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ABSTRACT

Coronavirus disease 2019 (COVID-19) has emerged the need for
computer-aided diagnosis with automatic, accurate, and fast algo-
rithms. Recent studies have applied Machine Learning algorithms
for COVID-19 diagnosis over chest X-ray (CXR) images. However,
the data scarcity in these studies prevents a reliable evaluation with
the potential of overfitting and limits the performance of deep net-
works. Moreover, these networks can discriminate COVID-19 pneu-
monia usually from healthy subjects only or occasionally, from lim-
ited pneumonia types. Thus, there is a need for a robust and accurate
COVID-19 detector evaluated over a large CXR dataset. To address
this need, in this study, we propose a reliable COVID-19 detection
network: ReCovNet, which can discriminate COVID-19 pneumonia
from 14 different thoracic diseases and healthy subjects. To accom-
plish this, we have compiled the largest COVID-19 CXR dataset:
QaTa-COV19 with 124,616 images including 4603 COVID-19 sam-
ples. The proposed ReCovNet achieved a detection performance
with 98.57% sensitivity and 99.77% specificity.

Index Terms— SARS-CoV-2, COVID-19 Detection, Machine
Learning, Deep Learning

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute res-
piratory syndrome Coronavirus-2 (SARs-CoV-2), was declared a
pandemic by the World Health Organization in March 2020. The
disease affects seriously people in high-risk groups (especially the
elderly) leading to hospitalization, intubation, and even death [[1]]. In
order to prevent the spread of the disease, detection, and isolation
of infected patients have the utmost importance. However, the diag-
nosis of COVID-19 is challenging due to its similar symptoms with
other viral infections such as fever, cough, fatigue, and breathless-
ness [2]. Therefore, reliable detection of the disease has significant
importance.

Recent diagnostic tools to detect COVID-19 are nucleic acid de-
tection with real-time polymerase chain reaction (RT-PCR), com-
puted tomography (CT), and chest X-ray (CXR) imaging. RT-PCR
has become the gold standard for COVID-19 diagnosis. However,
RT-PCR tests suffer from instability and high false alarm rate [3].
On the other hand, CT imaging has higher sensitivity compared to
RT-PCR test; thus, recommended for the suspected cases [4]]. How-
ever, the performance of CT imaging in the early COVID-19 cases
has limited sensitivity [4]. Thus, CXR imaging is widely used for
the diagnosis of COVID-19 mainly because of its advantages that
are faster acquisition, less radiation exposure, and easy accessibility
compared to the aforementioned tools [J5]].

Many studies utilized Deep Learning (DL) algorithms for
COVID-19 detection [?,/6,/7]. However, the reliability of these mod-
els is under question due to their hidden decision-making process.

In fact, the activation maps of the deep models reveal the unreliabil-
ity of their decision-making process, where irrelevant areas on the
CXRs, outside of the lung area such as bones, background, or text,
affect the decision of the network. Therefore, several studies [8H10]
attempted to prevent deep models to learn from these irrelevant areas
on the CXRs with a two-staged approach for COVID-19 detection
by processing only the lung areas with lung segmentation as their
first stage. At the second stage, only the segmented lung area on
the CXRs are given to the deep models as the input. Although these
studies have achieved good performance for COVID-19 detection,
data scarcity is the main drawback that can yield overfitting and
hinders an accurate evaluation. Moreover, the datasets used in these
studies encapsulate none or limited thoracic diseases, i.e., viral and
bacterial pneumonia against COVID-19 pneumonia that makes them
unreliable in real-case scenarios for COVID-19 diagnosis.

In this study, to address the aforementioned issues we propose
ReCovNet: a reliable COVID-19 detection network, which is an
end-to-end network solution. Instead of detecting COVID-19 di-
rectly from the CXR image or the segmented lung area on the CXR,
we embed this information into the ReCovNet model by transfer
learning from a segmentation network. For this purpose, we ini-
tially train the segmentation network and detach its encoder block
to reconstruct the ReCovNet model for COVID-19 detection. Ad-
ditionally, in this work, we extend the QaTa-COV19 dataset that
was introduced in our previous study [11]. The extended version
of QaTa-COV19 is the largest COVID-19 dataset with 124,616 im-
ages including 4603 COVID-19 samples. The control group CXRs
consists of 14 different thoracic diseases and healthy subjects. More-
over, the QaTa-COV 19 consists of a subset of 1065 early COVID-19
cases showing no or limited sign of COVID-19 pneumonia, which
makes the diagnosis more challenging. Accordingly, the proposed
ReCovNet trained over the largest QaTa-COV 19 dataset has an out-
standing performance with a reliable diagnosis compared to state-of-
the-art deep models. Lastly, the benchmark QaTa-COV 19 dataset is
publicly shared with the research communit)%

The rest of the paper is organized as follows. In Section |2| we
introduce the QaTa-COV19 dataset and give the details of our pro-
posed ReCovNet model along with the state-of-the-art deep models.
In Section [3] we report the experimental results, and we conclude
the paper in Section[4]

2. MATERIALS AND METHODOLOGY

In this section, first we introduce the benchmark QaTa-COV19
dataset. Then, the state-of-the-art deep models are introduced for
COVID-19 diagnosis. Lastly, we propose the ReCovNet model for
reliable COVID-19 detection.

'The benchmark QaTa-COV19 is publicly shared at the repository
https://www.kaggle.com/aysendegerli/qatacov 19-dataset.


https://www.kaggle.com/aysendegerli/qatacov19-dataset
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Fig. 1: The proposed ReCovNet, where the transfer learning is performed from the segmentation network initially trained on CXRs for lung

segmentation.

2.1. The Benchmark QaTa-COV19 Dataset

The benchmark QaTa-COV19 dataset, compiled by researchers
of Qatar University and Tampere University is so far the largest
COVID-19 dataset including 4603 COVID-19 and 120,013 con-
trol group CXRs. The detection task on this dataset is especially
challenging since QaTa-COV19 consists of 1065 samples from
early COVID-19 cases that show no or limited sign of COVID-19
pneumonia. COVID-19 samples have been collected from publicly
available datasets and repositories [9][I2H17]], and were prepro-
cessed by excluding low-quality images and any duplication. The
control group images were collected from several datasets: ChestX-
ray14 (18], X-rays from pediatric patients [I9]], and Chest X-rays
(Indiana University) [20]. We have only used the bacterial and viral
pneumonia CXRs from pediatric patients to increase pneumonia
samples for a challenging diagnosis. Additionally, we included
only the lateral-view CXRs from Chest X-rays (Indiana University)
dataset since all other samples in the control group are from frontal-
view CXRs, whereas COVID-19 samples include CXRs both from
lateral and frontal views.

Table 1: Details of QaTa-COV 19 dataset.

Training Augmented Test
—— ‘ Samples Augmented ‘ Training Samples | Samples
ChestX-ray14 86,524 X 86,524 25,596
Bacterial 2130 v 5000 630
Pneumonia
Chest X-rays
(Indiana University) 2816 v 5000 832
Viral 1146 v 5000 339
Pneumonia
\ COVID-19 [ 3553 ] v [ 10,000 [ 1050 ]
\ Total [ 96,169 ] [ 111,524 [ 28447 |

Table |I| shows the number of samples in the QaTa-COV19
dataset. COVID-19 detection is performed against the control group
images, which consists of 14 different thoracic diseases and healthy
subjects. Therefore, we perform a binary classification problem.
Since the train and test sets of the ChestX-ray14 dataset are prede-
fined, we have randomly split Chest X-rays (Indiana University),
bacterial and viral pneumonia, and COVID-19 CXRs with the same
train/ test ratio as in [18]. The CXRs in the dataset are resized to
224 x 224 pixels. We have augmented the images except for ChestX-
ray 14 samples using the Image Data Generator in Keras. The images
are 10% randomly shifted both horizontally and vertically, and in
a 10-degree range randomly rotated. Lastly, the ’nearest’ mode is
selected to fill the blank sections.

2.2. COVID-19 Detection with Deep Models

DL algorithms achieved state-of-the-art results on many computer
vision tasks, including COVID-19 detection. Especially during the
pandemic, recent studies concluded that DL algorithms with Convo-
lutional Neural Networks can achieve outstanding performance for
COVID-19 diagnosis. Nevertheless, the major issue in DL is that
supervised deep models require a large amount of data to generalize
well over unseen data. Thus, when subjected to data scarcity, such
models fail in the testing phase due to overfitting. In this study, our
first objective is to investigate the performances of state-of-the-art
deep models by transfer learning on the largest COVID-19 dataset:
QaTa-COV19. The state-of-the-art networks are selected as follows:

 DenseNet-121 is a 121-layer deep network that achieves
a maximum information flow by connecting the layers with
additional input nodes.

* ResNet-50 is a deep network with 50-layers that intro-
duces residual blocks to prevent gradient vanishing in deep
model structures by shortcut connections that merge input and



output through the stacked layers.

* Inception-v3 [23]] is a deep network with low computational
complexity compared to other state-of-the-art deep models.
The reduced complexity is ensured by pruning and factorizing
operations inside the network.

* Inception-ResNet-v2 [24] unites the structure of the incep-
tion model [23]] with residual blocks [22] to achieve state-of-
the-art results in computer vision tasks with a less computa-
tional cost.

In order to utilize the deep models in the COVID-19 detection task,
we modify their output layers by inserting a global average pooling
layer, a fully connected layer with 2-neurons, and a softmax activa-
tion function. The transfer learning is performed on the models by
initializing their weights with the ImageNet weights.

2.3. ReCovNet: Reliable COVID-19 Detection Network

DL algorithms are often considered as black-box since their decision-
making process is latent. In order to reveal their mystery in the
decision-making process, the authors in [25] proposed Grad-CAM
method that computes activation maps indicating the areas on the
input image considered by the deep model during the classifica-
tion task. In the COVID-19 detection task, our observations on the
activation maps with the Grad-CAM approach show that the state-
of-the-art deep models tend to learn and perform the classification
from irrelevant areas on the CXRs, such as bones, background, or
text. Therefore, the decisions of these models may be considered
unreliable for COVID-19 detection. In order to overcome the unreli-
ability issue, this study proposes ReCovNet: an end-to-end network
for reliable COVID-19 detection.

ReCovNet is a deep network that considers the lung areas on
the input CXR images to detect COVID-19 pneumonia. The struc-
ture of the proposed ReCovNet is given in Fig. [I] Accordingly, to
construct ReCovNet, a segmentation network is trained in phase-I.
The structure of the lung segmentation network is a convolutional
autoencoder that maps the input image, X to its corresponding out-
put mask, M: M < Py 4 (X). Any deep model can be used as the en-
coder block of the network, €g. On the other hand, the decoder block
of the segmentation network is similar to the U-Net [26] model ex-
cept for its u-shaped architecture, where the low-level features at the
encoder block are concatenated with the high-level features at the
decoder level. The u-shaped architecture is excluded by removing
the skip connections, which performs the concatenation operation.
The reason for constructing an encoder-decoder network without
skip connections is that the contributions from the initial layers are
avoided; therefore, the network can make decisions from the high-
level features that are closer to segmentation mapping of the input
image. Based on our observations, this approach improves the per-
formance of ReCovNet in terms of reliability observed in the activa-
tion maps. The decoder block of the segmentation network consists
of p € {bj,w j}]L'Zl with L number of layers composed of five stages.
Each stage consists of an upsampling layer by X2, and sequentially
two times of the convolutional layer, batch normalization, and Rec-
tified Linear Unit (ReLU) activation function. The output of the last
stage is connected to a convolutional layer with a sigmoid activation
function to reconstruct the segmentation mask at the output. In order,
the number of convolutional layer filters are {256,128,64,32,16,1}
with kernel of size of k = (3 x 3). Lastly, training is performed over

N number of samples {xirr win M }]}’:1, where x; and M are the train-

ing data, and ground-truth segmentation masks, respectively. The

loss function used in training is a hybrid function, which is the sum-
mation of the binary focal and dice loss functions.

During phase-II of the training, we construct the convolutional
layers of ReCovNet by &g that generates the latent features f
€g(.). Then, f is vectorized and downsampled by attaching a global
average pooling layer and a fully connected layer with 2-neurons us-
ing softmax activation function. We perform the classification task
with categorical cross-entropy loss function by training ReCovNet
over N number of samples {xt’mm,y{mm }1}’:1, where x and y are the
training data and ground-truth labels, respectively. During this train-
ing phase, &g is not frozen; therefore, the latent features f are further
adjusted to the benchmark QaTa-COV19 dataset. Overall, during
the inference, ReCovNet does not require prior lung segmentation to
provide reliable COVID-19 detection. Finally, we propose two ver-
sions of the proposed model: ReCovNet-v1 is formed by DenseNet-
121 encoder due to its good performance in the COVID-19 detection
task, and ReCovNet-v2 is formed by ResNet-50 encoder.

3. EXPERIMENTAL EVALUATION

In this section, the experimental setup is presented. Then, the exper-
imental results are given on the benchmark QaTa-COV 19 dataset.

3.1. Experimental Setup

The performance metrics are calculated on the test (unseen) set of the
QaTa-COV19 dataset. We consider COVID-19 CXRs as positive-
class, whereas control group samples as negative-class. Accord-
ingly, we form the confusion matrix (CM) elements as follows: true
positive is the number of correctly classified COVID-19 samples,
false positive is the number of misclassified control group samples
as the positive class member, true negative is the number of correctly
detected control group samples, and false negative is the number
of misclassified COVID-19 samples as the negative class members.
The performance metrics are defined as follows: sensitivity is the
rate of correctly detected COVID-19 samples in all positive samples,
specificity is the ratio of correctly classified control group samples
in all negative samples, precision is the rate of correctly classified
positive samples among all the members detected as positive class
members, accuracy is the rate of correctly detected samples among
all the data. Moreover, we define the F-score as follows:

(precision x sensitivity)

F(B)=(1+5?) (1)

B2 x precision + sensitivity

where the harmonic average between precision and sensitivity is de-
fined as F1-score as § = 1. On the other hand, to minimize the effect
of false negatives over false positives, F2-Score is defined as 8 = 2.
The major performance metric in COVID-19 detection is sensitivity
since any misdetection of the disease threatens global health. Hence
minimizing the false alarm (1 — specificity) is our target.

The networks are implemented using Tensorflow library on
NVidia ® GeForce RTX 2080 Ti GPU card. The optimizer choice
is Adam with its default momentum parameters. ReCovNet mod-
els are trained with 15-epochs, the learning rate of o = 107>, and
a batch size of 64. The segmentation networks are trained with
15-epochs, the learning rate of o = 10™%, and a batch size of 32.
We have utilized Montgomery County X-ray Set [27] and Japanese
Society of Radiological Technology (JSRT) [28]] datasets to train the
segmentation models. All the images are frontal-view CXRs and
have their corresponding ground-truths except for the JSRT. Thus,
the segmentation masks provided by [29] are used as ground-truths



Table 2: COVID-19 detection performance results (%) computed over the test (unseen data) set of QaTa-COV 19 dataset using four state-of-

the-art and the proposed ReCovNet deep models.

[ Model [ Sensitivity ~ Specificity  Precision F1-Score F2-Score  Accuracy ‘
ResNet-50 96.571 99.953 98.734 97.641 96.996 99.828
Inception-v3 94.762 99.821 95.307 95.033 94.870 99.634

Inception-ResNet-v2 94.286 99.803 94.828 94.556 94.394 99.599
DenseNet-121 97.429 99.974 99.320 98.365 97.801 99.880
ReCovNet-vl 97.810 99.901 97.438 97.624 97.735 99.824
ReCovNet-v2 98.571 99.770 94.262 96.369 97.678 99.726

for JSRT [28]. Overall, the number of CXRs is 385 in the lung
segmentation dataset. For the performance evaluation, we split this
data with a ratio of 80% training to 20% test sets. Then, training
samples are augmented up to 1000 samples.

3.2. Experimental Results

In this section, the performance of segmentation networks is first
investigated. Over the test set of segmentation dataset, the segmen-
tation model with DenseNet-121 encoder has achieved 96.12% sen-
sitivity and 98.59% specificity, and with ResNet-50 encoder 97.12%
sensitivity and 98.22% specificity for the lung segmentation task.

The COVID-19 detection performance results of the state-of-
the-art and ReCovNet models are presented in Table For each
model, we have observed that their performance on COVID-19 de-
tection is successful with > 94% sensitivity. The best model from the
state-of-the-art deep models is DenseNet-121 with 97.43% sensitiv-
ity and 99.97% specificity. The performance of ReCovNet-v1 is very
close to DenseNet-121. However, the best sensitivity in COVID-19
detection is achieved by the ReCovNet-v2 by 98.57%, which is an
outstanding performance for the diagnosis on the largest COVID-19
dataset. Moreover, ReCovNet-v2 also holds a high specificity level
of 99.77%. Table [3] shows the confusion matrices of the best per-
forming models, which are DenseNet-121 from state-of-the-art deep
models and ReCovNet-v2 from the proposed networks. The best de-
tection (sensitivity) rate is achieved by ReCovNet-v2, which misses
only 15 COVID-19 samples among 1050 images.

The results on the largest COVID-19 dataset, which includes
many CXR images from different thoracic diseases, shows that
deep models can achieve elegant COVID-19 detection performance.
However, the activation maps extracted by Grad-CAM ap-
proach reveal the contribution of the irrelevant regions and this is

Table 3: Confusion matrices of the best performing DenseNet-121
and proposed ReCovNet-v2 model for COVID-19 detection.

(a) Confusion Matrix DenseNet-121

Predicted
DenseNet-121 Control Group | COVID-19
Ground | Control Group 27390 7
Truth COVID-19 27 1023

(b) Confusion Matrix ReCovNet-v2

Predicted
ReCovNet-v2 Control Group | COVID-19
Ground | Control Group 27334 63
Truth COVID-19 15 1035

| DenseNet-121 Il ResNet-50 ll ReCovNet-vl ll ReCovNet-v2 I

Fig. 2: The activation maps are extracted by Grad-CAM ap-
proach for the models. The top two rows are COVID-19 samples,
whereas the bottom row is a CXR from the control group images.

a major issue of these models in COVID-19 diagnosis. To exem-
plify this issue, we have compared the proposed ReCovNet-v1 and
ReCovNet-v2 models with deep models as shown in Fig. ] The
activation maps show that DenseNet-121 and ResNet-50 models
obviously get the information from irrelevant regions on the CXRs
while the proposed models focus on the relevant regions.

4. CONCLUSIONS

The diagnosis of COVID-19 is a crucial task to prevent the further
spread of the disease. This study investigates the limitations of the
state-of-the-art deep models that are trained for COVID-19 detection
directly from CXRs. To address these problems, we propose an end-
to-end reliable COVID-19 detection network with pre-trained con-
volutional layers. We have compiled and publicly shared the largest
COVID-19 dataset: QaTa-COV19, which includes 4603 COVID-
19 samples, and 120,013 CXRs from 14 different thoracic diseases
and normal samples. The experimental results over this benchmark
dataset have shown that the proposed approach has achieved the
highest sensitivity level compared to competing methods. We also
demonstrated how the proposed models properly focus their analy-
sis in the relevant region of the CXR instead of irrelevant activation
observed in the competing models. In our future work, more CXR
images will be used to train the lung segmentation models to further
increase the reliability of our approach in COVID-19 detection.
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