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ABSTRACT 

A Neural Network Compression (NNC) standard aims to define a 
set of coding tools for efficient compression and transmission of 
neural networks. This paper addresses the high-level syntax (HLS) 

of NNC and proposes three HLS techniques for network topology 
coding and payload partitioning. Our first technique provides an 
efficient way to code prune topology information. It removes 
redundancy in the bitmask and thereby improves coding efficiency 
by 4–99% over existing approaches. The second technique 
processes bitmasks in larger chunks instead of one bit at a time. It is 
shown to reduce computational complexity of NNC encoding by 
63% and NNC decoding by 82%. Our third technique makes use of 

partial data counters to partition an NNC bitstream into uniformly 
sized units for more efficient data transmission. Even though the 
smaller partition sizes introduce some overhead, our network 
simulations show better throughput due to lower packet 
retransmission rates. To our knowledge, this the first work to address 
the practical implementation aspects of HLS. The proposed 
techniques can be seen as key enabling factors for efficient 
adaptation and economical deployment of the NNC standard in a 
plurality of next-generation industrial and academic applications. 

 
Index Terms— Neural Network Compression (NNC), Neural 

Network Representation (NNR), High-Level Syntax (HLS), neural 

network topology, bitmask coding 

1. INTRODUCTION 

The proliferation of intelligent applications and their multifaceted 
set of machine learning algorithms have fueled the need for deep 
neural networks (NNs) that tend to be very resource hungry. At the 

same time, the increasing sizes of advanced deep NNs give rise to 
deployment costs that stem from their higher computation load, 
memory consumption, and bandwidth utilization. To that end, there 
is a strong industrial demand for more compact deep NNs.  

The two main objectives of NN coding are 1) to create a 
compact, high-performance NN model that can be run on resource-
limited devices; and 2) to enable efficient NN transport that is the 
key to massive deployment of edge computing and frequent updates 

of NN models in remote cloud services. These two objectives can be 
addressed independently, but depending on the use case, they can 
also complement each other. 

Research on NN compression is still underway, but the urgent 
industrial demand has already resulted into the first draft standard 

called Neural Network Compression (NNC) or ISO/IEC FDIS 
15938-17 [1]. It defines a set of coding tools and techniques for 
compressing and decompressing NNs for efficient transportation. 
The NNC reference software is called Neural Network Compression 
Test Model (NCTM) [2]. It aims to implements all normative coding 
tools of NNC, so it is typically used as an experimental software. 

Figure 1 depicts a high-level block diagram of the proposed 
encoding scheme, where the proposed tools are included in the 

parameter reduction step. The remaining steps include quantization, 
used to prepare model weights for the encoding process as well as 
improve coding efficiency, and entropy coding in the form of 
CABAC [3]. The standard specifies the compressed representations 
for NNs and creates a compatible bitstream for the NNC decoder. In 
order to signal information for the decoding operations, the NNC 
standard defines a high-level syntax (HLS) and a set of elements that 
carry the information of employed tools at the encoding step. 

The NNC bitstream is composed of NN Representation (NNR) 

units that are divided into unit size, unit header, and unit payload 
fields. The first field gives the total size of the unit. The unit header 
indicates the type of the carried information and associated 
metadata. For example, an NNR start unit indicates the start of a 
bitstream, a Model Parameter Set (MPS) unit carries the global 
metadata of an NN, a Layer Parameter Set (LPS) unit is for the layer 
level information and can contain partial representations of NNs, a 
Topology (TPL) data unit carries topological information of an NN, 

compressed data (NDU) units contain NN model weights, etc. The 
third field, unit payload, includes actual NN data. Throughout the 
HLS, element IDs are used to refer to individual NN layers. The 
NNC standard additionally defines two different modes for the IDs: 
a string format label and a 0-indexed integer ID that also defines an 
ordering for the layers in the NN model. If the integer-based IDs are 
used, the layer topology needs to be provided separately. A more 
detailed HLS description of the NNC standard can be found 

in [1], [3], but they do not address implementation aspects. 
To the best of our knowledge, this is the first work to propose 

practical HLS implementation techniques for the NNC standard. 
Our primary focus is on a compact representation of prune topology 
information, efficient bitmask coding, and bitstream partitioning 
with partial data counters. 

The remainder of this paper is organized as follows. Section 2 
introduces the proposed techniques in detail. Section 3 reports our 

experimental results. Finally, Section 4 concludes the paper. 

 

Fig. 1. High-level description of the NNC encoding tools.  
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2. PROPOSED CODING TECHNIQUES FOR NNC 

The proposed HLS techniques include 1) a compact prune bitmask 
for higher coding efficiency; 2) sparse bitmask coding in chunks for 
lower coding complexity; and 3) partial data counters for more 
economical transmission. These techniques are detailed next. 

2.1. Prune Bitmask 

Prune bitmasks are metadata included in the optional HLS element 
called prune topology container. They allow passing information 
about the pruning process and provide a decoder with a way to 

determine the post-pruning structure of an NN model. Alternatively, 
the pruning topology container allows duplicating the pruned 
structure of the original model when structure changes take place. 

Prune bitmasks are generated in the parameter reduction step 
(see Figure 1) as a way to reduce the complexity of an existing NN. 
In the pruning process, input and output channels of convolutional 
layers are removed according to the specified criteria, such as 
estimated weight importance and a pruning ratio [3]. However, the 

input channels of the first layer and the output channels of the last 
layer are left unchanged. Additionally, linear layers connected to the 
pruned convolutional layers need to be pruned to reflect the removed 
connections. A straightforward way to generate a prune bitmask is 
to assign each weight of a layer a value of one if the weight should 
be pruned and zero otherwise. However, this solution contains a lot 
of redundancy as only the pruned input/output channels are relevant, 
not the specific weights that are pruned. 

The proposed technique for redundancy removal is referred to 

as partial prune bitmask (PPB). It removes redundancy by only 
generating a bitmask for the output channels of the layers. The input 
channels that should be pruned can be inferred from the bitmask of 
the previous layer, since the output and input channel sizes of 
connected convolutional layers should match. If the model contains 
linear layers after the convolutional layers, the input channels of the 
first linear layer need to be pruned while taking into account that the 
linear layer may have more inputs than the convolutional layer has 

outputs. In this case, the ratio of outputs to inputs is calculated and 
the linear input channels are pruned accordingly. Finally, if the last 
output layer is a convolutional layer, it is omitted from the prune 
bitmask, since the final layer is not pruned, as mentioned above. 

2.2. Packed Coding of Sparse Bitmasks 

Sparse bitmasks are also included in the optional prune topology 
container. They allow transmitting information that can be used as 
side-channel information, e.g., to zero the weights of the original 
model to match to the sparsified model without transmitting the 
entire sparsified model. Unlike prune bitmasks, sparse bitmasks are 
specified for all weights of an NN model. This results in massive 
sparse bitmasks for large models. 

As with pruning, sparsification is a part of the parameter 

reduction step. Sparsification is performed using an iterative process 
on a pre-trained model with a target sparsification ratio and includes 
a special loss function for fine-tuning the sparsified model to 
improve coding efficiency [3]. 

When generating a bitmask, a value of zero or one is associated 
with each weight of a parameter tensor. This bitmask of zero/one 
values is then encoded as 1-bit unsigned integers. By default, the 
bitmask is encoded one bit at a time. As such, coding each bitmask 

bit individually is inefficient and result in many function calls when 
coding bitmasks for large models with millions of weights. 

To solve this, we propose coding the bitmask in chunks of N-
bits. Because the bitmask is coded as a continuous sequence of bits 
in the bitstream, the number of simultaneously coded bits has no 
effect on the bitstream. However, coding multiple bits in one 
operation increases the coding speed because it reduces the number 
of required operations. The speedup scales linearly as a function of 

N and saturates as N exceeds the maximum integer precision of the 
system. In that case, a bitmask chunk cannot be processed with one 
operation. The most typical values for N are 8, 16, 32, and 64 since 
those are the most widely supported integer precisions. Our solution 
also reduces the run-time memory consumption by packing the 
bitmask bits directly to N-bit integers, provided that the memory 
elements can take up N bits. 

Ideally, the number of bits per operation can be freely set. In this 
case, the bitmask coding is carried out by looping over the bitmask 

in N-bit chunks and the remaining bits (if any) are coded in the final 
iteration. If the number of bits per operation cannot be dynamically 
set, the leftover bits must be processed separately, e.g., one bit at a 
time, i.e., it adds some processing overhead. 

Finally, it is possible to perform both pruning and sparsification 
in which case both a prune bitmask and a sparse bitmask is 
generated. Moreover, the packed coding technique, described above, 
can be applied to the prune bitmask as well. To avoid sparsifying 

parameters that are pruned, the pruning step is performed first and 
sparsification is performed on the pruned model. 

2.3. Partial Data Counter 

Partial data counter is an HLS element that is used to track partial 

NDU NNR unit payloads. It allows splitting large payloads into 
smaller, more manageable ones. Because partitioning using the 
partial data counter is done on the bitstream level, there is no need 
to account for it when designing and training the NN model. 

Partitioning large NDUs is especially useful when transmitting 
an encoded NN model over a network, since large packets are more 
vulnerable to packet losses and transmission errors, resulting in 
wasted bandwidth due to retransmitted packets. The downside of 
fine-grain partitioning is the overhead introduced by the additional 

NNR unit headers, so balancing is needed between NNR unit and 
bitstream sizes. 

The partitioning is created by first coding an NNR unit payload 
normally. Then, a sub-payload size is determined as per the desired 
number of partitions or target NNR unit size. Each sub-payload is 
written to the bitstream with an NNR unit header and the respective 
partial data counter value. If a partial data counter value is present 
in the header, a decoder reads NNR units until a partial data counter 

value of zero is reached. The payload of each NNR unit is extracted, 
and the payloads are combined to allow for typical decoding. 

Let us define a ‘max_ndu_nnr_unit_size’ value that is used to 
control the partial data counter value on a per-NDU basis. It allows 
for a uniform maximum size across the NDU NNR units. First, the 
encoder determines an initial estimate for the NDU payload partition 
size. A mock encoding is performed to determine the header size 
that is then used to calculate the correct ratio between the header and 

the payload. Because the size of an NNR unit header can change 
depending on the total size of the NNR unit, care needs to be taken 
when the ‘max_ndu_nnr_unit_size’ value is close to the break-even 
point, where the NNR unit header size switches from short to long. 



 

3. EXPERIMENTAL RESULTS  

Our experiments were carried out with NCTM [2] version 5.0 that 
was modified to support the proposed optimization techniques. For 
tests that perform encoding/decoding, the following NCTM 
parameters were used: approximation (i.e., quantization) uses the 
‘codebook’-method [3] with a ‘cb_size_ratio’ of 5000 and ‘q_mse’ 
of 0.00001. All tests were performed on a computer equipped with 
Intel Xeon @ 3.70 GHz 8-core processor and 32 GB of RAM. 

Our test set is characterized in Table 1. Altogether, it includes 
five NN models taken from the evaluation specification for 
NNC [4]. UC12B and DCase are smaller models for autoencoding 
and acoustic classification, respectively. MobileNetV2 [5], 
ResNet50 [6], and VGG16 [7] are large image classification models. 

3.1. Partial Prune Bitmask 

The proposed PPB technique is compared with 1) a full prune 
bitmask that covers all weights of a model; 2) prune dictionary using 
string-based labels for element IDs [1]; and 3) prune dictionary 
using index-based labels. With each model, the sizes of prune 
bitmasks are estimated from the number of weights and layer output 
channels of the convolutional layers. The difference between the 
solutions is given as compression gain (CG) that is defined as  

CG =  (1 −
S1

S2
) × 100, (1) 

where S1 and S2 are the sizes of the two HLS elements.  
Table 2 shows the results. Using the partial bitmask results in a 

CG of over 99% for all tested models. Against index-based prune 
dictionaries, the proposed prune bitmask overall provides better 
compression but, depending on the NN model, CG ranges from 4% 

to 95%. Compared to the string label prune dictionary, prune 
bitmask gives a CG ranging from 60% to 98%. However, the sting 
label sizes depend on the lengths of the strings used as the labels, so 
the exact CG may vary. With the larger models, especially VGG16, 
the size of indexed labels gets close to the size of the PPB. This is 
due to the relatively low number of layers compared to the number 
of weights, especially in the fully connected layers (see Table 1).  

3.2. Packed Coding of Sparse Bitmasks 

The coding complexity of a sparse bitmask is calculated by 
measuring the time it takes to encode/decode topology information 
with and without the proposed optimizations. Majority of the 
complexity comes from the bitmask coding, so the reported times 
closely reflect the true coding time for the bitmasks. Time 

measurements are repeated 20 times for more reliable results. 
The encoding and decoding times for sparse bitmask coding 

(packed and unpacked) are shown in Table 3. The speedup ranges 
from 2.54× to 2.87× in encoding and from 5.24× to 5.56× in 
decoding. However, the theoretical speedup of 8× is still out of reach 
because the underlying bitstream generation is executed one bit at a 

time. The proposed packing only moderately reduces the number of 

total function calls. For decoding, this reduction in the number of 
function calls provides a more significant speedup.  

For further speedup, the underlying coding process could be 
accelerated with dedicated functions that are able to code larger HLS 
elements with a single function call. For example, coding the sparse 
bitmask in 8-bit chunks would reduce function calls to one eighth.  

3.3. Partial Data Counter 

Partial data counter results were obtained with network simulation. 
First, a bitstream was generated using a partitioning determined by 
a given ‘max_ndu_nnr_unit_size’ value or without any NNR unit 
partitioning. Then, the bitstream was decoded and the number and 
size of the NDU NNR units were extracted for the network 
simulation. A packet loss probability was also specified to simulate 

lost packets and transmission errors in the network simulation.  
A single simulation run consists of sending each NNR NDU unit 

(e.g., a packet) in the generated bitstream. Packet sending is 
simulated using a randomized function, returning true or false with 
the specified probability, to determine if a packet is delivered or not. 
If the sending failed, the packet was retransmitted, and relevant 
statistics were updated. The output of the simulation run is the 
amount of (re)transmitted data. These simulation runs were repeated 

100 000 times, and the results were averaged to get the expected 
values (of the random event) for the given parameters. A maximum 
transmission unit (MTU) size of 1500 bytes was also specified to 
better reflect real world network conditions. If a packet being sent 
was larger than the MTU size, it was further divided into subpackets 
that were sent individually. If any of the subpackets were lost, all 
subpackets were retransmitted. The network simulation assumed a 
transport protocol with minimal packet management such as UDP.  

Figure 2 plots the data transmission rates for different max NNR 
NDU unit size values in the network simulation with packet 
loss (PL) values of 1% and 3%. UC12B and MobileNetV2 NN 
models were chosen to cover both the small and large NN cases. For 
MobileNetV2, fully connected (FC) layers were omitted in our tests 
because they form the largest NDUs, and transmitting the 
unpartitioned bitstreams without proper packet management 
becomes impossible even with a small number of packet losses.  

In Figure 2, data rates and NNR unit sizes are given in bytes. 
The “Unpart.” stands for the unpartitioned NNR NDU units and the 
“Part.” for partitioned NNR NDU units. The lines with “(total)” 
show the total amount of data that has been sent, whereas the 

Table 2. Compressibility of prune bitmask 

NN model 
Prune bitmask 

(full) 
CG of PPB 

CG of PPB vs. 

string label 

CG of PPB vs. 

indexed label 

UC12B 00075888 99.62% 94.68% 88.77% 

DCase 00101920 99.91% 98.54% 94.64% 

MobileNetV2 2189760 99.22% 87.65% 43.48% 

ResNet50 14710464 99.97% 77.36% 25.89% 

VGG16 23454912 99.89% 60.60% 04.35% 

 

Table 1. Breakdown of the executed NN models 

NN model Total param Conv. param Total layer Conv. layer 

UC12B 000076179 00076179 09 09 

DCase 000116118 00102016 03 02 

MobileNetV2 003538984 02189760 53 52 

ResNet50 025636712 23398976 50 49 

VGG16 138357544 14714688 16 13 

 

Table 3. Coding time of sparse bitmasks 

NN model 
Encoding time (s) Decoding time (s)        

Unpacked Packed Speedup Unpacked Packed Speedup        

UC12B 00022.0 00007.8 2.83× 0008.6 0001.6 5.49×        

DCase 00034.0 00013.4 2.54× 0012.7 0002.4 5.24×        

MobileNetV2 01011.8 00353.1 2.87× 00395.5 0071.1 5.56×        

ResNet50 07462.0 02762.3 2.70× 02871.7 0534.1 5.38×        

VGG16 41229.0 16092.0 2.56× 15237.3 2866.3 5.32×        

 



 

“(retransmitted)” suffixed lines only show the amount of data that 
has been retransmitted. 

In Figure 2(a), we can see that the partitioned bitstream becomes 
more efficient than the unpartitioned bitstream when the max NNR 
unit size is 1000 bytes or more (packet loss of 1%) with the UC12B 
model. However, the total data amount is still fairly similar to the 

unpartitioned case. With a packet loss of 3%, the better efficiency of 
the partitioned bitstream becomes clearer. Even smaller max NDU 
NNR unit size limits are more efficient than the unpartitioned 
bitstream due to the increase in the retransmission amount of the 
unpartitioned bitstream with higher packet loss values. With 
UC12B, we can see that going over the MTU size still decreases the 
total transmission amount for a bit before it starts increasing again 
as the retransmission amount increases. This dip is due to the 
considerable increase in bitstream size, caused by a large number of 

NDU partitions, that overpowers the increase in the retransmission 
amount, brought on by larger packets. For UC12B, the smallest total 
transmission amount is around 3000 bytes, for a packet loss of 1%. 
However, if the packet loss is 3%, the optimal NDU size is the MTU 
limit of 1500 bytes. 

For the MobileNetV2 results in Figure 2(b), the large NDU unit 
sizes call for larger maximum NDU NNR unit sizes, starting from 
the MTU size of 1500 bytes. From the data, the optimal maximum 

NDU NNR unit size for MobileNetV2 is around 9000 bytes, when 
packet loss is 1%, but increasing the packet loss to 3% reduces the 
minimum to around 4500 bytes. As for the unpartitioned bitstream, 
its total transmission amount is higher than the respective partitioned 
bitstream, for both packet loss values, throughout the NDU NNR 
unit size range. 

4. CONCLUSION 

In this paper, we proposed techniques for creating a compact prune 
bitmask representation, coding sparse bitmasks efficiently, and 
partitioning NNR NDU units economically. 

First, limiting the prune bitmask to output channels provides a 

very compact way to store prune topology information, with coding 
efficiency ranging from 4% to 99% over other methods. However, 
this approach may become difficult to implement with large NN 
models and complex features (e.g., bottlenecks, residual blocks, and 
shortcuts) that do not necessary translate well to NNR. In those cases 
(e.g., image classification), the prune dictionary representation is a 
more straightforward approach and, depending on the model, can be 
implemented with a slight coding overhead when compared with the 

prune bitmask. In addition, the more compact prune information 
representations decrease the decoding complexity, and the pruning 
process can be implemented as a slice operation on the parameter 
tensors without increasing the complexity of the overall pipeline. 

Secondly, sparse bitmasks become very complex with large NN 
models, and their coding time can rise to tens of hours in the worst 
case. Using the proposed method of coding the bitmask in chunks 
reduces the NNC encoding time to almost one-third and the 

decoding time to over one-fifth.  
Finally, our experiments showed in simulated network 

conditions that transmitting full NNR NDU units over a network 
becomes prohibitively inefficient as the probability of packet losses 
increases. Using the partial data counters in NDU partitioning comes 
with some coding overhead over that of the unpartitioned bitstream, 
but it is well compensated by lower packet retransmission rate as the 
partition size grows. For the examined NN models, the optimal NDU 

size is 2–6× the MTU size with a packet loss of 1% and 1–3× the 
MTU size with a packet loss of 3%. 
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Fig. 2. Network simulation results for UC12B and MobileNetV2. 
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