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Abstract—An image anomaly localization method based on the
successive subspace learning (SSL) framework, called Anomaly-
Hop, is proposed in this work. AnomalyHop consists of three
modules: 1) feature extraction via successive subspace learning
(SSL), 2) normality feature distributions modeling via Gaussian
models, and 3) anomaly map generation and fusion. Comparing
with state-of-the-art image anomaly localization methods based
on deep neural networks (DNNs), AnomalyHop is mathematically
transparent, easy to train, and fast in its inference speed. Besides,
its area under the ROC curve (ROC-AUC) performance on the
MVTec AD dataset is 95.9%, which is among the best of several
benchmarking methods. 1

Index Terms—Image anomaly localization, successive subspace
learning,

I. INTRODUCTION

IMAGE anomaly localization is a technique that identifies
the anomalous region of input images at the pixel level.

It finds real-world applications such as manufacturing process
monitoring [1], medical image diagnosis [2], [3] and video
surveillance analysis [4], [5]. It is often assumed that only
normal (i.e., anomaly-free) images are available in the train-
ing stage since anomalous samples are few to be modeled
effectively rare and/or expensive to collect.

There is a growing interest in image anomaly localization
due to the availability of a new dataset called the MVTec AD
[6] (see Fig. 1). State-of-the-art image anomaly localization
methods adopt deep learning. Many of them employ compli-
cated pretrained neural networks to achieve high performance
yet without a good understanding of the basic problem. To
get marginal performance improvements, fine-tuning and other
minor modifications are made on a try-and-error basis. Related
work will be reviewed in Sec. II.

A new image anomaly localization method, called Anoma-
lyHop, based on the successive subspace learning (SSL)
framework is proposed in this work. This is the first work
that applies SSL to the anomaly localization problem. Anoma-
lyHop consists of three modules: 1) feature extraction via
successive subspace learning (SSL), 2) normality feature dis-
tributions modeling via Gaussian models, and 3) anomaly map
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Fig. 1. Image anomaly localization examples taken from the MVTec AD
dataset (from left to right): normal images, anomalous images, the ground
truth and the predicted anomalous region by AnomalyHop, where the red
region indicates the detected anomalous region.

generation and fusion. They will be elaborated in Sec. III.
As compared with deep-learning-based image anomaly local-
ization methods, AnomalyHop is mathematically transparent,
easy to train, and fast in its inference speed. Besides that, as
reported in Sec. IV, its area under the ROC curve (ROC-AUC)
performance on the MVTec AD dataset is 95.9%, which is the
state-of-the-art performance. Finally, concluding remarks and
possible future extensions will be given in Sec. V.

II. RELATED WORK

If the number of images in an image anomaly training set
is limited, learning normal image features in local regions is
challenging. We classify image anomaly localization methods
into two major categories based on whether a method relies
on external training data (say, the ImageNet) or not.
With External Training Data. Methods in the first category
rely on pretrained deep learning models by leveraging external
data. Examples include PaDiN [7], SPADE [8], DFR [9]
and CNN-FD [4]. They employ a pretrained deep neural
network (DNN) to extract local image features and, then, use
various models to fit the distribution of features in normal
regions. Although some offer impressive performance, they
do rely on large pretrained networks such as the ResNet
[10] and the Wide-ResNet [11]. Since these pretrained DNNs
are not optimized for the image anomaly detection task, the
associated image anomaly localization methods usually have
large model sizes, high computational complexity and memory
requirement.

https://github.com/BinWang28/AnomalyHop
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Fig. 2. The system diagram of the proposed AnomalyHop method.

Without External Training Data. Methods in the second
category exploit neither pretrained DNNs nor external training
data. They learn local image features based on normal images
in the training set. For example, Bergmann et al. developed
the MVTec AD dataset in [6] and used an autoencoder-like
network to learn the representation of normal images. The
network can reconstruct anomaly-free regions of high fidelity
but not for anomalous regions. As a result, the pixel-wise
difference between the input abnormal image and its recon-
structed image reveals the region of abnormality. A similar
idea was developed using the image inpainting technique [12],
[13]. Traditional machine learning models such as support
vector data description (SVDD) [14] can also be integrated
with neural network, where novel loss terms are derived to
learn local image features from scratch [15], [16]. Generally
speaking, methods without external training data either fail
to provide satisfactory performance or suffer from a slow
inference speed [15]. This is attributed to diversified contents
of normal images. For example, the 10 object classes and the
5 texture classes in the MVTec AD dataset are quite different.
Their capability in representing features of local regions of
different images is somehow limited. On the other hand, over-
parameterized DNN models pretrained by external data may
overfit some datasets but may not be generalizable to other
unseen contents such as new texture patterns. It is desired
to find an effective and mathematically transparent learning
method to address this challenging problem.
SSL and Its Applications. SSL is an emerging machine
learning technique developed by Kuo et al. in recent years
[17], [18], [19], [20], [21]. It has been applied to quite a few
applications with impressive performance. Examples include
image classification [19], [20], image enhancement [22], image
compression [23], deepfake image/video detection [24], point
cloud classification, segmentation, registration [25], [26], [27],
[28], face biometrics [29], [30], texture analysis and synthesis
[31], [32], 3D medical image analysis [33], etc.

III. ANOMALYHOP METHOD

AnomalyHop belongs to the second category of image
anomaly localization methods. Its system diagram is illustrated
in Fig. 2. It contains three modules: 1) feature extraction, 2)
modeling of normality feature distributions, and 3) anomaly
map generation. They will be elaborated below.

A. SSL-based Feature Extraction

Deep-learning methods learn image features indirectly.
Given a network architecture, the network learns the filter

parameters first by minimizing a cost function end-to-end.
Then, the network can be used to generate filter responses,
and patch features are extracted as the filter responses at a
certain layer. In contrast, the SSL framework extracts features
of image patches directly using a data-driven approach. The
basic idea is to study pixel correlations in a neighborhood (say,
a patch) and use the principal component analysis (PCA) to
define an orthogonal transform, also known as the Karhunen
Loève transform (KLT). However, a single-stage PCA trans-
form is not sufficient to obtain powerful features. A sequence
of modifications have been proposed in [17], [18], [19], [20]
to make the SSL framework complete.

The first modification is to build a sequence of PCA
transforms in cascade with the max pooling inserted between
two consecutive stages. The output of the previous stage serves
as the input to the current stage. The cascaded transforms
are used to capture short-, mid- and long-range correlations
of pixels in an image. Since the neighborhood of a graph is
called a hop (e.g., 1-hop neighbors, 2-hop neighbors, etc.),
each transform stage is called a hop [19]. However, a straight-
forward cascade of multi-hop PCAs does not work properly
due to the sign confusion problem, which was first pointed
out in [17]. The second modification is to replace the linear
PCA with an affine transform that adds a constant-element
bias vector to the PCA response vector [18]. The bias vector
is added to ensure all input elements to the next hop are
positive to avoid sign confusion. This modified transform is
called the Saab (Subspace approximation with adjusted bias)
transform. The input and the output of the Saab transform are
3D tensors (including 2D spatial components and 1D spectral
components.) By recognizing that the 1D spectral components
are uncorrelated, the third modification was proposed in [20]
to replace one 3D tensor input with multiple 2D tensor inputs.
This is named as the channel-wise Saab (c/w Saab) transform,
and it greatly reduces the model size of the standard Saab
transform. Here we employee c/w Saab transform as our
feature extractor, where the output of c/w Saab transform will
provide pixel-wise image local features automatically.

B. Modeling of Normality Feature Distributions

We propose three Gaussian models to describe the distri-
butions of features of normal images, which are extracted in
Sec. III-A.

1) Location-aware Gaussian Model: If the input images
of an image class are well aligned in the spatial domain, we
expect that features at the same location are close to each
other. We use Xn

ij to denote the feature vector extracted from
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a patch centered at location (i, j) of a certain hop in the nth
training image. By following [7], we model the feature vectors
of patches centered at the same location (i, j) by a multivariate
Gaussian distribution, N(µij ,Σij). Its sample mean is µij =

N−1
∑N

n=1X
n
ij and its sample covariance matrix is

Σij = (N − 1)−1
N∑

n=1

(Xn
ij − µij)(X

n
ij − µij)

T + εI,

where N is the number of training images of an image class, ε
is a small positive number, and I denotes identity matrix. The
term εI is added to ensure that the sample covariance matrix
is positive semi-definite.

2) Location-Independent Gaussian Model: For images of
the same texture class, they have strong self-similarity. Be-
sides, they are often shift-invariant. These properties can be
exploited for texture-related tasks [31], [34], [35]. For homo-
geneous fine-granular textures, we can use a single Gaussian
model for all local image features at each hop and call it the
location-independent Gaussian model. The model has its mean
µ = (NHW )−1

∑
i,j,nX

n
ij and its covariance matrix

Σ = (NHW − 1)−1
∑
i,j,n

(Xn
ij − µij)(X

n
ij − µij)

T + εI,

where N is the number of training images in one texture class,
and H and W are pixel numbers along the height and the width
of texture images.

3) Self-reference Gaussian Model: Both location-aware and
location-independent Gaussian models utilize all training im-
ages to capture the normality feature distributions. However,
images of the same class may have intra-class variations,
which location-aware and location-independent Gaussian mod-
els cannot capture well. One example is the grid class in
the MVTec AD dataset. Different images may have different
grid orientations and lighting conditions. To address this
problem, we train a Gaussian model with the distribution
of features from a single normal image and call it the self-
reference Gaussian. Again, we compute the sample mean as
µ = (HW )−1

∑
i,j Xij and the sample covariance matrix as

Σ = (HW − 1)−1
∑
i,j

(Xij − µ)(Xij − µ) + εI.

For this setting, we only use normal images in the training set
to determine the c/w Saab transform filters. The self-reference
Gaussian model is learned from the test image at the testing
time. For more discussion, we refer to Sec. IV.

C. Anomaly Map Generation and Fusion
With learned Gaussian models, we use the Mahalanobis

distance,

M(Xij) =
√

(Xij − µij)Σ
−1
ij (Xij − µij)T ,

as the anomaly score to show the anomalous level of a cor-
responding patch. Higher scores indicate a higher likelihood
to be anomalous. By calculating the scores over all locations
of a hop, we form an anomaly map at each hop for an input
test image. Finally, we re-scale all anomaly maps to the same
spatial size and fuse them by weighting average to yield the
final anomaly map.

IV. EXPERIMENTS

Dataset and Evaluation Metric. We evaluate our model on
the MVTec AD dataset [6]. It has 5,354 images from 15
classes, including 5 texture classes and 10 object classes,
collected from real-world applications. The resolution of input
images ranges from 700×700 to 1024×1024. The training set
consists of normal images only while the test set contains both
normal and abnormal images. The ground truth of anomaly
regions is provided for the evaluation purpose. The area under
the receiver operating characteristics curve (AUC-ROC) [36],
[6] is chosen to be the performance evaluation metric.
Experimental Setup and Benchmarking Methods. First, we
resize images of different resolutions to the same resolution
of 224 × 224. Next, we apply the 5-stage Pixelhop++ to all
classes for feature extraction as shown in Fig. 2. The spatial
sizes, b × b, and the number, k, of filters at each hop are
searched in the range of 2 ≤ b ≤ 7 and 2 ≤ k ≤ 5,
respectively. The 2 × 2 max-pooling is used between hops.
The optimal hyper-parameters at each hop are class dependent.
A representative case for the leather class is given in Table
I. The optimal hyper-parameters of all 15 classes can be
found in our Github codes. We compare AnomalyHop against
seven benchmarking methods. Four of them belong to the first
category that leverages external datasets. They are PaDiM [7],
SPADE [8], DFR [9] and CNN-FD [4]. Three of them belong
to the second category that solely relies on images in the
MVTec AD dataset. They are AnoGAN [2], VAE-grad [36]
and Patch-SVDD [15].

TABLE I
THE HYPER-PARAMETERS OF SPATIAL SIZES AND NUMBERS OF FILTERS

AT EACH HOP FOR THE LEATHER CLASS.

Hop Index 1 2 3 4 5
b 5 5 3 2 2
k 4 4 4 4 4

AUC-ROC Performance. We compare the AUC-ROC scores
of AnomalyHop and seven benchmarking methods in Table II.
As shown in the table, AnomalyHop performs the best among
all methods with no external training data. Although Patch-
SVDD has close performance, especially for the object classes,
its inference speed is significantly slower as shown in Table
III. The best performance in Table II is achieved by PaDiM
[7] that takes the pretrained 50-layer Wide ResNet as the
feature extractor backbone. Its superior performance largely
depends on the generalizability of the pretrained network.
In practical applications, we often encounter domain-specific
images, which may not be covered by external training data.
In contrast, AnomalyHop exploits the statistical correlations of
pixels in short-, mid- and long-range neighborhoods and obtain
the c/w Saab filters based on PCA. It can tailor to a specific
application domain using a smaller number of normal images.
Furthermore, the Wide-ResNet-50-2 model has more than 60M
parameters while AnomalyHop has only 100K parameters in
PixelHop++, which is used for image feature extraction.

Three Gaussian models are adopted by AnomalyHop to
handle different classes in Table II. Results obtained using

https://github.com/BinWang28/AnomalyHop
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TABLE II
PERFORMANCE COMPARISON OF IMAGE ANOMALY LOCALIZATION METHODS IN TERMS OF AUC-ROC SCORES FOR THE MVTEC AD DATASET, WHERE

THE BEST RESULTS IN EACH CATEGORY ARE MARKED IN BOLD.

Pretrained w/ External Data w/o Pretraining
PaDiM [7] SPADE [8] DFR [9] CNN-FD [4] AnoGAN [2] VAE-grad [36] Patch-SVDD [15] AnomalyHop

Carpet 0.991 0.975 0.970 0.720 0.540 0.735 0.926 0.942∗
Grid 0.973 0.937 0.980 0.590 0.580 0.961 0.962 0.984?

Leather 0.992 0.976 0.980 0.870 0.640 0.925 0.974 0.991∗
Tile 0.941 0.874 0.870 0.930 0.500 0.654 0.914 0.932∗

Wood 0.949 0.885 0.930 0.910 0.620 0.838 0.908 0.903∗

Avg. of Texture Classes 0.969 0.929 0.946 0.804 0.576 0.823 0.937 0.950
Bottle 0.983 0.984 0.970 0.780 0.860 0.922 0.981 0.975�
Cable 0.967 0.972 0.920 0.790 0.780 0.910 0.968 0.904�

Capsule 0.985 0.990 0.990 0.840 0.840 0.917 0.958 0.965�
Hazelnut 0.982 0.991 0.990 0.720 0.870 0.976 0.975 0.971�

Metal Nut 0.972 0.981 0.930 0.820 0.760 0.907 0.980 0.956�
Pill 0.957 0.965 0.970 0.680 0.870 0.930 0.951 0.970�

Screw 0.985 0.989 0.990 0.870 0.800 0.945 0.957 0.960?
Toothbrush 0.988 0.979 0.990 0.770 0.900 0.985 0.981 0.982�
Transistor 0.975 0.941 0.800 0.660 0.800 0.919 0.970 0.981�

Zipper 0.985 0.965 0.960 0.760 0.780 0.869 0.951 0.966�
Avg. of Object Classes 0.978 0.976 0.951 0.769 0.826 0.928 0.967 0.963

Avg. of All Classes 0.975 0.960 0.949 0.781 0.743 0.893 0.957 0.959

location-aware, location-independent and self-reference Gaus-
sian models are marked with �, ∗, ?, respectively. The object
classes are well-aligned in the dataset so that the location-
aware Gaussian model is more suitable. For texture classes
(e.g. carpet and wood classes), the location-independent Gaus-
sian model is the most favorable since the texture classes are
usually homogeneous across the whole image. The location
information is less relevant. The grid class is a special one.
On one hand, the grid image is homogeneous across the whole
image. On the other hand, different grid images have different
rotations, lighting conditions and viewing angles as shown in
Fig. 3. As a result, the self-reference Gaussian model offers
the best result.

Fig. 3. Two anomaly grid images (from left to right): input images, ground
truth labels, predicted heatmap, predicted and segmented anomaly regions.

Inference Speed. The inference speed is another important
performance metric in real-world image anomaly localization
applications. We compare the inference speed of Anomaly-
Hop and the other three high-performance methods in Ta-
ble III, where all experiments are conducted with Intel I7-
5930K@3.5GHz CPU. We see that AnomalyHop has the
fastest inference speed. It has a speed-up factor of 4x, 22x
and 28x with respect to PaDIM, Patch-SVDD and SPADE,
respectively. SPADE and Patch-SVDD are significantly slower
because of the expensive nearest neighbor search. For DNN-
based methods, their feature extraction can be accelerated

using GPU hardware, which applies to AnomalyHop, too. On
the other hand, image anomaly localization is often conducted
by edge computing devices in manufacturing lines. GPU could
be too expensive for this environment. Although training
complexity is often ignored since it has to be done once, it
is worthwhile to mention that the training of AnomalyHop is
very efficient. It takes only 2 minutes to train an AnomalyHop
model for each class with the above-mentioned CPU.

TABLE III
AVERAGE INFERENCE TIME (IN SEC.) PER IMAGE WITH INTEL I7-5930K

@ 3.5 GHZ CPU.

Methods Inference Time Speed Up
SPADE [8] 6.80 1×

Patch-SVDD [15] 5.23 1.3×
PaDiM [7] 0.91 7.5×

AnomalyHop 0.24 28.3×

V. CONCLUSION AND FUTURE WORK

An SSL-based anomaly image localization method, called
AnomalyHop, was proposed in this work. It is interpretable,
effective and fast in both inference and training time. Besides,
it offers state-of-the-art anomaly localization performance.
AnomalyHop has a great potential to be used in a real-
world environment due to its high performance as well as low
implementation cost.

Although SSL-based feature extraction in AnomalyHop is
powerful, its feature distribution modeling (module 2) and
anomaly localization decision (module 3) are still primitive.
These two modules can be improved furthermore. For exam-
ple, it is interesting to leverage effective one-class classifica-
tion methods such as SVDD [14], subspace SVDD [37] and
multimodal subspace SVDD [38]. This is a new topic under
our current investigation.
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