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1 INTRODUCTION

Decision making based on partially conflicting and vague information is a
challenging task that has been addressed by many researchers in ( [3], [5],
[4], [12] and many others). In this paper, we introduce a new approach, an
approach intended to be transparent to the end user. The technique combines
paraconsistent logic, Pavelka-style fuzzy logic, especially, as developed in
the paraconsistent Pavelka-style fuzzy logic defined in [15], and total fuzzy
similarity relation proposed in [10].
Problem statement: the problem of most fuzzy multi-attribute decision mak-
ing methods in the existing literature has to do with the size of a decision
problem [13]. In any case, the size of a decision problem is determined
by the number of available options and the number of attributes in such a
problem. Although the existing fuzzy multi-attribute decision making meth-
ods such as Yager’s model; Baas and Kwakernaak’s model; Kwakernaak’s
model[18], [13]; Fuzzy Analytic Hierarchy Process (FAHP); Fuzzy Analytic
Network Process (FANP); Fuzzy Simple Additive Weighting (FSAW); Fuzzy
Technique for Order Preference by Similarity to Ideal Solution (FTOPSIS)
and many others have been shown to have a sound theoretical foundation,
they are so cumbersome to apply even to decision problems with few options
(the number of options less than 10) and few criteria (the number of criteria
less 10) let alone those with a large number of alternatives and a large number
of criteria and sometimes sub-criteria. Therefore, the mathematical model we
introduce herein is part of the global effort to develop novel approaches that
have the efficiency to solve large size decision problems with less difficulty.
Eventhough this new technique bears some semblance to our earlier method
in [9], it is simpler, easier and friendlier to the end user than the former. The
current method is most particularly suitable for experts and decision makers
with less familiarity with complex mathematical computations. To illustrate
the efficiency of the new approach, we have applied it to Ghana’s energy de-
cision making problem involving eight (8) electricity generation sources in
relation to twenty six (26) criteria.
Pavelka-style fuzzy logic was introduced in the mid sixties following the de-
velopment of fuzzy set theory by L. A. Zadeh. Pavelka-style logic is a kind
of many-valued logic in which the interval [0,1] constitutes the truth value
set for all formulas. Pavelka logic, thus, subsumes everything of classical
logic by adopting a graded approach to truth so that the truth value of ev-
ery statement or formula ranges between totally true (1) and totally false
(0) values. Moreover, according to Pavelka, a given logic in the realm of
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Pavelka-style logics is Pavelka-style complete if and only if the unit interval
[0, 1] as the truth value set for that logic is endowed with Łukasiewicz oper-
ations [7]. By the way, the fact that Pavelka’s axiomatisation of other logics
than Łukasiewicz logics yielded no positive outcome does not mean that the
attainment of Pavelka-style completeness in Pavelka-style logics is only pos-
sible through the Łukasiewicz operations. As a matter of fact, there exists
some Pavelka-style complete logics that are based on other operations than
the ones associated the standard MV-algbra [2]. Turunen did further stud-
ies on this and showed that Pavelka-style completeness holds granted that
the truth value set is an injective MV-algebra [16]. Hence, in the field of
decision making, Pavelka-style fuzzy logic enables us to incorporate partly
ignorant facts, imprecise information, non-numerical data, unattainable data,
and vague information into the decision making model.
Paraconsistent logic is another generalised version of classical logic. A log-
ical system in which inconsistencies do not imply anything is referred to as
a paraconsistent logic [8]. Let us assume that φ, ¬φ and ψ are any three
well formed formulas. If we denote any logical consequence relation by `
then such a consequence relation is said to be explosive granted it upholds
the principle that φ, ¬φ ` ψ. This principle of explosion holds in classi-
cal logic. However, any logical consequence relation that is explosive is not
an appropriate medium by which we can draw reasonable conclusions from
contradictory information. In other words, meaningful inferences can only
be drawn from inconsistencies if the relations do not explode. Therefore, any
logical consequence relation that does not explode is paraconsistent. Many
different paraconsistent logics have developed for different reasons and pur-
poses. The paraconsistent logic we focus on in this paper is the one proposed
by Belnap in [1], extended by perny and Tsoukias [11] and further extended
by Turunen in [15] into what they called paraconsistent Pavelka style fuzzy
logic.
Belnap asserted that depending on the proof (evidence) at our disposal any
statement β can take one of four possible states, namely: false, contradictory,
unknown and true and not just the usual absolutely true and absolutely false
states). This means

i Proposition β is false if we have no proof in support of β but we have
proof against β. Thus, representing falsity by F , ‘there is proof’ and
‘there is no proof’ by 1, 0 respectively, we have F = (0, 1).

ii β is contradictory provided we have proof in support of β and at the
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same time have proof against β. If we denote contradictory by C then,
C = (1, 1).

iii β is unknown if we neither have proof in support of β nor have proof
against β. If we denote the unknown by U then, U = (0, 0) and

iv β is true provided we have proof in support of β but have no proof
against β. Denoting the quantity true by T , T = (1, 0).

This FOUR valued logic was later widened to cover the entire real unit inter-
val [0,1] in [11] to measure the degree of truth, falsehood, contradiction and
unknown in every statement (β). The authors defined these four values over
the unit interval [0,1] by:

F (β) = min(b, 1− a), (1)

C(β) = max(0, a+ b− 1), (2)

U(β) = max(0, 1− a− b), (3)

T (β) = min(1− b, a), (4)

This logic was further advanced into paraconsistent Pavelka style fuzzy logic
by Turunen in [15]. Turunen equipped the truth set: [0,1] here with the
Łukasiewicz structure which is an injective MV-algebra; and the accompa-
nied operations are defined for all a, b ∈ [0, 1], by a� b = max(0, a+ b−1),
a ∧ b = min(a, b), a∗ = 1 − a and a ⊕ b = min(1, a + b). Further, the
various states: F (β), C(β), U(β), and T (β) as given in equations (1), (2),
(3) and (4) are defined on this structure by the authors as
F (β) = a∗ ∧ b; C(β) = a� b; U(β) = a∗ � b∗ and T (β) = a ∧ b∗. So, any
pair (a, b) ∈ [0, 1] generates the following 2-by-2 matrix:

[
F (β) C(β)

U(β) T (β)

]
=

[
a∗ ∧ b a� b
a∗ � b∗ a ∧ b∗

]
.

These pairs of values (a, b) in [0,1] are referred to as evidence couple. Hence,
the couples: F = (0, 1); C = (1, 1); U = (0, 0); and T = (1, 0) induce the
following corresponding evidence matrices:

F =

[
1 0

0 0

]
, C =

[
0 1

0 0

]
U =

[
0 0

1 0

]
, and T =

[
0 0

0 1

]
.

The objective of this article is to develop a decision model by associating
paraconsistent Pavelka-style logic with fuzzy similarity relations and then il-
lustrate how that model can be applied to solve decision problems involving
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partly ignorant, conflicting and vague information.

From here, the article is organised in the following way: In Section 2, we
recollect MV–algebras, paraconsistent Pavelka-style logic, and fuzzy simi-
larity (many–valued similarity) relation as the needed logical and algebraic
concepts for the study. In Section 3, the algorithm of the novel technique is
presented. In Section 4, we apply the novel technique to the resolution of a
real life decision-making problem involving the selection of the best energy
mix for an economy and in section 5 we conclude.

2 PRELIMINARIES

The defininitions and concepts in the existing literature relevant to the new
model proposed here are as follows:

2.1 MV–algebras
MV-algebras: the algebras of the Łukasiewicz logic was developed by Chang
to prove the completeness of this logic [6]. In this study, MV-algebra is the
basic algebraic structure of our model. The two most fundamental operations
of MV-algebras are the binary operation ⊕ and unary operation ∗.

Definition 2.1. Let 0, 1 be elements of the non-empty set L, and the opera-
tions ⊕ and ∗ be defined on L such that for any x, y, z ∈ L

x⊕ y = y ⊕ x, (5)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z, (6)

x⊕ 0 = x (7)

x∗∗ = x, (8)

x⊕ 0∗ = 0∗, (9)

0∗ = 1, (10)

1∗ = 0, (11)

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x. (12)

Then, the structure A = 〈L,⊕,∗ , 0, 1〉 is an MV-algebra.

Moreover, if L is equipped with another binary operation � so that for all
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x, y ∈ L x� y = (x∗ ⊕ y∗)∗, then the equations

x� y = y � x, (13)

x� (y � z) = (x� y)� z, (14)

x� 1 = x, (15)

too hold. This implies ⊕ can also be expressed in terms of � as x ⊕ y =

(x∗ � y∗)∗. Also, in every MV-algebra, the binary operation→ is defined by
x→ y = x∗ ⊕ y; and the operation ∗ known as complementation is different
from a lattice complementation.

Further, for any x, y ∈ L, the bi-residual operation↔ is defined as

x↔ y = (x→ y) ∧ (y → x). (16)

The interval [0,1] endowed with the operations ⊕, �, ∗, ∨, ∧, → called
Łukasiewicz structure (standard MV-algebra) denoted here by L is a classic
instance of an MV-algebra. These operations are defined as follows:

x⊕ y = min(x+ y, 1), (17)

x� y = max(0, x+ y − 1), (18)

x∗ = 1− x, (19)

x ∨ y = max(x, y), (20)

x ∧ y = min(x, y), (21)

x→ y = min(1, 1− x+ y). (22)

An MV-algebra A is complete if only it is closed with respect to the infi-
mum and supremum of every subset of L; it is divisible if for every element
a ∈ L there exists n− divisors such that n ∈ N . Hence, an MV–algebra A
is said to be injective provided it is complete and divisible. The Łukasiewicz
structure is an injective MV-algebra [17]. Turunen et al in [15] showed that
in an injective MV-algebra A any ordered pair (x, y) in L × L generates a
corresponding 2-by-2 matrix M defined by

M =

[
x∗ ∧ y x� y
x∗ � y∗ x ∧ y∗

]
.
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As previously stated, the couples: (0,1); (1,1); (0,0); and (1,0) induce the
following matrices respectively:[

1 0

0 0

]
,

[
0 1

0 0

]
,

[
0 0

1 0

]
and

[
0 0

0 1

]
.

So, the set M of all 2-by-2 matrices generated by such ordered pairs can
be equipped with the binary operation ⊕ and the unary operation ⊥ so that
M = (M,⊕,⊥ , 0, 1) forms an injective MV– algebra. Now, if the evidence
matrices D, M in M are obtained from the evidence couple (c, d) and (x, y)

respectively then, according to the authors in [15], the evidence couple for the
evidence matrix D⊕M is (c⊕ x, d� y), and the respective evidence matrix

D ⊕M =

[
(c⊕ x)∗ ∧ (d� y) (c⊕ x)� (d� y)
(c⊕ x)∗ � (d� y)∗ (c⊕ x) ∧ (d� y)∗

]
,

The same way, the evidence couple (x∗, y∗) produces the evidence matrix

M⊥ =

[
x ∧ y∗ x∗ � y∗
x� y x∗ ∧ y

]
.

Further, it is important to point out that there is a one to one correspondence
between evidence couples and evidence matrices. This means for all D,M ∈
M, D =M provided the corresponding components of the evidence couples
are equal (i.e., c = x and d = y).

2.2 Fuzzy similarity relations
The definitions and findings made in this subsection are all in [10], [9]. As-
sume X is a non empty set and A is an injective MV-algebra. The binary
operation S defined on X is a fuzzy similarity relation if for all x, y, z ∈ X
S fulfils these three conditions:

S(x, x) = 1, (23)

S(x, y) = S(y, x), (24)

S(x, y)� S(y, z) ≤ S(x, z). (25)

Thus, S is reflective, symmetrical and weakly transitive as found in equations
(23), (24) and (25) respectively. Moreover, S is a fuzzy equivalence relation
and as a result a generalisation of the equivalence relation in classical logic.
Also, in any residuated lattice L, the binary operation↔ is defined for each
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x, y ∈ L as

x↔ y = (x→ y) ∧ (y → x).

The bi-residuum operation↔ fulfils these four conditions:

x↔ x = 1, (26)

x↔ y = y ↔ x, (27)

(x↔ y)� (y ↔ z) ≤ (x↔ z), (28)

x↔ 1 = x. (29)

From these four conditions, it is obvious that the operation ↔ as well is re-
flexive, symmetric and weakly transitive. A fuzzy subset B is an ordered pair
(X,µB), where X is a set of elements and µB : X → L a function called a
membership function. A fuzzy subset B with the membership function µB of
any given set X measures the degree to which an element x ∈ X is a mem-
ber of B. So, every fuzzy subset B with the membership function µB that is
defined on the non empty set X induces a fuzzy similarity relation S on the
set X via

SB(x, y) = µB(x)↔ µB(y) for any x, y ∈ X. (30)

Particularly, if A is the Łukasiewicz structure L on the interval [0,1] and B is
provided then for any x, y ∈ X ,

SB(x, y) = 1− |µB(x)− µB(y)|. (31)

In the field of Multi-Criteria Decision Making, every fuzzy subset represents
a unique criterion. So, the fuzzy subset B is the same as criterion B. The ele-
ments of X , on the other hand, are the available alternative courses of action
or options in the decision problem. Hence, the value SB(x, y) determines the
extend to which any two elements x, y in X are identical with respect to B.
Assume the element y ∈ X has a full membership degree in B. The focus
then will be to calculate the degree to which every other element in X is alike
to the full member y in relation to B. Thus, for each member x in X the
formula:
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SB(x, y) = µB(x)↔ µB(y) = µB(x)↔ 1 = µB(x). (32)

is true.
All in all, if we have k criteria against m options in a decision making prob-
lem then that means that we have k fuzzy subsets (X,µj) and k many-valued
similarity relations Sj(x, y) with respect to the set X containing m elements
or options, where j = 1, · · · , k. Now, on an injective MV-algebra, what is
referred to as the total fuzzy similarity relation between every pair of elements
x, y in X is determined using the formula

S(x, y) =
S1(x, y)

k
⊕ · · · ⊕ Sk(x, y)

k
=

1

k

k∑
j=1

Sj(x, y), (33)

such that the operation ⊕ is the MV-addition operation and S1(x,y)
k is the

k-divisor of every similarity relation value Sj(x, y), for j = 1, · · · , k. Espe-
cially, if A is the Łukasiewicz structure then,

S(x, y) =
1

k

k∑
j=1

Sj(x, y). (34)

Moreover, if varied values of weight are assigned to the fuzzy subsets, then
the total fuzzy similarity relation is determined via the weighted mean by

S(x, y) =
w1S1(x, y)

W
⊕ · · · ⊕ wkSk(x, y)

W
, (35)

where W =
∑k

j=1 wj , and wj ∈ N. Just like equation (34), if A is the
Łukasiewicz structure then,

S(x, y) =
1

W

K∑
j=1

wjSj(x, y). (36)

At this point, let us assume that the set of options or alternative courses of ac-
tion at the disposal of the decision maker is denoted by X . Assume also that
there are k attributes which are expressed as fuzzy subsets by B1, · · · , Bk.
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We suppose that every fuzzy subset Bj , j = 1, · · · , k contains an ideal solu-
tion y which takes a membership value of 1. So, to measure the proximity of
any option x inX to the perfect solution y is to establish the magnitude of the
total similarity between the option x and that of y. We achieve this through
the formula of the weighted mean:

S(x, y) =
1

W

k∑
j=1

wjµBj
(x) (37)

such that µBj
(x) is the membership degree of x in the fuzzy set Bj , where

j = 1, · · · , k.

3 AN ALGORITHM ON DECISION-MAKING UNDER CONFLICT-
ING AND VAGUE INFORMATION

Let us assume that there are a dozen of choices (options, alternatives) βi,
i = 1, · · · , n, from which we should choose the best option. Each option
has p prospective criteria (desired properties) Pj , j = 1, · · · , p and q conse-
quence criteria (undesired features) Ck, k = 1, · · · , q; Pj , Ck may be con-
flicting. Some information may also be lacking. Our method comprises such
decision tasks via the following steps.

1. A decision maker, a human expert, expresses by means of fuzzy sets
and membership functions to what grade an option βi, i = 1, · · · , n
satisfies the given criteria, i.e. to what degree µPj (βi) ∈ [0, 1] and
µCj

(βi) ∈ [0, 1] the option βi belongs to the corresponding fuzzy sets.
Notice that pros and cons may be completely independent of each other.
Our approach allows also a situation where there is an option βi pos-
sessing all pros and all cons; in this case µPj (βi) = µCj (βi) = 1 for all
j = 1, · · · , p, k = 1, · · · , q; this means maximally contradiction in ev-
idence. Correspondingly, there may be an option βi that does not have
any pros nor cons, i.e. µPj

(βi) = µCj
(βi) = 0 for all j = 1, · · · , p,

k = 1, · · · , q; in this case evidence is a complete unknown.

2. Now, each individual membership degree corresponds to a particular
partial fuzzy similarity degree. These partial fuzzy similarity degrees
are then combined to two total fuzzy similarity degrees xi, yi ∈ [0, 1],
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i = 1, · · · , n, where xi corresponding to all the pros and yi correspond-
ing to all the cons related to the option βi. The significance of various
criteria Pj and Ck may be expressed by criteria weights mj , nk ∈ M,
whereM is the set of weights of the criteria under consideration.

3. Any evidence couple (xi, yi) is related to the option βi, and thereby
produces the evidence matrix

Mi(βi) =

[
F (βi) C(βi)

U(βi) T (βi)

]
for i = 1, · · · , n.

As we have already mentioned, the F denotes falsehood, C denotes
contradiction, U represents unknown, and T represents truth of any
given option βi.

4. The set of evidence matrices denoted byM is an injective MV-algebra.
Thus, any pair of options βl, βm are comparable through the corre-
sponding evidence matricesMl(βl),Mm(βm) and ifMl(βl) ≤Mm(βm)

we say that the criterion Pj or Cj is more satisfied by alternative βm
than βl. Algebraically, Ml(βl) ≤ Mm(βm) provided Ml(βl)

⊥ ⊕
Mm(βm) = 1. In the setM, the matrices:[

1 0

0 0

]
,

[
0 0

0 1

]
corresponding to the evidence couples (0, 1) and (1, 0) are respectively
the bottom and the top elements ofM. However,M is not a chain since
there are matrices in M that are not comparable. In this article, we
shall show how the incomparabilities are resolved to have a chain of
elements.
In practise, it is normal to compare two alternatives A and B via their
evidence matrices. Assume the evidence matrices M and N generated
respectively by the evidence couples (a, b) and (x, y) are the respective
evidence matrices for the options A and B. Then, we say that M ≤ N
if and only if a ≤ x, and y ≤ b. Thus, x∗ ≤ a∗, b∗ ≤ y∗. This indicates
that more evidence abound backingB than the available evidence back-
ing A and there exists lesser evidence against B than we have against
A. From these inequalities, it can be observed that a ∧ b∗ ≤ x ∧ y∗
and x∗ ∧ y ≤ a∗ ∧ b. So, it is easy to see that T (N) − F (N) =

(x ∧ y∗)− (x∗ ∧ y) ≥ (a ∧ b∗)− (a∗ ∧ b) = T (M)− F (M), where
T (M) is the acronym for T (A) and F (M) is the acronym for F (A).
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Similarly, T (N), F (N) are the respective acronyms for T (B), F (B).
If M , N cannot be compared (i.e. M �� N ) then, the situation is
more complicated. These together gives rise to definition 3.1:

Definition 3.1. Let the evidence matricesM ,N generated respectively
by the evidence couples (a, b) and (x, y) be the respective matrices for
the pair of options A, B. It is said that option B is more desirable
than option A written as A � B if (i) M ≤ N or (ii) M �� N but
T (N) − F (N) > T (M) − F (M). Particularly, if M = N , then A,
B are equally desirable and it is written as A ≡ B. If M �� N ,
but T (N) − F (N) = T (M) − F (M), then A, B are weakly equally
desirable and it is represented by A ≡w B.

For example, for every evidence matrix M ∈M:

M =

[
a∗ ∧ b a� b
a∗ � b∗ a ∧ b∗

]
,

we have F (M) = a∗ ∧ b, and T (M) = a ∧ b∗, while C(M) = a � b
and U(M) = a∗ � b∗.

Theorem 1. The relation ≡ is an equivalence relation on the set of op-
tions whereas the relation≡w is not. The relation� defines a quasi–order
over the set of options.

Proof. The relation ≡ is obviously an equivalence relation. Now, for
the fact that A ≡w B and B ≡w A does not mean A ≡w A, ≡w is
not reflexive and it is not symmetric either, and so it is not an equiv-
alence relation. Further, the relation � is clearly reflexive. Now, sup-
pose A � B and B � C, where C is denoted by the evidence matrix
P which is produced by the evidence couple (p, q). In proving that
A � C, we have a number of cases and subcases to look at. These
cases and subcases are as follows:

Case 1. The case that M ≤ N , N ≤ P trivially implies M ≤ P , there-
fore A � C.

Case 2. IfM �� N but T (N)−F (N) > T (M)−F (M), andN �� P

but T (P )−F (P ) > T (N)−F (N) then there are two sub cases
here.
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Sub case I. (i) a < x, (ii) b < y, (iii) x∗ < a∗, (iv) y∗ < b∗, (v) (x∧y∗)−(x∗∧y) > (a∧b∗)−(a∗∧b)
(vi) x < p, (vii) y < q, (viii) p∗ < x∗, (ix) q∗ < y∗,
(x) (p ∧ q∗)− (p∗ ∧ q) > (x ∧ y∗)− (x∗ ∧ y).
So, by (i), (vi); a < p. By (ii), (vii); b < q. Thus M �� P .
However, by (x) and (v), T (P ) − F (P ) > T (M) − F (M)

Hence, A � C.

Sub case II. (i) x < a, (ii) y < b, (iii) a∗ < x∗, (iv) b∗ < y∗, (v) (x∧y∗)−(x∗∧y) > (a∧b∗)−(a∗∧b)
(vi) p < x, (vii) q < y, (viii) x∗ < p∗, (ix) y∗ < q∗,
(x) (p ∧ q∗)− (p∗ ∧ q) > (x ∧ y∗)− (x∗ ∧ y).
By (vi) and (i), p < a. And by (vii), (ii); q < b, hence
M �� P . Now, through (x) and (v), T (P ) − F (P ) >

T (M)− F (M). Therefore, A � C.
Alternatively, if T (N) − F (N) > T (M) − F (M), and
T (P ) − F (P ) > T (N) − F (N), then T (P ) − F (P ) >

T (M) − F (M) and so A � C. Assume P ≤ M . This
implies p ≤ a and b ≤ q. This further implies a∗ ≤ p∗ and
q∗ ≤ b∗. Thus, p ∧ q∗ ≤ a ∧ b∗ and a∗ ∧ b ≤ p∗ ∧ q. This
implies (a∧ b∗)− (a∗ ∧ b) ≥ (p∧ q∗)− (p∗ ∧ q). Therefore,
(a ∧ b∗) − (a∗ ∧ b) > (x ∧ y∗) − (x∗ ∧ y), which is a con-
tradiction to the initial assumption. Hence, either M ≤ P or
M �� P . In both scenarios, A � C.

Case 3. Let M ≤ N , N �� P , but T (P ) − F (P ) > T (N) − F (N).
Again there are two sub cases.

Sub case I. (i) a ≤ x, (ii) y ≤ b, (iii) x∗ ≤ a∗, (iv) b∗ ≤ y∗, (v) x < p,
(vi) p∗ < x∗, (vii) y < q, (viii) q∗ < y∗, (ix) T (P )−F (P ) > T (N)−F (N)

[i.e., (p ∧ q∗)− (p∗ ∧ q) > (x ∧ y∗)− (x∗ ∧ y)].
By (i), (v); a < p. So, if q ≤ b then M ≤ P . Hence,
A � C. But, if b < q then M �� P . In this situation, by
(i), (iv), x ∧ y∗ ≥ a ∧ b∗. And by (ii),(iii); x∗ ∧ y ≤ a∗ ∧ b.
Therefore, (x ∧ y∗) − (x∗ ∧ y) ≥ (a ∧ b∗) − (a∗ ∧ b). Re-
calling (ix), (p ∧ q∗)− (p∗ ∧ q) > (a ∧ b∗)− (a∗ ∧ b) [i.e.,
T (P )− F (P ) > T (M)− F (M)]. So, A � C.

Sub case II. (i) a ≤ x, (ii) y ≤ b, (iii) x∗ ≤ a∗, (iv) b∗ ≤ y∗, (v) p < x,
(vi) x∗ < p∗, (vii) q < y, (viii) y∗ < q∗, (ix) (p∧q∗)−(p∗∧q) > (x∧y∗)−(x∗∧y).
By (ii), (vii), q < b. If a ≤ p, then M ≤ P . Therefore,
A � C. However, if p < a, then M �� P . So, it is
reasoned that by (i), (iv); x ∧ y∗ ≥ a ∧ b∗ and by (ii), (iii);
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x∗∧y ≤ a∗∧b. Hence, (x∧y∗)−(x∗∧y) ≥ (a∧b∗)−(a∗∧b).
And by recalling (ix), T (P ) − F (P ) > T (M) − F (M).
Thus, A � C.

Case 4 Let M �� N but T (N) − F (N) > T (M) − F (M), and
N ≤ P . This combination too has two sub cases.

Sub case I. (i) a < x, (ii) x∗ < a∗, (iii) b < y, (iv) y∗ < b∗, (v) (x∧y∗)−(x∗∧y) > (a∧b∗)−(a∗∧b),
(vi) x ≤ p, (vii) p∗ ≤ x∗, (viii) q ≤ y, (ix) y∗ ≤ q∗,
By (i) and (vi), a < p. If q ≤ b then M ≤ P and there-
fore A � C. If b < q, then M �� P . By (vi) and (ix),
p ∧ q∗ ≥ x ∧ y∗. And by (vii) and (viii), p∗ ∧ q ≤ x∗ ∧ y.
Hence, (p ∧ q∗) − (p∗ ∧ q) ≥ (x ∧ y∗) − (x∗ ∧ y). So, by
(v), T (P )− F (P ) > T (M)− F (M). Therefore, A � C.

Sub case II. (i) x < a, (ii) a∗ < x∗, (iii) y < b, (iv) b∗ < y∗, (v) (x∧y∗)−(x∗∧y) > (a∧b∗)−(a∗∧b),
(vi) x ≤ p, (vii) p∗ ≤ x∗, (viii) q ≤ y, (ix) y∗ ≤ q∗.
Now, from (viii), (iii); q < b, and if a ≤ p then M ≤ P ,
hence A � C. However, if p < a then M �� P . Recalling
(vi), (ix); x ∧ y∗ ≤ p ∧ q∗ and via (vii) and (viii), p∗ ∧ q ≤
x∗∧y. This implies (p∧q∗)−(p∗∧q) ≥ (x∧y∗)−(x∗∧y).
And by (v), T (P )− F (P ) > T (M)− F (M) so, A � C.
Hence, from cases 1, 2, 3 and 4; the relation � is transitive,
and the proof is complete.

Examples (i), (ii) below illustrate how the technique proposed here operates.
Example (i): Assume matrices C, D are generated by the couples (0.4, 0.6),
(0.8, 0.3) sequentially. If C is the evidence matrix of option β1 and D is the
evidence matrix of option β2 which alternative is more desirable?
If the matrices C, D are obtained from (0.4, 0.6), (0.8, 0.3) correspondingly,
then

C =

[
0.6 0

0 0.4

]
, D =

[
0.2 0.1

0 0.7

]
.

Also, the evidence couple of C⊥ is (0.4∗, 0.6∗) = (0.6, 0.4) and that of
C⊥ ⊕D is (0.6⊕ 0.8, 0.4� 0.3) = (1, 0). So, in terms of matrices, we have

C⊥ ⊕D =

[
1∗ ∧ 0 1� 0

1∗ � 0∗ 1 ∧ 0∗

]
=

[
0 0

0 1

]
,
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hence, C ≤ D. Similarly, the evidence couple of D⊥ is (0.8∗, 0.3∗) =

(0.2, 0.7). The evidence couple for D⊥ ⊕ C = (0.2 ⊕ 0.4, 0.7 � 0.6) =

(0.6, 0.3). the corresponding matrix becomes,

D⊥ ⊕ C =

[
0.6∗ ∧ 0.3 0.6� 0.3

0.6∗ � 0.3∗ 0.6 ∧ 0.3∗

]
=

[
0.3 0

0.1 0.6

]
6=
[

0 0

0 1

]
Thus, D � C. However, from C⊥ ⊕ D we have realised that C ≤ D,
hence β2 is more desirable than β1. The same final conclusion: β2 is more
desirable than β1 will be drawn if one considers the difference between the
truth value and the falsehood value of each of the two matrices. That is,
T (D)− F (D) = 0.7− 0.2 = 0.5 > −0.2 = 0.4− 0.6 = T (C)− F (C).
Example (ii): Let us suppose that the two evidence coupls (0.7, 0.5) and (0.4,
0.3) induce the matrices E, G respectively for the two alternatives, α, β cor-
respondingly. What alternative between these two is the more desirable one?

Now, given that the evidence couple for E is (0.7, 0.5), and that of G is
(0.4, 0.3), their corresponding matrices are

E =

[
0.3 0.2

0 0.5

]
, G =

[
0.3 0

0.3 0.4

]
.

Further, the matrix E⊥ is produced by the couple (0.7∗, 0.5∗) = (0.3, 0.5)

and so E⊥ ⊕ G = (0.3 ⊕ 0.4, 0.5 � 0.3) = (0.7, 0). Thus, the respective
evidence matrix :

E⊥ ⊕G =

[
0.7∗ ∧ 0 0.7� 0

0.7∗ � 0∗ 0.7 ∧ 0∗

]
=

[
0 0

0.3 0.7

]
6=
[

0 0

0 1

]
,

hence, E � G.
Reciprocally, G⊥ is induced by (0.4∗, 0.3∗) = (0.6, 0.7). Hence, G⊥ ⊕E =

(0.6⊕ 0.7, 0.7� 0.5) = (1, 0.2). Therefore, the matrix :

G⊥ ⊕ E =

[
1∗ ∧ 0.2 1� 0.2

1∗ � 0.2∗ 1 ∧ 0.2∗

]
=

[
0 0.2

0 0.8

]
6=
[

0 0

0 1

]
,

so, G � E. Thus, the two matrices E, G cannot be compared. However,
T (E) − F (E) = 0.5 − 0.3 = 0.2 > 0.1 = 0.4 − 0.3 = T (G) − F (G).
Therefore, we conclude that alternative α is more desirable than alternative
β.
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4 A CASE STUDY: RANKING ENERGY PRODUCTION METH-
ODS IN GHANA

The above paraconsistency approach was applied to the energy data from
Ghana to identify the best (optimal) energy mix for the country. At present,
there are eight potential sources from which the country can generate elec-
tricity. The energy sources; the options from which to select the best one,
constitutes the set X:

X = {hydro, wind, solar, natural gas, nuclear, biomass, oil, coal}.

These options are also denoted for short by HYD, WIN, SOL, GAS, NUC,
BIO, OIL and COA, respectively. Elements of the set X are denoted by α,
β, γ or αi. The authors of this paper consulted energy experts at Ghana Min-
istry of Energy. After given the two sets of selection criteria, namely the pros
set and the cons set, energy experts evaluated each of the eight options. The
positive criteria set, the pros, consists of eleven criteria whereas the negative
criteria set, the cons, contains fifteen. To reflect the relative importance of
various criteria in the search for more reliable and sustainable power, all the
criteria were assigned weight?, given by the energy experts at the said min-
istry. The two sets of criteria together with their weights are displayed in
Table 1 and Table 2, respectively. ?

TABLE 1
Prospect criteria

? The given scale was from 1 to 10, however, the experts did not use the low end of the scale
at all.
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Criteria weight
1. Availability 7
2. Energy storage versatility 8
3. Energy storage capability 8
4. Self-sufficiency and reliability 8
5. Energy yield 8
6. Renewable 6
7. Job creation 8
8. Other benefits(including those from by-products) 8
9. Plant’s versatility/flexibility 9
10. Life span 9
11. Technological impact 9
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TABLE 2
consequence criteria

Criteria weight
1. Energy outsourcing 4
2. Green house gases emission 3
3. Rainfall fluctuation 6
4. Ecosystem and livelihood 6
5. Pollution 4
6. Waste management 8
7. Capital cost 7
8. Operational cost 8
9. Price volatility 8
10. Human consequence 6
11. Inter and/or intra boundary disputes 3
12. Civil unrest or social disorder 6
13. Location 4
14. Land mass or space consumption 3
15. Political interference 8

Every criterion generates a fuzzy subset of X , and so there are in all 26
fuzzy subsets, 11 of which are the pros while the rest are the cons. In Table
3 and Table 4, it is displayed to which degree each options α ∈ X satisfy the
criteria.

TABLE 3
Pros: Membership functions
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HYD WIN SOL GAS NUC BIO OIL COA
µP1

1 0.5 0.75 0.75 0.25 0.75 0.75 0.25
µP2

1 0.25 0.5 0.75 0.25 0.5 0.5 0.25
µP3 1 0.25 0.5 0.75 0.25 0.75 0.75 0.5
µP4

0.5 0.75 0.5 0.75 0.25 0.75 0.75 0.25
µP5

1 0.5 0.25 0.5 0.75 0.5 0.5 1
µP6

1 1 1 0 0.25 1 0 0
µP7 1 0.75 0.5 0.75 0.75 0.75 1 1
µP8

1 0.5 0.5 0.75 0.25 0.75 1 1
µP9

0.75 0.75 0.75 0.75 0.25 0.75 0.5 0.5
µP10

1 0.75 0.5 0.75 0.75 0.75 0.5 1
µP11 0.75 0.75 0.75 0.75 0.5 0.75 0.75 0.75

TABLE 4
Cons: Membership functions
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HYD WIN SOL GAS NUC BIO OIL COA
µC1

0.75 0.5 0.5 0.75 0.5 0.5 0.5 0.5
µC2

0 0 0 0.25 0.75 0.25 0.75 0.75
µC3 0.75 0.75 0.75 0.5 0.5 0.5 0.5 0.5
µC4

0.75 0.5 0.75 0.75 1 0.5 0.75 0.75
µC5

0 0.25 0.25 0.5 0.75 0.5 0.75 0.75
µC6

0 0.25 0.25 0.25 0.75 0.5 0.25 0.75
µC7 0.75 0.75 0.75 0.75 0.75 0.25 0.75 0.75
µC8

0 0 0 0.5 0.25 0.5 0.5 0.5
µC9

0 0 0 0.75 0.25 0.5 0.75 0.5
µC10

0.75 0.5 0.5 0.75 1 0.5 0.75 0.5
µC11 0.75 0.5 0.5 0.75 0.5 0.5 0.75 0.5
µC12

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
µC13

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
µC14

0.75 0.5 0.75 0.5 0.25 0.5 0.5 0.5
µC15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

By means of the weighted mean approach, the evidence couples of the
eight power sources α ∈ X were calculated. They are displayed in Table 5:

TABLE 5
Evidence couples

Option α Evidence for α Evidence against α
HYD 0.9034 0.4196
WIN 0.6108 0.3899
SOL 0.5824 0.4167
GAS 0.6761 0.5686
NUC 0.4176 0.5804
BIO 0.7216 0.5119
OIL 0.6705 0.5863
COA 0.6136 0.5833

These evidence couples induced the following evidence matrices. How-
ever, for the sake of simplicity, we denote the evidence couples and their cor-
responding evidence matrices for the alternatives: HYD, WIN, SOL, GAS,
NUC, BIO, OIL, and COA by H , W , S, G, N , B, O and C respectively.
Hence, the evidence matrices are :
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H =

[
0.0966 0.3231

0 0.5804

]
, W =

[
0.3892 0.0007

0 0.6101

]
, S =

[
0.4167 0

0.0009 0.5824

]

G =

[
0.3229 0.2446

0 0.4316

]
, N =

[
0.5804 0

0.0020 0.4176

]
, B =

[
0.2784 0.2335

0 0.4881

]

O =

[
0.3295 0.2568

0 0.4137

]
, C =

[
0.3864 0.1970

0 0.4167

]
.

Furthermore, through the evidence couples in table 5, we induced the follow-
ing evidence couples and their corresponding evidence matrices:

H⊥ ⊕W = (0.7074, 0), W⊥ ⊕H = (1, 0.0297).

H⊥ ⊕W =

[
0 0

0.2926 0.7074

]
, W⊥ ⊕H =

[
0 0.0297

0 0.9703

]
.

H⊥ ⊕ S = (0.5142, 0.1637), S⊥ ⊕H = (1, 0.009).

H⊥ ⊕ S =

[
0.1637 0

0.3221 0.5142

]
, S⊥ ⊕H =

[
0 0.0029

0 0.9971

]
.

H⊥ ⊕G = (0.7727, 0.149), G⊥ ⊕H = (1, 0).

H⊥ ⊕G =

[
0.149 0

0.0783 0.7727

]
, G⊥ ⊕H =

[
0 0

0 1

]
.

H⊥ ⊕N = (0.5142, 0.1608), N⊥ ⊕H = (1, 0).

H⊥ ⊕N =

[
0.1608 0

0.325 0.5142

]
, N⊥ ⊕H =

[
0 0

0 1

]

21



H⊥ ⊕B = (0.8182, 0.0923), B⊥ ⊕H = (1, 0).

H⊥ ⊕B =

[
0.0923 0

0.0895 0.8182

]
, B⊥ ⊕H =

[
0 0

0 1

]

H⊥ ⊕O = (0.7671, 0.1667), O⊥ ⊕H = (1, 0).

H⊥ ⊕O =

[
0.1667 0

0.0662 0.7671

]
, O⊥ ⊕H =

[
0 0

0 1

]

H⊥ ⊕ C = (0.7102, 0.1637), C⊥ ⊕H = (1, 0).

H⊥ ⊕ C =

[
0.1637 0

0.1261 0.7102

]
, C⊥ ⊕H =

[
0 0

0 1

]

W⊥ ⊕ S = (0.9716, 0.0268), S⊥ ⊕W = (1, 0).

W⊥ ⊕ S =

[
0.0268 0

0.0016 0.9716

]
, S⊥ ⊕W =

[
0 0

0 1

]

W⊥ ⊕G = (1, 0.1787), G⊥ ⊕W = (0.9347, 0).

W⊥ ⊕G =

[
0 0.1787

0 0.8213

]
, G⊥ ⊕W =

[
0 0

0.0653 0.9347

]

W⊥ ⊕N = (0.8068, 0.1905), S⊥ ⊕W = (1, 0).

W⊥ ⊕N =

[
0.1905 0

0.0027 0.8068

]
, N⊥ ⊕W =

[
0 0

0 1

]

W⊥ ⊕B = (1, 0.122), B⊥ ⊕W = (0.8892, 0).

W⊥ ⊕B =

[
0 0.122

0 0.878

]
, B⊥ ⊕W =

[
0 0

0.1108 0.8892

]
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W⊥ ⊕O = (1, 0.1964), O⊥ ⊕W = (0.9403, 0).

W⊥ ⊕O =

[
0 0.1964

0 0.8036

]
, O⊥ ⊕W =

[
0.0597 0

0 0.9403

]

W⊥ ⊕ C = (1, 0.1934), C⊥ ⊕W = (0.9972, 0).

W⊥ ⊕ C =

[
0 0.1934

0 0.8066

]
, C⊥ ⊕W =

[
0 0

0.0028 0.9972

]

S⊥ ⊕G = (1, 0.1519), G⊥ ⊕ S = (0.9063, 0).

S⊥ ⊕G =

[
0 0.1519

0 0.8481

]
, G⊥ ⊕ S =

[
0. 0

0.0937 0.9063

]

S⊥ ⊕N = (0.8352, 0.1637), N⊥ ⊕ S = (1, 0).

S⊥ ⊕N =

[
0.1637 0

0.0011 0.8352

]
, N⊥ ⊕ S =

[
0 0

0 1

]

S⊥ ⊕B = (1, 0.0952), B⊥ ⊕ S = (0.8608, 0).

S⊥ ⊕B =

[
0 0.0952

0 0.9048

]
, B⊥ ⊕ S =

[
0 0

0.1392 0.8608

]

S⊥ ⊕O = (1, 0.1696), O⊥ ⊕ S = (0.9119, 0).

S⊥ ⊕O =

[
0 0.1696

0 0.8304

]
, O⊥ ⊕ S =

[
0 0

0.0881 0.9119

]

S⊥ ⊕ C = (1, 0.1666), C⊥ ⊕ S = (0.9688, 0).

S⊥ ⊕ C =

[
0 0.1666

0 0.8334

]
, C⊥ ⊕ S =

[
0 0

0.0312 0.9688

]
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G⊥ ⊕N = (0.7415, 0.0118), N⊥ ⊕G = (1, 0).

G⊥ ⊕N =

[
0.0118 0

0.2467 0.7415

]
, N⊥ ⊕G =

[
0 0

0 1

]

G⊥ ⊕B = (1, 0), B⊥ ⊕G = (0.9545, 0.0567).

G⊥ ⊕B =

[
0 0

0 1

]
, B⊥ ⊕G =

[
0.0455 0.0112

0 0.9433

]

G⊥ ⊕O = (0.9944, 0.0177), O⊥ ⊕G = (1, 0).

G⊥ ⊕O =

[
0.0056 0.0121

0 0.9823

]
, O⊥ ⊕G =

[
0 0

0 1

]

G⊥ ⊕ C = (0.9375, 0.0147), C⊥ ⊕G = (1, 0).

G⊥ ⊕ C =

[
0.0147 0

0.0478 0.9375

]
, C⊥ ⊕G =

[
0 0

0 1

]

N⊥ ⊕B = (1, 0), B⊥ ⊕N = (0.696, 0.0685).

N⊥ ⊕B =

[
0 0

0 1

]
, B⊥ ⊕N =

[
0.0685 0

0.2355 0.696

]

N⊥ ⊕O = (1, 0.0059), O⊥ ⊕N = (0.7471, 0).

N⊥ ⊕O =

[
0 0.0059

0 0.9941

]
, O⊥ ⊕N =

[
0. 0

0.2529 0.7471

]

N⊥ ⊕ C = (1, 0.0029), C⊥ ⊕N = (0.804, 0).

N⊥ ⊕ C =

[
0 0.0029

0 0.9971

]
, C⊥ ⊕N =

[
0 0

0.196 0.804

]
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B⊥ ⊕O = (0.9489, 0.0744), O⊥ ⊕B = (1, 0).

B⊥ ⊕O =

[
0.0511 0.0233

0 0.9256

]
, O⊥ ⊕B =

[
0 0

0 1

]

B⊥ ⊕ C = (0.892, 0.0714), C⊥ ⊕B = (1, 0).

B⊥ ⊕ C =

[
0.0714 0

0.0366 0.892

]
, C⊥ ⊕B =

[
0 0

0 1

]

O⊥ ⊕ C = (0.9431, 0), C⊥ ⊕O = (1, 0.003).

O⊥ ⊕ C =

[
0 0

0.0569 0.9431

]
, C⊥ ⊕O =

[
0 0.003

0 0.997

]

Thus, from a quick glance at these pairs of matrices, it is obvious that there
are several comparabilities and incomparabilities among the alternatives. For
instance, apart from wind and solar which are incomparable to hydro power,
any other alternative is comparable to hydro power, and indeed hydro power
dominates all of them. The remaining options too show numerous incom-
parabilities among themselves. As a result, Definition 1 and Theorem 1 is
applied to rank the alternatives α ∈ X completely.
So, at a close look at the pairs of evidence matrices, it is clear that there are
neither equally desirable options nor weakly equally desirable options, i.e.
for no α, β holds α ≡ β or α ≡w β. Hence, the relation β is more desirable
than α, denoted by α � β is studied. As illustrated in examples 1 and 2,
these pairs of evidence matrices that represent the comparisons of the eight
alternatives are analysed as follows:

H⊥ ⊕W =

[
0 0

0.2926 0.7074

]
, W⊥ ⊕H =

[
0 0.0297

0 0.9703

]
.

Thus, H �,�W since W⊥⊕H 6=
[

0 0

0 1

]
6= H⊥⊕W . However, recall
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that the various energy options in X have the following individual matrices:

H =

[
0.0966 0.3231

0 0.5804

]
, W =

[
0.3892 0.0007

0 0.6101

]
, S =

[
0.4167 0

0.0009 0.5824

]

G =

[
0.3229 0.2446

0 0.4316

]
, N =

[
0.5804 0

0.0020 0.4176

]
, B =

[
0.2784 0.2335

0 0.4881

]

O =

[
0.3295 0.2568

0 0.4137

]
, C =

[
0.3864 0.1970

0 0.4167

]
.

Thus, from matrices H and W , it is observed that T (H) − F (H) =

0.5804− 0.0966 = 0.4838 > 0.2209 = 0.6101− 0.3892 = T (W )−F (W ).
Hence, WIND � HYDRO. Similarly,

H⊥ ⊕ S =

[
0.1637 0

0.3221 0.5142

]
, S⊥ ⊕H =

[
0 0.0029

0 0.9971

]
.

So,H �,� S. But, T (H)−F (H) = 0.5804−0.0966 = 0.4838 > 0.1657 =

0.5824 − 0.4167 = T (S) − F (S). Therefore, SOLAR � HYDRO. And
for hydro and natural gas,

H⊥ ⊕G =

[
0.149 0

0.0783 0.7727

]
, G⊥ ⊕H =

[
0 0

0 1

]
.

Thus, H � G, and G ≤ H therefore, NATURAL GAS � HYDRO. In
other words, T (H) − F (H) = 0.5804 − 0.0966 = 0.4838 > 0.1087 =

0.4316− 0.3229 = T (G)−F (G). Therefore, NATURAL GAS � HYDRO.
So, extending this analysis to the rest of the pairs, the following results have
been obtained:
T (H)− F (H) = 0.5804− 0.0966 = 0.4838,
T (W )− F (W ) = 0.6101− 0.3892 = 0.2209,
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T (S)− F (S) = 0.5824− 0.4167 = 0.1657,
T (G)− F (G) = 0.4316− 0.3229 = 0.1087,
T (N)− F (N) = 0.4176− 0.5804 = −0.1628,
T (B)− F (B) = 0.4881− 0.2784 = 0.2097,
T (O)− F (O) = 0.4137− 0.3295 = 0.0842,
T (C)− F (C) = 0.4167− 0.3864 = 0.0303.
Hence, the final ranking is as follows:
Nuclear � coal � oil � natural gas � solar � biomass � wind � hydro.
These results show that Ghana’s energy production sources superiority de-
pends substantially on the emphasise of the positive aspects or the drawbacks
of the production source. Thus, the optimal energy source is hydro power and
the worst source is nuclear. Moreover, the best five sources for the energy mix
for Ghana are hydro power, wind energy, biomass, solar energy and natural
gas.

5 CONCLUSION

In this article, a technique for decision making under conflicting and vague
information is introduced. The idea is that every decision alternative say A
has its pros as well as cons. Through what is called total fuzzy similarity,
these pros are put together to give a single value say x. Similarly, by the total
fuzzy similarity approach, the cons are put together to yield a unique value
say y. So, the pair of values (x, y) known as the evidence couple defines a 2-
by-2 evidence matrix sayQ for the optionA. So, under normal circumstance,
an option B with the 2-by-2 evidence matrix R is more desirable than option
A granted that more evidence abound in support of B than what is available
in support of A, and lesser amount of evidence against B is available than
there is against A. In such a situation, the relationship between Q, R is of the
form Q is less than or equal to R (Q ≤ R). This indicates that in terms of
truth and falsity option B is better off than option A. However, the evidence
couples and for that matter the corresponding evidence matrices Q, R are not
comparable if either of the options A, B is armed with stronger evidence in
support of itself and stronger evidence against itself. To solve this incompa-
rability, the difference between the truth value and the falsehood value of the
matrix Q [ i.e. T (Q) − F (Q)] and that of R [i.e. T (R) − F (R)] are com-
pared. If T (R) − F (R) > T (Q) − F (Q) then B is more desirable than A
and vice versa. Through this process, a complete order is established for all
the options.
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To demonstrate the use of the method, energy experts in the energy sector in
Ghana were consulted to find the best energy mix under vague and contradic-
tory circumstances for the country.
To make the calculation much easier, a programme of the model is in the
making for the end user.
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