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Abstract
We consider recently introduced self-focusing fields that carry orbital angular momentum (OAM)
[2021 Opt. Lett. 46 2384–87] and in particular, their propagation properties through a turbulent
ocean. We show that this type of field is especially robust against turbulence induced degradation,
when compared to a completely coherent beam. In moderately strong oceanic turbulence, the
self-focusing OAM beam features over five orders of magnitude higher peak intensities at the
receiver plane, an ∼80% detection probability for the signal mode, as well as an energy
transmission efficiency in excess of 70% over a link of ∼100 m. Counter-intuitively, the focusing
properties of such fields may be enhanced with increasing turbulence, causing the mean squared
waist to become smaller with greater turbulence strength. Our results demonstrate that certain
types of partial coherence may be highly desirable for optical telecommunication employing OAM.

1. Introduction

Structured light, and in particular, light carrying orbital angular momentum (OAM) has been the subject of
intense research since the seminal work by Allen and Woerdman in 1992 [1]. Several fields of fundamental
and applied research, such as microscopy [2], spectroscopy [3], particle manipulation [4], quantum
information [5], and optical communications [6], may benefit from light that carries OAM. A
comprehensive review of the field, and a discussion of its future challenges can be found in references
[7, 8], respectively. Amongst the different possibilities offered by structured light, vortex beams are the most
promising candidates for the realisation of optical communication protocols, since they possess a virtually
infinite alphabet that allows dense coding, multiplexing, and high-bit-rate communications
[9, 10]. Vortex beams possess a twisted wave front, at the core of which sits a topologically-protected phase
singularity described by the characteristic helical wavefront eimφ, where φ is the azimuthal angle around the
beam propagation axis. The index m ∈ Z is known as the topological charge, which defines the amount of
OAM carried by the beam, i.e., �m [7]. The unbounded nature of the index m translates to an infinite
dimensional Hilbert space available to OAM states as opposed to the bounded two-dimensional Hilbert
space associated to polarisation, which is ultimately what makes OAM enticing for optical communication
purposes.

One of the main limiting factors that prevents OAM-carrying beams to be efficiently employed for free
space optical communication, is the signal degradation due to atmospheric turbulence [11, 12]. For
instance, one significant challenge that needs to be resolved is the modal cross-talk caused by turbulence,
which can dramatically impair system performance [13, 14]. The dispersion of the OAM spectrum comes
from the aberrant wavefront distorted by turbulence. The stronger the turbulence is, the more the spectrum
will disperse [15]. Additionally, vortex beams experience significant divergence upon propagation—which
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is made worse by turbulence—making detection difficult due to limitations in detector size at the receiver
plane [16]. Mitigating the effects of turbulence is an active area of study, and several schemes have been
proposed to overcome these limitations, including adaptive-optics-enabled turbulence compensation [17],
Laguerre–Gaussian mode sorters [18], and even deep learning [19]. The use of self-healing fields such as
Airy or Bessel beams [20] seems tempting for this purpose. However, employing such beams in long range
telecommunications is challenging, since the width of the beam is directly proportional to the desired
propagation length, i.e. longer propagation requires a larger beam.

However, all the cases mentioned above consider the propagation of a fully coherent beam through the
atmosphere. It is widely known that partially coherent fields feature superior resilience to intensity signal
degradation upon propagation through turbulent media [21–25]. These results hint at the possibility of
utilising partially coherent vortex beams to implement free space optical communication channels. Indeed,
it has been revealed that one can reduce the turbulence-induced scintillation by decreasing the coherence of
a vortex beam [26], which comes at a price of increased power loss over the link. Meanwhile, other studies
have suggested that partially coherent vortex beams perform worse in turbulence than their coherent
counterparts [27, 28]. These studies considered Schell-model type correlations (i.e. correlations that depend
only on the distance between points), which is very similar to the effect of turbulence to begin with.
Partially coherent electromagnetic fields may also feature locally varying degree of coherence, such as in the
case of nonuniformly correlated fields [29], which feature self-focusing upon propagation. It has been
shown that self-focusing beams possess better resilience against turbulence-induced noise than fully
coherent fields [25, 30].

In the present work, we consider a recently introduced class of partially coherent self-focusing fields
carrying OAM [31] and show how the combination of the innate resilience of self-focusing and information
carrying capacity of OAM makes them a viable candidate for the realization of an efficient, free space
optical communication link. In particular, we show that this kind of vortex beam exhibits self-focusing both
in free space and in oceanic turbulence. In fact, it is found that the self-focusing property may be more
pronounced in stronger turbulence and that the normalized OAM density shows also focusing behavior,
compared to the coherent counterpart. This translates to a beam with several orders of magnitude higher
peak intensity at the receiver, combined with an increased detection probability of the sent OAM state.

2. Self-focusing vortex beams

To start our analysis, let us consider a statistically stationary scalar source located in the plane z = 0,
radiating a beam-like field towards the positive half-space z > 0. The spatial coherence properties of a 2D
source at points ρ′

1 =
(
x′1, y′1

)
and ρ′

2 =
(
x′2, y′2

)
, at angular frequency ω, can be described by the

cross-spectral density (CSD) function [32]

W0(ρ′
1,ρ′

2,ω) = 〈E∗
0(ρ′

1,ω)E0(ρ′
2,ω)〉, (1)

where E0(ρ′,ω) is the complex electric field, asterisk denotes the complex conjugate, and the angular
brackets stand for ensemble averaging. We consider explicitly monochromatic fields, and thus dispersion
effects are neglected. In what follows, the frequency dependence of all quantities of interest will be left
implicit for brevity of notation.

It is well-known from standard coherence theory, that for a CSD to be physically realizable, it must be
expressible in the form [33]

W0(ρ′
1,ρ′

2) =

∫ ∞

−∞
p(v)H∗

0 (ρ′
1, v)H0(ρ′

2, v)dv, (2)

where p(v) is a non-negative, L2(R2)-integrable probability density function, and H0(ρ′, v) is a positive
semidefinite kernel which we can choose as

H0(ρ′, v) = τ(ρ′) exp
(
−2πivρ′2

)
, (3)

without loss of generality. Here τ(ρ′) is a (possibly complex valued) amplitude profile function and
ρ′ = |ρ′|. The parameter v is an auxiliary variable which may or may not depend on the source properties,
and which must vanish when the integration of equation (2) is carried out. Thus, it is a mathematical tool
and with a dimension that depends on the form of the kernels. For example, v has the dimension of spatial
frequency for a Fourier kernel.
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The corresponding CSD can then be expressed as

W0(ρ;1,ρ′
2) = τ ∗(ρ′

1)τ(ρ′
2)μ0(ρ′21 − ρ′22 ), (4)

where μ0 is the (generalized) complex degree of spectral coherence, corresponding to the Fourier transform
of p(v). Note that the profile function τ(ρ′

1,2) is responsible only for the resulting intensity distribution,
whereas the weight function p(v) produces the correlations. For the special case of v = 0, the above
expression reduces to the CSD of a fully coherent field, which we will take as a reference, to benchmark the
performance of the self-focusing OAM beams in the next sections. It is also worth mentioning, that since
the only assumption on the weight function p(v) is to be square integrable, i.e., Fourier-transformable,
regardless of the explicit form of p(v), equation (4) will always produce a self-focusing field.

From now on we make the explicit choice for the function p(v) to be a Gaussian,

p(v) = σ2√π exp
(
−π2σ4v2

)
(5)

where σ indicates the coherence width of the beam. Beams with a larger value of σ have longer focal
distances, which may be even on the order of kilometers [30]. Furthermore, we take the intensity profile of a
Laguerre Gaussian beam with radial index zero [7, 34]

τ(ρ′) =

(
ρ′

w0

)|m|
exp(imφ) exp

(
− ρ′2

2w2
0

)
, (6)

where w0 is the transverse beam width at z = 0, and m is the topological charge. By inserting this into
equation (4), we end up with

W0(ρ′
1,ρ′

2) =

(
ρ′1ρ

′
2

w2
0

)|m|
exp[im(φ2 − φ1)] exp

(
−ρ′21 + ρ′22

2w2
0

)
exp

[
− (ρ′22 − ρ′21 )2

σ4

]
, (7)

The negative sign in the last exponent, refers to the fact that we have a converging field. Therefore,
equation (7) represents a self-focusing vortex beam, carrying m units of OAM.

3. Propagation in oceanic turbulence

Under the paraxial approximation, the propagation of a partially coherent beam from the source plane
z = 0 to an arbitrary plane z > 0 in a turbulent medium can be described by the extended Huygens–Fresnel
integral [32, 35]

W(ρ1,ρ2, z) =

(
k

2πz

)2∫∫ ∞

−∞
W0(ρ′

1,ρ′
2) exp

[
−ik

(
ρ1 − ρ′

1

)2 −
(
ρ2 − ρ′

2

)2

2z

]

×
〈

exp
[
ϕ(ρ1,ρ′

1, z) + ϕ∗(ρ2,ρ′
2, z)

]〉
M

d2ρ′
1d2ρ′

2, (8)

where ρ1 =
(
x1, y1

)
and ρ2 =

(
x2, y2

)
represent two arbitrary spatial positions in the target plane,

k = 2π/λ is the wave number, ϕ(ρ,ρ′, z) denotes the phase perturbation induced by the refractive-index
fluctuations of the random medium between ρ′ and ρ, and 〈. . .〉M is the ensemble average over M
realizations of turbulent media. This equation takes into account the random phase fluctuations, but
neglects absorption. Since we are investigating monochromatic beams, the absorption can be added later by
hand, if necessary.

If the fluctuations of the medium are homogeneous and isotropic, then the ensemble average in
equation (8) can be expressed analytically as [35] (see also [36])

〈exp
[
ϕ∗(ρ1,ρ′

1, z) + ϕ(ρ2,ρ′
2, z)

]
〉M

= exp

{
−1

3
π2k2zT

[
(ρ1 − ρ2)2 + (ρ1 − ρ2) · (ρ′

1 − ρ′
2) + (ρ′

1 − ρ′
2)2

]}
, (9)

where T is the turbulence parameter. Here, we consider oceanic turbulence to find the performance of the
beam in the worst conditions, in which case T has the explicit form [37]

T = 0.388 × 10−8ε−1/3χT

(
47.5708�−2 − 17.6701�−1 + 6.783 35

)
. (10)

3



New J. Phys. 24 (2022) 093036 M Luo et al

In the above equation, ε is the rate of dissipation of turbulent kinetic energy per unit mass of fluid, which
may vary in the range [10−1, 10−10 m2 s−3], χT is the rate of dissipation of mean-square temperature, which
has values in the range [10−4, 10−10] K2 s−1. Furthermore, the (dimensionless) parameter � denotes the
relative strength of temperature and salinity fluctuations, which for ocean water, ranges from −5 to 0,
whose limits correspond to dominating temperature-induced and salinity-induced optical turbulence,
respectively. The parameter T usually attains values ranging from about 10−16 m−1 for weak turbulence, up
to 10−12 m−1, for very strong turbulence although it has no well-defined upper limit [30]. Since the
individual parameters in equation (10) are not relevant to our study, we use the value of T directly, mainly
in the moderate to strong region of 10−14 m−1 to 10−12 m−1.

To obtain the expression of the propagated CSD in presence of turbulence, we then substitute
equation (2) into (8), such that at an arbitrary plane z we have the following CSD

W(ρ1,ρ2, z) =

∫ ∞

−∞
p(v)H∗(ρ1, v, z)H(ρ2, v, z)dv, (11)

where the propagated kernels are given by

H∗(ρ1, v, z)H(ρ2, v, z) =

(
k

2πz

)2∫∫ ∞

−∞
H∗

0 (ρ′
1, v)H0(ρ′

2, v) exp

[
−ik

(
ρ1 − ρ′

1

)2 −
(
ρ2 − ρ′

2

)2

2z

]

× 〈exp
[
ϕ∗(ρ1,ρ′

1, z) + ϕ(ρ2,ρ′
2, z)

]
〉Md2ρ′

1d2ρ′
2. (12)

Upon substituting equations (3) and (6) into equation (12) and going through some lengthy but
straightforward algebra, we obtain the following expression for the product of two propagation kernels of a
self-focusing vortex beam

H∗(ρ1, v, z)H(ρ2, v, z) = exp

[
−Θ(x, y, T) − ik

2z

(
ρ2

1 − ρ2
2

)
− T1(ρ1 − ρ2)2

]

× w2
m(z)

|m|∑
n=0

(
C̃n
|m|

)2[
F(x, y, T)

]|m|−n
. (13)

Here T1 = π2k2zT/3 is the z-dependent turbulence parameter, and we have employed multiple shorthand
notations, all of which can be found in appendix A together with a detailed derivation of the equation. By
employing the propagated kernels for each v together with equation (11), we can find the correlation
properties of the self-focusing vortex beam at any plane of propagation.

4. Propagation properties

4.1. Spectral density
We now use the formulae derived in the previous section to investigate the properties of the self-focusing
vortex beams. When the two points coincide, ρ1 = ρ2 = ρ, equation (13) describes the spectral density of a
single v-mode, and can be written in a simplified form as

S(ρ, v, z) = w2
m(z) exp

[
− ρ2

w2(z)

] |m|∑
n=0

(
C̃n
|m|

)2
[

kwfr(z)ρ

zw(z)

]2(|m|−n)

. (14)

For the case T = 0, i.e., in absence of turbulence, the waist of a single v-mode, w(z), reduces to its free space
counterpart wfr(z) (see appendix A). Further, if the OAM index is set to m = 0, then the intensity
distribution reduces to a self-focusing field with no angular momentum, such as in reference [30], i.e.,
S(ρ, v, z) = [w0/w(z)]2 exp[−ρ2/w(z)2]. The overall spectral density [32] can be retrieved with

S(ρ, z) = W(ρ,ρ, z) =

∫ ∞

−∞
p(v)S(ρ, v, z)dv. (15)

In the following, we analytically simulate a beam propagating in oceanic turbulence. The employed
parameters are given in the figure captions, whereas the mode waist, w0 = 1 cm, and coherence width,
σ = 5 mm are kept constant. These choices are not the only possible, and they produce a beam with about
60 m focal distance. Moreover, the wavelength was chosen to be 632.8 nm, which represents a sub-optimal
choice. In a real-world application the operation wavelength should be chosen to minimize scattering and
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Figure 1. Spectral density distribution of the self-focusing vortex beam propagating in free space (a) and turbulent ocean
(b) and (c) in the ρ − z plane with m = 2. (d) The transverse intensity distributions for various azimuthal index m. (e) The
transverse intensity distributions of the self-focusing vortex beam and the fully coherent vortex beams with m = 2. The values
for the turbulence parameter used for panels (a)–(c) are indicated on the density plots. For panels (d) and (e), the values
z = 60 m, and T = 10−14 m−1 have been used.

absorption, i.e. blue-green part of the visible spectrum when operating under water [38–40]. We chose a
wavelength outside this window to test the model in worst-case conditions. As the sign of m just changes
the handedness of the phase, we consider the case of positive topological charge only. Free space
propagation can be regarded as the simplest case where the turbulence term as well as the summation index
are both null, i.e. T = 0, n = 0 (see appendix A).

Figure 1 shows the evolution of the spectral density of the self-focusing vortex beam in the ρ− z plane
in free space (a), and oceanic turbulence, for both weak (b), and strong (c) turbulence. Moreover, panel (d)
shows the transverse distribution of the overall spectral density S(ρ, z) for different values of m at a selected
distance z = 60 m. The peak value of the intensity and the radius of the dark zone increase for larger value
of the topological charge, as expected for OAM-carrying beams [7]. A comparison between self-focusing
vortex beam and a fully coherent vortex beam is made in panel (e), to help to evaluate the focusing effect.
Here, we show the first main result of our work: the peak intensity of the self-focusing vortex beam is more
than five orders of magnitude larger than that of a fully coherent vortex beam, although their intensities are
of the same magnitude at the initial plane. This is due to the correlation induced self-focusing.

4.2. Mean squared beam width
Let us next evaluate how the width of the beam evolves as it propagates in a turbulent ocean, by defining the
mean squared beam width as

w2
ms(z) =

∫ ∞
0 ρ2S(ρ, z)dρ∫ ∞

0 S(ρ, z)dρ
. (16)

Substituting equation (14) into the above expression, one can easily see that the behavior of w2
ms(z) is

influenced by the OAM order m, the turbulence parameter T, and the propagation distance z, as one would
expect. From this, one can determine the distance zmin, at which w2

ms reaches its minimum. However, since
zmin involves complicated integrals and summations that do not necessarily admit closed-form solutions, we
have to turn to numerical evaluation of the mean squared waist. We first consider a single component of the
partially coherent beam, i.e., we take v as fixed. Using equations (14) and (16) we can evaluate the mean
squared beam width for the vth component of the self-focusing vortex as

w2
ms(v, z) = w2(v, z)Ym

[
1 − w2(v, z)

w2
fr(v, z)

]
, (17)
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Figure 2. The root of mean squared width of the self-focusing vortex beam for different values of topological charge and
strength of turbulence. Red lines: m = 1, blue lines: m = 4, orange lines: m = 8, green lines: m = 12. Solid lines in all panels
correspond to a value of the turbulence parameter of 10−14 m−1, while dashed lines correspond to T = 10−12 m−1. All the other
parameters are the same as those used for figure 1.

where the v dependence has been written explicitly for clarity, and

Ym(x) =
Γ
(

3
2 + |m|

)
Γ
(

1
2 − |m|

)
2
F1

(
−|m|,−|m|,− 1

2 − |m|, x
)

π(−1)|m|
2F1

(
−|m|,−|m|, 1

2 − |m|, x
) (18)

is the OAM dependent correction term, with Γ(n) being the Gamma function, and 2F1(a, b; c; x) the Gauss
hypergeometric function [41].

Let us briefly mention some of the main features of the mean squared beam width: (i) for m = 0, we
have Y0(x) = 1 for any x. Moreover, in free space for any given |m| > 0 we have Ym(0) = 1 as well. (ii) Since
w(z) increases monotonically with T, the mean squared width of the vth component will also
monotonically increase with turbulence when Ym(x) = 1. (iii) The value of the function Ym(−|x|) increases
with increasing m, and thus, high OAM content beams have a larger mean square width. (iv) For a fixed
|m| > 0, Ym(x) decreases monotonically with the increase of turbulence strength, until it tends to a constant
value after a sufficient propagation distance. These findings are graphically summarized in figure 2.

It is evident that the mean squared beam width becomes narrower over a certain range of distances, as
the turbulence increases (dashed lines in figure 2). This becomes more obvious for beams with larger OAM
content, such as those depicted in panels (c) and (d). Additionally, one can see how the influence of the
term Ym(x) in equation (17) affects the focusing dynamics of the beam by modifying the minimum value,
as well as the focal distance.

Previous studies of partially coherent self-focusing beams (without vortices) in turbulent ocean has
revealed that increasing turbulence causes the focal spot to move towards the source plane [30]. However, in
the case of self-focusing vortex beams, the picture is somewhat different. In this case, the focal spot moves
towards to the source plane only for low values of OAM, as it can be seen in figures 2(a) and (b) for m = 1.
For higher values of OAM, the position of zmin is shifted away from the source plane, as shown in
figures 2(c) and (d) for m = 8 and m = 12.

This constitutes the second main result of our work: by evaluating the mean squared beam width we
find that, for higher OAM content and within certain distances, the spread of a partially coherent vortex
beam in strong turbulence can be lower than in weak turbulence. This is, to the best of our knowledge, the
first example of an optical beam possessing such a counter-intuitive property.
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Figure 3. Distributions of the OAM flux density lorb(ρ, z)/� of self-focusing vortex beams (red lines) and fully coherent vortex
beams (blue lines) with m = 1 (a) and (b) and m = 2 (c) and (d) propagating through oceanic turbulence. Panels (a) and (c) are
at a constant propagation distance z = 60 m, and solid lines correspond to T = 10−14 m−1 while dashed lines correspond to
T = 10−12 m−1. Panels (b) and (d) are for a constant turbulence parameter T = 10−13 m−1, and solid lines correspond to
z = 60 m while dashed lines correspond to z = 100 m.

4.3. Orbital angular momentum flux density
We now proceed to our analysis of the OAM properties of the beam. For a scalar and paraxial partially
coherent beam, which has on average no spin angular momentum, the z component of the OAM flux
density is of the form [42]

Lorb(ρ, z) = − ε0

k
Im

[
y1

∂

∂x2
W(ρ1,ρ2, z) − x1

∂

∂y2
W(ρ1,ρ2, z)

]
ρ1=ρ2

, (19)

where ε0 denotes the free space permittivity. The quantity Lorb is dependent on the vortex strength, as well
as the intensity of the field.

To have a better understanding of the physical picture, we consider the normalized OAM flux density,
which describes the OAM per photon [42],

lorb(ρ, z) =
�ωLorb(ρ, z)

Sp(ρ, z)
, (20)

where Sp(ρ, z) = kW(ρ,ρ, z)/(μ0ω) is the z component of the Poynting vector, with μ0 being the vacuum
permeability. Upon substituting equations (11) and (13) into equation (20), the normalized OAM flux
density can be written as

lorb(ρ, z) = �

∫ ∞
−∞ p (v)Sl(ρ, v, z)dv∫ ∞
−∞ p (v)S(ρ, v, z)dv

, (21)

where

Sl(ρ, v, z) =
w2

m(z)w2(z)

w2
fr(z)

exp

[
− ρ2

w2(z)

] |m|∑
n=0

(C̃n
|m|)

2(|m| − n)

[
kwfr(z)ρ

zw(z)

]2(|m|−n)

, (22)

Using equations (21) and (22), we can study the behaviour of the normalized OAM flux density as a
function of the radial position at any propagation distance of a self-focusing vortex beam carrying m units
of OAM.

By comparing the expressions in equations (14) and (22), one can readily see that in free space
(i.e., T = 0) equation (21) reduces to the well known constant value of lorb(ρ, z) = |m|�. Thus, self-focusing

7
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Figure 4. Probability density for the OAM states of self-focusing vortex beam (red histogram) and fully coherent vortex beam
(blue histogram) with m = 3 through strong turbulence T = 10−13 m−1 at different propagation distances with z = 60 m (a),
z = 90 m (b) and z = 150 m (c).

vortex beams in free space can be viewed as pure fluid-like rotators for which the OAM content is
independent of the radial distance. Therefore, the type of self-focusing vortex beams we consider act like
pure coherent vortex modes in free space with respect to their OAM content [43, 44], since lorb(ρ, z) is
simply proportional to the topological charge m.

When turbulence is present, the OAM flux density attains a nontrivial dependence on radial, as well as
axial distance. The effect of turbulence on the OAM flux density of partially coherent self-focusing vortex
beams for different m at selected distances are shown in figure 3.

Compared to the coherent vortex beams, the self-focusing vortex beams behave more like Rankine
vortices, with a small rigid body rotation region near the core (where the OAM depends quadratically on
the distance ρ) and a fluid-like rotation in the outer regions. With increasing turbulence and propagation
distance, the rigid region expands. This is not surprising since, as it follows directly from the last term in
equation (22), ρ is inversely proportional to z and T. Intriguingly, the maximum value of the OAM flux
density for the self-focusing vortex beam exceeds the value of the topological charge carried by the input
beam, and it takes a higher value under stronger turbulence. This can be explained as the result of balancing
between turbulence induced spreading and the self-focusing of the beam.

4.4. Orbital angular momentum spectrum
Finally, we investigate the effects of oceanic turbulence on the OAM spectrum of self-focusing vortex beams.
It is well known that there is a Fourier relationship between the intensity distribution in the azimuthal
direction and the complex OAM spectrum [45], i.e.,

E(ρ, θ, z) =
1√
2π

+∞∑
l=−∞

al(ρ, z) exp(ilθ), (23)

and

al(ρ, z) =
1√
2π

∫ 2π

0
E(ρ, θ, z) exp(−ilθ)dθ. (24)

The power weights of partially coherent vortex beams can be written as

〈
|al(ρ, z)|2

〉
=

1

2π

∫∫ 2π

0
W(ρ, θ1, ρ, θ2, z) exp[il(θ1 − θ2)]dθ1dθ2, (25)

in which case the relative power for each OAM mode is defined as

Pl(z) =

∫ ∞
0

〈
|al(ρ, z)|2

〉
ρdρ∑

l

∫ ∞
0 〈|al(ρ, z)|2〉ρdρ

. (26)

Computing the relative powers of the states with various azimuthal indices allows us to construct the OAM
spectrum [46].

The OAM spectrum of a self-focusing vortex beam, as well as its coherent counterpart for various
propagation distances and turbulence parameters are displayed in figure 4. Since we saw from the previous
subsection that the OAM flux density is a constant in free space for these beams, we can immediately
surmise that the OAM spectrum in free space contains only a single peak at m (the signal mode). Therefore,
in the following we consider only beams in turbulence.

With increasing propagation distance and turbulence parameter, the energy of the signal mode will
inject into the neighbouring modes for both self-focusing and coherent vortex beams, resulting in OAM

8
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Figure 5. Probability density for the OAM states of self-focusing vortex beam with a finite detector at the receiving plane.
Detector radius is taken to be 10 mm, and the initial topological charges are m = 2 (a) and (b) and m = 3 (c) and (d) at selected
propagation distances with z = 60 m (a) and (c), and z = 150 m (b) and (d). Red histogram in all panels corresponds to
T = 10−14 m−1, while blue histogram corresponds to T = 10−13 m−1.

spectrum dispersion. Thus, the probability of detecting the signal mode decreases monotonously upon
propagation through turbulence. The partially coherent self-focusing beam has a heavier tailed OAM
spectrum than the fully coherent one. However, the proportion of the signal channel is higher than that of
coherent ones, featuring a maximum increase of ∼14% over the coherent vortex beam. This is partly caused
by the narrower beam size of the self-focusing beam, which ensures smaller area affected by turbulence.

As a last example of the present work, we study the OAM spectrum received by a detector at two
propagation distances, which is depicted in figure 5. Here, we assume that the receiver plane may move
along the z-axis, and that the employed detector is circular, with a radius of 10 mm. Further, we assume
perfect alignment, and thus the detector area contains most of the energy of the self-focusing beam.

This brings us to the third main result of our work. By comparing figures 4 and 5, we see that the finite
aperture cuts the tails of the OAM spectrum. Hence, the weight of the signal channel becomes much larger,
especially for the case of moderately strong oceanic turbulence (>0.8). Furthermore, the proportion of the
overall energy that the detector captures from the self-focusing vortex beam with m = 2 in moderately
strong turbulence is 72.3% at z = 60 m and 67.7% at z = 150 m. In the case of strong turbulence, these
values are 72.9% and 68.9%, respectively. Comparing this to a coherent vortex beam, the ratios at the same
propagation distances are 15% and 14.7% with T = 10−14 m−1, whereas they are 15.1% and 16.5% with
T = 10−13 m−1, respectively. The energy efficiency in the last coherent example is higher in stronger
turbulence due to an increase of intensity on axis (i.e. due to vortex breakdown). In each considered case,
there is an over four-fold increase in efficiency when compared to a completely coherent beam, and the
improvement is greater for longer distances when the focal distance is modified accordingly.

We can also see that the probability of the signal mode decreases with the increase of topological charge
m, indicating that a vortex beam with a greater m is more vulnerable to turbulence, as larger m gives rise to
a wider beam radius, which consequently causes serious OAM dispersion. This means that although it is a
good idea to construct high dimensional Hilbert space by increasing the value of the topological charge m,
it may not be efficient in improving free space optical communication. In addition, it is to be noted that the
OAM spectrum becomes asymmetric and shifts towards zero under increasing turbulence, which is due to
the beam losing angular momentum to the turbulence [47]. Mathematically, this can be explained from the
turbulence correlated coordinates as and ξs, as the shifts of the coordinates in x and y directions are
asymmetric (see appendix A for more information).
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5. Conclusions

We have studied the propagation properties of self-focusing vortex beams through oceanic turbulence. We
chose ocean environment to find the worst case estimates on the propagation properties of such beams, and
the results are applicable also to the much weaker atmospheric turbulence. The self-focusing vortex beams
feature several intriguing properties, and they can be extremely robust against turbulence.

Although the present work is entirely theoretical, it is of interest to discuss how such beams could be
experimentally generated. Circularly correlated beams—which also feature self-focusing—have been
realized with digital micro-mirror devices [48], where an input beam was modulated with a time dependent
hologram. Nonuniform correlations (the correlation type we study) may be generated in a similar fashion,
or with deformable optics. In the latter case, the optical element would be a mirror with variable curvature,
driven with a suitable time dependent signal. After the correlations have been engineered, one only needs to
impose an OAM phase on the output beam to attain the self-focusing vortex beam. This may be done with
standard holographic techniques, which can also generate high-order OAM beams. Moreover, the detection
of these partially coherent beams can be done in the same fashion as coherent beams. In particular, for
detecting higher-order OAM beams, one could again use standard holographic techniques based on SLMs,
or OAM sorter techniques (see, for example, references [49, 50]) to detect the complete OAM spectrum of
the beam after propagation through turbulence. Alternatively, one may also measure the recently introduced
coherence OAM matrix [51], which can be done with a modified Young’s interferometer [52].

First, thanks to the focusing of the beam upon propagation, the peak intensity at the receiver plane is
over five orders of magnitude greater than for a corresponding coherent beam. This is an important feature
for a beam employed in a data link, since it makes alignment and detection much easier. Here, we
considered a beam which has a focal length of about 60 m. However, by increasing the coherence width of
the beam, it is possible to get much longer focal distances, even on the order of kilometers. To retain the
robustness of the beam, the overall degree of coherence has to remain unchanged, and thus an increase of
the coherence width necessitates an increase in the overall beam size. Since the size of the beam is finite in
real world applications, this limits the longest achievable focal length. For example, with beam and
coherence widths of 20 mm, one can already get a focal length of 0.8 km [30].

Second, the width of the beam and the focal distance remain nearly unaltered when the turbulence is
increased. In fact, under certain conditions, the mean squared beam waist may become smaller for a larger
turbulence parameter. This effect appears to be due to an interplay between OAM and turbulence mediated
by the focusing properties of the beam. We believe that we are the first to predict such counter-intuitive
behaviour in optical beams.

Third, the signal mode detection probability of the partially coherent beam is improved over the
coherent one, and when evaluating OAM spectrum over the whole beam, the signal mode detection
probability increases by about 14%. When a circular detector of 10 mm radius is employed at the receiving
plane, the signal mode is detected with a probability of about 80% over moderately strong turbulence.
Moreover, the finite detector can collect ∼70% of the energy that is sent over a distance of ∼100 m through
strong turbulence, making for an extremely efficient link.

In addition to the properties listed above, partial coherence leads to a significant decrease in
scintillation, and therefore improves the receiver’s signal-to-noise ratio. Thus, a data link realized with
self-focusing OAM beams has several advantages over coherent OAM beams. The results obtained in the
present study may find applications in long distance OAM data links, whether it is through an atmospheric
or oceanic environment.
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Appendix A

In the following, we assume that the initial plane correlation function is of the form of a self-focusing
vortex beam that is given in equation (7), the derivation of which was outlined in section 2 of the main text.
Further, we assume paraxial propagation towards the positive half-space z > 0, which is described by the
extended Huygens–Fresnel integral of equation (8). By combining these, we attain the kernel propagation
integral of equation (12). Upon substituting from equations (3) and (6) into equation (12), we get

H∗(ρ1, v, z)H(ρ2, v, z) =

(
k

2πz

)2 ∫∫ (
ρ′1ρ

′
2

)|m|
e−im(φ1−φ2) exp

(
−ρ′21 + ρ′22

2w2
0

)
exp

[
−2πiv

(
ρ′22 − ρ′21

)]

× exp

{
− ik

2z

[(
ρ1 − ρ′

1

)2 −
(
ρ2 − ρ′

2

)2
]

(A1)

− T1

[
(ρ1 − ρ2)2 + (ρ1 − ρ2) · (ρ′

1 − ρ′
2)+ (ρ′

1 − ρ′
2)2

]}
d2ρ′

1d2ρ′
2,

where T1 = π2k2zT/3 is the z-dependent turbulence parameter.
To make the integral simpler, we can separate it to ρ′

1 and ρ′
2 contributions. The integral over ρ′

1 takes
the following—analytically solvable—form in Cartesian coordinates∫∫ [

x′1 − i sgn(m)y′1
]|m|

exp
[
−α1

(
x′21 + y′21

)
+ uxx′1 + uyy′1

]
dx′1dy′1

=
π

α1

[
ux − i sgn(m)uy

2α1

]|m|
exp

(
u2

x + u2
y

4α1

)
, (A2)

where sgn(x) is the sign function. Here we have used the shorthand notations

α1 =
1

2w2
0

− i2πv +
ik

2z
+ T1, (A3)

ux =
ikx1

z
+ T1Δx + 2T1x′2, (A4)

uy =
iky1

z
+ T1Δy + 2T1y′2, (A5)

Δx = x2 − x1, Δy = y2 − y1. (A6)

Next, we choose ax = kx1/z − iT1Δx and ay = ky1/z − iT1Δy, so that we can write ux = iax + 2T1x′2,
uy = iay + 2T1y′2, then the remaining integral over ρ′

2 takes the form∫∫
[iax + sgn(m)ay + 2T1(x′2 − i sgn(m)y′2)]|m|(x′2 + i sgn(m)y′2)|m| exp

[
−

(
α∗

1 −
T2

1

α1

)
(A7)

×
(
x′22 + y′22

)
−

(
ik

z
x2 + T1Δx − iaxT1

α1

)
x′2 −

(
ik

z
y2 + T1Δy − iayT1

α1

)
y′2

]
dx′2dy′2,

Using the formula

(a + b)m =

m∑
n=0

Cn
mam−nbn, (A8)

where Cn
m = m!/n!(m − n)!, we can expand [iax + sgn(m)ay + 2T1(x′2 − i sgn(m)y′2)]|m| in a binomial series

to get
|m|∑

n=0

Cn
|m|[iax + sgn(m)ay](|m|−n)(2T1)n

∫∫ [
x′2 − i sgn(m)y′2

]n[
x′2 + i sgn(m)y′2

]|m|
(A9)

× exp

[
−

(
α∗

1 −
T2

1

α1

)(
x′22 + y′22

)
− iξxx′2 − iξyy′2

]
dx′2dy′2,

where we have used

ξx =
kx2

z
− iT1Δx − axT1

α1
, (A10)

ξy =
ky2

z
− iT1Δy − ayT1

α1
. (A11)
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Now, we can write equation (A9) in cylindrical coordinates as

|m|∑
n=0

Cn
|m|[iax + sgn (m)ay](|m|−n)(2T1)n

∫
ρ′2

|m|+n+1 exp

[
−

(
α∗

1 −
T2

1

α1

)
ρ′22

]
dρ′2

×
∫

exp
[
sgn(m)i(|m| − n)φ′

2 − iξxρ
′
2 cos φ′

2 − iξyρ
′
2 sin φ′

2

]
dφ′

2

(A12)

and further employ the formula [53]

∫ 2π

0
e±int+i(x sin t+y cos t)dt =

2πJ±n

(√
x2 + y2

)
(−1)n

√
x2 + y2

n (x ∓ iy)n, (A13)

to solve the azimuthal angle integral, as well as [53]∫ ∞

0
x2n+u+1e−x2

Ju(2x
√

z)dx =
n!

2
e−zz

1
2 uLu

n(z), (A14)

Lα
n (x) =

n∑
k=0

(−1)k

k!
Cn−k

n+αxk, (A15)

for the radial integral. After some calculations, the product of the propagated kernels is obtained as

H∗(ρ1, v, z)H(ρ2, v, z) = exp

[
−Θ(x, y, T) − ik

2z

(
ρ2

1 − ρ2
2

)
− T1(ρ1 − ρ2)2

]

× w2
m(z)

|m|∑
n=0

(
C̃n
|m|

)2[
F(x, y, T)

]|m|−n
. (A16)

which is equation (13) in the main text, and the employed shorthand notations are

Θ(x, y, T) = (a2
x + a2

y)/(4α1) + (ξ2
x + ξ2

y )/(4α2), (A17)

wm(z) = z|m|w0/[k|m|w(z)|m|+1], (A18)

C̃n
|m| =

|m|!
n!(|m| − n)!

√
n!(4T1)n, (A19)

F(x, y, T) = [ay + sgn(m)iax][ξy − sgn(m)iξx] − (T1/α2)(ξ2
x + ξ2

y ), (A20)

α2 = α∗
1 −

T2
1

α1
. (A21)

Lastly, the turbulence-corrected, z-dependent waist of the beam is given by

w2(z) =

(
z

kw0

)2

+ 4T1

( z

k

)2
+

(
1 − 4πvz

k

)2

w2
0 , (A22)

whereas the free space waist is simply

w2
fr(z) =

(
z

kw0

)2

+

(
1 − 4πvz

k

)2

w2
0 . (A23)

Employing these equations together with the main text considerations, allows us to analytically model a
self-focusing vortex beam of arbitrary OAM content at any propagation distance.
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