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Abstract—The best RGBD trackers provide high accuracy but
are slow to run. On the other hand, the best RGB trackers are
fast but clearly inferior on the RGBD datasets. In this work,
we propose a deep depth-aware long-term tracker that achieves
state-of-the-art RGBD tracking performance and is fast to run.

We reformulate deep discriminative correlation filter (DCF)
to embed the depth information into deep features. Moreover,
the same depth-aware correlation filter is used for target re-
detection. Comprehensive evaluations show that the proposed
tracker achieves state-of-the-art performance on the Princeton
RGBD, STC, and the newly-released CDTB benchmarks and
runs 20 fps.

I. INTRODUCTION

Visual object tracking has progressed significantly largely
thanks to the series of increasingly challenging visual object
tracking benchmarks [1], [2], [3], [4], [5], [6]. In the most
general formulation, a tracker is initialized in the first frame
and is required to output the target position in all remaining
frames. In many practical applications, such as surveillance
systems, trackers need to cope with occlusions and the target
leaving the camera view which are essential properties for
long-term trackers [2].

A vast majority of the works have focused on RGB track-
ing, but recently RGBD (RGB+Depth) tracking has gained
momentum. Depth is a particularly strong cue for object’s
3D localization, potentially simplifies foreground-background
separation for occlusion handling and even helps to construct
a 3D model of the tracked object [7]. Moreover, a number of
RGBD datasets have been introduced in increasing pace [8],
[9], [10].

Recent works [11], [7] have demonstrated improved track-
ing performance by adopting depth based occlusion handling.
However, a recent long-term RGBD tracking benchmark [10]
revealed that the best performance is achieved with the state-
of-the-art RGB trackers that omit the depth input. In the most
recent RGBD track of the VOT challenge [3] the best RGBD
trackers outperformed RGB trackers by a clear margin. These
trackers, however, are complicated architectures using deep
object detectors, segmentation and deep feature based tracker
pipelines. Their complex structure makes them unacceptably
slow (∼2fps) for many real-time applications and it is difficult
to improve their computation without sacrificing accuracy.
Speed-wise the best RGB trackers outperform RGBD trackers,
but the speed-accuracy trade-off gap between the best RGB
and RGBD trackers remains an open problem.
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Fig. 1. Qualitative comparison of our tracker DAL and SoTA RGB and RGBD
trackers. The top row illustrates the activation maps from a base DCF and a
depth-modulated DCF (better zoom-in to see), generating slightly different
shifts of target center and resulting in different bounding boxes (red and
yellow). The two videos in the 1st and 2nd rows are non-occlusion scenarios,
where our tracker, based on non-stationary DCF, localize the target well while
the original DiMP fails, after multiple times of applying DCF operations. In
the bottom three rows, the target appears from occlusion and are re-detected
and tracked by our long-term tracker in a fast and accurate way.

This paper addresses the aforementioned issues and con-
tributes by closing the performance gap in the terms of
accuracy and speed between the RGB and RGBD trackers. We
propose a new RGBD tracker of a streamlined architecture,
namely DAL, which exploits depth information at all levels
of processing and obtains performance comparable to the best
slow RGBD trackers [3] with the speed comparable to real-
time RGB trackers. The target appearance is modeled by
adopting the state-of-the-art deep discriminative correlation
filter (DCF) architecture [12]. However, the deep DCF is
modulated using the depth information such that a large
change in the depth suppresses discriminative features in
these regions. The proposed ”depth modulated” DCF model
performs well both in short-time frame-to-frame tracking and
target re-detection and therefore makes complex object detec-
tion unnecessary and provides significant speed-up. Tracking
examples are shown in Figure 1.

The proposed long-term RGBD tracker achieves state-of-



the-art performance on all three available RGBD tracking
benchmarks, PTB [8], STC [9] and CDTB benchmark [10],
and runs an order of magnitude faster than the recent state-
of-the-art RGBD tracker [7] or the winner of the recent
VOT-RGBD challenge [3]. We also provide an ablation study
that confirms the effectiveness of the depth modulated DCF
formulation and other components of the proposed tracker.

II. RELATED WORK

RGB trackers. Generic visual tracking with RGB input can
be roughly divided into two tracks –discriminative correlation
filter-based family (DCF) and Siamese-based family. Bolme et
al. [13] inspired the visual tracking community of how visual
tracking is addressed by DCF in a mathematical-sound way.
DCF was extended by Henriques [14] with fourier-transform-
based training, and later augmented with segmentation con-
straints in CSR-DCF [15]. Recently, DCF tends to be merged
into an end-to-end deep network [16], [17]. The representa-
tive work is ATOM [18] that allows large-scale training for
bounding box estimation and learning discriminative filter on
the fly.

Siamese networks present the end-to-end trainable ability
and relatively high tracking accuracy [19]. Li et al. [20]
adopts a region proposal network for better predicted bounding
boxes. Zhu et al. [21] suppresses the effect of background
distractors by controlling the quality of learned target model.
The most advanced siamese-based tracker is SiamRPN++[22],
utilizing ResNet-50 for feature representation.

RGBD trackers. There are much less RGB-D trackers,
compared to RGB ones. PTB [8] opened this research topic
by presenting a hybrid RGBD tracker composed of HOG
feature, optical flow and 3D point clouds. Under particle
filter framework, Meshgi et al. [23] addresses RGBD tracker
with occlusion awareness and Bibi et al. [24] further models
a target using sparse 3D cuboids. Based on KCF, Hannuna et
al. [25] uses depth for occlusion detection and An et al. [26]
extends KCF with depth channel. Liu et al. [27] presents a
3D mean-shift-based tracker. Kart et al. [11] applies graph
cut segmentation on color and depth information, generating
better foreground mask for training CSR-DCF [15]. They then
extend the idea with building an object-based 3D model [7],
relying on a SLAM system Co-Fusion [28]. At the moment
of writing this paper, OTR [7] leads the leaderboard of two
RGBD benchmarks.

Benchmarks. Till now, we briefly introduced the most repre-
sentative and well-performing RGBD trackers. The reason of
their performance lag compared to RGB trackers is obvious
– none of them has access to semantic target-based prior
knowledge, which can be obtained via heavy off-line CNN
training. Tracking benchmarks are crucial for the development
of trackers.

It is obvious that RGBD benchmarks are much smaller than
the RGB counterparts by orders of magnitude, for example, the
biggest RGB tracking benchmark, TrackingNet [5] contains up

Fig. 2. Visualization of depth-modulated DCF. Depth modulates the DCF by
re-weighting the DCF kernels according to the depth similarity with the tested
target position. Top: the confidence score map of the target object resulting
from base DCF; Bottom: the corresponding score map obtained by our depth-
modulated DCF.

to 14 million samples while the biggest RGBD tracking dataset
CDTB [10] 100 thousand samples. Among RGBD datasets,
only PTB [8] provide a tiny subset (hundreds of images) for
training, which is far from enough for training or fine-tuning
a deep net. The shortage of RGBD training set explains why
off-line training has not been adopted for RGBD tracking.
To narrow the performance gap between RGB and RGBD
trackers, it is beneficial to use deep features from deep nets
pretrained on massive RGB training set.

III. METHOD

In Sec. III-A, we first introduce the base RGB tracker
briefly. In same section, we also describe the design of
depth-aware convolution layer and show its application on
DCF-based tracking. In Sec. III-B we briefly describe the
bounding box regressor – IoUNet. We overview the long-
term RGBD tracking architecture in Sec. III-C , with emphasis
on the interaction conditions of switching between short-term
tracking and re-detection mode in Sec. III-D.

A. Robust localization

Robust localization is the most crucial element of long-
term tracking. We thus formulate the target model as a deep
discriminative correlation filter (DCF), which is trained by
the efficient deep training algorithm proposed recently [12].
Given a set of labelled training samples Strain, the filter f is
optimized by steepest descent on the following loss Lcls:

Lcls =
1

Niter

Niter∑
i=0

∑
(x,c)∈Strain

‖`
(
x ∗ f (i), zc

)
‖2 . (1)

where ∗ is the convolution operation and zc refers to the cor-
responding Gaussian function centered on the target location
c of the training sample x and Niter is the number of steepest
descent iterations. The loss applies a nonlinear regression error
`(s, z) = s− z for z > T and `(s, z) = max(0, s) for z ≤ T ,
where T is a threshold on the error. The training samples
x ∈ Strain are extracted from the image patch 5 times larger
than the target size using a common backbone [29], which is
fine-tuned for localization task [12].

The target is localized on a new frame by extracting deep
features within a patch 5 times the target size and correlated



by the trained filter f . Position of the maximum correlation
response is the new target position estimate.

However, using a stationary filter (i.e., the same filter) on
all locations is sub-optimal since certain regions might contain
occlusion and are thus less reliable than other regions [30].
Furthermore, certain targets are poorly approximated by a
rectangular convolution window and therefore a mechanism
for background suppression is required. To solve all these
problems simultaneously, we propose a non-stationary deep
DCF that utilizes depth to modulate the DCF content with
respect to the filter position. Specifically, we define the new
depth-modulated DCF as

f̃(x, y) = f �Θ(x, y), (2)

where f is a stationary base filter, Θ(x, y) is a non-stationary
2D modulation map, and � is a Hamadarad product, that mul-
tiplies all channels of the base filter with the same modulation
map. The purpose of the modulation map is to give more
weight to the pixels with depth values similar to the tested
target position, thus reducing the effect of the background and
occlusion. Let D(x, y) be the depth at the tested position and
let D(x + m, y + n) be the depth of the neighboring pixel.
The modulation map is then defined as

Θmn(x, y) = exp(−α|D(x, y)−D(x+m, y + n)|), (3)

where α is a hyper parameter that controls the modulation
strength. Figure 2 illustrates the modulation map construction
and usage in non-stationary DCF correlation. The loss for
training the non-stationary DCF becomes

Lcls =
1

Niter

Niter∑
i=0

∑
(x,c)∈Strain

‖`
(
x ∗ f̃ (i)(x, y), zc

)
‖2 . (4)

The loss is optimized using the steepest decent algorithm
from [12] within a region five times the target size to harvest
a sufficient amount of negative examples. The non-stationary
DCF learns to take into account the target-background discon-
tinuities induced by depth and therefore provides improved
foreground-background discrimination.

B. Accurate localization

The non-stationary depth-modulated DCF described in Sec-
tion III-A robustly localizes the target even in presence of
clutter. For accurate bounding box prediction i.e., width and
height of the target, we follow the recent IoUNet [31] bound-
ing box regression introduced in [18].

The IoUNet is trained offline on image pairs of the same
target using a large number of video sequences. First image
and the corresponding bounding box are used as a training
example. A modulation vector is extracted from this image
and used with the second image (test example) to refine the
given test bounding box and to predict its intersection over
union with the ground-truth bounding box.

During tracking, after the target is approximately localized
by the depth-modulated DCF (Section III-A), NBB positions
are sampled around the predicted position and IoUNet is

TABLE I
SUMMARY OF THE TRACKING STATE TRIGGERS IN SECTION III-D.

State Conditions
Target lost cond1 : 1− βDCF(τl)

cond2 : 1− βDCF(τ) & 1− βdep(τD)
Target re-detected cond1 : βDCF(τh)

cond2 : βDCF(τ) & βdep(τD)
Update model cond1: βDCF(τu) & βdep(τD)

applied to produce refined bounding boxes with predicted IoU
scores. NTOP bounding boxes with the highest predicted score
are averaged to produce the final bounding box.

C. Long-term tracker architecture

A long-term tracker is required to address situation in which
the target disappears for a long duration and re-appears later
on. Target loss prediction and re-detection play a crucial role
in these scenarios. We build on a single-model long-term
tracking architecture [32]. In our case, the short-term tracker
is composed of a robust localizer i.e., a deep non-stationary
DCF (Section III-A) and an accurate bounding box refinement
module (Section III-B), and is used for continuous, short-term,
target localization. Periods of unreliable target localization
are detected by a depth-aware target presence classifier (Sec-
tion III-D). Once the target is deemed lost, the target search
range progressively increases over the consecutive frames.
Target is re-detected by applying the depth-modulated DCF
from III-A within the enlarged search region. Once the target
is re-detected, the search range reduces back to that of short-
term tracking.

Since the same model is used for short-term tracking and
detection, care has to be taken to prevent model contami-
nation and irrecoverable drift caused by updating from the
background. We thus apply target presence indicators (Sec-
tion III-D) to switch between target presence/absence states
and identify periods during which it is safe to update the target
model.

D. Depth-aware target presence indicators

The similarity between the model and the detected target
is quantified by the maximum of the depth-modulated DCF
correlation response, i.e., ρDCF. Low value indicates a low
target presence likelihood. Thus the correlation-based target
presence indicator is defined as βDCF(τ) = {1 : ρDCF >
τ ; 0 : otherwise}.

Temporal depth consistency is used as another indicator.
The target is represented by the set of depth histograms
Gi ∈ G, i = 1, ..., NG, extracted from the depth images from
predicted bounding box region in the previous time-steps. A
histogram extracted in the current time-step H is compared to
these histograms by Bhattacharyya similarity

ρidep =

nB∑
j

√
HjGij , (5)

where nB is number of the histogram bins. Low
values indicate target occlusion or disappearance. The



Fig. 3. Qualitative comparison of DAL, DiMP and OTR on the PTB. All
trackers localize the target and give precise bounding boxes (the first two
columns). With depth-modulated DCF, our tracker shows better discriminative
ability when strong distractor appears (human face in the third row and human
legs in the first row). Compared to DiMP and OTR, with conservative long-
term tracking design, our tracker reports target disappearance more accurately.

depth consistency indicator is therefore defined as
βdep(τ) = {1 : ρidep > τ ∀ i; 0 : otherwise}. The set of
depth histograms is refreshed each time a target model is
updated by first-in-first-out mechanism.

The correlation and depth consistency indicators are applied
to construct conditions to trigger (i) target lost state, (ii) target
re-detected state, and (iii) to decide whether it is safe to
update the target model without background contamination.
The triggers are summarized in Table I.

IV. EXPERIMENTS

A. Implementation Details

The backbones for deep DCF and the IoUNet are pre-trained
for localization task on RGB sequences and the filter update
parameters are kept as in [12]. The depth modulation hyper-
parameter is set to α = 0.1. The binds in depth histograms
are constrained to 8 meters at resolution of 0.1m per bin. The
search region enlargement rate factor during re-detection is set
to r = 1.05.The target presence indicator thresholds (Table I)
are set to βl = 0.2, β = 0.25, βh = 0.3 and βD = 0.8. The
number of depth histograms in the depth temporal consistency
model is set to NG = 3. The preliminary study showed that
the method is not sensitive to these parameters and we use the
same values in all experiments.

B. State-of-the-art Comparison

The proposed depth-aware long-term (DAL) tracker is eval-
uated on three major RGB-D benchmarks: Princeton tracking
benchmark [8] (PTB), STC tracking benchmark [9] and Color-
and-depth tracking benchmark [10] (CDTB). In the following
we discuss the tracking performance on these benchmarks.
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Fig. 4. Success and precision plots on STC benchmark [9].

1) Princeton Tracking Benchmark: Princeton Tracking
Benchmark [8] (PTB) is the most popular benchmark in
RGBD tracking. The dataset consists of 95 video sequences
without publicly available ground-truth annotations to pre-
vent over-fitting. The sequences are annotated with 11 visual
attributes for a thorough analysis of tracking performance
(Table II). A per-frame tracking performance is measured by a
modified overlap measure that sets the overlap to 1 on frames
where the target is correctly predicted to be missing. The
overall tracking performance is measured by the success rate,
i.e., the percentage of frames where overlap between ground
truth and the predicted bounding box exceeds 0.5.

All state-of-the-art RGBD trackers from PTB are included
in the analysis: OTR [7], ca3dms+toh [27], CSR-rgbd++ [11],
3D-T [24], PT [8], OAPF [23], DM-DCF [33], DS-KCF-
Shape [25], DS-KCF [34], DS-KCF-CPP [25], hiob lc2 [35],
STC [9] and DLST [26]. We additionally include the state-of-
the-art short-term RGB tracker DiMP [12], which ranks top
on the most short-term tracking benchmarks.

DAL achieves the average success rate higher than 0.8,
outperforming all RGBD trackers and outperform the sota
RGBD tracker OTR and the sota RGB tracker DiMP by
5%. On most attributes except “Passive motion”, DAL ranks
the first or the second, showing its robustness under various
tracking conditions. Compared to OTR, the success rates on
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Fig. 5. The overall tracking performance is presented as tracking F-measure
(top) and tracking Precision-Recall (bottom) on the CTDB dataset. Trackers
are ranked by their optimal tracking performance (maximum F-measure).

“Animal, Small Object, No-Occlusion, Active Motion” are
significantly better, verifying the improved utilization in depth
for tracking. The per-attribute results also show that DAL deals
better with occlusion than DiMP, which may be attributed
to the non-stationary DCF modulated by the depth map. See
Figure 3 for qualitative comparison on PTB.

2) STC Tracking Benchmark: The STC benchmark [9]
is complementary to the PTB in terms of visual attributes
and contains 36 sequences annotated per-frame with 10 at-
tributes: Illumination variation (IV), Depth variation (DV),
Scale variation (SV), Color distribution variation (CDV),
Depth distribution variation (DDV), Surrounding depth clutter
(SDC), Surrounding color clutter (SCC), Background color
camouflages (BCC), Background shape camouflages (BSC),
Partial occlusion (PO).

Since the targets in STC dataset are always visible, the stan-
dard short-term tracking evaluation methodology is used [36].
Tracking performance is evaluated by the success and pre-
cision plots. The success plot shows percentage of frames
where overlap of the predicted bounding box is larger than
a threshold, for a set of overlap thresholds. Trackers are
ranked according to the area under the success rate curve.
The precision plot shows percentage of frames where distance
between the predicted bounding box center and the ground-
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Fig. 6. Tracking precision and recall calculated at the optimal point (maximum
F-measure). Evaluated on the CDTB dataset.

truth bounding box center is smaller than the threshold, for a
set of center error thresholds. Trackers are ranked according
to the performance at the threshold of 20 pixels.

The proposed tracker is compared to the following state-
of-the-art RGBD trackers: OTR [7], CSR-rgbd++ [11],
ca3dms+toh [27], STC [9], DS-KCF-Shape [25], PT [8], DS-
KCF [34] and OAPF [23]. The most recent sota RGB short-
term tracker (DiMP [12]) is included as well.

Results are reported in Figure 4. DAL outperforms top-
performing RGBD trackers by a large margin. The top RGBD
tracker OTR is outperformed significantly by 30.6%, while
DiMP is outperformed by 4.9%. The improved performance
is consistent across all the attributes, except SCC (Surrounding
Color Clutter).

C. Color and depth tracking benchmark

The CDTB dataset [10] is the most recent and the most
challenging RGBD dataset. The sequences are captured in
the long-term tracking scenario, which means that the target
is often fully occluded or that it disappears from the field
of view. The most important aspects in long-term tracking
are therefore ability to predict target absence and target re-
detection. Tracking performance is measured as tracking recall
(Re, average overlap on frames where the target is visible)
and tracking precision (Pr, average overlap on frames where
tracker makes a prediction). Trackers are ranked according to
the tracking F-measure, which is combination of Pr and Re.

The proposed tracker is compared to all top trackers from
the CDTB benchmark: (i) sota short-term RGB trackers
(KCF [14], NCC [1], BACF [37], CSRDCF [15], SiamFC [19],
ECOhc [16], ECO [16] and MDNet [38]), (ii) sota long-term
RGB trackers (TLD [39], FuCoLoT [32] and MBMD [40])
and (iii) sota RGBD trackers (OTR [7], Ca3dMS [27], ECOhc-
D [11] and CSRDCF-D [11]). We also include the most recent
short-term RGB tracker DiMP [12] which is the top-performer
on the most of the short-term datasets and the winner of the
recent VOT2019 RGBD challenge [3] (SiamDW-D [3]).

Tracking results are presented in Figure 5. The proposed
tracker outperforms the top-performer in CDTB [10], MDNet,
by a large margin of 37% mostly due to the powerful re-
detection module and the non-stationary DCF. The OTR,
which is the sota RGBD tracker, is outperformed by 85%



TABLE II
RESULTS AND RANKS (PARENTHESIS) RETRIEVED FROM THE PTB ONLINE SERVER. THE TOP THREE RESULTS FOR THE EACH ATTRIBUTE ARE

ANNOTATED RESPECTIVELY.

Method Avg.Success Human Animal Rigid Large Small Slow Fast Occ. No-Occ. Passive Active

DAL (ours) 0.807(1) 0.78(2) 0.86(1) 0.81(2) 0.76 0.84(1) 0.83(2) 0.80(1) 0.72(2) 0.93(1) 0.78 0.82(1)
OTR [7] 0.769(2) 0.77(3) 0.68 0.81(2) 0.76 0.77(3) 0.81 0.75(2) 0.71 0.85 0.85(1) 0.74
DiMP [12] 0.765(3) 0.67 0.86(1) 0.79 0.67 0.81(2) 0.82(3) 0.73 0.63 0.93(1) 0.74 0.76(2)
ca3dms+toh [27] 0.737 0.66 0.74 0.82(1) 0.73 0.74 0.80 0.71 0.63 0.88(3) 0.83(2) 0.70
CSR-rgbd++ [11] 0.740 0.77 0.65 0.76 0.75 0.73 0.80 0.72 0.70 0.79 0.79 0.72
3D-T [24] 0.750 0.81(1) 0.64 0.73 0.80(1) 0.71 0.75 0.75(2) 0.73(1) 0.78 0.79 0.73
PT [8] 0.733 0.74 0.63 0.78 0.78(3) 0.70 0.76 0.72 0.72(2) 0.75 0.82(3) 0.70
OAPF [23] 0.731 0.64 0.85(3) 0.77 0.73 0.73 0.85(1) 0.68 0.64 0.85 0.78 0.71
DLST [26] 0.740 0.77 0.69 0.73 0.80(1) 0.70 0.73 0.74 0.66 0.85 0.72 0.75(3)
DM-DCF [33] 0.726 0.76 0.58 0.77 0.72 0.73 0.75 0.72 0.69 0.78 0.82 0.69
DS-KCF-Shape [25] 0.719 0.71 0.71 0.74 0.74 0.70 0.76 0.70 0.65 0.81 0.77 0.70
DS-KCF [34] 0.693 0.67 0.61 0.76 0.69 0.70 0.75 0.67 0.63 0.78 0.79 0.66
DS-KCF-CPP [25] 0.681 0.65 0.64 0.74 0.66 0.69 0.76 0.65 0.60 0.79 0.80 0.64
hiob-lc2 [35] 0.662 0.53 0.72 0.78 0.61 0.70 0.72 0.64 0.53 0.85 0.77 0.62
STC [9] 0.698 0.65 0.67 0.74 0.68 0.69 0.72 0.68 0.61 0.80 0.78 0.66

TABLE III
THE NORMALIZED AREA UNDER THE CURVE (AUC) SCORES COMPUTED FROM ONE-PASS EVALUATION ON THE STC BENCHMARK [9]. THE TOP THREE

RESULTS FOR THE EACH ATTRIBUTE ARE ANNOTATED.

Method \ Attributes AUC IV DV SV CDV DDV SDC SCC BCC BSC PO

DAL (ours) 0.64(1) 0.51(1) 0.63(1) 0.50(1) 0.60(1) 0.62(1) 0.64(1) 0.63(2) 0.57(1) 0.58(1) 0.58(1)
DiMP [12] 0.61(2) 0.50(2) 0.62(2) 0.48(2) 0.57(2) 0.58(2) 0.61(2) 0.65(1) 0.52(2) 0.55(2) 0.58(1)
OTR [7] 0.49(3) 0.39(3) 0.48(3) 0.31(3) 0.19 0.45(3) 0.44(3) 0.46 0.42(3) 0.42(3) 0.50(3)
CSR-rgbd++ [11] 0.45 0.35 0.43 0.30 0.14 0.39 0.40 0.43 0.38 0.40 0.46
ca3dms+toh [27] 0.43 0.25 0.39 0.29 0.17 0.33 0.41 0.48(3) 0.35 0.39 0.44
STC [9] 0.40 0.28 0.36 0.24 0.24(3) 0.36 0.38 0.45 0.32 0.34 0.37
DS-KCF-Shape [25] 0.39 0.29 0.38 0.21 0.04 0.25 0.38 0.47 0.27 0.31 0.37
PT [8] 0.35 0.20 0.32 0.13 0.02 0.17 0.32 0.39 0.27 0.27 0.30
DS-KCF [34] 0.34 0.26 0.34 0.16 0.07 0.20 0.38 0.39 0.23 0.25 0.29
OAPF [23] 0.26 0.15 0.21 0.15 0.15 0.18 0.24 0.29 0.18 0.23 0.28

mostly due to the better target representation including deep
features and the deep non-stationary DCF. The proposed
tracker outperforms sota RBG short-term DiMP w.r.t. the all
three measures: tracking F-measure by 28%, precision by 40%
and recall by 18%, which demonstrates the impact of the re-
detection component and the non-stationary DCF. The top-
performing tracker in VOT2019 RGBD challenge, SiamDW-
D slightly outperforms DAL. SiamDW-D is a complex com-
bination of multiple short-term tracking methods and general
object detectors from the off-the-shelf toolbox [41]. This com-
plicated architecture does prevents significant incorporation of
depth in the tracker. In fact, depth is used only for target loss
identification. Due to computational complexity, SiamDW-D
performs at very low frame rate (2 fps as we test) and has large
memory footprint due to several network branches. On the
other hand, DAL has a very streamlined trainable architecture
and runs 10× faster thanks to efficient use of depth, while
attaining comparable tracking accuracy.

D. Ablation Study

An ablation study was conducted on the most challenging
RGBD dataset [10] to demonstrate the contribution of each
component of DAL.

The following variants of DAL are evaluated: (i) DAL,
the proposed method uses the non-stationary DCF and target
presence classifier using DCF confidence and depth, described

in Section III-D, to activate the re-detection, is denoted
as +α+LTβ,βD . (ii) DAL−LT (βD), βD is not considered in
computing target presence. (iii) DAL−α,−LT (βD), βD is not
considered in computing target presence and only base DCF
is used. (iv) DAL−LT , long-term design is turned off, depth-
modulated DCF is used. (v) DAL−α,−LT , long-term design is
turned off and only base DCF is used, which equals to the
base short-term tracker.

TABLE IV
DAL ABLATION STUDY ON THE CDTB SHOWING TRACKING F-MEASURE.

DAL−α,−LT DAL−LT DAL−α,−LT (βD) DAL−LT (βD) DAL
0.48 0.51 0.55 0.58 0.62

The results are shown in the Table IV. The short-term
version of DAL using a stationary DCF, DAL−α,−LT , achieves
0.48 F-measure. Adding non-stationary formulation of DCF in
DAL−LT improves the results for 6.3%. The result shows that
correlation-based trackers can benefit from the non-stationary
DCF formulation. The baseline tracker with a stationary
DCF extended to the long-term scenario (DAL−α,−LT (βD))
improves the results for 14.6%, which shows the importance
of re-detection in long-term tracking scenario. Combining
both, non-stationary DCF formulation and target re-detection
(DAL−LT (βD)) improves the results for 20.8%. Finally, the
performance boost of 29.1% is achieved by the non-stationary
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Fig. 7. Precision-Recall curves and F-measure as function of varying α. for
depth-modulated DCF. Evaluated on CDTB dataset.

DCF formulation and target re-detection activated by the
multiple conditions using DCF confidence and depth (DAL).
This result shows that depth can significantly improve tracking
performance.

We additionally performed a sensitivity study of the pa-
rameter α from (3), which controls the modulation strength
in the DCF depth modulation map. The baseline tracker (i.e.,
without depth modulation, α = 0) was extended by the non-
stationary DCF formulation (without target re-detection) and
the following values of α were tested: 0.01, 0.1, 1 and 10.
The results in Figure 7 show that the highest performance is
obtained at α = 0.1. Lower α push tracking performance to the
baseline tracker. Increasing α amplifies the depth modulation
too much, causing a slight performance drop.

Tracking speed. We measure the speed of ten top-
performing trackers on the CDTB dataset to evaluate the
performance in the context of practical applications that re-
quire accurate tracking at high speeds, i.e., robotics and real-
time systems. Results are shown in Figure 8. DAL runs
close to the real-time, at 20 frames per second, while most
of the other trackers (MDNet, MBMD, OTR, ECO, CSR-
D) are much slower and achieve significantly lower tracking
accuracy. SiamFC runs similarly fast to DAL, but it achieves
46.1% lower tracking performance, DiMP is 45.0% faster,
but it achieves 21.8% lower F-measure. The top-performing
SiamDW-D achieves 9.7% higher F-measure, but it is 10-times
slower. Thus DAL is the top-performing tracker in accuracy
among the close-to-realtime tracking.

V. CONCLUSIONS

We propose a novel deep DCF formulation for RGBD
tracking. The formulation embeds depth information into the
correlation filter optimization and provides a strong short-
term RGBD tracker, improving the performance from 5% to
6% on all RGBD tracking benchmarks. We also propose a
long-term tracking architecture where the same deep DCF
is used in target re-detection and depth based tests effec-
tively trigger between the short-term tracking, re-detection

Fig. 8. Tracker practicality evaluation with respect to F-measure and Speed
(in frames-per-second) on the CDTB dataset.

and model update modes. The long-term tracker consistently
achieves superior performance over the state-of-the-art RGB
and RGBD trackers (DiMP and OTR) on all three available
RGBD tracking benchmarks (PTB, STC and CDTB) and runs
significantly faster than the best RGBD competitor (20 fps vs.
2 fps).
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