
Empirical Software Engineering (2022) 27:189
https://doi.org/10.1007/s10664-022-10164-z

Amachine and deep learning analysis among
SonarQube rules, product, and process
metrics for fault prediction

Francesco Lomio1 · Sergio Moreschini1 ·Valentina Lenarduzzi2

Accepted: 30 March 2022
© The Author(s) 2022

Abstract
Background Developers spend more time fixing bugs refactoring the code to increase the
maintainability than developing new features. Researchers investigated the code quality
impact on fault-proneness, focusing on code smells and code metrics.

Objective We aim at advancing fault-inducing commit prediction using different variables,
such as SonarQube rules, product, process metrics, and adopting different techniques.

Method We designed and conducted an empirical study among 29 Java projects analyzed
with SonarQube and SZZ algorithm to identify fault-inducing and fault-fixing commits,
computing different product and process metrics. Moreover, we investigated fault-proneness
using different Machine and Deep Learning models.

Results We analyzed 58,125 commits containing 33,865 faults and infected by more than
174 SonarQube rules violated 1.8M times, on which 48 software product and process metrics
were calculated. Results clearly identified a set of features that provided a highly accurate
fault prediction (more than 95% AUC). Regarding the performance of the classifiers, Deep
Learning provided a higher accuracy compared with Machine Learning models.

Conclusion Future works might investigate whether other static analysis tools, such as Find-
Bugs or Checkstyle, can provide similar or different results. Moreover, researchers might
consider the adoption of time series analysis and anomaly detection techniques.

Communicated by: Foutse Khomh, Gemma Catolino and Pasquale Salza

This article belongs to the Topical Collection: Machine Learning Techniques for Software Quality
Evaluation (MaLTeSQuE)

� Francesco Lomio
francesco.lomio@tuni.fi

Sergio Moreschini
sergio.moreschini@tuni.fi

Valentina Lenarduzzi
valentina.lenarduzzi@oulu.fi

1 Tampere University, Tampere, Finland
2 University of Oulu, Oulu, Finland

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10164-z&domain=pdf
mailto: francesco.lomio@tuni.fi
mailto: sergio.moreschini@tuni.fi
mailto: valentina.lenarduzzi@oulu.fi

 189 Page 2 of 57 Empir Software Eng (2022) 27:189

Keywords SonarQube · Software metrics · Fault prediction · Machine learning ·
Deep learning

1 Introduction

Software teams spend a significant amount of time trying to locate defects and fix bugs
(Zeller 2009). Fixing a bug involves isolating the part of the code that causes unexpected
behavior of the program and changing it to correct the error (Beller et al. 2018). Bug fixing
is a challenging task, and developers often spend more time fixing bugs and making the code
more maintainable than developing new features (Murphy-Hill et al. 2015; Pan et al. 2009).

Different works addressed this problem (D’Ambros et al. 2010; Osman et al. 2017), rely-
ing on different information, such as process metrics (Nagappan and Ball 2005; Moser et al.
2008; Hassan 2009a) (number of changes, recent activity), code metrics (Subramanyam and
Krishnan 2003; Gyimothy et al. 2005; Nagappan et al. 2006) (lines of code, complexity) or
previous faults (Ostrand et al. 2005; Hassan and Holt 2005; Kim et al. 2007). The research
community also considered the impact of different code quality issues on fault-proneness,
with a special focus on Fowler’s code smells (Palomba et al. 2018; Gatrell and Counsell
2015; D’Ambros et al. 2010; Saboury et al. 2017; Lenarduzzi et al. 2020b).

In our previous works, we investigated the fault-proneness of SonarQube rules, first with
machine learning techniques (Lenarduzzi et al. 2020e), and second with classical statis-
tic techniques (Lenarduzzi et al. 2020b). Also, the approaches adopted in our previous
work did not allow us to identify the correlation of each individual SonarQube rule with
fault-proneness. As a result, developers commonly struggle to understand which metric or
SonarQube rules they should consider to decrease the fault-proneness of their code (Vas-
sallo et al. 2018), mainly because the ruleset includes more than 500 rules per development
language.

In this paper, we aim at advancing the state of the art on fault-inducing commit prediction
based on an in depth investigation among several features, a large number of projects and
commits, and multiple Machine learning and Deep Learning classifiers.

Starting from the results obtained in our previous work (Lenarduzzi et al. 2020b), we
designed and conducted an empirical study among 29 of the 33 Java projects of the Tech-
nical Debt dataset (Lenarduzzi et al. 2019b) analyzed with SonarQube version 7.5 that
violated more than 1.8M of SonarQube rules, and where the faults were determined apply-
ing the SZZ algorithm (Śliwerski et al. 2005). We compared the fault prediction power of
different features (SonarQube rule and product and process metrics) using the three most
accurateMachine Learning models identified in our previous work (Lenarduzzi et al. 2020b)
and two Deep Learning models. Moreover, to increase the validity of our results, we better
preprocessed the data to avoid multicollinearity and to account for the unbalanced dataset;
we also adopted a more accurate data validation strategy.

The results of our study reveal a number of significant findings. Considering the features
selection, SonarQube rules can be used as fault predictors only under specific conditions
such as the classifier and the variables preprocessing. Using historical data (Deep Learning)
allows for better results (AUC 90% in average) than adopting Machine Learning models.
Grouping the SonarQube rules by types positively improves the accuracy only when using
Machine Learning models. Also, the rule types grouping reduces the features (predictors)
number allowing to manage the time and simplify the process.

Empir Software Eng (2022) 27:189 Page 3 of 57 189

However, even if the results regarding SonarQube rules and Machine Learning are con-
trasting with those obtained in the previous work (Lenarduzzi et al. 2019b), they are more
reliable and realistic because of the new preprocessing approach and the more accurate
validation strategy.

Looking at the selected product and process metrics, the results clearly identified a set
of the metrics which provided a higher accurate fault prediction. Specifically, Rahman and
Devanbu (2013) (92.45% in average) and Kamei et al. (2012) (96.53% in average) provide
good results both adopting Machine or Deep Learning models. Considering the metrics
calculated by SonarQube, only Deep Learning models provide a good level of accuracy
(79% in average). Moreover, including the SonarQube rules in all the metrics combinations,
the results are always impressive. We reach the best performance (AUC more than 97% on
average) when Deep Learning is adopted as model category.

Regarding the best model selection, our results highlighted the higher accuracy per-
formance achieved by Deep Learning models. Compared with Machine Learning models,
Deep Learning increases the AUC, enables the correct fault identification, and decreases the
probability of incorrect identification.

The contribution of this paper is three-fold:

– A comparison of the prediction power of the fault-proneness of SonarQube rules and
product and process metrics

– A comparison of the effectiveness and accuracy of Machine Learning and Deep Learn-
ing models for the identification of fault-inducing SonarQube rules and product and
process metrics

– A set of important features (SonarQube rules, product and process metrics) and models
to achieve an accurate fault prediction.

The remainder of this paper is structured as follows. In Section 2 we introduce the
background in this work, introducing the original study, SonarQube violations and the dif-
ferent machine and deep learning models. Section 3, describes the case study design, while
Section 4 presents the obtained results. Section 5 discusses the results, and Section 6 iden-
tifies threats to validity. Section 7 describes the related works, while Section 8 draws the
conclusion highlighting the future works.

2 Background

In this Section, we illustrate the background of this work, introducing our previous study
(called “previous”), SonarQube static analysis tool, and the Machine and Deep Learning
models adopted in this study.

2.1 The Previous Study

In this Section, we illustrate the previous study (Lenarduzzi et al. 2020e) and the obtained
results. Moreover, we explain the reasons why we conducted this study, and we compare
it with the previous one. We followed the guidelines proposed by Carver for reporting
replications (Carver 2010).

We decided to consider for this study, only the paper (Lenarduzzi et al. 2020e) since –
as far as we know – this is the only one that provide a ranking of importance of SonarQube
issues that could induce bugs in the source code. Moreover, two of the authors of this paper
are also authors of the previous study.

 189 Page 4 of 57 Empir Software Eng (2022) 27:189

The previous study investigated the fault-proneness of SonarQube rules in order to under-
stand if rules classified as “Bug” are more fault-prone than security and maintainability rules
(“vulnerability” and “code smell”). Moreover, the previous study evaluated the accuracy of
the SonarQube quality model for the bugs prediction. As context, the previous study ana-
lyzed 21 randomly selected mature Java projects from the Apache Software Foundation. All
the commits of the projects were analyzed with SonarQube (version 6.4), and the commits
that induced a fault were determined applying the SZZ algorithm (Śliwerski et al. 2005).
The SonarQube rules fault proneness were investigated with seven Machine Learning algo-
rithms (Decision Trees (Breiman et al. 1984), Random Forest (Breiman 2001), Bagging
(Breiman 1996), Extra Trees (Geurts et al. 2006), Ada Boost (Freund and Schapire 1997),
Gradient Boost (Friedman 2001), XG Boost Chen and Guestrin 2016). Results show that
only a limited number of SonarQube rules can really be considered fault-prone.

Differently from the previous study (Table 1), we considered the 29 Java projects
of the Technical Debt dataset (Lenarduzzi et al. 2019b), analyzed with SonarQube ver-
sion 7.5, that include more than 1.8M SonarQube rules violated, and on which there was
calculated 24 software metrics, and where the faults are determined applying the SZZ
algorithm (Śliwerski et al. 2005). Moreover, we considered process and product metrics
proposed by Rahman and Devanbu (2013) and Kamei et al. (2012) to corroborate the soft-
ware metrics included in the SonarQube suite. We adopted Deep Learning models, and we
made a comparison between the detection accuracy of Deep Learning and Machine Learn-
ing models in order to identify which ones better predict a fault. We adopted the three
Machine Learning models that exhibit the best accuracy performance (AUC = 80%) in the
previous study.

In order to improve the previous results, we adopted a data pre-processing step to check
for multicollinearity between the variables. This was done using the Variable Inflation Fac-
tor (VIF) (O’Brien 2007). Moreover, the authors reported that the commits labelled as fault
inducing account for less than 5% of the total number of commits considered. This causes
a highly unbalanced dataset, where the positive class (fault-inducing commit) accounts for
less than 5% of the total number of samples. This type of data negatively impacts the perfor-
mance of normal classifiers (both Machine Learning and Deep Learning). For this reason,
we adopted an oversampling technique to rebalance the dataset. For this step we used a
Synthetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002).

Table 1 Study design comparison

Previous study (Lenarduzzi et al. 2020e) New study

#Projects 21 32

#Commits 39,518 77,932

SonarQube tool version 6.4 7.5

SonarQube rules 231,453 1,941,508

Faults 4,505 40,890

Product and process metrics 0 48

Machine Learning models 8 3a

Deep Learning models 0 2

aThe best ones among the 8 adopted in Lenarduzzi et al. (2020e)

Empir Software Eng (2022) 27:189 Page 5 of 57 189

2.2 SonarQube

SonarQube is one of the most common open-source static code analysis tools adopted both
in academia (Lenarduzzi et al. 2017, 2020c) and in industry (Vassallo et al. 2019a). Sonar-
Qube is provided as a service from the sonarcloud.io platform, or it can be downloaded and
executed on a private server.

SonarQube calculates several metrics such as the number of lines of code and the code
complexity, and verifies the code’s compliance against a specific set of “coding rules”
defined for most common development languages. In case the analyzed source code vio-
lates a coding rule, or if a rule is outside a predefined threshold, SonarQube generates an
“issue”. SonarQube includes Reliability, Maintainability, and Security rules.

Reliability rules, also named “bugs”, create issues (code violations) that “represent some-
thing wrong in the code” and that will soon be reflected in a bug. “Code smells” are
considered “maintainability-related issues” in the code that decreases code readability and
code modifiability. It is important to note that the term “code smells” adopted in SonarQube
does not refer to the commonly known code smells defined by Fowler and Beck (1999) but
to a different set of rules. Fowler and Beck (1999) consider code smells as “surface indica-
tion that usually corresponds to a deeper problem in the system” but they can be indicators
of different problems (e.g., bugs, maintenance effort, and code readability) while rules clas-
sified by SonarQube as “Code Smells” are only referred to maintenance issues. Moreover,
only four of the 22 smells proposed by Fowler et al. are included in the rules classified
as “Code Smells” by SonarQube (Duplicated Code, Long Method, Large Class, and Long
Parameter List).

SonarQube also classifies the rules into five severity levels:1 Blocker, Critical, Major,
Minor, and Info.

In this work, we focus on the SonarQube violations, which are reliability rules classified
as “bugs” by SonarQube, as we are interested in understanding whether they are related
to faults. Moreover, we consider the 32 software metrics calculated by SonarQube. In the
replication package (Section 3.5) we report all the violations present in our dataset. In the
remainder of this paper, column “squid” represents the original rule-ID (SonarQube ID)
defined by SonarQube. We did not rename it, to ease the replicability of this work. In the
remainder of this work, we will refer to the different SonarQube violations with their ID
(squid). The complete list of violations can be found in the file “SonarQube-rules.xsls” in
the online raw data.

2.3 Machine Learningmodels

We selected the three machine learning models that turned out to be the most accurate in the
faults prediction in our previous study (Lenarduzzi et al. 2020e): Random Forest (Breiman
2001), Gradient Boost (Friedman 2001), and XGboost (Chen and Guestrin 2016). As for
Lenarduzzi et al. (2020e), Gradient Boosting and Random Forest are implemented using the
library Scikit-Learn2 with their default parameters. XGBoost model is implemented using
the XGBoost library.3 All the classifiers are fitted using 100 estimators.

1SonarQube Issues and Rules Severity:’ https://docs.sonarqube.org/display/SONAR/Issues
2https://scikit-learn.org
3https://xgboost.readthedocs.io

https://docs.sonarqube.org/display/SONAR/Issues
https://scikit-learn.org
https://xgboost.readthedocs.io

 189 Page 6 of 57 Empir Software Eng (2022) 27:189

Random Forest Random Forest (Breiman 2001) is an ensemble technique based on deci-
sion trees. The term ensemble indicates it uses a set of “weak” classifiers that help solve the
assigned task. In this specific case, the week classifiers are multiple decision trees.

Using a randomly chosen subset of the original dataset, an arbitrary amount of decision
trees is generated (Breiman 1996). In the case of random forest, the subset is created with
replacement, meaning that a sample can appear multiple times. Moreover, it is also chosen
a subset of the features of the original dataset, without replacement (appear only once). This
helps reducing the correlation between the individual decision trees. With this setup, each
tree is trained on a specific subset of the data, and it can make prediction on unseen data.
The final classification given by the Random Forest is decided based on the majority vote
of the individual decision trees.

The process of averaging the prediction of multiple decision trees, allows the random
forest classifier to better generalize the data and overcome the overfitting problem to which
decision trees are prone. Also, using a randomly selected subset of the original dataset, the
individual trees are not correlated with one another. This is particularly important in our
case, as in this study we are using a high number of features, and therefore the probability
of the features being correlated to one another, increases.

Gradient Boosting Gradient Boosting (Friedman 2001) is another ensemble model which,
compared to the random forest, generates the individual weak classifiers sequentially dur-
ing the training process. In this case, we are also using a series of decision trees as weak
classifiers. The gradient boosting model creates and trains only one decision tree at first.
After each iteration, another tree is grown to improve the accuracy of the model and min-
imize the loss function. This process continues until a predefined number of decision trees
has been created, or the loss function no longer improves.

XGBoost The last classical model used, is the XGBoost (Chen and Guestrin 2016). This
is nothing but a better-performing implementation of the Gradient Boosting algorithm. It
allows for faster computation and parallelization compared to gradient boosting. It can
therefore result in better computational and overall performance compared to the latter, and
can be more easily scaled for the use with high dimensional data, as it is the one we are
using.

2.4 Deep LearningModels

Deep learning is a subset of Machine Learning (ML) based on the use of artificial neural
networks. The term deep indicates the use of multiple layers in the neural network archi-
tecture: the classical artificial neural network is the multilayer perceptron (MLP), which
comprises an input layer, output, and a hidden layer in between. This structure limits the
quantity of information that the network can learn and use for its task. Adding more layers
allows the network to increase the amount of information that the network can extract from
the raw input, improving its performance.

While machine learning models become progressively better at whatever their function
is, they still need some guidance, especially in how the features are provided in input. In
most cases, it is necessary to perform some basic to advance feature engineering before
feeding them to the model for training. Deep learning models, on the other hand, thanks
to their ability to progressively extract higher-level features from the input in the multiple

Empir Software Eng (2022) 27:189 Page 7 of 57 189

layers of their architecture, require little to no previous feature engineering. This is
particularly helpful when dealing with high-dimensional data.

Also, as seen Section 2.3, most of the classical machine learning models suffer from per-
formance degradation when dealing with large datasets and high dimensional data. Deep
learning models, on the other hand, can be helpful as thanks to the different types of
architectures, they can be more scalable and flexible.

In this Section, we briefly introduce the Deep Learning-based techniques we adopted in
this work: Fully Convolutional Network (FCN) (Wang et al. 2017) and Residual Network
(ResNet) (Wang et al. 2017).

These two approaches are adopted from Fawaz et al. (2019), where it was shown that
their performance is superior to multiple other methods tested. In particular, Fawaz et al.
showed in their work that the FCN and the ResNet were the best performing classifiers in
the context of the multivariate time series classification. This conclusion was obtained by
testing 9 different deep learning classifiers on 12 multivariate time series datasets.

Residual Network The first deep learning model used is a residual network
(ResNet) (Wang et al. 2017). Among the many different types of ResNet developed, the one
we used is composed of 11 layers, of which 9 are convolutional. Between the convolutional
layers, it has some shortcut connection which allows the network to learn the residual (He
et al. 2016). In this way, the network can be trained more efficiently, as there is a direct flow
of the gradient through the connections. Also, the connections help in reducing the vanish-
ing gradient effect, which prevents deeper neural networks from training correctly. In this
work, we used the ResNet shown in Fawaz et al. (2019). It consists of 3 residual blocks,
each composed of three 1-dimensional convolutional layers alternated to pooling layers, and
their output is added to the input of the residual block. The last residual block is followed by
a global average pooling (GAP) layer (Lin et al. 2013) instead of the more traditional fully
connected layer. The GAP layer allows the features maps of the convolutional layers to be
recognised as a category confidence map. Moreover, it reduces the number of parameters to
train in the network, making it more lightweight, and reducing the risk of overfitting, when
compared to the fully connected layer.

Fully Convolutional Neural Network The second method used, is a fully convolutional
neural network (FCN) (Wang et al. 2017). Compared to the ResNet, this network does not
present any pooling layer, which keeps the dimension of the time series unchanged through-
out the convolutions. As for the ResNet, after the convolutions, the features are passed to
a global average pooling (GAP) layer. The FCN architecture was originally proposed for
semantic segmentation (Long et al. 2015). Its name derives from the fact that the last layer of
this network is another convolutional layer instead of a classical fully connected layer. In this
work, we used the architecture proposed byWang et al. (2017), which uses the original FCN
as a feature extractor, and a softmax layer to predict the labels. More specifically, the FCN
used in this work is adopted from Fawaz et al. (2019). This implementation consists of 3
convolutional blocks, each composed of a 1-dimensional convolutional layer and by a batch
normalization layer (Ioffe and Szegedy 2015). It uses a rectified linear unit (ReLU) (Nair
and Hinton 2010) activation function. The output of the last convolutional block is fed to the
GAP layer, fully connected to a traditional softmax for the time series classification. tThis
model has proven to be on par with the state-of-the-art models in time series classification
in previous works on time series classification (Wang et al. 2017). Moreover, it is smaller
than the ResNet, which would make the FCN model more computationally efficient.

 189 Page 8 of 57 Empir Software Eng (2022) 27:189

3 Empirical Study Design

We designed our empirical study based on the guidelines defined by Runeson and Höst
(2009). In this Section, we describe the empirical study, including the goal and the research
questions, the study context, the data collection, and the data analysis.

3.1 Goal and Research Questions

The goal of this paper is to conduct an in depth investigation among several features, a
large number of projects and commits, and multiple Machine learning and Deep Learning
classifiers to predict the commits fault proneness. This study allows us to: 1) corroborate
our assumption that SonarQube rules fault proneness was low, extending our previous works
Lenarduzzi et al. 2020b, e, and 2) build models to predict whether a commit is fault-prone
with the highest accuracy as possible. As features, we selected the SonarQube rules and
different product and process metrics (Section 3.4).

The perspective is of both practitioners and researchers since they are interested in
understanding which variables.

Based on the aforementioned goal, we derived the following Research Questions (RQs).

RQ1 What is the fault proneness of the SonarQube rules?
RQ2 What is the fault proneness of product and process metrics?
RQ3 To what extent can SonarQube rules impact the performance of fault prediction

models that leverage process and product metrics?
RQ4 Which is the best combination of features and the best model for the fault prediction?

More specifically, in RQ1 we aim at investigating the impact of all the SonarQube
rules on fault-proneness. The goal is to understand how accurate the prediction can be for
fault-proneness if developers do not violate all the SonarQube rules. To provide a com-
plete evaluation, we considered all the SonarQube rules first, and then grouped by type
(Bug, Code Smell, and Vulnerability). We selected SonarQube, since it is by far one of the
most popular tools and its popularity is increased in the last years, considering discussion
in platforms such as Stack Overflow, LinkedIn, and Google groups (Vassallo et al. 2018;
Lenarduzzi et al. 2021a, d; Avgeriou et al. 2020). However, as reported by Vassallo et al.
(2018), developers commonly get confused by the large number of rules, especially because
their severity assigned by SonarQube is not actually correlated with the fault proneness
(Lenarduzzi et al. Lenarduzzi et al. 2020b, e).

Software metrics have been considered good predictors for fault-proneness for several
decades (D’Ambros et al. 2010; Pascarella et al. 2019). Therefore, in RQ2 we are interested
in investigating the fault proneness of different software metrics combined, including the
ones proposed by Rahman and Devanbu (2013), Kamei et al. (2012), and SonarQube suites.
In order to have a baseline for the next RQ, in this RQ we aim at investigating the impact of
each product and process metrics set on fault proneness.

In RQ3, we assess the actual prediction capability using the relevant features coming
from the previous research questions (RQ1 and RQ2) when predicting the presence of a fault
in the source code.

Finally, in RQ4, thanks to the achieved results for each feature and model, we identify
their best combination of predictors and models that allows developers to reach the highest
accuracy when predicting a fault in the source code.

Empir Software Eng (2022) 27:189 Page 9 of 57 189

3.2 Study Context

As context, we considered the projects included in the Technical Debt Dataset (Lenarduzzi
et al. 2019b). The data set contains 33 Java projects from the Apache Software Foundation
(ASF) repository.4 The projects in the data set were selected based on “criterion sam-
pling” (Patton 2002), that fulfill all of the following criteria: developed in Java, older than
three years, more than 500 commits and 100 classes, and usage of an issue tracking system
with at least 100 issues reported. The projects were selected also maximizing their diversity
and representation by considering a comparable number of projects with respect to project
age, size, and domain. Moreover, the 33 projects can be considered mature, due to the strict
review and inclusion process required by the ASF. Moreover, the included projects regu-
larly review their code and follow a strict quality process.5 More details on the data set can
be found in Lenarduzzi et al. (2019b).

For each project, Table 2 reports the number of commits analyzed, the number of faults
detected, and the number of occurrences of SonarQube rules violated.

3.3 Data Collection

The Technical Debt Dataset (Lenarduzzi et al. 2019b) contains the information of the anal-
ysis of the commits of the 33 Open Source Java projects. In this work, we considered the
following information, as depicted in Fig. 1:

– SonarQube Rules Violations.We considered the data from the Table “SONAR ISSUES”
that includes data on each rule violated in the analyzed commits. The complete list of
rules is available online6 but can also be found in the file “sonar rules.csv” of the Tech-
nical Debt Dataset while the diffuseness of each rule is reported in Saarimäki et al.
(2019). As reported in Table 2, the analyzed projects violated 174 SonarQube rules for
1,914,508 times. Since in our previous work (Lenarduzzi et al. 2020b) we found incon-
gruities in the rules type and severity assigned by SonarQube, we decided to consider
all the detected rules. Table 3 shows the SonarQube ruled violated grouped by type and
severity.

– Product and Process Metrics. We considered the 24 software metrics measured by
SonarQube (Table “SONAR MEASURES” of the Technical Debt data set) as listed in
Table 4, related to

– Size (11 types)
– Complexity (5 types)
– Test coverage (4 types)
– Duplication (4 types)

– Fault-inducing and Fault-fixing commits identification. In the dataset, the
fault-inducing and fault-fixing commits are determined using the SZZ algo-
rithm (Śliwerski et al. 2005; Lenarduzzi et al. 2020a) and reported in the Table
“SZZ FAULT INDUCING COMMITS”. The SZZ algorithm identifies the fault-
introducing commits from a set of fault-fixing commits. The fault-introducing commits
are extracted from a bug tracking system such as Jira or looking at commits that state

4http://apache.org
5https://incubator.apache.org/policy/process.html
6https://rules.sonarsource.com/java

http://apache.org
https://incubator.apache.org/policy/process.html
https://rules.sonarsource.com/java

 189 Page 10 of 57 Empir Software Eng (2022) 27:189

Table 2 The selected projects

Project #Commits #Faults # SQ rules

Violated Occurrences

Accumulo 2,641 2,250 118 1,429,757

Ambari 13,397 17,722 110 41,612

Atlas 2,336 1,990 111 35,776

Aurora 4,012 628 90 7526

Batik 2,097 1,160 114 31,691

Beam 2,865 1,723 109 8,449

Bcel 10,210 3,218 98 85,018

Beanutils 1,324 242 81 5,182

Cli 1,192 346 81 37,408

Codec 896 182 65 58,073

Cocoon 1,726 327 131 2,041

Collections 2,982 135 103 11,118

Configuration 2,895 73 96 5,612

Deamon 980 190 30 393

Dbcp 1,861 284 79 3,696

Dbutils 645 159 40 644

Digester 2,145 149 72 4,947

Exec 617 444 57 762

Felix 596 147 104 11,340

FileUpload 922 282 52 769

Httpcomponents Client 2,867 463 97 10,803

HttpComponents Core 1,941 188 84 9,531

Io 2,118 368 85 5849

Jelly 1,939 56 77 5,060

Jexl 1,551 119 101 34,994

Jxpath 597 265 71 4,951

MINA Sshd 1,370 1,588 97 9,031

Net 2,088 438 86 41,340

Ognl 608 3,415 90 4,945

Santuario 2,697 1,302 107 22,398

Validator 1,339 397 61 2,050

Vfs 2,067 84 97 3,719

Zookeeper 411 1,859 70 5,023

Sum 77,932 40,470 2,864 1,941,508

that they are fixing an issue. A complete description of the steps adopted in the SZZ
algorithm is available in Śliwerski et al. (2005).

Moreover, to enrich the data regarding the product and process metrics contained in
the dataset, we considered the product and process metrics proposed by Rahman and
Devanbu (2013) and Kamei et al. (2012), implemented by Pascarella et al. (2019). Moreover,

Empir Software Eng (2022) 27:189 Page 11 of 57 189

Fig. 1 Technical Debt Dataset Tables (Lenarduzzi et al. 2019b) considered in this study

these metrics were previously validated in the context of fine-grained just-in-time defect
prediction. These metrics cover various aspects of the development process (Table 5):

– Developers’ expertise (e.g., the contribution frequency of a developer Kamei et al.
2012)

– The structure of changes (e.g., the number of changed lines in a commit Rahman and
Devanbu 2013)

– The evolution of the changes (e.g., the frequency of changes Rahman and Devanbu
2013)

– The dimensional footprint of a committed change (e.g., the relation between uncorre-
lated changes in a commit Tan et al. 2015).

3.4 Data Analysis

In this Section, we report the data analysis protocol adopted in this study including data
preprocessing, data analysis, and accuracy comparison metrics.

3.4.1 Data Preprocessing

In order to investigate our RQs we need to preprocess the data available in the Techni-
cal Debt Dataset. Moreover, since we are planning to adopt machine learning and Deep

 189 Page 12 of 57 Empir Software Eng (2022) 27:189

Table 3 Type and severity of
SonarQube rules violated in our
projects

SonarQube rules # Occurrences

Type Bugs 37 22,620

Code Smells 130 1,861,999

Vulnerability 7 57,489

Severity Blocker 8 18,083

Critical 42 143,293

Major 90 983,647

Minor 32 727,155

Info 2 69,330

Learning techniques, we need to preprocess the data accordingly to the models we aim to
adopt.

The preprocessing was composed of three steps:

– Data extraction from the Technical Debt Dataset
– Data pre-processing
– Data preparation for the Machine Learning Analysis
– Data preparation for the Deep Learning Analysis

Data extraction from the Technical Debt Dataset The data in the tables
SZZ FAULT INDUCING COMMITS, and SONAR MEASURES of the Technical Debt
Dataset already list the information per commit. However, the table SONAR ISSUES
contains one row for each file where a rule has been violated. Therefore, we extracted
a new table by means of an SQL query (see the replication package for details Lomio
et al. 2022). The result is the new table SONAR ISSUE PER COMMIT. Then,
we joined the newly created table SONAR ISSUE PER COMMIT with the tables
SZZ FAULT INDUCING COMMITS and SONAR MEASURES using the commit hash
as key. This last step resulted in the final dataset that we used for our analysis (Table
FullTable.csv in the replication package Lomio et al. 2022), which contains the following
information: the commit hash, the project to which the commit refers to, the boolean
label Inducing, which indicates if the commit is fault inducing or not, and the set of sonar
measures and sonar issues introduced in the commit.

Moreover, we calculated the software metrics proposed by Rahman and Devanbu (2013)
and Kamei et al. (2012) according to Pascarella et al. (2019) procedure. Pascarella et al.
(2019) provided a publicly accessible replication package with all the scripts used to com-
pute the metrics. The tool collects the new metrics as soon as a new file Fi was added to
a repository, (2) updated the metrics of Fi whenever a commit modified it, (3) kept track
of possible file renaming by relying on the GIT internal rename heuristic and subsequently
updating the name of Fi , and (4) removed Fi in the case it was permanently deleted.

Due to the characteristics of the projects, we were able to calculate the metrics proposed
by Rahman and Kamei only on 29 of the 33 projects, leaving out the following projects:
Batik, Beam, Cocoon, and Santuario. In order to be able to compare the results obtained
using the different metrics as features, we excluded these projects also for the analysis with
the SonarQube rules.

We combined the metrics by a step-wise method: we grouped the metrics based on Rah-
man and Devanbu (2013) + Kamei et al. (2012), Rahman and Devanbu (2013) + SonarQube
metrics, and Kamei et al. (2012) + SonarQube metrics. Finally, we also considered all the

Empir Software Eng (2022) 27:189 Page 13 of 57 189

Table 4 Product and process metrics detected by SonarQube

Metric Description

Size

NC Number of classes (including nested classes, interfaces, enums and annotations).

NF Number of files.

LL Number of physical lines (number of carriage returns).

NCLOC Also known as Effective Lines of Code (eLOC). Number of physical lines that

contain at least one character which is neither a whitespace nor a tabulation

nor part of a comment.

NCI Number of Java classes and Java interfaces

MPI Missing package-info.java file (used to generate package-level documentation)

P Number of packages

STT Number of statements.

NOF Number of functions. Depending on the language, a function is either a function

or a method or a paragraph.

NOC Number of lines containing either comment or commented-out code. Non-

significant comment lines (empty comment lines, comment lines containing only

special characters, etc.) do not increase the number of comment lines.”

NOCD Density of comment lines = Comment lines / (Lines of code + Comment lines) * 100

Complexity

COM It is the Cyclomatic Complexity calculated based on the number of paths through the

code. Whenever the control flow of a function splits, the complexity counter gets

incremented by one. Each function has a minimum complexity of 1. This calculation

varies slightly by language because keywords and functionalities do.

CCOM Complexity average by class

FC Complexity average by method

COGC How hard it is to understand the code’s control flow.

PDC Number of package dependency cycles

Test coverage

COV It is a mix of Line coverage and Condition coverage. Its goal is to provide an even

more accurate answer to the following question: How much of the source code has

been covered by the unit tests?

LTC Number of lines of code which could be covered by unit tests (for example, blank

lines or full comments lines are not considered as lines to cover).

LC On a given line of code, Line coverage simply answers the following question: Has

this line of code been executed during the execution of the unit tests?

UL Number of lines of code which are not covered by unit tests.

Duplication

DL Number of lines involved in duplications

DB Number of duplicated blocks of lines.

DF Number of files involved in duplications.

DLD = (duplicated lines ÷ lines) * 100

 189 Page 14 of 57 Empir Software Eng (2022) 27:189

Table 5 Product and process metrics proposed by Rahman and Devanbu (2013) and Kamei et al. (2012)
(from Pascarella et al. 2019)

Metric Description

Rahman and COMM The cumulative number of changes in a given file up to the considered

Devanbu (2013) commit.

ADEV The cumulative number of active developers who modified a given file

Rahman and Devanbu (2013)up to the considered commit.

DDEV The cumulative number of distinct developers contributed to a given file

up to the considered commit.

ADD The normalized number of lines added to a given file in the considered

commit.

DEL The normalized number of lines removed from a given file in the

considered commit.

OWN The value indicating whether the owner of the file does the commit.

MINOR The number of contributors who contributed less than 5% of a given file

up to the considered commit.

SCTR The number of packages modified by the committer in the considered

commit.

NADEV The number of active developers who changed any of the files involved

in the commits where the given file has been modified.

NDDEV The number of distinct developers who changed any of the files involved

in the commits where the given file has been modified.

NCOMM The number of commits where the given has been involved.

NSCTR The number of different packages touched by the developer in commits

where the file has been modified.

OEXP The percentage of code lines authored by a given developer in the whole

project.

EXP The mean of the experience of all developers across the whole project.

Kamei et al. (2012) ND The number of directories involved in a commit.

ENTROPY The distribution of the modified code across each given file in the

considered commit.

LA Ten number of lines added to the given file in the considered commit

(absolute number of the ADD metric).

LD The number of lines removed from the given file in the considered

commit (absolute number of the DEL metric).

LT The number of lines of code in the given file in the considered commit

before the change.

AGE The average time span between the last and the current change.

NUC The number of times the file has been modified alone up to considered

commit.

CEXP The number of commits performed on the given file by the committer

up to the considered commit.

REXP The number of commits performed on the given file by the committer

in the last month.

SEXP The number of commits performed by a given developer in the

considered package that contains the given file.

Empir Software Eng (2022) 27:189 Page 15 of 57 189

metrics together. Based on this grouping, we designed seven different metrics combinations.
We also extended this grouping in order to combine each of the metrics also with Sonar-
Qube rules and SonarQube rules type, hence resulting in 14 additional combinations. The
full list of combinations can be seen in Table 6.

The complete process is depicted in Fig. 2.

Data Pre-processing As recommended in literature, we applied a set of pre-processing
steps to avoid bias in the interpretation of the results (Tantithamthavorn and Hassan 2018).

Firstly, each SonarQube violation has been normalized for each project, so that the
impact of the specific violation becomes more evident.

We applied a feature selection method to remove correlated variables that provide the
classifiers with the same (or similar) information, and that might cause them not to be
able to derive the correct explanatory meaning of the features. This step allows avoid-
ing multi-collinearity (O’Brien 2007). We exploited the Variable Inflation Factor (VIF)
method (O’Brien 2007): for each independent variable, the VIF function measures how
much the variance of the model increases because of collinearity. The features having a VIF

Table 6 The selected features

Subset Features selected # Samples

SonarQube Rules 90 59,912

SQ Rules Type 3 59,912

SQ Metrics 9 59,912

Kamei et al. (2012) 8 59,912

Rahman and Devanbu (2013) 9 59,912

Kamei et al. (2012) + Rahman and Devanbu (2013) 15 59,912

SQ Metrics + Kamei et al. (2012) 17 59,912

SQ Metrics + Rahman and Devanbu (2013) 18 59,912

SQ Metrics + Kamei et al. (2012) + Rahman and Devanbu (2013) 24 59,912

SQ Rules Type + SQ Metrics 12 59,912

SQ Rules Type + Kamei et al. (2012) 11 59,912

SQ Rules Type + Rahman and Devanbu (2013) 12 59,912

SQ Rules Type + Kamei et al. (2012) + Rahman and Devanbu (2013) 18 59,912

SQ Rules Type + SQ Metrics + Kamei et al. (2012) 20 59,912

SQ Rules Type + SQ Metrics + Rahman and Devanbu (2013) 21 59,912

SQ Rules Type + SQ Metrics + Kamei et al. (2012) 27 59,912

+ Rahman and Devanbu (2013)

SQ Rules + SQ Metrics 99 59,912

SQ Rules + Kamei et al. (2012) 98 59,912

SQ Rules + Rahman and Devanbu (2013) 98 59,912

SQ Rules + Kamei et al. (2012) + Rahman and Devanbu (2013) 103 59,912

SQ Rules + SQ Metrics + Kamei et al. (2012) 107 59,912

SQ Rules + SQ Metrics + Rahman and Devanbu (2013) 107 59,912

SQ Rules + SQ Metrics + Kamei et al. (2012) 112 59,912

+ Rahman and Devanbu (2013)

 189 Page 16 of 57 Empir Software Eng (2022) 27:189

Fig. 2 The data preprocessing process

coefficient higher than 5 were removed; the process was repeated, iteratively, until the point
where all the remaining features had a VIF coefficient lower than the defined threshold.

Since we have an imbalanced dataset, with the commits labelled as fault inducing
accounting for less than 5% of the total number of commits considered, we included an
oversampling step to improve the performance of the classifiers used. We applied the Syn-
thetic Minority Oversampling Technique (SMOTE) (Chawla et al. 2002): for each project,
this technique generates artificial samples of the minority class (i.e., faulty commits in our
case) in order to rebalance the classes. Unfortunately, we found that the technique could not
be applied on all the considered projects. Particularly, SMOTE requires the presence of at
least two samples of the minority class to be able to replicate them and properly oversample
the dataset. The total number of samples considered for the analysis after the SMOTE was
applied, along with the number of features selected through the VIF method for each subset
considered, can be found in Table 6.

Moreover, since our commit data is dependent on the time, we also included Deep Learn-
ing models, in order to include the effect of past commits in determining the faultiness of
the current ones. Compared to Machine Learning models, it is, in fact, possible to include
also past data as input, instead of only the current data point.

Data Preparation for the Machine Learning Analysis In order to predict if a commit is
fault-inducing or not, based on the violation of a SonarQube rule or to the change of a metric,
we identified the fault inducing (Boolean) variable as the target (dependent) variable.

Empir Software Eng (2022) 27:189 Page 17 of 57 189

The machine learning models described in Section 2.3, allow only to have a two-dimen-
sional input (N,M), where N is the number of samples and M is the number of features. This
means that we can classify a commit as fault inducing or not, only based on the information
related to that commit itself: we cannot include the commit’s history. For this reason, to pre-
pare the data for answering RQs, for each commit, we selected the target variable, which is
the boolean label Inducing. As input features, we prepared multiple sets, including Sonar-
Qube rules and SonarQube rules type (RQ1), product and process metrics (RQ2), and their
combinations (RQ3).

It is important to notice that at this point, we are interested in classifying a snapshot of
the commit as fault inducing or not; therefore, the time dependency information is not taken
into account.

Data Preparation for the Deep Learning Analysis The deep learning models described
in Section 2.4, allow the use of three-dimensional input (N,h,M), where N and M are the
numbers of samples and features, as for the machine learning models, while h indicates the
number of commits in each sample. This means that we are able to include the features
related to the past commits in the classification of another commit (Fig. 3): we can include
the history of the commit and are not limited to using only its current status.

For this reason, we had to reshape the data in order to include the past status of the
commits. We used the previous 10 commits as input variables for our models and the label
of the following commit as the target variable. Going more in detail, as we have multiple
projects in our dataset, we first divided the data into subsets, including only one project.
This helps us include only commits from the same project in each sample. After doing this,
we reshaped the data using a rolling window of length 10 and step 1, selecting 10 commits
and storing the following commit label as target variable. We did this iteratively for all
the commits for each project. Similarly to what was done for the machine learning case,
we prepared multiple sets of inputs, including SonarQube rules and SonarQube rules type
(RQ1), product and process metrics (RQ2), and their combinations (RQ3).

Once the new samples are obtained, they are shuffled and divided into train and test
sets. Contrary to the machine learning case, here we take into account the time dependency

Fig. 3 The Deep Learning preprocessing

 189 Page 18 of 57 Empir Software Eng (2022) 27:189

between commits. Still, it is indeed important to notice that this is done in each individual
sample. Therefore it is not necessary to consider any temporal order in the train-test split.

3.4.2 Data Analysis

We first analyzed the fault-proneness of SonarQube rule (RQ1) and of software metrics
(RQ2.1) with the three Machine Learning models that better performed on this task in our
previous work (Lenarduzzi et al. 2020e). Then, we applied Deep Learning models on the
same data to get better insights of the data with more advanced analysis techniques. Finally,
we compared the results obtained and applied statistical tests to assess the results.

Machine Learning Analysis The three machine learning models presented in Section 2.3,
were all implemented using Scikit-learn library, except for the XGBoost model, imple-
mented using its own library. All the classifiers were trained using 100 decision trees. The
models were trained using a LOGO (Leave One Group Out) validation strategy. All three
ML models were run on an Intel Xeon W-2145 with 16 cores and 64GB of RAM.

Deep Learning Analysis The deep learning models described in Section 2.4, were imple-
mented in TensorFlow (Abadi et al. 2015) and Chollet et al. (2015), using a similar approach
as Fawaz et al. (2019). Both models were trained for 50 epochs, with a mini-batch size of
64 and using as optimizer the Adadelta algorithm (Zeiler 2012), which allow the model to
adapt the learning rate. In order to better compare the results with the ones obtained using
classical machine learning methods, also the deep learning models were trained using a
LOGO validation strategy. Both models have been trained on a computational cluster with a
total of 32 NVIDIA Tesla P100 and 160 CPU cores specific for training deep learning mod-
els. Each of our model had available 1 NVIDIA Tesla P100 with 16GB of VRAM, 1 CPU
core, and 40GB of RAM.

Accuracy Comparison As validation technique we adopted the Leave One Group Out
(LOGO) validation. This technique divides the dataset into train and test sets using a ’group
as discriminant (in our case the project is used). All the groups but one are used to train
the model, and the remaining is used for testing. This is done for each group in the dataset.
This means that n models are trained, with n the number of projects in our data. For each
fold, n − 1 groups are used for training, and 1 for testing. This means that for our analysis,
the training set was composed 28 projects. The remaining 1 project was used to validate the
model. This process was repeated 29 times, so that all the projects in the dataset were in the
test set exactly once. It is important to highlight that the commit of a project cannot be split
between train and test set. This constraint avoids the possible bias due to the time-sensitive
nature of code commits: in other words, we never allow a commit belonging to a project to
be seen by the model before the train.

The selection of the LOGO validation technique was based on the need to have a val-
idation strategy which would minimize the possible bias given the nature of the data that
we had for our analysis. More specifically, a normal k-fold cross-validation would not be
suitable as it would include commits from projects in the test set, already in the train set,
resulting in a bias classification. Also, a time based validation would not work with our
data as there would be many folds in which there would not be any fault-inducing com-
mit (as they represent less than 5% of the data), hence the classifiers used would not work.
This problem would arise also considering a within project validation, especially for those
projects that had very few fault-inducing commits. tThis validation could be used without

Empir Software Eng (2022) 27:189 Page 19 of 57 189

any probelm with larger projects (i.e., Ambari, Bcel), but it would leave out many of the
smaller projects which are necessary to strengthen and better generalize our results. It is
obvious that also using a time based validation, mixing all commits from all projects would
create a bias as for the k-fold cross validation. Also, it is important to notice that for both the
machine learning and for the deep learning classifiers, we intrinsically take into considera-
tion the time nature of the data: we are using models which consider the samples statically,
without having memory of any time-based dependency between samples. For this reason,
we could avoid using a strict time based validation.

The alternative we were left with, was therefore to use a validation strategy that would
eliminate as many biases as possible while ensuring to have enough samples of both classes
in all the folds of the validation strategy.

As for accuracy metrics, we first calculated precision and recall. However, as suggested
by Powers (2011), these two measures present some biases as they are mainly focused on
positive examples and predictions, and they do not capture any information about the rates
and kind of errors made.

The contingency matrix (also named confusion matrix), and the related f-measure help to
overcome this issue. Moreover, as recommended by Powers (2011), the Matthews Correla-
tion Coefficient (MCC) should also be considered to understand the possible disagreement
between actual values and predictions as it involves all the four quadrants of the contin-
gency matrix. From the contingency matrix, we retrieved the measure of true negative rate
(TNR), which measures the percentage of negative sample correctly categorized as negative,
false positive rate (FPR) which measures the percentage of negative sample misclassified
as positive, and false negative rate (FNR), measuring the percentage of positive samples
misclassified as negative. The measure of true positive rate is left out as equivalent to the
recall. The way these measures were calculated can be found in Table 7.

Finally, to graphically compare the true positive and the false positive rates, we calculated
the Receiver Operating Characteristics (ROC), and the related Area Under the Receiver
Operating Characteristic Curve (AUC). This gives us the probability that a classifier will
rank a randomly chosen positive instance higher than a randomly chosen negative one.

In our dataset, the proportion of the two types of commits is not even: a large major-
ity (approx. 99%) of the commits were non-fault-inducing, and a plain accuracy would
reach high values simply by always predicting the majority class. On the other hand, the
ROC curve (as well as the precision and recall scores) are informative even in seriously
unbalanced situations.

Statistical Analysis To assess our results, we also compared the distributions of the soft-
ware metrics groups and SonarQube rules using statistical tests. We needed to compare

Table 7 Accuracy metrics
formulae Accuracy measure Formula

Precision T P
FP+T P

Recall T P
FN+T P

MCC T P∗T N−FP∗FN√
(FP+T P)(FN+T P)(FP+T N)(FN+T N)

F-measure 2 ∗ precision∗recall
precision+recall

TNR (True Negative Rate) T N
FP+T Ne

FPR (False Positive Rate) FP
T N+FP

FNR (False Negative Rate) FN
FN+T P

TP: True Positive; TN: True
Negative; FP: False Positive; FN:
False Negative

 189 Page 20 of 57 Empir Software Eng (2022) 27:189

Table 8 SonarQube rules
violated in the fault-inducing
commits

SonarQube rules in the fault-inducing commits # Occurrences

Type Bugs 26 4,491

Code Smells 116 374,106

Vulnerability 7 18,998

Severity Blocker 6 7,959

Critical 31 28,647

Major 81 216,655

Minor 29 125,993

Info 2 18,341

more than 2 groups with not normally distributed data (we tested the normality applying
Wilkinson test7), and dependent samples (two (or more) samples are called dependent if
the members chosen for one sample automatically determine which members are to be
included in the second sample). To identify a set of important features and models for fault
prediction, we need to verify whether the differences in the performance achieved by the
various experimented models were statistically significant. We had two possible options
adopting ScottKnott test (Tantithamthavorn et al. 2017, 2018) or Nemenyi test8 post-hoc
test (Nemenyi 1962). The selection depends on the data distribution: if the normality is
proved we will opt for ScottKnott, otherwise we will select Nemenyi. Based on the result
achieved from the test, we identified the best models and built them using only the most
important features and compared with the ones using all the features. For each RQ, we
identified which data groups differ after a statistical test of multiple comparisons (null
hypothesis is that the groups are similar), making a pair-wise comparison.

3.5 Replicability

In order to allow the replication of our study, we published the complete raw data, includ-
ing all the scripts adopted to perform the analysis and all the results in the replication
package (Lomio et al. 2022).

4 Results

In this Section, we first report a summary of the data analyzed, and then we answer our RQs.

4.1 RQ1. What is the Fault Proneness of the SonarQube Rules?

We considered 59,912 commits in 29 Java projects that violated 174 different rules a total
of 1,823,118 times. Out of 174 rules detected in our projects, only 161 are categorized with
a SonarQube ID, and these are the ones that we used as input for our analysis, as described
in Section 3.4. The 455 commits labelled by SZZ as fault-inducing, violated 149 Sonarqube
rules 397,595 times, as reported in Table 8.

7https://www.spss-tutorials.com/spss-shapiro-wilk-test-for-normality/
8Nemenyi package for PHYTON.9

https://www.spss-tutorials.com/spss-shapiro-wilk-test-for-normality/

Empir Software Eng (2022) 27:189 Page 21 of 57 189

Table 9 The top-10 violated
SonarQube rules SonarQube rules Occurrences Type Severity

S134 23,192 Code Smells Major

S00112 22,185 Code Smells Major

RTDC 17,324 Code Smells Minor

S1166 16,164 Code Smells Critical

S1192 15,827 Code Smells Minor

S1213 15,615 Code Smells Minor

S1133 15,236 Code Smells Info

S106 14,196 Code Smells Major

S1132 13,815 Code Smells Major

MCC 13,447 Code Smells Major

RTDC means RedundantThrows-
DeclarationCheck

MCC means
“MethodCyclomaticComplexity”

In the remainder of this Section, we refer to the SonarQube Violations only with their
SonarQube ID number (e.g. S108). The complete list of rules, together with their description
is reported in the online replication package (Lomio et al. 2022).

It is important to remember that, according to the SonarQube model, a Bug “represents
something wrong in the code and will soon be reflected in a fault”. Moreover, they also claim
that zero false positives are expected from bugs.10 Therefore, we should expect that Bugs
represented the vast majority of the rules detected in the fault-inducing commits. However,
all the three types present a similar distribution: 19.85% of Bug, 20.09% of Code Smells,
and 33.04% of Security Vulnerabilities. In Table 9 we report the occurrences of the top-
10 violated SonarQube rules in the fault-inducing commits. Considering the average of
each rule per commit, the distribution shows that the top-10 recurrent SonarQube rules are
detected in almost all the cases in the fault inducing commits. Only a little portion (less than
3%) is also detected in the not-inducing commits (Fig. 4).

We analyzed our projects with the three selected Machine Learning models (Gradient
Boost, Random Forest, and XG Boost) and with two Deep Learning models (FCN and
ResNet) to predict a fault based on SonarQube rules.

We considered both the rules individually and grouped by types (Bug, Code Smell, and
Vulnerability). We aimed to understand if the presence of a Sonar issue of different types
has a higher probability of introducing a fault in the source code.

Figures 5 and 6 depict the box plots reporting the distribution of AUC and F-measure
values obtained during the LOGO validation of the three Machine Learning and the two
Deep Learning models on the considered dataset. Instead, Figs. 7 and 8 refer to FNR and
FPR values. In both figures, each color indicates the model produced considering the rules
individually (Blue) and grouped by types (Orange).

Considering the SonarQube rules individually, the three Machine Learning validation
results reported an average AUC of 50% (as also shown in Table 10 and Fig. 5). In our
previous work (Lenarduzzi et al. 2020e), the AUC obtained an average value of 80%. We
believe that avoiding multi-collinearity (O’Brien 2007) (VIP) and adopting a more accurate
and realistic validation approach (LOGO) provided a more reliable prediction accuracy.

Deep Learning models, instead, enabled to better predict a fault (Table 14 and Fig. 5).
We can see that in terms of AUC both Deep Learning models over-performed the machine

10SonarQube Rules: https://tinyurl.com/v7r8rqo

https://tinyurl.com/v7r8rqo

 189 Page 22 of 57 Empir Software Eng (2022) 27:189

Fig. 4 Average distribution of inducing and non-inducing commits for the top-10 SonarQube violation types

learning models, with an average AUC of 90%. For the other accuracy metrics, we have
good results (better than with the machine learning models).

Moreover, the FNR is higher in the case of the Machine Learning models, as they incor-
rectly identified normal commits as faulty (Fig. 7). It must be said that even if Deep Learning
models look better for FNR, they incorrectly identify faulty classes (FPR - Fig. 8).

Grouping the SonarQube rules by types increases the prediction accuracy (Table 10)
in terms of AUC (Fig. 5) and F-measure (Fig. 6) when we applied the Machine Learning
models. Instead, Deep Learning models seem to not be affected by the grouping. The same
trend can be observed looking at FNR (Fig. 7) and FPR (Fig. 8).

Fig. 5 AUC comparison among machine learning and deep learning models for SonarQube rules and for
SonarQube rules grouped by type (RQ1)

Empir Software Eng (2022) 27:189 Page 23 of 57 189

Fig. 6 F-measure comparison among Machine Learning and Deep Learning models for SonarQube rules and
for SonarQube rules grouped by type (RQ1)

These differences in results and performance improvement can be explained with the
curse of dimensionality. The data we are using can be considered as high dimensional
data, when considering all the SQ rules individually. This type of data has been shown to
limit machine learning models’ performance, while affecting less (in this case, for instance)
the performance of deep learning models. Machine learning models slightly improve their
overall performances when dealing with fewer features instead (i.e. SQ rule types).

Based on the overall results, Deep Learning models are good fault predictors considering
all the accuracy metrics.

Moreover, adopting LOGO validation strategy, increases the overall performance of both
Deep and Machine Learning models, as we can see in Table 15 and Figs. 23 and 24 reported
in the Appendix.

Fig. 7 FNR comparison among Machine Learning and Deep Learning models for SonarQube rules and for
SonarQube rules grouped by type (RQ1)

 189 Page 24 of 57 Empir Software Eng (2022) 27:189

Fig. 8 TPR comparison among Machine Learning and Deep Learning models for SonarQube rules and for
SonarQube rules grouped by type (RQ1)

4.2 RQ2. What is the Fault Proneness of Software Metrics?

In this Section, we investigated the fault proneness of product and process metrics consider-
ing the ones proposed by Rahman and Devanbu (2013), Kamei et al. (2012), and SonarQube
suites (Table 11).

As for RQ1, Figs. 9 and 10 depict the box plots reporting the distribution of AUC and
F-measure values obtained during the LOGO validation of the three Machine Learning and
the two Deep Learning models on the considered dataset. Instead, Figs. 13 and 14 refer to
FNR and TNR values. In both figures, each color indicates the model produced considering
different features.

Similarly to RQ1, we used the three selected Machine Learning models (Gradient Boost,
Random Forest, and XGBoost) and with the two Deep learning models (FCNN and ResNet)

Table 10 Accuracy metrics (%)
comparison for SonarQube rules
with Machine Learning (RQ1)

SQ rules Machine learning

Gradient boost Random forest XG boost

All Type All Type All Type

AUC 61,7 67 42,5 57,4 46,5 58,9

F-Measure 28,1 48,6 13,6 45,9 19,4 46,6

Precision 61,5 53,4 52,6 50,8 61,5 50,8

Recall 23,8 56,4 8,7 47 13,3 52

MCC 2 22,1 7,9 17,3 14 17,9

FNR 76,1 43,5 91,2 52,9 86,6 47,9

TNR 94,3 715 96,4 70,3 96,2 68,8

FPR 5,6 28,4 3,5 29,6 3,7 31,1

Empir Software Eng (2022) 27:189 Page 25 of 57 189

Table 11 Accuracy metrics (%)
comparison for SonarQube rules
with Deep Learning (RQ1)

SQ rules Deep learning

FCNN ResNet

All Type All Type

AUC 89,5 83,4 93,7 86,9

F-Measure 65,5 6 72,7 65,4

Precision 78 67,7 83,8 72

Recall 60,9 65,2 76,8 68,9

MCC 59,7 462, 68,5 53,9

FNR 39 34,7 23,1 31

TNR 96,2 83,9 96,5 88,7

FPR 3,7 16 3,4 11,2

to predict a fault based on software metrics. Table 12 reports all the accuracy metrics for the
machine learning and the deep learning models.

Considering the results obtained with Machine Learning model, Kamei (2012) metrics
and Rahman (2013) metrics work better individually (91% and 90% in average respec-
tively), while SonarQube metrics presents the lowest accuracy (60% in average). Combining
together different metrics provide a benefit only for sonarqube metrics (Table 12, Figs. 9
and 10).

On the contrary, Machine Learning models correctly identified the non-faulty classes
(TNR - Fig. 14), while for Deep Learning models it depends on which software metrics are
used as predictors.

As happened for RQ1, adopting LOGO validation strategy increases the overall perfor-
mance of both Deep and Machine Learning models (Table 16 and Figs. 25 and 26 reported
in the Appendix Section).

To assess whether the accuracy metric distributions were statistically different when con-
sidering different metrics combinations, we first determine the normality of the data and
since it was not satisfied, we run the post-hoc Nemenyi rank test (Nemenyi 1962) on all
the Machine and Deep Learning models. For the sake of space limitations, we only report
the results for the more accurate Machine and Deep Learning models for all the consid-
ered software metrics: XGBoost and ResNet. We report the statistical results achieved when
considering the AUC and F-Measure of he models trained using the Rahman and Devanbu
(2013), Kamei et al. (2012), metrics suite (Figs. 11a and 12a), and F-measure (Figs. 11b,
12b). Statistically significant differences are depicted in dark violet. The complete results
are reported in our online appendix (Lomio et al. 2022).

Considering XGBoost, AUC values (Fig. 11a) obtained between the models built with
SonarQube metrics (SQ) are statistically significant differences and the Rahman and
Devanbu (2013), Kamei et al. (2012) metrics. Moreover, there is a statistically significant
difference considering the other metrics combined together. The trend is observable for
the values of F-measure (Fig. 11b). Looking at ResNet model, AUC (Fig. 12a) statistically
significant differences results are observed between Kamei et al. (2012) and SonarQube
metrics, while there is no substantial difference between Rahman and Devanbu (2013),
Kamei et al. (2012) ones (Table 13).

 189 Page 26 of 57 Empir Software Eng (2022) 27:189

Fig. 9 AUC comparison among Machine Learning and Deep Learning models for software metrics (RQ2)

Fig. 10 F-measure comparison among Machine Learning and Deep Learning models for software metrics
(RQ2)

Empir Software Eng (2022) 27:189 Page 27 of 57 189

Table 12 Accuracy metrics (%) comparison for software metrics (RQ2)

Metrics Machine learning Deep learning

Gradient boost Random forest XG boost FCNN ResNet

SonarQube (SQ) metrics

AUC 48.83 51.18 52.68 77.13 81.76

F-measure 10.53 1.83 11.31 48.97 59.24

Precision 12.46 6.66 30.20 53.09 64.36

Recall 10.29 1.26 9.33 57.45 58.70

MCC -8.95 -0.03 5.00 32.88 47.32

FPR 17.22 0.89 5.73 23.94 13.64

TNR 82.78 99.11 94.27 76.06 86.36

FNR 89.71 98.74 90.67 42.55 41.30

Kamei et al. (2012) metrics

AUC 89.59 91.00 95.06 82.51 96.53

F-measure 65.13 18.06 60.91 63.06 72.17

Precision 76.07 63.24 84.63 58.42 78.46

Recall 69.20 12.18 56.39 78.19 80.80

MCC 54.32 18.06 55.38 40.33 65.21

FPR 8.90 0.54 1.36 39.24 10.21

TNR 91.10 99.46 98.64 60.76 89.79

FNR 30.80 87.82 43.61 21.81 19.20

Rahman and Devanbu (2013) metrics

AUC 90.59 87.99 92.45 75.07 91.49

F-measure 67.34 26.14 64.70 46.58 62.65

Precision 80.35 76.98 87.00 53.82 68.45

Recall 70.12 18.99 57.67 48.94 68.54

MCC 59.68 26.38 58.54 40.31 55.37

FPR 5.41 0.38 0.65 6.78 9.18

TNR 94.59 99.62 99.35 93.22 90.82

FNR 29.88 81.01 42.33 51.06 31.46

Rahman and Devanbu (2013) + Kamei et al. (2012) metrics

AUC 82.33 76.02 80.48 70.41 71.68

F-measure 5.48 6.68 8.82 5.44 4.29

Precision 13.60 16.67 25.29 3.13 2.44

Recall 5.81 5.32 6.75 42.21 66.52

MCC 6.81 8.29 11.16 6.70 5.17

FPR 0.13 0.01 0.05 14.97 41.38

TNR 99.87 99.99 99.95 85.03 58.62

FNR 94.19 94.68 93.25 57.79 33.48

SonarQube (SQ) + Kamei et al. (2012) metrics

AUC 88.30 87.96 92.60 82.53 94.54

F-measure 57.80 12.71 50.17 62.34 77.21

Precision 74.07 52.31 82.89 58.11 78.47

Recall 60.15 8.64 42.72 76.80 84.11

 189 Page 28 of 57 Empir Software Eng (2022) 27:189

Table 12 (continued)

Metrics Machine learning Deep learning

Gradient boost Random forest XG boost FCNN ResNet

MCC 46.55 13.35 45.04 39.87 70.19

FPR 8.40 0.24 1.62 37.95 9.42

TNR 91.60 99.76 98.38 62.05 90.58

FNR 39.85 91.36 57.28 23.20 15.89

SonarQube (SQ) + Rahman and Devanbu (2013) metrics

AUC 90.22 88.20 89.43 89.12 86.59

F-measure 62.17 11.08 55.41 47.55 57.83

Precision 78.90 47.90 83.29 57.86 57.96

Recall 63.10 8.72 48.23 49.80 65.87

MCC 52.89 12.03 50.06 41.05 49.54

FPR 6.31 0.21 0.74 7.17 12.15

TNR 93.69 99.79 99.26 92.83 87.85

FNR 36.90 91.28 51.77 50.20 34.13

SonarQube (SQ) + Rahman and Devanbu (2013) + Kamei et al. (2012) metrics

AUC 91.31 90.61 95.55 85.20 87.23

F-measure 63.32 19.54 55.86 63.12 64.33

Precision 79.00 61.10 83.47 63.12 58.45

Recall 66.04 14.67 46.77 73.89 84.25

MCC 55.68 20.35 50.79 46.79 43.51

FPR 5.57 0.19 0.69 25.41 38.48

TNR 94.43 99.81 99.31 74.59 61.52

FNR 33.96 85.33 53.23 26.11 15.75

4.3 RQ3.ToWhat Extent Can SonarQube Rules Impact the Performance of Fault
PredictionModels that Leverage Process and Product Metrics

In this Section, we considered in the metrics combination used in RQ2, including also the
SonarQube rules. Table 10 depicts the accuracy metrics results for the SonarQube indi-
vidually and with the Sonarqube rules types using the Machine learning, while Table 14
presents the results adopting Deep Learning models (Figs. 13 and 14). Figures 15 and 16
depict the box plots reporting the distribution of AUC and F-measure values obtained dur-
ing the LOGO validation of the three Machine Learning and the two Deep Learning models
on the considered dataset considering the SonarQube individually. Instead, Figs. 17 and 18

Empir Software Eng (2022) 27:189 Page 29 of 57 189

Fig. 11 Nemenyi test for comparing the different product and process metrics group within XGBoost (RQ2)

refer the Sonarqube rules grouped by types. In both figures, each color indicates the model
produced considering different models.

As for the other RQs, to assess whether the accuracy metric distributions were statisti-
cally different when considering in the first case SonarQube rules and in the second case the
rule types, we run the post-hoc Nemenyi rank test (Nemenyi 1962). We considered all the
metric combinations and all the models (Figs. 27a, 28, 29, 30, 31, 32, and 33b in Appendix).

SonarQubeRules Evaluating the effect obtained including SonarQube rules with each met-
ric combination, the observed change in terms of AUC and F-measure is not substantial
(Table 10) adopting Machine Learning models. Instead, and unsuspected, the change is neg-
ative in all the combinations except for the pair SQ rules + SQ metrics with Gradient Boost
as model and for SQ rules + Rahman and Devanbu (2013) + Kamei et al. (2012) metrics
with Random Forest as model, where the change is significant. Instead, the results obtained
with Deep Learning models turned out the best in terms of AUC. All the combinations sig-
nificantly benefit from the inclusion of SonarQube rules. Considering the other accuracy

Fig. 12 Nemenyi test for comparing the different product and process metrics within ResNet (RQ2)

 189 Page 30 of 57 Empir Software Eng (2022) 27:189

Table 13 Accuracy metrics (%) comparison for SonarQube rules with Machine Learning (RQ3)

Machine learning

Gradient boost Random forest XG boost

All Type All Type All Type

SQ Rules + SQ metrics

AUC 62.30 72.14 55.85 62.61 49.16 ↓ 61.48

F-Measure 27.08 42.68 0.60 ↓ 1.51 ↓ 10.13 ↓ 15.33

Precision 52.19 53.62 9.18 21.54 44.96 43.36

Recall 21.39 48.50 0.32 ↓ 0.81 ↓ 6.35 ↓ 10.26

MCC 17.84 ↓ 24.01 ↓ -0.36 0.84 ↓ 3.87 ↓ 6.64

FNR 78.61 51.51 99.68 99.19 93.65 89.74

TNR 93.77 81.61 ↓ 99.68 99.64 96.06 94.86

FPR 6.23 ↓ 18.39 ↓ 0.32 ↓ 0.36 ↓ 3.94 ↓ 5.14 ↓
SQ Rules + Kamei et al. (2012) metrics

AUC 83.76 ↓ 86.01 ↓ 82.15 ↓ 82.63 ↓ 75.48 ↓ 80.20 ↓
F-Measure 60.54 ↓ 60.48 ↓ 12.57 ↓ 22.80 34.79 ↓ 39.05 ↓
Precision 69.61 ↓ 71.15 ↓ 55.55 ↓ 62.01 ↓ 68.96 ↓ 71.69 ↓
Recall 63.15 ↓ 65.50 ↓ 8.81 ↓ 19.88 25.25 ↓ 33.23 ↓
MCC 45.67 ↓ 46.80 ↓ 12.51 ↓ 22.10 26.04 ↓ 32.06 ↓
FNR 36.85 34.50 91.19 80.12 74.75 66.77

TNR 85.09 ↓ 86.75 ↓ 99.54 99.35 ↓ 95.34 ↓ 96.11 ↓
FPR 14.91 ↓ 13.25 ↓ 0.46 ↓ 0.65 ↓ 4.66 ↓ 3.89 ↓

SQ Rules + Rahman and Devanbu (2013) metrics

AUC 83.41 ↓ 84.22 ↓ 82.70 ↓ 82.28 ↓ 80.04 ↓ 80.31 ↓
F-Measure 60.12 ↓ 60.24 ↓ 13.22 ↓ 23.93 ↓ 35.51 ↓ 37.10 ↓
Precision 70.38 ↓ 69.90 ↓ 60.24 ↓ 67.67 ↓ 67.42 ↓ 70.02 ↓
Recall 65.48 ↓ 66.12 ↓ 7.87 ↓ 19.03 32.58 ↓ 30.44 ↓
MCC 46.33 ↓ 46.32 ↓ 13.49 ↓ 22.90 ↓ 27.89 ↓ 29.75 ↓
FNR 34.52 33.88 92.13 80.97 67.42 69.56

TNR 86.02 ↓ 85.84 ↓ 99.53 ↓ 99.27 ↓ 95.96 ↓ 96.29 ↓
FPR 13.98 ↓ 14.16 ↓ 0.48 ↓ 0.74 ↓ 4.04 ↓ 3.71 ↓

SQ Rules + Rahman and Devanbu (2013)+ Kamei et al. (2012) metrics

AUC 84.30 84.33 84.47 83.05 81.19 80.76

F-Measure 56.31 57.15 13.06 22.92 32.59 34.37

Precision 68.93 69.26 58.46 63.35 74.15 73.14

Recall 60.07 61.82 8.74 17.11 28.52 27.09

MCC 41.95 44.09 13.47 21.78 28.07 30.00

FNR 39.94 38.18 91.26 82.89 71.48 72.91

TNR 87.44 ↓ 88.04 ↓ 99.74 ↓ 99.54 ↓ 97.65 ↓ 97.95 ↓
FPR 12.56 ↓ 11.96 ↓ 0.26 ↓ 0.46 ↓ 2.35 ↓ 2.05 ↓

SQ Rules + SQ+ Kamei et al. (2012) metrics

AUC 83.08 ↓ 85.51 ↓ 83.19 ↓ 83.72 ↓ 77.80 ↓ 81.23 ↓
F-Measure 59.61 64.39 2.56 ↓ 13.51 22.94 ↓ 35.13 ↓
Precision 71.78 ↓ 74.90 32.42 ↓ 63.16 65.95 ↓ 81.09 ↓

Empir Software Eng (2022) 27:189 Page 31 of 57 189

Table 13 (continued)

Machine learning

Gradient boost Random forest XG boost

All Type All Type All Type

Recall 64.23 69.94 1.49 ↓ 9.62 15.08 ↓ 28.16 ↓
MCC 46.83 53.86 3.16 ↓ 15.19 19.18 ↓ 32.05 ↓
FNR 35.77 30.06 98.52 90.38 84.92 71.84

TNR 87.48 ↓ 89.36 ↓ 99.95 99.79 98.08 ↓ 98.34 ↓
FPR 12.52 ↓ 10.64 ↓ 0.05 ↓ 0.21 ↓ 1.92 ↓ 1.66 ↓

SQ Rules + SQ+ Rahman and Devanbu (2013) metrics

AUC 82.51 ↓ 85.58 ↓ 83.50 ↓ 83.35 ↓ 79.10 ↓ 83.79 ↓
F-Measure 57.80 ↓ 60.46 ↓ 6.71 ↓ 17.06 27.87 ↓ 28.46 ↓
Precision 71.84 ↓ 71.44 ↓ 37.09 ↓ 59.62 69.98 ↓ 73.21 ↓
Recall 61.38 ↓ 66.83 4.34 ↓ 14.37 23.94 ↓ 24.27 ↓
MCC 44.65 ↓ 49.27 ↓ 7.49 ↓ 18.01 24.86 ↓ 26.44 ↓
FNR 38.62 33.17 95.66 85.64 76.06 75.73

TNR 87.84 ↓ 88.08 ↓ 99.90 99.74 ↓ 98.18 ↓ 98.71 ↓
FPR 12.16 ↓ 11.92 ↓ 0.10 ↓ 0.26 ↓ 1.82 ↓ 1.29 ↓

SQ Rules + SQ+Rahman and Devanbu (2013)+Kamei et al. (2012) metrics

AUC 83.92 ↓ 85.22 ↓ 84.36 ↓ 84.63 ↓ 80.18 ↓ 83.06 ↓
F-Measure 57.63 ↓ 60.51 ↓ 5.50 ↓ 14.78 ↓ 25.33 ↓ 28.86 ↓
Precision 71.57 ↓ 73.11 ↓ 37.60 ↓ 65.24 69.58 ↓ 77.28 ↓
Recall 61.03 ↓ 65.67 ↓ 3.67 ↓ 10.44 ↓ 21.41 ↓ 20.51 ↓
MCC 44.59 ↓ 49.65 ↓ 6.03 ↓ 16.20 ↓ 23.22 ↓ 26.71 ↓
FNR 38.97 34.33 96.33 89.56 78.59 79.49

TNR 88.32 ↓ 89.12 ↓ 99.89 99.79 ↓ 98.65 ↓ 98.82 ↓
FPR 11.68 ↓ 10.88 ↓ 0.11 ↓ 0.21 ↓ 1.35 ↓ 1.18 ↓

The red arrows (↓) indicate the values that decreased compared to the results of the analysis shown in
Table 12. All other values increased

metrics, we can observe the same trend as for AUC and F-measure. FNR rate is consistently
below 20%, TNR up to 97%, and FRP below 3%. These results confirmed the better accu-
racy of Deep Learning compared withMachine Learning models. Deep Learning models are
able to correctly identity a faulty commit, with a low probability of incorrect identification.

SonarQube rule types The scenario is thoroughly different including SonarQube rule
types, since we obtained different results from the ones seen with Machine Learning mod-
els. For all the combination of SonarQube rules and metrics, we observed a significant
discrepancy of results for AUC and F-measure in both models. SQ metrics and Rahman and
Devanbu (2013) + Kamei et al. (2012) metrics benefit from the inclusion of the SonarQube
rules, while Kamei et al. (2012) metrics and Rahman and Devanbu (2013) are not affected.
The other combinations see a decreased in the AUC. Instead, the effect observed with Deep
Learning model is negligible. Considering the other accuracy metrics, we can observe the
same trend as for the results obtained with the individual rules.

 189 Page 32 of 57 Empir Software Eng (2022) 27:189

Table 14 Accuracy metrics (%) comparison for SonarQube rules with Deep Learning (RQ3)

SQ rules Deep learning

FCNN ResNet

All Type All Type

SQ Rules+SQ metrics

AUC 91.67 93.69 99.10 98.12

F-Measure 83.14 80.07 91.13 90.20

Precision 84.32 83.31 91.87 91.74

Recall 82.22 78.59 90.64 89.25

MCC 80.53 76.39 89.65 88.29

FNR 17.78 ↓ 21.41 ↓ 9.36 ↓ 10.75 ↓
TNR 98.13 97.11 98.85 98.71

FPR 1.87 ↓ 2.89 ↓ 1.15 ↓ 1.29 ↓
SQ Rules+Kamei et al. (2012) metrics

AUC 95.66 96.81 99.36 99.54

F-Measure 82.70 90.27 92.22 94.88

Precision 84.85 91.50 93.57 95.59

Recall 84.05 92.09 95.80 97.14

MCC 80.46 87.89 91.38 93.55

FNR 15.95 ↓ 7.91 ↓ 4.20 ↓ 2.86 ↓
TNR 98.34 98.07 99.20 98.79

FPR 1.66 ↓ 1.93 ↓ 0.81 ↓ 1.21 ↓
SQ Rules+Rahman and Devanbu (2013) metrics

AUC 98.73 96.14 99.47 99.59

F-Measure 86.52 83.45 92.37 93.23

Precision 88.65 85.75 93.60 94.24

Recall 85.04 83.73 96.48 96.49

MCC 84.42 81.14 91.65 92.10

FNR 14.96 16.27 3.53 ↓ 3.52 ↓
TNR 98.96 98.57 99.23 99.32

FPR 1.04 ↓ 1.43 ↓ 0.78 ↓ 0.68 ↓
SQ Rules + Rahman and Devanbu (2013)+Kamei et al. (2012) metrics

AUC 98.88 98.07 99.63 99.59

F-Measure 87.14 84.91 94.89 91.31

Precision 88.08 86.60 96.09 92.81

Recall 88.62 84.62 97.21 92.90

MCC 85.57 82.69 94.08 90.30

FNR 11.38 ↓ 15.38 2.79 ↓ 7.10 ↓
TNR 99.04 98.70 99.44 99.45

FPR 0.96 ↓ 1.30 ↓ 0.56 ↓ 0.55 ↓
SQ Rules+SQ metrics+Kamei et al. (2012) metrics

AUC 96.01 95.38 99.58 99.74

F-Measure 87.63 91.49 94.65 91.87

Precision 88.48 91.90 96.09 92.60

Empir Software Eng (2022) 27:189 Page 33 of 57 189

Table 14 (continued)

SQ rules Deep learning

FCNN ResNet

All Type All Type

Recall 87.06 91.15 94.02 91.37

MCC 86.04 89.96 93.93 91.01

FNR 12.94 ↓ 8.85 ↓ 5.98 ↓ 8.63 ↓
TNR 98.80 98.77 99.57 99.50

FPR 1.20 ↓ 1.23 ↓ 0.43 ↓ 0.50 ↓
SQ Rules+SQ metrics+Rahman and Devanbu (2013) metrics

AUC 98.73 96.66 99.75 99.83

F-Measure 91.46 88.14 98.24 98.85

Precision 92.21 88.57 99.61 99.64

Recall 90.88 87.76 97.49 98.24

MCC 90.06 86.68 97.40 98.02

FNR 9.12 12.24 2.51 ↓ 1.76 ↓
TNR 99.08 98.87 99.63 99.66

FPR 0.92 ↓ 1.13 ↓ 0.37 ↓ 0.34 ↓
SQ Rules+SQ metrics+Rahman and Devanbu (2013)+Kamei et al. (2012) metrics

AUC 94.75 96.00 99.77 99.80

F-Measure 91.59 91.44 98.94 95.32

Precision 92.12 91.99 99.55 95.97

Recall 91.16 90.99 98.50 94.86

MCC 90.22 89.92 98.17 94.42

FNR 8.84 ↓ 9.01 ↓ 1.50 ↓ 5.14 ↓
TNR 98.99 98.86 99.56 99.44

FPR 1.01 ↓ 1.14 ↓ 0.44 ↓ 0.56 ↓

The red arrows (↓) indicate the values that decreased compared to the results of the analysis shown in
Table 12. All other values increased

 189 Page 34 of 57 Empir Software Eng (2022) 27:189

Fig. 13 FPR comparison among Machine Learning and Deep Learning models for software metrics (RQ2)

4.4 RQ4.Which is the Best Combination of Metrics and the Best Model for the Fault
Prediction?

As for the previous RQ, to assess whether the performance distributions of the different
software metrics and SonarQube rules were statistically different when considering differ-
ent combinations of Machine Learning and Deep Learning models, we run the post hoc
Nemenyi rank test (1962). For the sake of space limitations, we only report the results for the
more accurate combinations features (SonarQube rules, product and process metrics) and
for more accurate models for all the considered features. For consistency, we show the p-
values of the Nemenyi rank test computed on the distribution of AUC and F-measure values
by the means of heatmaps (Figs. 19a, b, 21a and b) where statistically significant differences

Fig. 14 TNR comparison among Machine Learning and Deep Learning models for software metrics (RQ2)

Empir Software Eng (2022) 27:189 Page 35 of 57 189

Fig. 15 AUC comparison among Machine Learning and Deep Learning models for SQ rules compared to
software metrics (RQ3)

are depicted in dark violet. The complete results are reported in our online appendix (Lomio
et al. 2022).

Looking at the results obtained in the previous RQs, and considering the values of the
accuracy metrics obtained, we identified the Deep Learning models as more accurate than
the Machine learning ones. Notably, the ResNet was shown to outperform all the other
models, including the FCN.

The two feature sets in which the ResNet achieves the best results are:

Fig. 16 F-measure comparison among Machine Learning and Deep Learning models for SQ rules compared
to software metrics (RQ3)

 189 Page 36 of 57 Empir Software Eng (2022) 27:189

Fig. 17 AUC comparison among Machine Learning and Deep Learning models for SQ rules type compared
to software metrics (RQ3)

– SonarQube rule types + SonarQube + Rahman and Devanbu (2013) metrics (Fig. 19a
and b)

– SonarQube rule types + SonarQube + Rahman and Devanbu (2013) + Kamei et al.
(2013) metrics (Fig. 20a and b)

Figures 19a and 20a show statistically significant differences (depicted in dark violet) in
AUC values between Machine Learning and Deep Learning models. These results confirm
the large positive effect that Deep Learning models provide to the two identified feature
sets. On a similar note, Figs. 19b and 20b show, in terms of F-measure, the presence of

Fig. 18 F-measure comparison among Machine Learning and Deep Learning models for SQ rules type
compared to software metrics (RQ3)

Empir Software Eng (2022) 27:189 Page 37 of 57 189

Fig. 19 Nemenyi test p-values obtained for comparing the models trained on SQ rule types, SQ metrics and
Rahman and Devanbu (2013) using the different models (RQ4)

statistically significant differences in the same feature sets as for AUC. This further supports
the contribution provided by the Deep Learning models. It can be further seen in Fig. 21a
and b and Fig. 22a and b, that the SonarQube rule types + SonarQube + Rahman and
Devanbu (2013) metrics and SonarQube rule types + SonarQube + Rahman and Devanbu
(2013) + Kamei et al. (2013) metrics yield significantly better results when used as feature
set for the ResNet model.

Fig. 20 Nemenyi test p-values obtained for comparing the models trained on SQ rule types, SQ metrics,
Rahman and Devanbu (2013) and Kamei et al. (2013) using the different models (RQ4)

 189 Page 38 of 57 Empir Software Eng (2022) 27:189

Fig. 21 Nemenyi test p-values obtained for comparing the ResNet trained on the different feature combina-
tions using the SQ rule types (RQ4)

5 Discussion

In this Section, we discuss the results obtained according to the RQs. The results achieved
revealed a number of insights that may lead to concrete implications for the software
engineering research community.

Only SonarQube Rules are Not Enough One of the main outcomes of our study revealed
the ability of SonarQube rules alone to predict faults only under certain conditions. In order
to achieve the best performance, the analysis should be run considering Deep Learning mod-
els as classifiers. Unfortunately, Machine Learning models led to poorly accurate results and
did not provide comparable values. The obtained values are lower, making the prediction
similar to a “random guess”. Adopting historical data instead of a single snapshot (as for
Machine Learning models) can be better when the commit data is time-dependent. Even if

Fig. 22 Nemenyi test p-values obtained for comparing the ResNet trained on the different feature combina-
tions using the SQ rule (RQ4)

Empir Software Eng (2022) 27:189 Page 39 of 57 189

these results with Machine Learning models are contrasting with the previous ones (Lenar-
duzzi et al. 2019b), they are more reliable and realistic because of the new preprocessing
approach and the more accurate validation strategy.

However, in the latter case, when we considered the SonarQube rule types as predictors,
we observed unsuspected results. We observed that Machine Learning models have ben-
efited from the grouping, while Deep Learning models seem unaffected by it. We should
notice that the benefit achieved with Machine Learning models is small but significant.

In the light of the facts, our suggestion is to equally include the rule types as predictors
mainly because it is more simple to monitor the analysis since the number of variables is
less than considering all the rules without grouping.

Our results, therefore, represent a call for further investigation regarding the role of static
analysis tools for faults prediction. The different static analysis tools can classify and group
similar rules differently or provide different classifications. It should be interesting to eval-
uate if the same trend observed with SonarQube could also be recoverable with other static
analysis tools, such as Findbugs or Checkstyle. In particular, the focus should be reserved
to the case where the rule types are considered as predictors to confirm or deny the results
obtained with sonarQube. It should be important to determine if the negligible effect of the
rules types achieved from Deep Learning is intrinsic of the adopted tool or can be general-
izable. In particular, it is important to determine if the trend is attributable to the classifier
and not to the static analysis tool.

Product and Process Metrics. Which Ones? The performances reached adopting process
and product metrics as fault predictors are higher in terms of AUC and F-measure. This is
particularly evident when considering Rahman and Devanbu (2013) and Kamei et al. (2012)
metrics individually, confirming the previous study results (Kamei et al. 2012; Pascarella
et al. 2019). However, when these two metrics sets are combined the performance decreases.
This phenomenon deserves further and deeper investigation. Considering the third metric
set provided by SonarQube, the performances are inferior; however, combined with Rah-
man and Devanbu (2013) or with Kamei et al. (2012) set the prediction accuracy increases,
especially when combined with Kamei et al. (2012) metrics. Considering all the three metric
sets together does not provide an evident improvement.

SonarQube Rules, Product and Process Metrics. All Together? Even if we achieved a
higher accuracy when considering Rahman and Devanbu (2013) and Kamei et al. (2012)
metrics, including SonarQube rules still improves the prediction. The accuracy metrics
reached stunning values (more than 95%), better than expected. These results deserve fur-
ther focus and a deep investigation in order to determine if it is an isolated case attributable
only to SonarQube or can be generalizable to other static analysis tools. As for the previous
case, when we considered only the SonarQube rules as features, we suggest to deeply inves-
tigate the role of the other static analysis tools in combination with the different software
metrics.

Machine Learning or Deep Learning? We observed that the classifiers’ choice between
single snapshot (Machine Learning) and historical data (Deep Learning) and inside the
single classifier categories has a significant impact on the resulting capabilities.

Considering the three Machine Learning models, we notice that, as expected, boosting
methods performed better the faults detection accuracy, compared with traditional ensemble
models such as Random Forest. We believe that the reason behind this is due to the boosting
models’ characteristics. Such characteristics allow to iteratively train a weak classifier on

 189 Page 40 of 57 Empir Software Eng (2022) 27:189

subsequent training data, assigning a weight to each instance of the training set, and modi-
fying it at each iteration, increasing the weight for the misclassified samples. Consequently,
the boosting methods are focused more on misclassified samples, which results in better
performances.

Results discriminated Machine Learning and Deep Learning models performance in
terms of accuracy. Deep Learning models work better than Machine Learning ones, and the
difference between the two Deep Learning models is negligible. The performances of the
ResNet were expected, as similar results were also found in other time series classifica-
tion tasks (Lomio et al. 2019). The better performance of the deep learning models can be
attributed also to the fact that these can take into account the time dependency of the com-
mits as this can bring additional useful information which should be considered (Saarimäki
et al. 2022). Compared with Machine Learning models, Deep Learning increases the AUC
rate, enables the correct fault identification, and decreases the probability of an incorrectly
identification.

Regarding the preprossessing approach, we found that, independently from the classifier
categories, when the dataset is imbalanced, the commits labeled as fault inducing represent
a very small portion of the total number of commits. The inclusion of an oversampling
step (e.g., SMOTE) improves the performance of the classifiers. Therefore, we recommend
researcher to consider oversampling techniques in similar contexts.

6 Threats to Validity

In this Section, we discuss the threats to validity, including internal, external, construct
validity, and reliability. We also explain the different adopted tactics (Yin 2009).

Construct Validity This threat concerns the relationship between theory and observation
due to possible measurement errors. SonarQube is one of the most adopted static analysis
tool by developers (Vassallo et al. 2019a; Avgeriou et al. 2021). Nevertheless, we cannot
exclude the presence of false positives or false negatives in the detected warnings; further
analyses on these aspects are part of our future research agenda. As for code smells, we
employed a manually-validated oracle, hence avoiding possible issues due to the presence
of false positives and negatives. We relied on the ASF practice of tagging commits with
the issue ID. However, in some cases, developers could have tagged a commit differently.
Moreover, the results could also be biased due to detection errors of SonarQube. We are
aware that static analysis tools suffer from false positives. In this work, we aimed to under-
stand the fault proneness of the rules adopted by the tools without modifying them to reflect
the real impact that developers would have while using the tools. In future works, we plan
to replicate this work manually validating a statistically significant sample of violations, to
assess the impact of false positives on the achieved findings. In addition, it is worth men-
tioning that while SonarQube is a very well known and used static analysis tool, there are
many others from which it differs for number and type of metrics. This could therefore
lead to very different prediction results in terms of fault-proneness. For this reason, in the
future we plan on further extending the analysis including and comparing static analysis
tool beyond SonarQube. As for the analysis time frame, we analyzed commits until the end
of 2015, considering all the faults raised until the end of March 2018. We expect that the
vast majority of the faults should have been fixed. However, it could be possible that some
of these faults were still not identified and fixed.

Empir Software Eng (2022) 27:189 Page 41 of 57 189

Internal Validity This threat concerns internal factors related to the study that might have
affected the results. As for the identification of the fault-inducing commits, we relied on the
SZZ algorithm (Śliwerski et al. 2005). We are aware that in some cases, the SZZ algorithm
might not have identified fault-inducing commits correctly because of the limitations of the
line-based diff provided by git, and also because in some cases bugs can be fixed modifying
code in other locations than in the lines that induced them. Moreover, we are aware that the
imbalanced data could have influenced the results (more than 90% of the commits were non-
fault-inducing). However, the application of solid machine learning techniques, commonly
applied with imbalanced data could help to reduce this threat.

External Validity Our study considered the 33 Java open-source software projects with dif-
ferent scope and characteristics included in the Technical Debt dataset. All the 29 Java
projects are members of the Apache Software Foundations that incubates only certain sys-
tems that follow specific and strict quality rules. Our empirical study was not based only
on one application domain. This was avoided since we aimed to find general mathematical
models for the prediction of the number of bugs in a system. Choosing only one or a very
small number of application domains could have been an indication of the non-generality of
our study, as only prediction models from the selected application domain would have been
chosen. The selected projects stem from a very large set of application domains, ranging
from external libraries, frameworks, and web utilities to large computational infrastructures.
We analyzed commits until the end of 2015, considering all the faults raised until the end of
March 2018. We are aware that recent data can provide different results.

We are aware that different programming languages, and projects at different maturity
levels could provide different results. Our empirical study was not based only on one appli-
cation domain. This was avoided since we aimed to find general mathematical models for
the prediction of the number of bugs in a system. Choosing only one or a very small number
of application domains could have been an indication of the non-generality of our study, as
only prediction models from the selected application domain would have been chosen.

Conclusion Validity This threat concerns the relationship between the treatment and the
outcome. We adopted different machine learning and deep learning models to reduce the
bias of the low prediction power that a single classifier could have. We also addressed
possible issues due to multicollinearity, missing hyper-parameter configuration, and data
imbalance. We recognize, however, that other statistical or machine learning techniques
might have yielded similar or even better accuracy than the techniques we used. It is not to be
excluded that the results might differ slightly when considering a within-project validation.
Unfortunately, due to the nature of the data, having less than 5% of samples belonging to the
positive class, the only way to have enough samples of both classes is to consider all projects
together, using, therefore, a cross-project validation setting. We tried using a within-project
validation, but this unfortunately would “break” the algorithms used since there are many
data “splits” in which there are no inducing commits. For this reason we chose to use a
cross-project validation.

7 RelatedWork

Software defect prediction is one of the most active research areas in software engineering.
Faults prediction has been deeply investigated in the last years, where research focused
mainly on improving the predictions granularity (Pascarella et al. 2019) such as method or

 189 Page 42 of 57 Empir Software Eng (2022) 27:189

file (Menzies et al. 2010; Kim et al. 2011; Bettenburg et al. 2012; Prechelt and Pepper 2014),
adding features, e.g., code review (McIntosh and Kamei 2018), change context (Kondo et al.
2019), or applying machine and deep learning models (Hoang et al. 2019; Lenarduzzi et al.
2020e).

As factors to predict bug-inducing changes some authors adopted change based met-
rics (McIntosh and Kamei 2018), including size (Kamei et al. 2013), the history of a change
as well as developer experience (Kamei et al. 2013), or churn metrics (Tan et al. 2015).
Another study included code review metrics for the predictive models (McIntosh and Kamei
2018). One aspect investigated was also the decreasing of the effort required to diagnose
a defect (Pascarella et al. 2019). Researchers included several other software properties,
like structural (Basili et al. 1996; Chidamber and Kemerer 1994), historical (D’Ambros
et al. 2012; Graves et al. 2000), and alternative (Bird et al. 2011; Pascarella et al. 2020;
Palomba et al. 2017) metrics. The achieved results considering software properties, product
and process metrics are the most promising ones (Pascarella et al. 2020).

In the recent years, researchers investigated mainly shorter-term defects analysis, since
this better fits the developers’ needs (Pascarella et al. 2018b). Moreover, developers can
immediately identify defects in their code adopting shorter-term approaches (Yang et al.
2016).

Two studies included as factors static analysis warnings (Querel and Rigby 2018;
Trautsch et al. 2020) for building just-in-time defect prediction models. According to their
results, they can improve the predictive models accuracy (Querel and Rigby 2018). More-
over, both code metrics and static analysis warnings are correlated with bugs and that they
can improve the prediction (Trautsch et al. 2020).

The most adopted approaches are based on supervised (Graves et al. 2000; Hall et al.
2012; Jing et al. 2014) and unsupervised models (Fu and Menzies 2017; Li et al. 2020).
These models consider features such as product (e.g., CK metrics Chidamber and Kemerer
1994) or process features (e.g., entropy of the development process Hassan 2009b).

Significant milestones for just-in-time defect prediction are represented by the works
made by Kamei et al. (2012, 2016). They proposed a just-in-time prediction model to pre-
dict whether or not a change will lead to a defect with the aim of reducing developers
and reviewers’ effort. In particular, they applied logistic regression considering different
change measures such as diffusion, size, and purpose, obtaining an average accuracy of 68%
and an average recall of 64%. More recently, Pascarella et al. (2019) complemented their
results considering the attributes necessary to filter only those files that are defect-prone.
The reduced granularity is justified by the fact that 42% of defective commits are partially
defective, i.e., composed of both files that are changed without introducing defects and files
that are changed introducing defects. Furthermore, in almost 43% of the changed files a
defect is introduced, while the remaining files are defect-free.

Faults prediction were investigated adopting Machine learning models focusing on the
features role such as change size or changes history, that can represent a code change, and
using them as predictors (Kamei et al. 2013; Pascarella et al. 2018a, 2019).

Machine learning techniques were also largely applied in detection of technical issues in
the code, such as code smells (Arcelli Fontana et al. 2016; Di Nucci et al. 2018; Pecorelli
et al. 2020b; Lujan et al. 2020). While machine learning has been mainly applied to
detect different code smell types (Khomh 2009; Khomh et al. 2011), unfortunately, only
few studies applied machine learning techniques to investigate static analysis tool rules,
such as SonarQube (Falessi et al. 2017; Tollin et al. 2017; Lenarduzzi et al. 2020e) or
PMD (Lenarduzzi et al. 2021c).

Empir Software Eng (2022) 27:189 Page 43 of 57 189

Considering defect prediction Yang et al. (2017) proposes a novel approach TLEL com-
posed by a two layer ensemble learning technique. In the inner layer, we adopted bagging
based on decision tree to build a Random Forest model. In the outer layer, they ensembled
many different Random Forest models.

Machine learning techniques were applied to detect multiple code smell types (Arcelli
Fontana et al. 2016), estimate their harmfulness (Arcelli Fontana et al. 2016), determine the
intensity (Arcelli Fontana and Zanoni 2017), and to classify code smells according to their
perceived criticality (Pecorelli et al. 2020b). The training data selection can influence the
performance of machine learning-based code smell detection approaches (Di Nucci et al.
2018) since the code smells detected in the code are generally few in terms of number of
occurrences (Pecorelli et al. 2020a).

Moreover, machine learning algorithms were successfully applied to derive code smells
from different software metrics (Maneerat and Muenchaisri 2011).

Considering the detection of static analysis tool rules, SonarQube was the tool mainly
investigated, focusing on the effect of the presence of its rules on fault-proneness (Falessi
et al. 2017; Lenarduzzi et al. 2020e) or the change-proneness (Tollin et al. 2017).

Machine learning approaches were successfully applied since results showed that 20%
of faults were avoidable if the SonarQube-related issues would have been removed (Falessi
et al. 2017), however, the harmfulness of the SonarQube rules is very low (Lenarduzzi
et al. 2020e). Positive results application were collected also considering class change-
proneness (Tollin et al. 2017).

Machine learning approaches were also used to determine if the SonarQube technical
debt was be predicted based also on software metrics (Lenarduzzi et al. 2019a). Results
demonstrated the impossibility to have positive prediction. Another point of view which has
benefited from machine learning was the evaluation of the remediation effort calculated by
SonarQube (Saarimaki et al. 2019; Baldassarre et al. 2020). Results highlighted the model
overestimation of the time to fix the Technical Debt-related issues.

In order to satisfy computer performance that are fastly increasing in the last years, Deep
Learning is becoming popular in many domains (Hinton and Salakhutdinov 2006) such
as image classification (Krizhevsky et al. 2017) or natural language processing (Sarikaya
et al. 2014). There also many existing studies that leverage deep learning techniques to
address other problems in software engineering (White et al. 2015; Lam et al. 2015; Gu et al.
2016, 2018; Guo et al. 2017). Since the promising results, Deep Learning could be a valid
approach to adopt also in bug prediction in order to improve the performance of just-in-time
defect prediction.

Deep learning can be useful to improve the logistic regression weaknesses when the study
should combine features to generate new ones. This approach was successfully applied
in Yang et al. (2015) considering 14 traditional change level features in order to predict bugs.

The benefit of using Deep Learning instead of machine Learning to improve the per-
formance of just-in-time defect prediction is still under investigation (Yang et al. 2015;
Abozeed et al. 2020; Ferenc et al. 2020; Wang et al. 2020). The results achieved until now
demonstrates a promising improvement in the bug prediction accuracy compared with other
approaches (32.22% more bugs detected) (Yang et al. 2015) especially for small dataset and
in the feature selection (Abozeed et al. 2020), and to predict the presence of bugs in classes
from static source code metrics (Ferenc et al. 2020).

Ones of the most adopted Deep Learning models to automate feature learning for defect
prediction are Long Short Term Memory (Dam et al. 2021) and Convolutional Neural Net-
work (Li et al. 2017). Another models well-known is Deep Belief Network (Wang et al.
2020).

 189 Page 44 of 57 Empir Software Eng (2022) 27:189

Deep learning was applied in the context of defect prediction (Yang et al. 2015). Yang
et al. (2015) proposed a Deeper approach to predict defect-prone changes obtaining promis-
ing results in terms of detection power and accuracy compared with traditional approaches
such as Kamei et al. (2013).

8 Conclusion

In this paper, we investigated the fault-proneness of SonarQube rules and product and pro-
cess metrics proposed by Rahman and Devanbu (2013), Kamei et al. (2012), and SonarQube
7.5 suite. We adopted five models, three Machine Learning and two Deep Learning ones.

In our previous work, on a reduced dataset (Lenarduzzi et al. 2020e), we found that
SonarQube rules considered fault-inducing were not correctly classified. However, even if
we obtained a good prediction accuracy, we could not accurately detect the impact of each
rule on the fault-proneness. Results were also confirmed by our next work (Lenarduzzi
et al. 2020b) on an extended dataset (the same considered in this work) where we applied
statistical techniques to detect if the violation of any SonarQube rule impacted the fault-
proneness.

In order to corroborate our previous results, and to clearly identify the impact of each
different SonarQube rule, and the three sets of product and process metrics, in this work, we
better preprocessed the data to avoid multicollinearity and to model an unbalanced dataset,
and we adopted a more accurate data validation strategy.

Our work clearly identified best practices in terms of features, models, preprocessing.
Our results revealed unexpectedly that SonarQube rules are good fault predictors consid-

ering the historical data (Deep Learning models). The performance reached with Machine
Learning models are lower than in the previous studies, but more realistic with the adopted
preprocessing approach.

Moroever, product and process metrics Rahman and Devanbu (2013) and Kamei et al.
(2012) are good fault predictors, confirming the previous founding on this last set of metrics.
However, including the SonarQube metrics does provide an impressive accurate performance.

Therefore, we identified a clear set of metrics that provided a significantly higher accu-
rate fault prediction (more than 95%). This result might enable developers to save time to
manually verify each SonarQube rule and, therefore, only focus on fault prone features.

Considering the models and preprocessing that can achieve the higher accuracy perfor-
mance achieved: Deep Learning models and the adoption of oversampling techniques (in
particular, for Deep Learning) are the better solution. Compared with Machine Learning
models, Deep Learning increases the AUC rate, enables the correct fault identification, and
decreases the probability of an incorrectly identification.

Future works might consider the adoption of time series analysis and anomaly detection
techniques, since in our work, the data present two main characteristics: unbalanced data
and time dependency of the commit data. To overcome these two “aspects” we opted to
include Synthetic Minority Oversampling Technique (SMOTE) and Deep Learning Mod-
els in our data preprocessing and data analysis protocol to corroborate Machine Learning
ones. A further alternative to confirm the results can be using time series analysis for time
dependency of the commit data and anomaly detection for data unbalanced. Another possi-
ble future work could be to investigate whether other static analysis tools, such as FindBugs
or Checkstyle (Pecorelli et al. 2022; Lenarduzzi et al. 2021b), can be complementary to
SonarQube and can provide similar or different results, also considering other dataset
(Nguyen et al. 2022).

Empir Software Eng (2022) 27:189 Page 45 of 57 189

Appendix

Table 15 Metrics accuracy (%) comparison Synthetic Minority Oversampling Technique for SonarQube rules
(RQ1)

SQ rules Machine learning Deep learning

Gradient boost Random forest XG boost FCNN RN

AUC 59.64 54.78 58.26 64.63 63.15

F-measure 1.61 0.09 0.42 3.20 4.10

Precision 4.74 0.09 2.21 2.26 2.75

Recall 1.46 0.09 0.24 15.09 19.90

MCC 2.04 −0.03 0.66 3.26 4.73

FPR 0.22 0.07 0.02 6.41 6.38

TNR 99.78 99.93 99.98 93.59 93.62

FNR 98.54 99.91 99.76 84.91 80.10

Fig. 23 AUC comparison among Machine Learning and Deep Learning models for software metrics without
Synthetic Minority Oversampling Technique for SonarQube rules (RQ1)

 189 Page 46 of 57 Empir Software Eng (2022) 27:189

Fig. 24 F-measure comparison among Machine Learning and Deep Learning models for software metrics
without Synthetic Minority Oversampling Technique for SonarQube rules (RQ1)

Fig. 25 AUC comparison among Machine Learning and Deep Learning models for software metrics without
Synthetic Minority Oversampling Technique for software metrics (RQ2)

Empir Software Eng (2022) 27:189 Page 47 of 57 189

Fig. 26 F-measure comparison among Machine Learning and Deep Learning models for software metrics
without Synthetic Minority Oversampling Technique for software metrics (RQ2)

Fig. 27 Nemenyi test for comparing the different the results obtained using SQ metrics, and its combinations
with SQ Rules and SQ Rules Type (RQ3)

 189 Page 48 of 57 Empir Software Eng (2022) 27:189

Table 16 Metrics accuracy (%) comparison without Synthetic Minority Oversampling Technique for software
metrics (RQ2)

Metrics Machine learning Deep learning

Gradient boost Random forest XG boost FCNN RN

SonarQube metrics

AUC 54.07 49.84 51.64 53.04 59.12

F-measure 0.52 0.00 0.16 3.10 3.64

Precision 0.28 0.00 0.16 1.77 1.99

Recall 6.28 0.00 0.16 47.93 57.82

MCC -0.18 -0.04 0.04 1.62 3.23

FPR 6.76 0.05 0.13 43.24 45.84

TNR 93.24 99.95 99.87 56.76 54.16

FNR 93.72 100.00 99.84 52.07 42.18

Process metrics

AUC 81.70 78.23 78.63 71.10 70.06

F-measure 4.42 4.65 5.82 4.00 4.59

Precision 17.82 8.62 11.04 2.19 2.62

Recall 2.63 4.14 4.14 58.11 60.71

MCC 6.32 5.24 6.44 4.67 5.46

FPR 0.08 0.02 0.07 36.04 36.90

TNR 99.92 99.98 99.93 63.96 63.10

FNR 97.37 95.86 95.86 41.89 39.29

Product metrics

AUC 80.98 73.35 75.45 62.96 68.55

F-measure 8.59 5.20 6.35 7.79 9.04

Precision 14.61 10.69 8.39 10.51 12.35

Recall 8.08 4.45 6.17 20.90 21.34

MCC 9.62 6.08 6.64 9.51 10.96

FPR 0.06 0.02 0.05 2.62 1.53

TNR 99.94 99.98 99.95 97.38 98.47

FNR 91.92 95.55 93.83 79.10 78.66

Product + process metrics

AUC 82.33 76.02 80.48 70.41 71.68

F-measure 5.48 6.68 8.82 5.44 4.29

Precision 13.60 16.67 25.29 3.13 2.44

Recall 5.81 5.32 6.75 42.21 66.52

MCC 6.81 8.29 11.16 6.70 5.17

FPR 0.13 0.01 0.05 14.97 41.38

TNR 99.87 99.99 99.95 85.03 58.62

FNR 94.19 94.68 93.25 57.79 33.48

SonarQube + process metrics

AUC 78.60 77.63 78.76 70.51 68.92

F-measure 6.16 5.86 8.54 4.49 3.85

Precision 11.66 13.79 17.04 2.62 2.29

Recall 6.90 4.83 7.81 53.09 70.75

Empir Software Eng (2022) 27:189 Page 49 of 57 189

Table 16 (continued)

Metrics Machine learning Deep learning

Gradient boost Random forest XG boost FCNN RN

MCC 6.66 7.09 9.40 5.66 4.16

FPR 1.73 0.03 0.19 27.06 52.53

TNR 98.27 99.97 99.81 72.94 47.47

FNR 93.10 95.17 92.19 46.91 29.25

SonarQube + product metrics

AUC 79.53 78.26 75.25 65.18 65.51

F-measure 5.82 5.90 7.13 8.26 9.83

Precision 8.87 10.46 14.48 9.45 12.83

Recall 5.87 5.11 6.10 22.51 19.23

MCC 6.08 6.54 7.94 9.90 11.43

FPR 0.34 0.04 0.09 2.35 1.18

TNR 99.66 99.96 99.91 97.65 98.82

FNR 94.13 94.89 93.90 77.49 80.77

SonarQube + product + process metrics

AUC 79.93 78.19 81.73 71.62 69.58

F-measure 5.96 5.97 6.24 4.86 3.78

Precision 11.33 12.64 14.80 2.86 2.17

Recall 6.25 4.94 5.39 48.83 69.85

MCC 6.62 7.03 7.23 6.15 3.54

FPR 0.73 0.02 0.13 21.37 54.10

TNR 99.27 99.98 99.87 78.63 45.90

FNR 93.75 95.06 94.61 51.17 30.15

Fig. 28 Nemenyi test for comparing the different the results obtained using SQ + Rahman and Devanbu
(2013) metrics, and their combinations with SQ Rules and SQ Rules Type (RQ3)

 189 Page 50 of 57 Empir Software Eng (2022) 27:189

Fig. 29 Nemenyi test for comparing the different the results obtained using SQ + Kamei et al. (2012) metrics,
and their combinations with SQ Rules and SQ Rules Type (RQ3)

Fig. 30 Nemenyi test for comparing the different the results obtained using Rahman and Devanbu (2013)
metrics, and its combinations with SQ Rules and SQ Rules Type (RQ3)

Empir Software Eng (2022) 27:189 Page 51 of 57 189

Fig. 31 Nemenyi test for comparing the different the results obtained using Kamei et al. (2012) metrics, and
its combinations with SQ Rules and SQ Rules Type (RQ3)

Fig. 32 Nemenyi test for comparing the different the results obtained using Rahman and Devanbu (2013)
and Kamei et al. (2012) metrics, and their combinations with SQ Rules and SQ Rules Type (RQ3)

 189 Page 52 of 57 Empir Software Eng (2022) 27:189

Fig. 33 Nemenyi test for comparing the different the results obtained using SQ + Rahman and Devanbu
(2013) + Kamei et al. (2012) metrics, and their combinations with SQ Rules and SQ Rules Type (RQ3)

Declarations

Conflict of Interest Authors have no conflict of interest

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M,
Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever
I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M,
Wicke M, Yu Y, Zheng X (2015) Tensorflow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/, software available from tensorflow.org

Abozeed SM, ElNainay MY, Fouad SA, Abougabal MS (2020) Software bug prediction employing fea-
ture selection and deep learning. In: International conference on advances in the emerging computing
technologies (AECT), pp 1–6

Arcelli Fontana F, Zanoni M (2017) Code smell severity classification using machine learning techniques.
Know-Based Syst 128(C):43–58

Arcelli Fontana F, Mäntylä MV, Zanoni M, Marino A (2016) Comparing and experimenting machine
learning techniques for code smell detection. Empir Softw Eng 21(3):1143–1191

Avgeriou PC, Taibi D, Ampatzoglou A, Arcelli Fontana F, Besker T, Chatzigeorgiou A, Lenarduzzi V, Mar-
tini A, Moschou N, Pigazzini I, Saarimaki N, Sas DD, de Toledo SS, Tsintzira AA (2020) An overview
and comparison of technical debt measurement tools. IEEE Softw

Avgeriou P, Taibi D, Ampatzoglou A, Arcelli Fontana F, Besker T, Chatzigeorgiou A, Lenarduzzi V, Martini
A, Moschou N, Pigazzini I, Saarimäki N, Sas D, Soares de Toledo S, Tsintzira A (2021) An overview
and comparison of technical debt measurement tools. IEEE Softw

http://creativecommons.org/licenses/by/4.0/
https://www.tensorflow.org/

Empir Software Eng (2022) 27:189 Page 53 of 57 189

Baldassarre MT, Lenarduzzi V, Romano S, Saarimaki N (2020) On the diffuseness of technical debt items
and accuracy of remediation time when using sonarqube. In: Information software system

Basili VR, Briand LC, Melo WL (1996) A validation of object-oriented design metrics as quality indicators.
IEEE Trans Softw Eng 22(10):751–761

Beller M, Spruit N, Spinellis D, Zaidman A (2018) On the dichotomy of debugging behavior among
programmers. In: 40th International conference on software engineering, ICSE ’18, pp 572–583

Bettenburg N, Nagappan M, Hassan AE (2012) Think locally, act globally: improving defect and effort
prediction models. In: Working conference on mining software repositories (MSR), pp 60–69

Bird C, Nagappan N, Murphy B, Gall H, Devanbu P (2011) Don’t touch my code! Examining the effects of
ownership on software quality. In: 13th European conference on foundations of software engineering,
pp 4–14

Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
Breiman L (2001) Random forests. Mach Learn 45(1):5–32
Breiman L, Friedman J, Stone CJ, Olshen R (1984) Classification and regression trees Regression trees.

Chapman and Hall, New York
Carver J (2010) Towards reporting guidelines for experimental replications: a proposal. In: 1st International

workshop on replication in empirical software engineering research (RESER 2010)
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-sampling

technique. J Artif Intell Res 16:321–357
Chen T, Guestrin C (2016) XGBOost: a scalable tree boosting system. In: 22nd ACM SIGKDD international

conference on knowledge discovery and data mining - KDD ’16, pp 785–794
Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng 20
Chollet F et al (2015) Keras. https://keras.io
Dam HK, Tran T, Pham T, Ng SW, Grundy J, Ghose A (2021) Automatic feature learning for predicting

vulnerable software components. IEEE Trans Softw Eng 47(1):67–85
D’Ambros M, Lanza M, Robbes R (2010) An extensive comparison of bug prediction approaches. In: IEEE

Working conference on mining software repositories (MSR 2010), pp 31–41
D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a benchmark and an

extensive comparison. Empir Softw Eng 17(4):531–577
Di Nucci D, Palomba F, Tamburri D, Serebrenik A, De Lucia A (2018) Detecting code smells using machine

learning techniques: are we there yet?
Falessi D, Russo B, Mullen K (2017) What if i had no smells? In: International symposium on empirical

software engineering and measurement (ESEM), pp 78–84
Fawaz HI, Forestier G, Weber J, Idoumghar L, Muller P (2019) Deep learning for time series classification:

a review. Data Min Knowl Disc 33(4):917–963
Ferenc R, Bán D, Grósz T, Gyimóthy T (2020) Deep learning in static, metric-based bug prediction. Array

6:100021
Fowler M, Beck K (1999) Refactoring: improving the design of existing code. Addison-Wesley Longman

Publishing Co, Inc
Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to

boosting. J Comput Syst Sci 55(1):119–139
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29:1189–1232
Fu W, Menzies T (2017) Revisiting unsupervised learning for defect prediction. In: 11th Joint meeting on

foundations of software engineering, ESEC/FSE 2017, pp 72–83
Gatrell M, Counsell S (2015) The effect of refactoring on change and fault-proneness in commercial c#

software. Sci Comput Program 102(C):44–56
Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized trees. Mach Learn 63(1):3–42
Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change history. IEEE

Trans Softw Eng 26(7):653–661
Gu X, Zhang H, Zhang D, Kim S (2016) Deep api learning. In: International symposium on foundations of

software engineering, FSE 2016, pp 631–642
Gu X, Zhang H, Kim S (2018) Deep code search. In: International conference on software engineering

(ICSE), pp 933–944
Guo J, Cheng J, Cleland-Huang J (2017) Semantically enhanced software traceability using deep learning

techniques. In: International conference on software engineering (ICSE), pp 3–14
Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software

for fault prediction. IEEE Trans Softw Eng 31(10):897–910
Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A systematic literature review on fault prediction

performance in software engineering. IEEE Trans Softw Eng 38
Hassan AE (2009a) Predicting faults using the complexity of code changes. In: 31st International conference

on software engineering, ICSE ’09, pp 78–88

https://keras.io

 189 Page 54 of 57 Empir Software Eng (2022) 27:189

Hassan AE (2009b) Predicting faults using the complexity of code changes. In: International conference on
software engineering. IEEE, pp 78–88

Hassan AE, Holt RC (2005) The top ten list: dynamic fault prediction. In: 21st International conference on
software maintenance (ICSM’05), pp 263–272

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: IEEE Conference on
computer vision and pattern recognition, pp 770–778

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science
313(5786):504–507

Hoang T, Khanh Dam H, Kamei Y, Lo D, Ubayashi N (2019) Deepjit: an end-to-end deep learning frame-
work for just-in-time defect prediction. In: 16th International conference on mining software repositories
(MSR), pp 34–45

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal
covariate shift. arXiv:150203167

Jing XY, Ying S, Zhang ZW, Wu SS, Liu J (2014) Dictionary learning based software defect prediction. In:
International conference on software engineering, ICSE 2014, pp 414–423

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2012) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-scale empirical
study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773

Kamei Y, Fukushima T, McIntosh S, Yamashita K, Ubayashi N, Hassan AE (2016) Studying just-in-time
defect prediction using cross-project models. Empir Softw Eng 21

Khomh F (2009) Squad: software quality understanding through the analysis of design. In: WCRE ’09. IEEE
Computer Society, Washington, pp 303–306

Khomh F, Vaucher S, Guéhéneuc YG, Sahraoui H (2011) Bdtex: a gqm-based bayesian approach for the
detection of antipatterns. J Syst Softw 84(4):559–572

Kim S, Zimmermann T, Whitehead EJ Jr, Zeller A (2007) Predicting faults from cached history. In: 29th
International conference on software engineering (ICSE’07), pp 489–498

Kim S, Zhang H, Wu R, Gong L (2011) Dealing with noise in defect prediction. In: International conference
on software engineering, ICSE ’11, pp 481–490

Kondo M, Germán D, Mizuno O, Choi EH (2019) The impact of context metrics on just-in-time defect
prediction. Empir Softw Eng 25:890–939

Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural
networks. Commun ACM 60(6):84–90

Lam AN, Nguyen AT, Nguyen HA, Nguyen TN (2015) Combining deep learning with information
retrieval to localize buggy files for bug reports (n). In: International conference on automated software
engineering (ASE), pp 476–481

Lenarduzzi V, Sillitti A, Taibi D (2017) Analyzing forty years of software maintenance models. In: 39th
International conference on software engineering companion, ICSE-c ’17

Lenarduzzi V, Martini A, Taibi D, Tamburri DA (2019a) Towards surgically-precise technical debt estima-
tion: Early results and research roadmap. In: 3rd international workshop on machine learning techniques
for software quality evaluation, maLTeSQue 2019, pp 37–42

Lenarduzzi V, Saarimäki N, Taibi D (2019b) The technical debt dataset. In: 15th Conference on predictive
models and data analycs in software engineering, PROMISE ’19

Lenarduzzi V, Palomba F, Taibi D, Tamburri DA (2020a) Openszz: a free, open-source, web-accessible
implementation of the szz algorithm. In: International conference on program comprehension, ICPC ’20,
pp 446–450

Lenarduzzi V, Saarimäki N, Taibi D (2020b) Some sonarqube issues have a significant but small effect on
faults and changes. A large-scale empirical study. J Syst Softw 170:110750

Lenarduzzi V, Sillitti A, Taibi D (2020c) A survey on code analysis tools for software maintenance prediction.
In: 6th International conference in software engineering for defence applications. Springer International
Publishing, pp 165–175

Lenarduzzi V, Sillitti A, Taibi D (2020d) A survey on code analysis tools for software maintenance pre-
diction. In: 6th International conference in software engineering for defence applications. Springer
International Publishing, pp 165–175

Lenarduzzi V, Lomio F, Huttunen H, Taibi D (2020e) Are sonarqube rules inducing bugs? In: 27th
International conference on software analysis, evolution and reengineering (SANER), pp 501–511

Lenarduzzi V, Besker T, Taibi D, Martini A, Arcelli Fontana F (2021a) A systematic literature review on
technical debt prioritization: strategies, processes, factors, and tools. J Syst Softw 171:110827

Lenarduzzi V, Lujan S, Saarimaki N, Palomba F (2021b) A critical comparison on six static analysis tools:
detection, agreement, and precision. arXiv:2101.08832

http://arxiv.org/abs/150203167
http://arxiv.org/abs/2101.08832

Empir Software Eng (2022) 27:189 Page 55 of 57 189

Lenarduzzi V, Nikkola V, Saarimäki N, Taibi D (2021c) Does code quality affect pull request acceptance?
An empirical study. J Syst Softw 171

Li J, He P, Zhu J, Lyu MR (2017) Software defect prediction via convolutional neural network. In:
International conference on software quality, reliability and security (QRS), pp 318–328

Li W, Zhang W, Jia X, Huang Z (2020) Effort-aware semi-supervised just-in-time defect prediction. Inf
Softw Technol 126:106364

Lin M, Chen Q, Yan S (2013) Network in network. arXiv:13124400
Lomio F, Skenderi E, Mohamadi D, Collin J, Ghabcheloo R, Huttunen H (2019) Surface type classification

for autonomous robot indoor navigation. In: Workshop at 27th European signal processing conference
(EUSIPCO)

Lomio F, Moreschini S, Lenarduzzi V (2022) A machine and deep learning analysis among sonarqube rules,
product, and process metrics for faults prediction. https://figshare.com/s/a65ea232162c7352c879

Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440

Lujan S, Pecorelli F, Palomba F, De Lucia A, Lenarduzzi V (2020) A preliminary study on the adequacy of
static analysis warnings with respect to code smell prediction, pp 1–6

Maneerat N, Muenchaisri P (2011) Bad-smell prediction from software design model using machine learn-
ing techniques. In: 8th International joint conference on computer science and software engineering
(JCSSE), pp 331–336

McIntosh S, Kamei Y (2018) Are fix-inducing changes a moving target? A longitudinal case study of just-
in-time defect prediction. IEEE Trans Softw Eng 44(5):412–428

Menzies T, Milton Z, Turhan B, Cukic B, Jiang Y, Bener A (2010) Defect prediction from static code
features: current results, limitations, new approaches. Autom Softw Eng 1:375–407

Moser R, Pedrycz W, Succi G (2008) A comparative analysis of the efficiency of change metrics and static code
attributes for defect prediction. In: 30th International conference on software engineering, pp 181–190

Murphy-Hill E, Zimmermann T, Bird C, Nagappan N (2015) The design space of bug fixes and how
developers navigate it. IEEE Trans Softw Eng 41:65–81

Nagappan N, Ball T (2005) Use of relative code churn measures to predict system defect density. In: 27th
International conference on software engineering, 2005. ICSE 2005, pp 284–292

Nagappan N, Ball T, Zeller A (2006) Mining metrics to predict component failures. In: Proceedings of the
28th international conference on software engineering, ICSE ’06, pp 452–461

Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: Proceedings of
the 27th international conference on machine learning (ICML-10), pp 807–814

Nemenyi P (1962) Distribution-free multiple comparisons. In: Biometrics, vol 18, p 263
Nguyen H, Lomio F, Pecorelli F, Lenarduzzi V (2022) PANDORA: continuous mining software repos-

itory and dataset generation. In: EEE International conference on software analysis, evolution and
reengineering (SANER2022). IEEE

O’Brien RM (2007) A caution regarding rules of thumb for variance inflation factors. Qual Quant 41(5):673–
690

Osman H, Ghafari M, Nierstrasz O, Lungu M (2017) An extensive analysis of efficient bug prediction con-
figurations. In: Proceedings of the 13th international conference on predictive models and data analytics
in software engineering. Association for Computing Machinery, PROMISE, pp 107–116

Ostrand TJ, Weyuker EJ, Bell RM (2005) Predicting the location and number of faults in large software
systems. IEEE Trans Softw Eng 31(4):340–355

Palomba F, Zanoni M, Fontana FA, De Lucia A, Oliveto R (2017) Toward a smell-aware bug prediction
model. IEEE Trans Softw Eng 45(2):194–218

Palomba F, Bavota G, Penta MD, Fasano F, Oliveto R, Lucia AD (2018) On the diffuseness and the impact on
maintainability of code smells: a large scale empirical investigation. Empir Softw Eng 23(3):1188–1221

Pan K, Kim S, Whitehead EJ (2009) Toward an understanding of bug fix patterns. Empir Softw Eng
14(3):286–315

Pascarella L, Palomba F, Bacchelli A (2018a) Re-evaluating method-level bug prediction. In: 2018 IEEE
25th international conference on software analysis, evolution and reengineering (SANER), pp 592–601

Pascarella L, Spadini D, Palomba F, Bruntink M, Bacchelli A (2018b) Information needs in contemporary
code review. ACM Hum-Comput Interact 2(CSCW):1–27

Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time defect prediction. J Syst Softw
150:22–36

Pascarella L, Palomba F, Bacchelli A (2020) On the performance of method-level bug prediction: a negative
result. J Syst Softw 161

Patton M (2002) Qualitative evaluation and research methods. Sage, Newbury Park
Pecorelli F, Di Nucci D, De Roover C, De Lucia A (2020a) A large empirical assessment of the role of data

balancing in machine-learning-based code smell detection. J Syst Softw 110693

http://arxiv.org/abs/13124400
https://figshare.com/s/a65ea232162c7352c879

 189 Page 56 of 57 Empir Software Eng (2022) 27:189

Pecorelli F, Palomba F, Khomh F, De Lucia A (2020b) Developer-driven code smell prioritization. In:
International conference on mining software repositories

Pecorelli F, Lujan S, Lenarduzzi V, Palomba F, De Lucia A (2022) On the adequacy of static analysis
warnings with respect to code smell prediction. Empir Softw Eng

Powers DMW (2011) Evaluation: from precision, recall and f-measure to roc., informedness, markedness &
correlation. J Mach Learn Technol 2(1):37–63

Prechelt L, Pepper A (2014) Why software repositories are not used for defect-insertion circumstance
analysis more often: a case study. Inf Softw Technol 56(10)

Querel LP, Rigby PC (2018) Warningsguru: integrating statistical bug models with static analysis to provide
timely and specific bug warnings. In: Joint meeting on european software engineering conference and
symposium on the foundations of software engineering, ESEC/FSE 2018, pp 892–895

Rahman F, Devanbu P (2013) How, and why, process metrics are better. In: International conference on
software engineering. IEEE Press, pp 432–441

Runeson P, Höst M (2009) Guidelines for conducting and reporting case study research in software
engineering. Empir Softw Engg 14(2):131–164

Saarimaki N, Baldassarre M, Lenarduzzi V, Romano S (2019) On the accuracy of sonarqube technical debt
remediation time. In: SEAA Euromicro 2019

Saarimäki N, Lenarduzzi V, Taibi D (2019) On the diffuseness of code technical debt in open source projects
of the apache ecosystem. In: International conference on technical debt (techdebt 2019)

Saarimäki N, Moreschini S, Lomio F, Penaloza R, Lenarduzzi V (2022) Towards a robust approach to analyze
time-dependent data in software engineering

Saboury A, Musavi P, Khomh F, Antoniol G (2017) An empirical study of code smells in javascript projects.
In: International conference on software analysis, evolution and reengineering (SANER 2017), pp 294–
305

Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for natural language
understanding. IEEE/ACM Trans Audio Speech Lang Process 22(4):778–784

Śliwerski J, Zimmermann T, Zeller A (2005) When do changes induce fixes? In: International workshop on
mining software repositories, MSR ’05. ACM, New York, pp 1–5

Subramanyam R, Krishnan MS (2003) Empirical analysis of ck metrics for object-oriented design complex-
ity: implications for software defects. IEEE Trans Softw Eng 29(4):297–310

Tan M, Tan L, Dara S, Mayeux C (2015) Online defect prediction for imbalanced data. In: IEEE International
conference on software engineering, vol 2, pp 99–108

Tantithamthavorn C, Hassan AE (2018) An experience report on defect modelling in practice: Pitfalls
and challenges. In: International conference on software engineering: software engineering in practice,
pp 286–295

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2017) An empirical comparison of model
validation techniques for defect prediction models. IEEE Trans Softw Eng (TSE) (1)

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2018) The impact of automated parameter
optimization for defect prediction models. IEEE Trans Softw Eng (TSE)

Tollin I, Arcelli Fontana F, Zanoni M, Roveda R (2017) Change prediction through coding rules viola-
tions. In: Proceedings of the 21st international conference on evaluation and assessment in software
engineering, pp 61–64

Trautsch A, Herbold S, Grabowski J (2020) Static source code metrics and static analysis warnings for
fine-grained just-in-time defect prediction. In: International conference on software maintenance and
evolution (ICSME 2020)

Vassallo C, Panichella S, Palomba F, Proksch S, Zaidman A, Gall HC (2018) Context is king: the developer
perspective on the usage of static analysis tools. In: 25th International conference on software analysis,
evolution and reengineering (SANER)

Vassallo C, Panichella S, Palomba F, Proksc S, Gall H, Zaidman A (2019a) How developers engage with
static analysis tools in different contexts. Empir Softw Eng

Wang Z, Yan W, Oates T (2017) Time series classification from scratch with deep neural networks: a strong
baseline. In: 2017 International joint conference on neural networks (IJCNN), pp 1578–1585

Wang S, Liu T, Nam J, Tan L (2020) Deep semantic feature learning for software defect prediction. IEEE
Trans Softw Eng 46(12):1267–1293

White M, Vendome C, Linares-Vasquez M, Poshyvanyk D (2015) Toward deep learning software reposito-
ries. In: 12th Working conference on mining software repositories, pp 334–345

Yang X, Lo D, Xia X, Zhang Y, Sun J (2015) Deep learning for just-in-time defect prediction. In: IEEE
International conference on software quality, reliability and security, pp 17–26

Empir Software Eng (2022) 27:189 Page 57 of 57 189

Yang Y, Zhou Y, Liu J, Zhao Y, Lu H, Xu L, Xu B, Leung H (2016) Effort-aware just-in-time defect predic-
tion: simple unsupervised models could be better than supervised models. In: International symposium
on foundations of software engineering, pp 157–168

Yang X, Lo D, Xia X, Sun J (2017) Tlel: a two-layer ensemble learning approach for just-in-time defect
prediction. Inf Softw Technol 87:206–220

Yin R (2009) Case study research: design and methods, 4th edn (Applied social research methods, vol 5).
SAGE Publications, Inc

Zeiler MD (2012) Adadelta: an adaptive learning rate method. arXiv:1212.5701
Zeller A (2009) How failures come to be. In: Why programs fail. 2nd edn. Morgan Kaufmann, pp 1–23

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1212.5701

	A machine and deep learning analysis among SonarQube rules, product, and process metrics for fault prediction
	Abstract
	Introduction
	Background
	The Previous Study
	SonarQube
	Machine Learning models
	Random Forest
	Gradient Boosting
	XGBoost

	Deep Learning Models
	Residual Network
	Fully Convolutional Neural Network

	Empirical Study Design
	Goal and Research Questions
	Study Context
	Data Collection
	Data Analysis
	Data Preprocessing
	Data extraction from the Technical Debt Dataset
	Data Pre-processing
	Data Preparation for the Machine Learning Analysis
	Data Preparation for the Deep Learning Analysis

	Data Analysis
	Machine Learning Analysis
	Deep Learning Analysis
	Accuracy Comparison
	Statistical Analysis

	Replicability

	Results
	RQ1. What is the Fault Proneness of the SonarQube Rules?
	RQ2. What is the Fault Proneness of Software Metrics?
	RQ3.To What Extent Can SonarQube Rules Impact the Performance of Fault Prediction Models that Leverage Process and Product Metrics
	SonarQube Rules
	SonarQube rule types

	RQ4.Which is the Best Combination of Metrics and the Best Model for the Fault Prediction?

	Discussion
	Only SonarQube Rules are Not Enough
	Product and Process Metrics. Which Ones?
	SonarQube Rules, Product and Process Metrics. All Together?
	Machine Learning or Deep Learning?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Related Work
	Conclusion
	Appendix:
	References

