems that is in active use in the context of that particular tool,
the use of a version control system is not comprehensive.



To implement the presented methodology, all the implementation done under
a business intelligence project is in version control system, because otherwise busi-
ness intelligence project deployment process simply cannot be automated reliably.
Deploying all implementation from the version control system ensures that the
same artifacts are in every environment. This ensures that what is tested in test
environment is what actually ends up in production environment [6]. To support
this, environment related configuration, such as database connection strings, user
names and passwords, is not to be mixed with the implementation code.

A part of the automation process is to create scripts that build and deploy the
whole implementation of the business intelligence solution from the version control
system. This may be hard at first, because the current practices often include
manual steps such as copying files and building with tools own functionality.
However, it is very rewarding to figure out how the build can be done with the
tool by using scripts from command line. Linking the whole solution to bigger
script of each tool commands, the end result is deployment script for the whole
business intelligence solution. This forms an easy way to deploy a certain version
of the version control system.

5.3. Data Transfer

Data transfer can be implemented in many ways. This process is not only caching
data in different places in our approach, as data has to be copied (cached) from
source systems to staging area or enterprise data warehouse layer. When data is
already available somewhere in data warehouse, it can be transferred using data
virtualization technology (different than virtualization layer). Data virtualization
technology provides intermediate layer that hide where and how data is stored
[15, Chapter 1].

Traditional data warehouse is implemented by using an extract transform and
load (ETL) tool. An ETL tool is valid tool for data transfer in our framework, but
we have labeled moving data from place to place as data transfer. Data transfer
typically includes a larger set of tools than one ETL tool.

5.4. Automate

A general rule of thumb in computing is to automate things that happens often.
The first thing to automate is the deployment pipeline. Automation server is tool
to create deployment pipeline automation. Requirements for automation server
software in our framework is triggered by a version control system commit and
the capability to reach all the servers used in a business intelligence solution. The
build process can be triggered by requesting specific version of version control
system.

After the deployment pipeline is automated, the focus is placed on automating
other parts in business intelligence projects. As an example, we have implemented
Data Map tool for creating transformations between staging area and enterprise
data warehouse layer [13]: Earlier, data transfer implementation took day for
one dataset to integrate it to a enterprise data warehouse layer, now it takes
approximate half an hour when using Data Map tool to automate data transfer
implementation.



5.5. Database Migration

Business intelligence projects differ from software projects in one important as-
pect: usually software projects can reload data from somewhere as initial data
set, whereas in data warehouse projects this is not possible. A data warehouse
stores the history of data, and this history data does not exist anywhere else.
Consequently, it is of prime importance to ensure that the data is not at risk.

Database modification is done with database definition language (DDL) and
data manipulation language (DML). Database definition language describes data
structures, and database manipulation language can select, delete, insert or up-
date data [1]. Both languages are included in Structured Query Language (SQL).

Database migration consists of a set of database definition language and data
manipulation language commands, which are executed in certain order. Each SQL
statement modifies the database structure or the data itself. SQL statements have
to be executed in a certain order, and the developers have to plan and implement
the order of SQL statements execution. When the implementation is decomposed
in small pieces, there is an appropriate number of SQL statements to write. These
SQL statements will be collected to one SQL script, which is added to version
control system.

Individual SQL scripts of the implementation have to be executed in ascend-
ing order. This can be enforced with tools such as dbmaintain2 and flywaydb3 or
simply by using a naming convention.

6. Discussion

Continuous delivery practices enable an approach where each developer uses one
or more environments. Because each developer can act on her own systems, this
enables parallel development – a major improvement over the conventional set-
ting in data warehouse operations, where the development environment is shared
among all the team members.

While providing an isolated environment for each developer is one tool for
parallel working, dependencies between increment packages require additional at-
tention. Decomposing the implementation into small but meaningful increment
packages helps dealing with these issues. Unfortunately, decomposing the imple-
mentation into small pieces easily leads to a huge number of increment packages.
Then, associated business value can be used to define the importance for each
increment package.

Building a deployment pipeline based on scripting is sometimes difficult.
Many of the current tools do not support such form of scripting, whereas each tool
would have to support scripting to include it in the deployment pipeline. Every
tool in a business intelligence solution can be changed separately, but obviously
this can introduce costs. Therefore biggest advantages can usually be achieved in
projects that are just starting and have not yet selected the tools to be used.

2http://www.dbmaintain.org
3https://flywaydb.org



In the project where the described framework was tested, we have successfully
created a deployment pipeline for data warehouse. We are using Vagrant4 to
create new development environment, using the infrastructure-as-code approach.
After creating a new environment, we need to manually log in to the created
server and check the system out from version control system. The implementation
is deployed by using two scripts. The first script includes configurations, and it
prepares the business intelligence solution for usage. The second script deploys
the actual implementation. In terms of the implementation, the latter script is
actually an ordered list of SQL scripts that form the implementation (Section 5.5)
in ascending order by using the agreed naming convention.

The database includes metadata tables that define how the data is transferred
– in other words, from where to where data is moved. The data transfer can builds
the load chain dynamically based on metadata information. This metadata can
be added via implementation SQL scripts.

Current practices enable deployments to the data warehouse several times in
a day. Furthermore, feedback from using the new version is immediate, as it can
be deployed with one manual step only. Same goes the other way around, if the
new version is not satisfactory, the previous version can be re-deployed instead.

Overall, we are very satisfied with the present situation, although there still
are some directions for future work. In particular, information usage layer follows
the traditional reporting delivery approach, because of licensing issues related to
reporting tool that was shared between several projects. Consequently, we have
not added reporting solution to the deployment pipeline, and thus we can not
create developer specific environments for that reporting tool.

7. Conclusion

In this paper, we propose a data warehouse approach inspired by continuous
software engineering practices. The biggest benefit of this approach is that its
implementation starts with prioritized end user information usage needs, whereas
a more traditional approach would extract data and execute a workflow in a serial
manner, finally ending in collaboration with the end user.

The proposed architecture immediately supports continuous delivery. It also
supports dividing the implementation into independent increment packages.
Those packages can be implemented separately in separate environments, and,
once completed, they can be composed into a bigger whole, also in accordance to
the continuous delivery practices. Currently available tools support an approach
where a separate environment is allocated for each developer, thus eliminating the
downsides of a shared environment that creates dependencies and interruption
for a single developer. We have implemented the creation of developer specific
environments using the infrastructure-as-code approach, which is a good match
to our needs. Based on our findings, there is no fundamental reason why business
intelligence projects should be any different from software projects.

4www.vagrantup.com
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Abstract. Data warehousing is a process of integrating multiple data

sources into one for, e.g., reporting purposes. An emerging modeling

technique for this is the data vault method. The use of data vault creates
many structurally similar data processing modifications in the trans-

form phase of ETL work. Is it possible to automate the creation of
transformations? Based on our study, the answer is mostly affirmative.

Data vault modeling creates certain constraints to data warehouse en-

tities. These model constraints and data vault table populating princi-
ples can be used to generate transformation code. Based on the original

relational database model and data flow metadata we can gather pop-

ulating principles. These can then be used to create general templates
for each entity. Nevertheless, we need to note that the use of data flow

metadata can be only partially automated and includes the only manual

work phases in the process. In the end we can generate the actual trans-
formation code automatically. In this paper, we carefully describe the

creation of automation procedure and analyze the practical problems

based on our experiences on PL/SQL proof of concept implementation.
To the best of our knowledge, similar has not yet been described in the

scientific literature.

Keywords. data vault, database modeling, ELT, ETL, code generation

1. Introduction

Data warehousing is a technique for integrating data from several source systems
to enable reporting and finding dependencies in the data. Data merging from
different data sources to a data warehouse is typically done in three phases: The
data is Extracted from source systems, T ransformed to the target structure, and
Loaded to a data warehouse. The order of the last two stages may vary and we call
the variants accordingly Extract-Load-Transform (ELT) or Extract-Transform-
Load (ETL). These phases are typically done in all the data warehouse modeling
types.



In the case of ELT, the two first functions form a way to bring source data

as-is to a staging area in a data warehouse. In this case, extract and load functions

use similar data structure, and the transformation is done only at the last stage

in the process. The final transformation, the final phase, is actually about loading

data from the initial staging area to data vault tables. Its implementation can be

(and often is) an ETL system of its own, and an ETL tool is used manually to

define the transformation. This is the case in data warehouses using data vault

modeling technique [5]. Data vault is a modeling technique designed to meet the

needs of enterprise data warehousing. In the original work, Linstedt gives the

following definition for it: ”The Data Vault is a detail oriented, historical tracking

and uniquely linked set of normalized tables that support one or more functional

areas of business.”[5].

Modeling is an integral part of the work in data warehousing and there are

different ways of doing this. In particular, data vault modeling has become a

popular way in designing a data warehouse because of its flexibility. When using

data vault as modeling technique there are several similar data transformations.

When adding a new data source to a data warehouse, the data model needs to

be updated. Information about attributes in the source system interface is used

when modeling the data warehouse. In addition, the transformation from a data

source to a data warehouse needs to be tuned manually.

In this paper, our research concentrates on this manual work—how it is pos-

sible to minimize or even omit the manual part? The goal is to reduce the amount

manual work needed by using model information more intensively. Based on the

data vault modeling technique, there are rules based on the structure and rules

on how the data vault entities will be populated. Based on these principal rules,

it is possible to automatically generate ETL code. This code generation needs

information about model and data flow. To enable this, a data model of system’s

metadata is created for this code generation. However, the process of creating

transformations based on the metadata of models is different than in a manual

ETL process.

As a practical contribution, we have implemented a PL/SQL proof of concept

code generator for transformations from a data source to a data warehouse using

data vault modeling. In this paper, we describe the process of automatically gen-

erating the transformations based on the metadata of data models. In addition,

we present our implementation and analyze the learnings and pitfalls based on it.

The rest of this paper is structured as follows. In Section 2, we introduce

the background of the paper. In Section 3, we present the principles of populat-

ing the data vault entities. In Section 4, we introduce data model to automate

transformation and what to automate with it. In Section 5 we provide a small

example regarding data map usage. In Section 6, we analyze the overall work and

our experiences more generally. In Section 7 possible new research topics. Finally,

in Section 8 we draw conclusions.



2. Background and Related Work

Jovanovic and Bojicic present a platform independent metamodel to store the

data warehouse model information [3]. They give several examples of doing the

conversion from a logical data model to a data vault model.

Phipps and Davis automate the data warehouse conceptual schema design

[9]. They divide data warehouse creation to five steps: pre-development activities,

architecture selection, schema creation, warehouse population, and data ware-

house maintenance. They focus on schema creation phase and automation of that,

whereas we are focusing on the next phase, warehouse population.

El Akkaoui et al, propose a model-driven development framework for ETL

processes [1]. That framework aims at automatic generation of ETL code for

several vendor specific platforms. The vendor-independent model is defined using

a platform independent design model of ETL based on business process model

notation (BPMN4ETL), ETL processes are generated based on that model.

Pankov et al share the idea of using metadata as a starting point for automat-

ing data warehouse implementation [8]. They describe metadata model which is

modelled with data vault principles. Based on that metadata they show possibil-

ities regarding how to generate ETL processes. A limitation of this approach is

that the ETL tool has to expose its functionality as an application programming

interface.

Several case tools for database modeling are available, such as Oracle SQL

Developer Data Modeler1 and ER Studio2. They use their own internal models

to store the model information. The core usage of these tools is to forward and

reverse engineer database structures. It is also possible to draw process diagrams

with these tools. Data flow may be derived from a process model, if the structure

is tied to the processes. Attributes used in process information structures may

be associated with table columns with these tools. This capability is hidden be-

hind several steps in graphical user interfaces. No code generation capabilities are

available based on this information. In this case, traditional ETL tools are used

to develop the transformations.

Data vault modeling consists of three major components. A hub has only

the business key columns for a specific entity. A link draws a many-to-many

relationship between several hubs. A satellite holds descriptive information about

the context. In addition, reference tables are related to data vault modeling.

Nevertheless, according to Lindstedt [4, 102], reference data should be separated

from other data vault tables.

Data vault modeling introduces flexibility by adding new entities to the

model. Existing entities and structures will remain and new modeling will be

added to the model. As for the tool support for doing this, while data ware-

house software with automation features exist, most of the software systems that

are suited for data vault modeling are licensed products. However, there are two

1http://www.oracle.com/technetwork/developer-tools/datamodeler/overview/
2http://www.embarcadero.com/products/er-studio



open source distributions: Quipu3 and Optimal Data Engine4Both of these use
Microsoft Visual Studio as the front-end for the development.

3. Principles for Automation

Data vault modeling yields certain rules that can be used in code generation.
Firstly, data vault entities hub and link have a surrogate key which is a one column
primary key. Secondly, a satellite primary key is constructed with the surrogate
key and load time. In addition, satellites and links have foreign key references. In
this section these rules are explained for each data vault entity: hub, link, satellite,
and reference.

Common attributes to all data vault tables Every data vault table has metadata.
This metadata is stored in attributes as listed in Table 1. Our naming convention
is to start every data vault metadata attribute with prefix DV .

Table 1. Data vault common attributes

DV ID Surrogate key

DV LOAD TIME Timestamp when the row is inserted

DV SOURCE Metadata of the source system

DV LOAD NAME Name of the transformation which inserted the row

DV RUN ID Every load batch has a unique id

3.1. Principles for a Hub

Business keys are vital to locate the business data [7]. Natural business key is a
unique identifier for business concept [2, Chapter 4]. A hub present the business
key for the business concept. If the business uses the same business key in all
steps of the business process, then all data would be linked via the hub. Unfortu-
nately, this is not usually the case, since different systems use quite often sequence
numbers for their business keys. A hub is a mapping from a business key to a
surrogate key. Surrogate key is one column primary key.

A business key may consist of several columns. A hub stores all unique busi-
ness key values and creates a unique key constraint for business key attributes.

3.2. Principles for a Link

A link is an associative entity between hubs. When two or more business keys
interact, a link is created to represent this interaction. This link is a many-to-
many relationship table between hub tables, storing hub surrogate key values.
Link table attributes are the common attributes listed in Table 1, together with
all associative hub surrogate key values, which are related to that particular link.
A link can also be used to store hierarchy information of a hub. In this case,

3http://www.datawarehousemanagement.org
4https://github.com/OptimalBI/optimal-data-engine-mssql



the link has relations to only one hub table. Every link hub surrogate key has a
foreign key reference to the related hub surrogate key attribute.

Data vault modeling allows creating more than one link between two or more
hub tables. The link structure introduces flexibility in the modeling process. When
there are changes in the real world, the corresponding modifications can be done
in the data vault model simply by creating new links.

A link table referring to another link table should not be modeled. Such a
link to link structure can be resolved by creating a link to have all hub surrogate
keys from both links. Database foreign key information is used in code generation,
which is the reason why all link to link relations is forbidden.

3.3. Principles for a Satellite Entity

A satellite is an entity which holds descriptive information of a hub or a link. It
includes other attributes than those that comform a business key for that entity.
The referring attribute to a hub or a link is a surrogate key.

We list all common satellite attributes in Table 2. Satellite tables have two
additional columns compared to a hub or a link table. Datahash is special at-
tribute, which is used for capturing changes in a satellite [6, Chapter 11.2.5].
The Datahash value is calculated from the concatenation of business key and all
satellite data attributes. There might be a need in future to have multiple active
values in a satellite, we added in every satellite record order for that purpose.

Table 2. Satellite table common attributes

DV ID Surrogate key

DV LOAD TIME Timestamp when the row is inserted

DV SOURCE Metadata of the source system

DV LOAD NAME Name of the transformation which inserted the row

DV RUN ID Every load batch has a unique id

DV DATAHASH Datahash is computed of business keys and data attributes

DV RECORD ORDER This is for multiple active satellite rows

Satellite information is subject to change over time [5]. A satellite will store
the whole history of the descriptive data. To help querying the satellite we have
created current view, which show the latest known data row for each surrogate
key. When populating the satellite table the current view can be used. New row
is added from staging table to satellite when the data in staging table differs from
data in current view, the comparison is done by comparing the datahash attribute
values in staging table and satellite current view.

There are modeling principles regarding how to split the satellite attributes
to several satellite tables [2, Chapter 21], but how the split is done is not relevant
for generating transformations to satellite tables.

Status satellite has a special meaning A status satellite tells the time intervals
when the referenced row has been active. If the staging table is a full dump from
a source system, the deleted rows can be recognized. If it is an incremental dump
for a link, information about a driving hub should be available. The driving hub
information is used to identify changed links.



3.4. Principles for a Reference

Reference data holds a list of code values with their descriptions. Typical items are

units of measure, postal codes, currencies, and so on. The code can be in several

places in a data vault, and it is not reasonable to copy the same descriptions to

several places. A reference – a different kind of entity from other major data vault

components – refers to other tables in the logical sense, but it will not have any

foreign key references in the physical model. To mitigate new transformation for

reference the reference implementation can be changed to view which is based on

a hub and a satellite table. Then the reference transformation is splitted to hub

and satellite transformations, there is no need to have different transformation

rules for the reference.

3.5. Transformation

A transformation phase in ELT is in itself a kind of a transformation of its own,

this time of type ETL. One transformation between staging and data vault table

is extracting rows from the source table, transforming them, and then inserting

the chosen columns of the rows to the target table. All of these steps may be done

in a single insert into select statement.

A transformation is a data flow element at entity level. When a data flow is

coming from a staging table to a data vault structure, each source entity - target

entity constructs a transformation.

Attributes in a Transformation A transformation at the attribute level is con-

structed using mappings. For a normal attribute, such mapping is simply a rela-

tion from a source attribute to a target attribute for raw data vault transforma-

tions. There should not be any attribute level transformations in the mappings.

No data cleansing is to be done in this phase of data warehouse population. Con-

sequently, both source and target attributes in a mapping should have matching

data types. The business keys in hubs are used for consolidation. This is why it

is suggested to trim business key columns [6, Chapter 11]. This could lead to a

need for technical hubs that store different presentations of the business keys. The

original presentation might be stored in a satellite as a normal attribute. This

way, dirty data in source systems could lead to a need for misusing multi-valued

satellite implementation. For the hub transformations, the whole business key

should be mapped. In other words, if the hub has several columns in its business

key, there should be a mapping for all of its key columns in each transformation

that will be populating the hub. The attributes are mapped from a source stag-

ing table columns to target data vault entity columns. It is equally important to

map the access paths for columns used in foreign keys. Surrogate key columns are

used in foreign keys in the data vault. To define a transformation for a satellite

surrogate key, a data transformation from the same staging table defines which

business key columns are used to look up or construct the surrogate key. The

same rule applies to link referential hub surrogate key columns.



Defining Transformations for a Hierarchy Parent-child relationships in the
model introduce a hierarchy link in the data vault. Examples of such are product
and account hierarchies. In these cases, several transformations from the same
staging table to the same hub exist, and at least one to a link that defines the
hierarchy. Therefore, transformation naming needs more information than just
source entity and target entity names.

4. Automate Transformation

An agile approach to develop transformations is by slicing the model. One way
to divide work to get smaller deliverable is to develop by source system dataset.

Current ETL software have lack of parallel development. The development
design happens in the same server and developers have to communicate that they
do not change the same ETL object at the same time. Development with au-
tomating transformations can be separated. Each developer has their own design
environment. A developer creates the implementation of transformations and the
implementation is shared among other developers via version control system.

4.1. Information Model for Automated Transformation – Data Map

For automating transformations, we need information of source structure and tar-
get structure. The power of the data model in Figure 1 is that it represents model
information and mapping between different models. Automating the transforma-
tions is based on the structure (model) and data flow information.

Structure information is in Figure 1 with green color. An entity is in a rela-
tional database table or view, but it can be something else if the data warehouse
is not in a relational database. An attribute is column information, each entity
has several attributes. Reference is foreign key relations at attribute level.

Data flow information between entities is a transformation. In the model, a
transformation has a source entity and a target entity. A mapping is transfor-
mation information at attribute level. A mapping information is entered for each
attribute for a target entity. Figure 1 shows the data flow information at violet
color.

Populating the Structure The data model may be populated from a existing re-
lational database metadata. While populating an entity and querying the table
information from a database metadata also the reference and attribute level in-
formation may be queried. Based on the found information the model may be
populated. An entity may become from a table or a view. A staging entity may
be implemented as a view. The rules of the data vault structure may be used to
populate the structure part. The entity type may be decided based on the rules.
Also if there is a satellite in the model there has to be a hub or a link that the
satellite belongs to. Similarly if there is a link there should be at least two hubs
in the model that the link is referring to. So if the model is populated from a
database metadata the model population may be started from satellites. Traverse
through foreign key definitions and populate the entity, attribute and reference
information on the way.



Figure 1. The data map model

Populating the Data Flow The transformation level is chosen first. This means
choosing from which staging entity to a data vault entity there will be a trans-
formation. Similar rules like populating the structure part need to be used. If
there is a transformation from a staging table to a satellite, there has to be a
transformation from the same staging table to a dependent hub or link. The same
rule applies to a link transformations. All dependent hubs should have a transfor-
mation from the same staging table that is transforming the link. Mapping at an
attribute level may be suggested based on the similar naming of the attributes.
Another way to suggest the mapping information is using the attribute order of
a source entity. Also similar data types should be checked to avoid implicit data
type conversions. After the model is enriched with several mappings the mapping
table constructs a dictionary, which is used to suggests the mappings in other
transformations.

4.2. Generating Transformations

We have created a data map data model capable of automating transformation
generation. Data map enables more than just transformation generation.

Data map model can be used as a source to generate create table clauses.
It can be used as a primary definition place to define a data warehouse data
model. This would support data first development strategy. We have currently
chosen the model first development strategy where the data warehouse model is
drawn first with a suitable tool for the job. Those tools support the features of
the environments that the data vault model will be installed to.

As the data vault is the place to store a history of data changes the latest
knowledge of the data may be published through views that publish a latest known
rows, we call these views current view. Current views is possible to generate based
on structure information and rule that the latest known row will be displayed. The
history is stored mainly in satellites. For a satellite the current view publishes the
latest rows for each surrogate key. These satellite current views are used in data
map insert views generated in the next steps. Also a relationship may be changed



in source systems. So there is a need to make links disapear in certain points in
time. This is done with a status satellite for a link. In link current view a link
rows that are not marked as deleted in the latest status satellite are published.
A link without a status satellite may be published as is as a link current view.
The view is created for future changes in the model. A link status satellite may
be created afterwards for the link. The view may be changed to take the status
satellite into account. By creating such a link current view the interface to the
data vault for user stays similar even when future changes appear. Point in time
views are somewhat similar to current views. A point in time table is a query
assistant table [4, Chapter 7] . They publish the transaction time aspect history
of the tables. A point in time view is showing the hub surrogate key and satellite
transformation times related to that hub for every snapshot date chosen to point
in time view. This generation needs only the structure part of the data map.

Also basic publishing views may be generated based on the structure. A link
publishing view could join the used hubs and publish the used business keys in a
view. A current satellite may be published together with the business keys in the
related hub. Also supernova views may be generated [10]. Supernova modeling
technique generates views on top data vault modeled structure and reveals data
to the reporting layer.

A ETL transformation could be done by simply with a single insert into
clause. That could be generated from data map. We have chosen to split the single
SQL statement into a view and a function. These insert views and functions are
generated for each ETL transformation. The split is done for better testability.

The insert view publishes the new rows from the staging table compared with
the latest rows in the data vault. The insert view is using earlier generated current
views for satellites. For hubs and links the comparison is made straight between
the staging entity and target table. The insert view publishes distinct rows from
the source.

The insert functions include the insert into select clauses. Insert is into the
target table and select part is using the generated insert views. The function is
returning the number of inserted rows. Inside the generated function it is possible
to do error handling code. Unique key constraint violation can be handled in the
functions if there happens to become several runs of the ETL transformations in
parallel.

How a data vault 2.0 style surrogate key hash is generated may be interpreted
from the data map. Several staging tables may be used to populate the same
hub. The used order of the columns in hash generation should be taken from the
order of the target hub attribute ordering. The access path to the ordering of the
staging table columns goes through the mapping table. Data hash generation is
based similarly to the target table column ordering than the surrogate key hash
generation.

4.3. Developing with Automated Transformation

Here is a list of steps when developing with automated transformation.

1. Model and create the new data warehouse entities with case tool
2. Populate structure information from database metadata



3. Populate data flow information
4. Generate objects based structure and data flow information
5. Testing in development environment
6. Create delivery scripts from development to other environments like test

and production

First step is to make the data warehouse data model changes with a case
tool. When the data model is modeled, it will be created with ddl-statements to
a relational database. The end result of the modeling will be ddl-statements and
model information in the relational database.

Structure is populated from database metadata of all entities which structure
information is needed in the implementation. Structure population use structure
rules and populate all dependant entities. When populating link or satellite struc-
ture information check is the dependent objects structure information populated
and populate those if needed. In Listing 1 the structure population is on row 1.

Listing 1 Pseudocode commands for automating transformations

1 p o p u l a t e e n t i t y ( ’< i n s e r t e n t i t y here > ’ ) ;

2 popu la t e t rans f o rmat i on ( ’< source tab le > ’ , ’< t a r g e t tab le > ’ ) ;
3 c r e a t e c u r r e n t v i e w s ( ) ;

4 c r e a t e i n s e r t v i e w s a n d f u n c t i o n s ( ) ;

Data flow information population needs manual acceptance. Data flow infor-
mation is populated at entity and attribute level. Entity level data flow informa-
tion is a transformation and it can be given with command like in Listing 1 at
row 2. transformation information need information on source table and target
table. Mapping information population can be suggested based on either attribute
names or position of the attributes in a source table.

Automating work is generating the deliverable without human work. After the
structure and data flow information is in the data map model all transformations
can be generated. In generation one command generates all objects, compared
with manual work where each object has to done manually. Generation can also
be done one by one by specifying what an object should generate.

In parallel development testing has to be part of the development. Test cases
are stored in version control and after each development cycle a developer will
execute the test cases. We stress the importance of local testing in parallel devel-
opment.

After testing in the local development is passed then the implementation is
locally ready. In parallel development there has to be version control in use and
release management practices. Create the delivery script from local environment
by following the release management practices.

5. Data Map Usage Example

Next, we provide a small example, where data from several source systems is
stored in a data vault data warehouse. There are three different source systems –



customer relations management (CRM), supply chain management (SCM), and
product life cycle management (PLM) systems. The data model of this example
is given in Figure 2. Tables are classified by using colors; white tables are staging
tables, and blue, red, and yellow links represent data vault tables, links, and
satellites, respectively.

Figure 2. Customer - Supplier - Product example

CRM Populate Structure The source is STG CRM CUSTOMER and targets are
CUSTOMER H and CUSTOMER S. We populate the structure information with the
following commands. After the structure information population we create the
current view for the satellite.

1 /∗ p o p u l a t e s t r u c t u r e ∗/
2 p o p u l a t e e n t i t y ( ’STG CRM CUSTOMER’ ) ;
3 p o p u l a t e e n t i t y ( ’CUSTOMER S ’ ) ;
4 /∗ c r e a t e current v iews f o r s a t e l l i t e s ∗/
5 c r e a t e c u r r v i e w s ;

CRM Populate Data Flow Populating data flow information for CRM can be
done with one command.

1 popu la t e t rans f o rmat i on ( ’STG CRM CUSTOMER’ , ’CUSTOMER S ’ ) ;

Based on the model rules, transformations from STG CRM CUSTOMER to
CUSTOMER S and CUSTOMER H are created. In addition, the mapping for surrogate
key attribute is populated for these transformations.

For transformation attribute level population, data map suggests popu-
lation code. Based on similar naming, the CUSTOMER H.CUSTOMER NBR is sug-



gested correctly. CUSTOMER ADDRESS needs to be chosen to be mapped to
CUSTOMER S.DELIVERY ADDRESS. Missing attribute mappings for populated entity
level transformations may be queried from the data map.

Code generation for insert views and functions is possible after the data flow
is populated into the data map. Insert views and functions are generated for both
transformations from STG CRM CUSTOMER to CUSTOMER S and CUSTOMER H.

PLM Populate Structure To populate PLM entities use the following commands.

1 p o p u l a t e e n t i t y ( ’STG PLM PRODUCT ’ ) ;
2 p o p u l a t e e n t i t y ( ’PRODUCT S ’ ) ;
3 p o p u l a t e e n t i t y ( ’PRODUCTHIE L ’ ) ;

The dependant PRODUCT H is populated on row 2 based on model rules when
PRODUCT S is populated. The link PRODUCTHIE L population is satisfied with the
earlier population of the hub because the row 2 populate the hub. If the order in
populating script would be different between PRODUCT S and PRODUCTHIE L the
hub PRODUCT H would be populated in that entity which is executed first.

Based on the populated data map structure part, a PRODUCT SC current view
for the satellite may be generated.

PLM Populate Data Flow Transformations from STG PLM PRODUCT to PRODUCT H,
PRODUCT S and PRODUCTHIERARCHY L will be generated. There will be two trans-
formations to both PRODUCT H and PRODUCT S. One pair for staging table included
and deliverable columns.

1 popu la t e t rans f o rmat i on ( ’STG PLM PRODUCT ’ , ’PRODUCTHIE L ’ ) ;
2 popu la t e t rans f o rmat i on ( ’STG PLM PRODUCT ’ , ’PRODUCT S ’ ) ;
3 popu la t e t rans f o rmat i on ( ’STG PLM PRODUCT ’ , ’PRODUCT S ’ ) ;

Row 1 generates two transformations to PRODUCT H and links the surrogate key
mapping for PRODUCTHIE L attribute to foreign key reference.

In row 2 there already is a hub transformation for PRODUCT H from the same
STG PLM PRODUCT table. The surrogate key reference mapping cannot be done
automatically. From data map, it is possible to create suggestions that there are
two candidate hub transformations available for this satellite transformation. The
user may choose the hub transformation that is used in deliverable part of the
transformation. Based on that the user maps the attribute level mapping from
DELIVARABLE NAME to PRODUCT NAME.

Row 3 will generate a satellite transformation for the included name mapping.
Also here the surrogate key mapping needs to be chosen and the INCLUDED NAME

to PRODUCT NAME need to be mapped at attribute level.
The mapping of data map table is now populated for STG PLM PRODUCT source

entity transformations, which is visualized in Table 3.

SCM Populate Structure SCM entities are populated with commands.

1 p o p u l a t e e n t i t y ( ’STG SCM ORDER ’ ) ;
2 p o p u l a t e e n t i t y ( ’ORDER S ’ ) ;



Table 3. Mapping table contents for STG PLM PRODUCT source entity transformations

TR TARGETENTITY TARGETATTRIB SOURCEATTRIB DVIDTR

PPD4 PRODUCT H PRODUCT CODE DELIVARABLE PCODE

PPD5 PRODUCT H PRODUCT CODE INCLUDED PCODE

PPL3 PRODUCTHIE L DV ID PROD DELI PPD4

PPL3 PRODUCTHIE L DV ID PROD INCL PPD5

PPS6 PRODUCT S DV ID PPD4

PPS6 PRODUCT S PRODUCT NAME DELIVARABLE NAME

PPS7 PRODUCT S DV ID PPD5

PPS7 PRODUCT S PRODUCT NAME INCLUDED NAME

Entity ORDER L is populated based on the model rules. If the previous CRM and
SCM parts are already in the data map model, the CUSTOMER H and PRODUCT H

entities are populated already into the model. If the SCM part is developed pri-
vately without first populating other parts, also CUSTOMER H and PRODUCT H enti-
ties are populated. This way it is possible to develop transformations in parallel.
Now, current views for the link and the satellite are ready to be generated.

SCM Populate Data Flow Transformations from STG SCM ORDER to CUSTOMER H,

SUPPLIER H, PRODUCT H, ORDER L and ORDER S will be created with one com-
mand.

1 popu la t e t rans f o rmat i on ( ’STG SCM ORDER ’ , ’ORDER S ’ ) ;

All other attributes except CUSTOMER ADDRESS match with the naming so
data map suggest the mappings. If the CRM part is already stored in the
mapping table, also the mapping from STG SCM ORDER.CUSTOMER ADDRESS to
ORDER S.DELIVERY ADDRESS may be suggested. This is based on the previous us-
age of similar naming in STG CRM CUSTOMER to CUSTOMER S transformation. Arti-
facts for all five transformations are now ready to be generated.
SUPPLIER H has two column business key. If the hash primary keys are used, the
column ordering is taken from the order of the hub column order. Even thou the
ordering of the columns is different in the staging table.

6. Discussion

In this paper we show how to generate code for ELT transformations from a stag-
ing table to a data vault table. This is enabled by the presented data map, re-
sulting from the introduced model for storing structure and dataflow information.
The power of the data map is in using both structure and data flow information
instead of relying to only one of them. It is possible to make also changes by
using data map, although this is not its initial purpose. Instead, there are various
case tools available for managing the structural information. The tools also en-
able structural changes in a flexible fashion. Moreover, such tools can also store
data flow information. Nevertheless, the data flow information is only presented
graphically, and it is not possible to extract out of the tool easily in a similar way
as with our solution data model.

In addition to the above tools, there are ETL tools that are intended for
transformations. Such ETL tools include information similar to our data map.



These ETL tools often introduce a vendor lock-in situation, and work done using
one tool is not modifiable with other tools. Consequently, internal models cannot
be exported from currently available tools. Nevertheless, there are some ways to
tackle the vendor lock-in. For example, [1] provides BPMN4ETL design model
for ETL processes which allows transporting between several technologies. In
BPMN4ETL a ETL process is designed manually, we are creating transformations
based on data vault principles. In theory, BPMN4ETL could be generated based
on data map model information.

Even if data map could be developed in data first fashion, we chose to use
model first approach. Model first approach create data warehouse structure which
is more timeless than data model created based on source systems models. These
strategies have different ways regarding how the data map is populated. The
structure information in data maps enables generating statements that create ta-
bles for a data warehouse database model, which is very convenient when develop
in data first fashion.

It is worth noting that the staging table columns may include null values,
which are then populated to hubs and satellites. Initially, all values are unknown
as there are no rows in the target model. In case of satellite tables, null values
override possible previously known values, whereas in hubs null values should
actually be stored in a data vault. There is also a common usage pattern to replace
nulls with some fixed characters, like −1 for an example. However, this character
is then not available for any other use. We have chosen to allow null values as a
business key and tie that to a hash binary that is not produced from actual data.
In this case, the hash of null value is defined to be also null.

As described earlier, it is possible to generate the transformations by using
both the existing data warehouse data and data flow information. At the moment,
we generate the following items based on data map data:

• data warehouse create table statements,
• current views for satellites,
• current views for links,
• insert views for all data vault tables and
• transformation functions which use insert view and have error handling for

parallelizing the ETL loads.

In addition, we can also generate other interesting structures from on the data
map. Most of the ETL tools can read XML formatted transformation specifi-
cations. We can generate the specifications with data map information in XML
format. This way we can actually execute the transformations with ready ETL
tools.

Data flow information includes data lineage information which can be pre-
sented graphically with different tools, like DOT5 language.

ETL has been historically based on batch load operations. Nevertheless, there
is an ongoing trend towards online processing, which requires streaming the data.
In this case, we do not have separate extract or loading phases in ETL, but the
whole process is about transformation. Consequently, the data map approach is
readily available for streaming transformation generation as well.

5http://www.graphviz.org/doc/info/lang.html



Finally, it is important to consider the tradeoff between manual work and
work needed for automating the tasks. Obviously, the automation effort should be
placed on development steps that require a lot of manual work. Nevertheless, au-
tomation also introduces other benefits. The resulting code systematically similar
for all generated objects. The coded objects are therefore often easier to maintain,
even if manual work is required.

7. Future Work

Generating data transformations out of a data vault will be the next long-term
goal of this work. The first step is to implement an inverse transformation of
a staging interface, so the data vault model may be published with a similar
interface as is used when storing the data.

As described and discussed in this article, transforming data to a data vault
structure splits the entities to smaller groups of columns. This way a single exe-
cutable transformation takes place between a staging table and a data vault table.
Mappings between source and target columns are stored in data map data model,
with information of access paths to resolve surrogate key values in foreign keys.
The introduced data map data model in this article supports the table splitting
transformation. When getting data out of the data vault, the entities are put to-
gether. Such join transformations would consist of several data vault tables as the
input. The data map model described in this paper cannot store such information.
The model needs some minor changes to accomplish these requirements.

8. Conclusion

In data warehousing, data vault modeling is widely used methodology. The data
is divided into four different entities, which are hub, link, satellite, and reference.
A data warehouse that is modeled using data vault modeling technique can be
flexibly modified if the source systems change. As a cost of the flexibility, we have
significantly increased the amount of data load operations and transformations,
which requires reducing the amount of manual work involved in these phases.

Fortunately, the manual work for the data transformation development can
be mitigated. We note that data vault methodology gives certain principles re-
garding how the different entities should be populated. By using these principles,
the metadata of data models, and data flow information it is possible to semi-
automatically generate the actual data transformations. To support this, in this
paper we have introduced a metadata model which allows the transformations
code generation.

In our approach, the amount of needed manual work is reduced but not
completely eliminated. Nevertheless, even for the manual work phase, with data
flow information we can give good proposals based on the data map metadata.
As there are several exceptions which are easy for human to recognize to instruct
to a machine, the proposed data flow information needs at times to be accepted
by a human.



Using data model information in generating data transformations introduces
several advantages. By reducing manual work, we also reduce the possibilities
for human errors. Transformations can also be generated as large sets, whereas
manually implemented transformations have to be done one by one. Furthermore,
transformations generated from data map are readily available for commercial
production environments.
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Abstract. In data warehousing, business driven development defines data re-
quirements to fulfill reporting needs. A data warehouse stores current and histor-
ical data in one single place. Data warehouse architecture consists of several lay-
ers and each has its own purpose. A staging layer is a data storage area to assists 
data loadings, a data vault modelled layer is the persistent storage that integrates 
data and stores the history, whereas publish layer presents data using a vocabu-
lary that is familiar to the information users. By following the process which is 
driven by business requirements and starts with publish layer structure, this cre-
ates a situation where manual work requires a specialist, who knows the data 
vault model. Our goal is to reduce the number of entities that can be selected in 
a transformation so that the individual developer does not need to know the whole 
solution, but can focus on a subset of entities (partial schema). In this paper, we 
present two different schema matchers, one based on attribute names, and another 
based on data flow mapping information. Schema matching based on data flow 
mappings is a novel addition to current schema matching literature. Through the 
example of Northwind, we show how these two different matchers affect the for-
mation of a partial schema for transformation source entities. Based on our ex-
periment with Northwind we conclude that combining schema matching algo-
rithms produces correct entities in the partial schema. 

Keywords: Schema matching × data flow × data warehouse × data vault  
× dimensional model. 

1 Introduction 

In a data warehouse, whereas several data sources are integrated as one data set, map-
ping information is crucial. Most commonly used in data warehouse implementation 
is Extract- Transform and Load (ETL) process [6]. 
Business driven development defines data requirements to fulfill reporting needs. 

These reporting needs are typically modelled with a dimensional modeling [7] tech-
nique. To enable parallel work with data transformation (ETL) creation and reporting 
tools we have created a dimensional model as a prerequisite for actual implementation 
[11]. Reporting tools need a dimensional model populated with a sample data set. 



2 M. Puonti and T. Raitalaakso 

Populating a sample data set to a dimensional model creates data flow mapping infor-
mation at attribute level, whereas one or many attributes are mapped to one target at-
tribute. As a new interface is introduced to a data warehouse, it is created first to stag-
ing layer. A sample data set is mapped from staging layer to the publish layer (Figure 
1 B). Mapping may be implemented as a database view or a ETL-transformation that 
populates tables. In this paper, we are referring to these views and tables as entities. 
A data warehouse stores current and historical data in one single place. A data vault 

model [8] is used for storing history. When the data vault model exists, the transfor-
mations implementation between staging layer and data vault is automated by using the 
process presented in our earlier research [12]. 
By following the process which is driven by business requirements and start with 

designing a dimensional model with data, continuing with transformation implementa-
tion from a staging layer to a data vault model. The transformation graph forms a data 
flow. This creates a situation where we have in a place publish layer structure, data 
vault model and transformation mapping between a staging layer and a publish layer 
together with a data vault (Figure 1 C). Transformation mapping between a data vault 
and a publish layer is missing. When producing a durable implementation, a target is to 
create transformation to the publish layer based on the data vault model. Currently, this 
is manual work and it requires a specialist who knows the data vault model. A large 
data warehouse may consist of several hundred entities. Our research is focused on how 
to help this transformation mapping creation. How may we use the data flow mapping 
information, which is generated in earlier phases? Is there any particular schema map-
ping technique useful to solve this manual work and at least partially automate tasks in 
the current situation? Our goal is easing up the developers work. This is accomplished 
with finding candidates to be used in schema mappings. We are also finding ways to 
prune parts of a big data model to be used. 

2 Related Work 

Ontology matching is a wider research area than our schema matching. We are using 
ontology matching a name based technique where strings are identical [4]. Our ontolo-
gies are database schemas, even when the actual implementation not include a database 
schemas there are structures where tables (relation) contain attributes. 
We are using existing data flow mapping information to generate new replacing 

transformation mappings together with more commonly researched schema matching 
methods. The data flow forms an directed acyclic graph. It may be considered form a 
computer program. It describes the dependencies between all entities in a system. Frank 
Tip is writing about using program slicing in program integration [14, chapter 5.2]. We 
are using such slicing to generate subgraphs assisting transformation generation. 
Villányi describes schema matching techniques in service-oriented enterprise appli-

cation integration in his dissertation [15]. In a hybrid matcher Villányi combine a vo-
cabulary matcher and a structural matcher, where structural matcher uses a neighbor-
hood level structural similarity. 
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Fig. 1. Transformation stack evolution 

Paolo et al. introduce meta-mappings as a formalism that describes transformations 
between generic data structures [2]. This enables mapping reuse, when similar infor-
mation is located in several schemas, whereas our reuse is use data flow mapping for 
creating new transformation between schemas where transformation is not yet defined. 
Golfarelli et al. [5] introduce a starry vault approach to generate a dimensional model 

automatically from a data vault model. In their paper there are formal definitions of 
data vault and multi dimensional schemas introduced. Their paper is aiming to find a 
multi dimensional model from data vault structures. Our approach is to match and gen-
erate data flow between two predefined models. 
Human effort is needed in schema matching scenarios as existing matching algo-

rithm results are not perfect. Nguyen et al. concentrate on minimizing human effort in 
reconciling match networks [10]. They stress that after matching there is still a need for 
a post-matching phase, which is manual correction. Their reconciliation process is an 
iterative process, whereas our solution is to offer a partition schema for transformation 
as a selection. Many authors agree that mapping can not totally automate, there is a 
need for manual corrections [1-2, 5, 10, 15]. 

3 Schema Matching and Experiments 

In a data warehouse data is in relational form [3], even when NoSQL techniques 
are used in implementation. A relational database consists of tables and attributes. 
A set of tables is grouped together with a schema. Schema is used as an implementation 
of data warehouse layers, each layer in Figure 1 is a separate schema. Now we can 
refine our research question ”how to help transformation mapping generation” 
to form a match schema between a data vault and a publish layer schema. 
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3.1 Matching Workflow 

In a matching workflow, we are using phases introduced E. Rahm [13]. First phase is 
preprocessing, where metadata information is extracted from a relational database (Fig-
ure 2 a). Relational schema offer metadata: a table name, an attribute name, the attribute 
data type, additional information for data type and a description field for attribute. 
Matching is an execution of a matching algorithm, whereas it can contain several 

matching steps. These matching can be sequential, parallel or mixing both of those 
principals. 
A combination of matcher results is combining different matcher algorithm values 

and possibly calculation aggregated value of those values. In a sequential matching a 
matcher can use earlier matcher values in an algorithm. 
A selection of correspondences is in our case a human work phase, which we aim to 

help with offering matching results in use. If there is a tool built based on our article, it 
could suggest good matches and human work would be only accept suggestions and 
creating more complex mappings. 

 
Fig. 2. General match workflow (copied from [13]) 

3.2 Schema Matching Based on Attribute Names 

A matcher compares every attribute name of a data vault with every attribute in a pub-
lish layer target attribute. This cross join operation can be easily quite large and this is 
reason why we suggest to do this few publish layer entities at a time. The preprocess 
phase in Figure 3 target subset is chosen. In matcher first pruning is to feed only a 
partial entity set from the publish layer entities, this may be interpreted as a partition of 
a second schema [13]. 
A result of the attribute name matcher is a set of data vault entities, which has com-

mon attribute naming compared between data vault and target entities. 
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Fig. 3. Match workflow 

3.3 Schema Matching Based on Data Flow Mapping 

Publish layer entities have data flow mapping for a sample data set. This mapping can 
be implemented from the data vault or the staging area, nevertheless there is data flow 
mapping information as presented in Figure 1 B. 
Data flow mappings are expressed at attribute level between source and target sche-

mas. Depending on technology used it may be a challenging process to extract that 
attribute level mapping information, or even worse manually create this mapping infor-
mation. We suggest expressing data flow information between source and target 
schema entities, this information is useful and it is easier to extract from ETL-tool or 
database view metadata information. 
The target publish layer entities are chosen as an end point of the subgraph slice. A 

result of data flow mapping is data vault (source schema) entities, which have corre-
sponding data flow to a publish layer (target schema) entities. 
Inside data vault there might exist layers. A raw data vault that is populated straight 

from staging area. Business data vault [9] is a layer that enriches the data vault model 
and uses other data vault entities as a source. This piles up the transformation stack and 
makes the data flow graph deeper. We are using this depth as an indicator of enriched 
information. Giving a better ranking for business vault entities to be used in the sug-
gested mappings. 

3.4 Schema Matching Combination of Attribute Names and Data Flow 
Mapping 

Last phase of our algorithm is a combination of earlier matchers results. Noteworth, 
these matchers have result sets at different level of granularity. This is presented in 
Figure 3 combination of matcher results. 
As we are aiming to match schemas between the data vault and the publish layer, 

this algorithm is for helping creating transformations between these schemas. For hu-
man decision, we are presenting potential entities for transformation creation. The ear-
lier matchers enable us to use the following strategy: 

• Present all potential entities in order where first is the most prominent candidate 
• Present only potential entities, which are common in both matcher result set 

As the data flow information is not always available, our suggested strategy is to present 
all potential entities in relevant order. 
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The algorithm to create this ordering for candidate entities. 

1. Count at entity level how many attributes is in an attribute name matcher result set. 
2. Add a depth value for each entity, which is in a data flow matcher result set. 
3. Summarise these result sets. 
4. Order the result set according to the value of each entity. 

3.5 Northwind Example 

As a demonstration of our approach, we use Northwind1 source data model. We mod-
eled a publish layer schema of order fact and dimensions. The ORDER F references to  
CUSTOMER D, EMPLOYEE D, ORDER D and SHIPPER D. After data vault mod-
eling and transformation population at the phase (Figure 1 C) we get suggestions to 
new (Figure 1 D) phase transformations as described in (Table 1) and (Table 2). 
CUSTOMER D gets side different false positives from both suggestions but 

CUSTOMER H and CUSTOMER S are found in both sets to be considered as source 
for mappings. The number of common columns in naming suggestion is higher for these 
and gets prioritized based on the naming match. Adding the second suggestion set from 
data flows the results become more convincing. SHIPPER D gets assurance that 
CUSTOMER H and CUSTOMER S should not be considered as source for mapping. 
ORDER F gets suggestions from either ORDER L or ORDER BV L. Data vault model 
is layered. ORDER L represent a raw data vault layer and ORDER BV L is an entity of 
business data vault layer. ORDER BV L uses another data vault entities as a source for 
it data. This dependency graph depth is visible in (Table 2) ORDER BV L - ORDER F 
suggestion row. It is used together with higher score from naming suggestion to choose 
correct mappings to be implemented. 

3.6 Observations from Northwind Example 

Both our matchers return side hits - false positives. Attribute naming return overlapping 
from irrelevant similarity matches. The data flow matcher raises other potential map-
ping candidates. As the data flow subgraph from used staging entities contains trans-
formations to other data vault entities that are not needed in the desired resulting map-
ping for a specific target publish layer entity. 
With combing results from both approaches we get more precise suggestion for the 

new data vault publish layer transformations. With our experiments, the false positive 
groups are some what differing. So exclusion of false positive mapping candidates be-
comes more convincing. This minimizes the needed human effort while creating the 
end results. 
 

  

 
1  https://github.com/dshifflet/NorthwindOracle DDL 
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Table 1. Transformation suggestions based on naming 

 MAINENTITY SOURCEENTITY TARGETENTITY C 
CUSTOMER_H CUSTOMER_H CUSTOMER_D 2 
CUSTOMER_H CUSTOMER_S CUSTOMER_D 2 
SHIPPER_H SHIPPER_H CUSTOMER_D 1 
SHIPPER_H SHIPPER_S CUSTOMER_D 1 
EMPLOYEE_H EMPLOYEE_H EMPLOYEE_D 2 
EMPLOYEE_H EMPLOYEE_S EMPLOYEE_D 2 
ORDER_H ORDER_H EMPLOYEE_D 1 
ORDER_H ORDER_S EMPLOYEE_D 1 
ORDER_H ORDER_H ORDER_D 2 
ORDER_H ORDER_S ORDER_D 2 
CUSTOMER_ID_CUSTOMER_L CUSTOMER_H ORDER_F 1 
CUSTOMER_ID_CUSTOMER_L CUSTOMER_ID_CUSTOMER_L ORDER_F 1 
CUSTOMER_ID_CUSTOMER_L CUSTOMER_ID_H ORDER_F 1 
ORDER_BV_L CUSTOMER_H ORDER_F 4 
ORDER_BV_L EMPLOYEE_H ORDER_F 4 
ORDER_BV_L ORDER_BV_L ORDER_F 4 
ORDER_BV_L ORDER_H ORDER_F 4 
ORDER_BV_L SHIPPER_H ORDER_F 4 
ORDER_L CUSTOMER_ID_H ORDER_F 3 
ORDER_L EMPLOYEE_H ORDER_F 3 
ORDER_L ORDER_H ORDER_F 3 
ORDER_L ORDER_L ORDER_F 3 
ORDER_L SHIPPER_H ORDER_F 3 
CUSTOMER_H CUSTOMER_H SHIPPER_D 1 
CUSTOMER_H CUSTOMER_S SHIPPER_D 1 
SHIPPER_H SHIPPER_H SHIPPER_D 2 
SHIPPER_H SHIPPER_S SHIPPER_D 2 

4 Discussion and Future Work 

In our experimentation, we created a target schema as a database views from the staging 
layer. The data flow based matcher used this information at an entity level. There are 
possibilities to extract this data flow mapping information at an attribute level, one op-
tion is to use a tool like Queryscope2. This would open possibility to create more fine 
tuned result of the combined matcher described in this paper. 
In this paper, we introduce two schema matcher. By adding more schema matchers, 

it is possible to improve the suggestions. A structural matcher might be beneficial. Link 
and fact granularities might be used. Link granularity, calculated based on the number 
of hubs it references, and fact cardinality, how many dimensions it references, could be 
compared. 
Future work would be to suggest transformations between source schema (data 

vault) and target schema (publish layer) entities. At least the result set from the attribute 
name matcher is re-usable for creating transformation where is one-to-one mapping 
between source and target attribute. Our target is to reducing manual work by offering 
a subset of source schema entities for creating transformations, not actually create that 
data flow. 

 
2  https://app.sqldep.com/demo/ 
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Table 2. Transformation suggestions based on data flows 

 SOURCEENTITY  TARGETENTITY SCORE 
CUSTOMER_H CUSTOMER_D 1 
CUSTOMER_ID_CUSTOMER_L CUSTOMER_D 1 
CUSTOMER_ID_H CUSTOMER_D 1 
CUSTOMER_S CUSTOMER_D 1 
ORDER_BV_L CUSTOMER_D 2 
EMPLOYEE_H EMPLOYEE_D 1 
EMPLOYEE_S EMPLOYEE_D 1 
CUSTOMER_ID_H ORDER_D 1 
EMPLOYEE_H ORDER_D 1 
ORDER_BV_L ORDER_D 2 
ORDER_H ORDER_D 1 
ORDER_L ORDER_D 1 
ORDER_S ORDER_D 1 
SHIPPER_H ORDER_D 1 
CUSTOMER_ID_H ORDER_F 1 
EMPLOYEE_H ORDER_F 1 
ORDER_BV_L ORDER_F 2 
ORDER_H ORDER_F 1 
ORDER_L ORDER_F 1 
ORDER_S ORDER_F 1 
SHIPPER_H ORDER_F 1 
SHIPPER_H SHIPPER_D 1 
SHIPPER_S SHIPPER_D 1 
 
This paper is talking about a process of creating new or extending an existing data 
warehouse. A similar approach may be used when replacing an existing direct star 
schema publish layer data flows by adding data vault modeled enterprise data ware-
house layer between a staging and a publish layer. Replacing old ETL tool implemen-
tation. Benefits of data vault methodology such as history in satellites and better agile 
development enablement. The process described in (Figure 1) fits as is also on such 
replacement process. Phase A) Use existing staging and star schema model. B) Reverse 
engineer data flow transformation dependencies from old ETL implementation. C) and 
D) phases as described in this paper. 
It is inevitable that the data vault model does not have a perfect match for source 

mapping at some point in data warehouse evolution. These pruned partial matcher re-
sults could be used to be a base for new business vault entities. The knowledge of a 
developer and an accespath suggestor3 could be used to generate links and bridges that 
satisfy publish layer source information needs. 

 
3  http://rafudb.blogspot.com/2019/01/access-path-suggestor.html 
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5 Conclusion 

Our research is focused on helping transformation creation between a data vault and a 
publish layer. For each publish layer entities we create a set of source entity candidates 
from a data vault schema entities. 
As we are following the process which is driven by business requirements, there is 

a publish layer entity populated with a sample data. This sample data population con-
struct a data flow to the target schema entity. 
We examine whether schema matching is based on attribute names enough to sug-

gest correct entities from a data vault schema. Schema matching based on attribute 
names finds correct entities from a source schema, but still there is room for improve-
ment. 
By adding a schema matcher based on data flow mapping we get a result set to enrich 

an attribute name based matching. Combining the results from these two matchers we 
may present potential transformation source entity candidates in order where the most 
prominent one is at first. 
This combined algorithm is suitable for building a tool to help transformation map-

ping creation between a data vault and a publish layer. The result set from algorithm 
offer correct source entities for transformation mapping sources. 
After choosing source entities for transformation mapping, we could additionally 

suggest mappings from schema matching based on attribute names as a base for that 
transformation where a specialist could continue with additional mappings and with the 
complex mappings. 
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