

EFFICIENT TOPOLOGY CODING AND PAYLOAD PARTITIONING TECHNIQUES FOR

NEURAL NETWORK COMPRESSION (NNC) STANDARD

Jaakko Laitinen*, Alexandre Mercat*, Jarno Vanne*,
Hamed Rezazadegan Tavakoli†, Francesco Cricri†, Emre Aksu†, Miska Hannuksela†

*Ultra Video Group, Tampere University, Tampere, Finland

†Nokia Technologies, Tampere, Finland

ABSTRACT

A Neural Network Compression (NNC) standard aims to define a
set of coding tools for efficient compression and transmission of
neural networks. This paper addresses the high-level syntax (HLS)

of NNC and proposes three HLS techniques for network topology
coding and payload partitioning. Our first technique provides an
efficient way to code prune topology information. It removes
redundancy in the bitmask and thereby improves coding efficiency
by 4–99% over existing approaches. The second technique
processes bitmasks in larger chunks instead of one bit at a time. It is
shown to reduce computational complexity of NNC encoding by
63% and NNC decoding by 82%. Our third technique makes use of

partial data counters to partition an NNC bitstream into uniformly
sized units for more efficient data transmission. Even though the
smaller partition sizes introduce some overhead, our network
simulations show better throughput due to lower packet
retransmission rates. To our knowledge, this the first work to address
the practical implementation aspects of HLS. The proposed
techniques can be seen as key enabling factors for efficient
adaptation and economical deployment of the NNC standard in a
plurality of next-generation industrial and academic applications.

Index Terms— Neural Network Compression (NNC), Neural

Network Representation (NNR), High-Level Syntax (HLS), neural

network topology, bitmask coding

1. INTRODUCTION

The proliferation of intelligent applications and their multifaceted
set of machine learning algorithms have fueled the need for deep
neural networks (NNs) that tend to be very resource hungry. At the

same time, the increasing sizes of advanced deep NNs give rise to
deployment costs that stem from their higher computation load,
memory consumption, and bandwidth utilization. To that end, there
is a strong industrial demand for more compact deep NNs.

The two main objectives of NN coding are 1) to create a
compact, high-performance NN model that can be run on resource-
limited devices; and 2) to enable efficient NN transport that is the
key to massive deployment of edge computing and frequent updates

of NN models in remote cloud services. These two objectives can be
addressed independently, but depending on the use case, they can
also complement each other.

Research on NN compression is still underway, but the urgent
industrial demand has already resulted into the first draft standard

called Neural Network Compression (NNC) or ISO/IEC FDIS
15938-17 [1]. It defines a set of coding tools and techniques for
compressing and decompressing NNs for efficient transportation.
The NNC reference software is called Neural Network Compression
Test Model (NCTM) [2]. It aims to implements all normative coding
tools of NNC, so it is typically used as an experimental software.

Figure 1 depicts a high-level block diagram of the proposed
encoding scheme, where the proposed tools are included in the

parameter reduction step. The remaining steps include quantization,
used to prepare model weights for the encoding process as well as
improve coding efficiency, and entropy coding in the form of
CABAC [3]. The standard specifies the compressed representations
for NNs and creates a compatible bitstream for the NNC decoder. In
order to signal information for the decoding operations, the NNC
standard defines a high-level syntax (HLS) and a set of elements that
carry the information of employed tools at the encoding step.

The NNC bitstream is composed of NN Representation (NNR)

units that are divided into unit size, unit header, and unit payload
fields. The first field gives the total size of the unit. The unit header
indicates the type of the carried information and associated
metadata. For example, an NNR start unit indicates the start of a
bitstream, a Model Parameter Set (MPS) unit carries the global
metadata of an NN, a Layer Parameter Set (LPS) unit is for the layer
level information and can contain partial representations of NNs, a
Topology (TPL) data unit carries topological information of an NN,

compressed data (NDU) units contain NN model weights, etc. The
third field, unit payload, includes actual NN data. Throughout the
HLS, element IDs are used to refer to individual NN layers. The
NNC standard additionally defines two different modes for the IDs:
a string format label and a 0-indexed integer ID that also defines an
ordering for the layers in the NN model. If the integer-based IDs are
used, the layer topology needs to be provided separately. A more
detailed HLS description of the NNC standard can be found

in [1], [3], but they do not address implementation aspects.
To the best of our knowledge, this is the first work to propose

practical HLS implementation techniques for the NNC standard.
Our primary focus is on a compact representation of prune topology
information, efficient bitmask coding, and bitstream partitioning
with partial data counters.

The remainder of this paper is organized as follows. Section 2
introduces the proposed techniques in detail. Section 3 reports our

experimental results. Finally, Section 4 concludes the paper.

Fig. 1. High-level description of the NNC encoding tools.

This work was supported in part by the AI for situational Awareness

(AISA) project led by Nokia and funded by Business Finland.

2. PROPOSED CODING TECHNIQUES FOR NNC

The proposed HLS techniques include 1) a compact prune bitmask
for higher coding efficiency; 2) sparse bitmask coding in chunks for
lower coding complexity; and 3) partial data counters for more
economical transmission. These techniques are detailed next.

2.1. Prune Bitmask

Prune bitmasks are metadata included in the optional HLS element
called prune topology container. They allow passing information
about the pruning process and provide a decoder with a way to

determine the post-pruning structure of an NN model. Alternatively,
the pruning topology container allows duplicating the pruned
structure of the original model when structure changes take place.

Prune bitmasks are generated in the parameter reduction step
(see Figure 1) as a way to reduce the complexity of an existing NN.
In the pruning process, input and output channels of convolutional
layers are removed according to the specified criteria, such as
estimated weight importance and a pruning ratio [3]. However, the

input channels of the first layer and the output channels of the last
layer are left unchanged. Additionally, linear layers connected to the
pruned convolutional layers need to be pruned to reflect the removed
connections. A straightforward way to generate a prune bitmask is
to assign each weight of a layer a value of one if the weight should
be pruned and zero otherwise. However, this solution contains a lot
of redundancy as only the pruned input/output channels are relevant,
not the specific weights that are pruned.

The proposed technique for redundancy removal is referred to

as partial prune bitmask (PPB). It removes redundancy by only
generating a bitmask for the output channels of the layers. The input
channels that should be pruned can be inferred from the bitmask of
the previous layer, since the output and input channel sizes of
connected convolutional layers should match. If the model contains
linear layers after the convolutional layers, the input channels of the
first linear layer need to be pruned while taking into account that the
linear layer may have more inputs than the convolutional layer has

outputs. In this case, the ratio of outputs to inputs is calculated and
the linear input channels are pruned accordingly. Finally, if the last
output layer is a convolutional layer, it is omitted from the prune
bitmask, since the final layer is not pruned, as mentioned above.

2.2. Packed Coding of Sparse Bitmasks

Sparse bitmasks are also included in the optional prune topology
container. They allow transmitting information that can be used as
side-channel information, e.g., to zero the weights of the original
model to match to the sparsified model without transmitting the
entire sparsified model. Unlike prune bitmasks, sparse bitmasks are
specified for all weights of an NN model. This results in massive
sparse bitmasks for large models.

As with pruning, sparsification is a part of the parameter

reduction step. Sparsification is performed using an iterative process
on a pre-trained model with a target sparsification ratio and includes
a special loss function for fine-tuning the sparsified model to
improve coding efficiency [3].

When generating a bitmask, a value of zero or one is associated
with each weight of a parameter tensor. This bitmask of zero/one
values is then encoded as 1-bit unsigned integers. By default, the
bitmask is encoded one bit at a time. As such, coding each bitmask

bit individually is inefficient and result in many function calls when
coding bitmasks for large models with millions of weights.

To solve this, we propose coding the bitmask in chunks of N-
bits. Because the bitmask is coded as a continuous sequence of bits
in the bitstream, the number of simultaneously coded bits has no
effect on the bitstream. However, coding multiple bits in one
operation increases the coding speed because it reduces the number
of required operations. The speedup scales linearly as a function of

N and saturates as N exceeds the maximum integer precision of the
system. In that case, a bitmask chunk cannot be processed with one
operation. The most typical values for N are 8, 16, 32, and 64 since
those are the most widely supported integer precisions. Our solution
also reduces the run-time memory consumption by packing the
bitmask bits directly to N-bit integers, provided that the memory
elements can take up N bits.

Ideally, the number of bits per operation can be freely set. In this
case, the bitmask coding is carried out by looping over the bitmask

in N-bit chunks and the remaining bits (if any) are coded in the final
iteration. If the number of bits per operation cannot be dynamically
set, the leftover bits must be processed separately, e.g., one bit at a
time, i.e., it adds some processing overhead.

Finally, it is possible to perform both pruning and sparsification
in which case both a prune bitmask and a sparse bitmask is
generated. Moreover, the packed coding technique, described above,
can be applied to the prune bitmask as well. To avoid sparsifying

parameters that are pruned, the pruning step is performed first and
sparsification is performed on the pruned model.

2.3. Partial Data Counter

Partial data counter is an HLS element that is used to track partial

NDU NNR unit payloads. It allows splitting large payloads into
smaller, more manageable ones. Because partitioning using the
partial data counter is done on the bitstream level, there is no need
to account for it when designing and training the NN model.

Partitioning large NDUs is especially useful when transmitting
an encoded NN model over a network, since large packets are more
vulnerable to packet losses and transmission errors, resulting in
wasted bandwidth due to retransmitted packets. The downside of
fine-grain partitioning is the overhead introduced by the additional

NNR unit headers, so balancing is needed between NNR unit and
bitstream sizes.

The partitioning is created by first coding an NNR unit payload
normally. Then, a sub-payload size is determined as per the desired
number of partitions or target NNR unit size. Each sub-payload is
written to the bitstream with an NNR unit header and the respective
partial data counter value. If a partial data counter value is present
in the header, a decoder reads NNR units until a partial data counter

value of zero is reached. The payload of each NNR unit is extracted,
and the payloads are combined to allow for typical decoding.

Let us define a ‘max_ndu_nnr_unit_size’ value that is used to
control the partial data counter value on a per-NDU basis. It allows
for a uniform maximum size across the NDU NNR units. First, the
encoder determines an initial estimate for the NDU payload partition
size. A mock encoding is performed to determine the header size
that is then used to calculate the correct ratio between the header and

the payload. Because the size of an NNR unit header can change
depending on the total size of the NNR unit, care needs to be taken
when the ‘max_ndu_nnr_unit_size’ value is close to the break-even
point, where the NNR unit header size switches from short to long.

3. EXPERIMENTAL RESULTS

Our experiments were carried out with NCTM [2] version 5.0 that
was modified to support the proposed optimization techniques. For
tests that perform encoding/decoding, the following NCTM
parameters were used: approximation (i.e., quantization) uses the
‘codebook’-method [3] with a ‘cb_size_ratio’ of 5000 and ‘q_mse’
of 0.00001. All tests were performed on a computer equipped with
Intel Xeon @ 3.70 GHz 8-core processor and 32 GB of RAM.

Our test set is characterized in Table 1. Altogether, it includes
five NN models taken from the evaluation specification for
NNC [4]. UC12B and DCase are smaller models for autoencoding
and acoustic classification, respectively. MobileNetV2 [5],
ResNet50 [6], and VGG16 [7] are large image classification models.

3.1. Partial Prune Bitmask

The proposed PPB technique is compared with 1) a full prune
bitmask that covers all weights of a model; 2) prune dictionary using
string-based labels for element IDs [1]; and 3) prune dictionary
using index-based labels. With each model, the sizes of prune
bitmasks are estimated from the number of weights and layer output
channels of the convolutional layers. The difference between the
solutions is given as compression gain (CG) that is defined as

CG = (1 −
S1

S2
) × 100, (1)

where S1 and S2 are the sizes of the two HLS elements.
Table 2 shows the results. Using the partial bitmask results in a

CG of over 99% for all tested models. Against index-based prune
dictionaries, the proposed prune bitmask overall provides better
compression but, depending on the NN model, CG ranges from 4%

to 95%. Compared to the string label prune dictionary, prune
bitmask gives a CG ranging from 60% to 98%. However, the sting
label sizes depend on the lengths of the strings used as the labels, so
the exact CG may vary. With the larger models, especially VGG16,
the size of indexed labels gets close to the size of the PPB. This is
due to the relatively low number of layers compared to the number
of weights, especially in the fully connected layers (see Table 1).

3.2. Packed Coding of Sparse Bitmasks

The coding complexity of a sparse bitmask is calculated by
measuring the time it takes to encode/decode topology information
with and without the proposed optimizations. Majority of the
complexity comes from the bitmask coding, so the reported times
closely reflect the true coding time for the bitmasks. Time

measurements are repeated 20 times for more reliable results.
The encoding and decoding times for sparse bitmask coding

(packed and unpacked) are shown in Table 3. The speedup ranges
from 2.54× to 2.87× in encoding and from 5.24× to 5.56× in
decoding. However, the theoretical speedup of 8× is still out of reach
because the underlying bitstream generation is executed one bit at a

time. The proposed packing only moderately reduces the number of

total function calls. For decoding, this reduction in the number of
function calls provides a more significant speedup.

For further speedup, the underlying coding process could be
accelerated with dedicated functions that are able to code larger HLS
elements with a single function call. For example, coding the sparse
bitmask in 8-bit chunks would reduce function calls to one eighth.

3.3. Partial Data Counter

Partial data counter results were obtained with network simulation.
First, a bitstream was generated using a partitioning determined by
a given ‘max_ndu_nnr_unit_size’ value or without any NNR unit
partitioning. Then, the bitstream was decoded and the number and
size of the NDU NNR units were extracted for the network
simulation. A packet loss probability was also specified to simulate

lost packets and transmission errors in the network simulation.
A single simulation run consists of sending each NNR NDU unit

(e.g., a packet) in the generated bitstream. Packet sending is
simulated using a randomized function, returning true or false with
the specified probability, to determine if a packet is delivered or not.
If the sending failed, the packet was retransmitted, and relevant
statistics were updated. The output of the simulation run is the
amount of (re)transmitted data. These simulation runs were repeated

100 000 times, and the results were averaged to get the expected
values (of the random event) for the given parameters. A maximum
transmission unit (MTU) size of 1500 bytes was also specified to
better reflect real world network conditions. If a packet being sent
was larger than the MTU size, it was further divided into subpackets
that were sent individually. If any of the subpackets were lost, all
subpackets were retransmitted. The network simulation assumed a
transport protocol with minimal packet management such as UDP.

Figure 2 plots the data transmission rates for different max NNR
NDU unit size values in the network simulation with packet
loss (PL) values of 1% and 3%. UC12B and MobileNetV2 NN
models were chosen to cover both the small and large NN cases. For
MobileNetV2, fully connected (FC) layers were omitted in our tests
because they form the largest NDUs, and transmitting the
unpartitioned bitstreams without proper packet management
becomes impossible even with a small number of packet losses.

In Figure 2, data rates and NNR unit sizes are given in bytes.
The “Unpart.” stands for the unpartitioned NNR NDU units and the
“Part.” for partitioned NNR NDU units. The lines with “(total)”
show the total amount of data that has been sent, whereas the

Table 2. Compressibility of prune bitmask

NN model
Prune bitmask

(full)
CG of PPB

CG of PPB vs.

string label

CG of PPB vs.

indexed label

UC12B 00075888 99.62% 94.68% 88.77%

DCase 00101920 99.91% 98.54% 94.64%

MobileNetV2 2189760 99.22% 87.65% 43.48%

ResNet50 14710464 99.97% 77.36% 25.89%

VGG16 23454912 99.89% 60.60% 04.35%

Table 1. Breakdown of the executed NN models

NN model Total param Conv. param Total layer Conv. layer

UC12B 000076179 00076179 09 09

DCase 000116118 00102016 03 02

MobileNetV2 003538984 02189760 53 52

ResNet50 025636712 23398976 50 49

VGG16 138357544 14714688 16 13

Table 3. Coding time of sparse bitmasks

NN model
Encoding time (s) Decoding time (s)

Unpacked Packed Speedup Unpacked Packed Speedup

UC12B 00022.0 00007.8 2.83× 0008.6 0001.6 5.49×

DCase 00034.0 00013.4 2.54× 0012.7 0002.4 5.24×

MobileNetV2 01011.8 00353.1 2.87× 00395.5 0071.1 5.56×

ResNet50 07462.0 02762.3 2.70× 02871.7 0534.1 5.38×

VGG16 41229.0 16092.0 2.56× 15237.3 2866.3 5.32×

“(retransmitted)” suffixed lines only show the amount of data that
has been retransmitted.

In Figure 2(a), we can see that the partitioned bitstream becomes
more efficient than the unpartitioned bitstream when the max NNR
unit size is 1000 bytes or more (packet loss of 1%) with the UC12B
model. However, the total data amount is still fairly similar to the

unpartitioned case. With a packet loss of 3%, the better efficiency of
the partitioned bitstream becomes clearer. Even smaller max NDU
NNR unit size limits are more efficient than the unpartitioned
bitstream due to the increase in the retransmission amount of the
unpartitioned bitstream with higher packet loss values. With
UC12B, we can see that going over the MTU size still decreases the
total transmission amount for a bit before it starts increasing again
as the retransmission amount increases. This dip is due to the
considerable increase in bitstream size, caused by a large number of

NDU partitions, that overpowers the increase in the retransmission
amount, brought on by larger packets. For UC12B, the smallest total
transmission amount is around 3000 bytes, for a packet loss of 1%.
However, if the packet loss is 3%, the optimal NDU size is the MTU
limit of 1500 bytes.

For the MobileNetV2 results in Figure 2(b), the large NDU unit
sizes call for larger maximum NDU NNR unit sizes, starting from
the MTU size of 1500 bytes. From the data, the optimal maximum

NDU NNR unit size for MobileNetV2 is around 9000 bytes, when
packet loss is 1%, but increasing the packet loss to 3% reduces the
minimum to around 4500 bytes. As for the unpartitioned bitstream,
its total transmission amount is higher than the respective partitioned
bitstream, for both packet loss values, throughout the NDU NNR
unit size range.

4. CONCLUSION

In this paper, we proposed techniques for creating a compact prune
bitmask representation, coding sparse bitmasks efficiently, and
partitioning NNR NDU units economically.

First, limiting the prune bitmask to output channels provides a

very compact way to store prune topology information, with coding
efficiency ranging from 4% to 99% over other methods. However,
this approach may become difficult to implement with large NN
models and complex features (e.g., bottlenecks, residual blocks, and
shortcuts) that do not necessary translate well to NNR. In those cases
(e.g., image classification), the prune dictionary representation is a
more straightforward approach and, depending on the model, can be
implemented with a slight coding overhead when compared with the

prune bitmask. In addition, the more compact prune information
representations decrease the decoding complexity, and the pruning
process can be implemented as a slice operation on the parameter
tensors without increasing the complexity of the overall pipeline.

Secondly, sparse bitmasks become very complex with large NN
models, and their coding time can rise to tens of hours in the worst
case. Using the proposed method of coding the bitmask in chunks
reduces the NNC encoding time to almost one-third and the

decoding time to over one-fifth.
Finally, our experiments showed in simulated network

conditions that transmitting full NNR NDU units over a network
becomes prohibitively inefficient as the probability of packet losses
increases. Using the partial data counters in NDU partitioning comes
with some coding overhead over that of the unpartitioned bitstream,
but it is well compensated by lower packet retransmission rate as the
partition size grows. For the examined NN models, the optimal NDU

size is 2–6× the MTU size with a packet loss of 1% and 1–3× the
MTU size with a packet loss of 3%.

5. REFERENCES

[1] Text of ISO/IEC FDIS 15938-17 Compression of Neural

Networks for Multimedia Content Description and Analysis,
ISO, 2021.

[2] Test Model 6 of Compression of Neural Networks for
Multimedia Content Description and Analysis, MPEG
document N0017, ISO/IEC JTC 1/SC 29/WG 04, Oct. 2020.

[3] H Kirchhoffer et al., “Overview of the neural network
compression and representation (nnr) standard,” IEEE Trans.
Circuits Syst. Video Technol. , Jul. 2021, pp. 1–14.

[4] Evaluation Framework for Compressed Representation of
Neural Networks, MPEG document N17929, ISO/IEC JTC
1/SC 29/WG 11, Oct. 2018.

[5] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proc. IEEE Conf. Comput. Vision Pattern
Recogniti., Jun. 2018, pp. 4510–4520.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conf. Comput. Vision
Pattern Recogniti., Jun. 2016, pp. 770–778.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, Sept. 2014.

Fig. 2. Network simulation results for UC12B and MobileNetV2.

 a C

 b obi e et no C a er

