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Abstract—Insect monitoring is crucial for understanding the
consequences of rapid ecological changes, but taxa identification
currently requires tedious manual expert work and cannot
be scaled-up efficiently. Deep convolutional neural networks
(CNNs) provide a promising way to increase the biomonitoring
volumes significantly. However, taxa abundances are typically
very imbalanced, and the amounts of training images for the
rarest classes are too low for deep CNNs. As a result, the samples
from the rare classes are often completely missed, while detecting
them has biological importance. On the other hand, one-class
classifiers are traditionally trained with much fewer samples to
model a single class of interest. In this paper, we examine their
capability to complement deep CNN based taxa identification by
indicating samples potentially belonging to the rare classes of
interest for human inspection. Our experiments confirm that the
proposed approach may indeed support moving towards partial
automation of the taxa identification task.

Index Terms—biomonitoring, taxa identification, machine
learning, one-class classification, support vector data description

I. INTRODUCTION

To understand the consequences of climate change and
other anthropogenic changes in different aquatic ecosystems,
it is crucial to widely monitor different animal groups. Also
international environmental legislation, such as the EU Water
Framework Directive (WFD) [1], acknowledges the task of
monitoring aquatic ecosystems. Since changes in the abun-
dances of benthic macroinvertebrate taxa can provide an early
warning sign of environmental problems in aquatic ecosys-
tems, they are widely used as indicating factors in WFD-
compliant ecological status assessment and environmental
decision making [2], [3]. Simultaneously, they have also been
identified as one of the most challenging groups to be mon-
itored [4]. The task currently requires tedious manual expert
work making it expensive, time-consuming, and error-prone.
The recent advances in machine learning, especially deep
convolutional neural networks (CNNs), provide a promising
way to scale-up monitoring and provide faster information for
environmental decision making. In the future, the samples of
benthic macroinvertebrates may be imaged with an automated
imaging device and then identified using a deep learning model
trained with a sample dataset.

The overall accuracy obtained by automatic identification of
benthic macroinvertebrates is approaching human expert-level
[5] and, already in the near future, it may be possible to use
machines to handle the majority of the samples, while human
experts manually identify only the difficult and interesting
cases, such as specimens potentially belonging to rare species.
A significant challenge that needs to be addressed is induced
by the very imbalanced taxa abundances. For some rare
species, the number of training images is simply too low for
a deep CNN and, as a result, the identification often fails.
This problem is largely overlooked in the recent works [5], [6]
that consider only the overall identification accuracy. The low
number of misclassified specimens from rare species hardly
affects the overall accuracy, while they are important for mon-
itoring biodiversity. In this paper, we propose a mechanism
that can indicate a reasonably-sized subset of specimens as
potential samples of rare species for human expert inspection.
To this end, we propose complementing the deep CNN based
identification with one-class classifiers. One-class classifiers
are traditionally trained with much fewer samples than deep
networks, and our experimental results support the assumption
that they can help detect samples from the rare species.

The rest of this paper is organized as follows. In Section II,
we discuss the related work on machine learning in biomon-
itoring and one-class classification. The proposed system is
described in detail in Section III. The details of experimental
setup along with the results are provided in detail in Section
IV. Finally, the conclusion and future work are presented in
Section V.

II. RELATED WORK

A. Machine learning in biomonitoring

Machine learning is rapidly gaining recognition as a promis-
ing tool for many biomonitoring applications, such as identi-
fying fish species [7], forest surveillance [8], or monitoring
Arctic flowering seasons [9]. In this paper, we concentrate on
benthic macroinvertebrate identification. Nevertheless, primary
challenges are similar for most biomonitoring applications,
and the solutions may be easily applied to other applications.
For example, the identification task is very fine-grained. Fine-
grained classification aims at distinguishing subordinate cate-
gories of a common superior category [10]. Domain experts
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Fig. 1. Example images of different benthic macroinvertebrate taxa from
FIN-Benthic 2 dataset [5]

usually define those subordinate categories with complicated
rules, which typically focus on subtle differences in particular
regions. For a non-expert, it may be hard to see any difference
between similar species as illustrated by example images in
Fig. 1. At the same time, the intra-class variance may be large
due to different development stages [11]. Taxa distributions in
the nature, and thus also the available reference datasets, are
very imbalanced [5]. Furthermore, some taxonomists continue
to object the shift toward automated methods due to different
doubts and fears [12]. The last problem may be eased by
providing better mechanisms for dividing the identification
task between machines and human experts so that the machine
first handles only the most routine-like cases [6].

The machine learning techniques for image-based taxa
identification have developed from using handcrafted features
with shallow networks [13], [14] towards using deep neural
networks, which operate on images as inputs [5], [6]. A
significant challenge with deep neural networks is the need
of huge amounts of training data. This has lead to efforts
to create imaging devices capable of providing high-quality
images with minimal manual effort [11], [15]. Nevertheless,
the existing datasets, such as FIN-Benthic2 [5] used in this
paper, typically have very imbalanced classes. The smallest
taxa simply do not provide enough information for training
deep neural networks. However, such rare taxa and changes
in their abundances may be biologically and environmentally

interesting. The performance of the deep neural networks
for the very rare species may be enhanced, e.g., by data-
augmentation [16] or special loss functions [17], but also
these approaches tend to overfit to the few training samples
and do not generalize well for unseen samples. In this paper,
we suggest combining one-class classifiers with the trained
deep neural network to provide an additional mechanism for
detecting samples potentially belonging to the rare classes for
human inspection.

B. One-class classification

The main idea in one-class classification is to create a
representative model of a class of interest, typically called
target or positive class, using data from this class only. During
inference, the model is used to predict whether unseen samples
belong to the target class or are outliers. Traditional one-class
classifiers can produce successful class models with only tens
and hundreds of samples [18]–[20]. At the same time, com-
putational complexity of the training phase makes training on
very large or high-dimensional datasets infeasible. However,
testing the trained one-class classifiers is fast, and very large
datasets can be evaluated with a low computational cost. One-
class classifiers have been applied, for example, on highly
imbalanced phage-bacteria datasets for fast identification of
potential phage candidates for a given bacteria [21]. In [19],
one-class classification was applied to the facial image analysis
problem. River target detection in remote sensing images was
studied in [22], where the proposed one-class classification
based system reduced the time complexity in target detection.
A document classification system based on principal compo-
nent analysis (PCA) and one-class classification was proposed
in [23], where PCA helped achieve dimensionality reduction
for one-class classification.

We denote the target data as X = [x1, ...,xn], where n is
the number of target items and xi are D-dimensional vectors.
One-Class Support Vector Machine (OC-SVM) [24] separates
all the data points from the origin and maximizes the distance
from this hyperplane to the origin:

min
w,ξi,ρ

1

2
‖w‖2 +

1

Cn

n∑
i=1

ξi − ρ

s.t. w ∗ xi ≥ ξi − ρ, ∀i ∈ {1, . . . , n}
ξi ≥ 0, ∀i ∈ {1, . . . , n}, (1)

where w is a weight vector, slack variables ξi allow some data
points to lie within the margin, and hyper-parameter C sets
an upper bound on the fraction of training samples allowed
within the margin and a lower bound on the number of training
samples used as Support Vector.

Another classical one-class classification method is Support
Vector Data Description (SVDD) [25]. An SVDD model is
trained by forming the smallest hypersphere, which includes
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Fig. 2. The proposed taxa identification pipeline

all the target data. SVDD minimized the following function:

min F (R, a) = R2 + C

n∑
i=1

ξi

s.t. ‖xi − a‖22 ≤ R2 + ξi, ∀i ∈ {1, . . . , n},
ξi ≥ 0, ∀i ∈ {1, . . . , n}, (2)

where R is the radius, a is the center of hypersphere, ξi
are slack variables allowing some training samples to be left
outside the hypersphere, and hyper-parameter C controls the
number of allowed outliers. Both OC-SVM and SVDD can be
solved in one step using Lagrange multipliers.

A recent extension of SVDD, Subspace Support Vector Data
Description (S-SVDD) [26] maps the data to an optimised
d-dimensional subspace suitable for one-class classification
as Qxi. S-SVDD is solved iteratively, alternating the steps
of solving SVDD in the current subspace and improving the
subspace projection Q. The second step computes the gradient
of Lagrangian of Eq. (2), ∆L, and updates Q as

Q = Q− η(∆L+ β∆Ψ), (3)

where Ψ is an additional regularization term enforcing more
variance, β is a weight for controlling the importance of Ψ,
and η is a learning rate. Ψ is calculated as

Ψ = Tr(QXλλᵀXᵀQᵀ), (4)

where Tr(·) is a trace operator and different values for λ
result in different versions of S-SVDD. In this paper, we use
unregularized version (i.e. λi = 0) denoted as S-SVDD and
two regularized versions S-SVDDr1 with λi = 1 and SVDDr2,
where λ is used to select only the support vectors.

III. PROPOSED SYSTEM

Our work aims at helping the move from fully manual
taxa identification of benthic macroinvertebrates to a semi-
automated approach, where a trained machine learning model

can handle most of the specimens, while the human experts
can concentrate on difficult and potentially most interesting
cases. As our starting point, we assume the typical sce-
nario where we have a trained deep neural network model
that gives a satisfactory overall accuracy, while it fails to
correctly identify specimens from rare species, which have
biological/environmental importance. We propose using one-
class classifiers as an additional mechanism that can be used
together with a deep CNN to pinpoint specimens that poten-
tially belong to the rare species for human expert inspection.
The proposed approach does not require changing the existing
CNN in any way and it can be used to complement any kind of
CNN. Here, we only assume that the features extracted by the
deep CNN provide sufficient information to discriminate the
classes of interest even though the CNN itself fails to identify
the samples belonging to these classes correctly.

The proposed overall framework is shown in Fig. 2. In the
first phase, collected macroinvertebrate samples are imaged,
and the images are preprocessed as needed (e.g., normaliza-
tion, resizing). The images are fed to a trained deep CNN for
initial identification. Features extracted from the second last
layer of the network are mapped to a lower dimensionality
to make the one-class models smaller and more focused on
the key information. The mapping may be done using the
traditional dimensionality reduction techniques, such as PCA
or Linear Discriminant Analysis (LDA), or learned specifically
for the one-class classification task, such as in S-SVDD. The
lower-dimensional features are then fed to one or more one-
class classifiers, each trained to model a single rare class
of interest. Finally, the specimens which are classified to
the target class are manually identified by a human expert,
while otherwise the initial CNN identification is used in the
subsequent biological assessment of the results. Note that the
experts use the actual specimens with microscopic analysis,
while the machine learning components rely on images and



features extracted from the images.
As one-class classifiers use only target class data for train-

ing, they may not be able to accurately distinguish unseen
target samples from outliers, which have a high similarity with
the target class. However, this may be even a benefit in our
application. Trying to separate target samples from very sim-
ilar outliers is naturally error-prone. Therefore, it is better to
direct also these unclear cases for expert identification instead
of trying to build a model as accurate as possible. In general,
our goal is to detect as many samples from the target class
as possible with the minimum amount of samples that require
manual identification. However, it is not straightforward how
to evaluate the performance of different one-class classifiers
on the given task. Depending on biomonitoring goals and
importance of the target class, it may vary how much human
effort is acceptable to maximize the number of detected target
class specimens.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Dataset

We used FIN-Benthic2 dataset [5] in our experiments. The
dataset is publicly available1 and consists of 460004 images of
9631 benthic macroinvertebrate specimens belonging to 39 dif-
ferent taxa. The number of images per taxon varies from 490
to 44240 making the dataset very imbalanced. The images are
of varying sizes and in PNG-format. FIN-Benthic2 provides
10 different data splits for training, validation, and testing.
Each split has been formed so that the images of a single
specimen (max 50) are in the same set (train/validation/test).
In this paper, we consider only image-based identification, and
we leave it for future work to investigate how to exploit the
fact that we actually have several images corresponding to the
same specimen. We used Split 1 as our data splitting.

For one-class classification, we selected three different taxa,
Capnopsis schilleri, Nemoura cinerea, and Leuctra nigra, as
our target classes. Each of these taxa is rare, and VGG16 has
poor performance on them. The target classes were selected as
a proof-of-concept, not based on their environmental impor-
tance. The image numbers for the selected classes are shown
in Table I.

TABLE I
IMAGE NUMBERS IN SPLIT 1 OF FIN-BENTHIC2 DATASET

Train Validation Test
Capnopsis schilleri 600 100 350
Nemoura cinerea 650 100 50
Leuctra nigra 1100 50 200
Whole dataset 321407 45912 92685

B. Classifiers and their parameters

As our base-model, we fine-tuned a VGG16 network [27]
pre-trained on ImageNet using FIN-Benthic2 dataset. To make

1FIN-Benthic2 dataset is available at http://urn.fi/urn:nbn:fi:att:dc6440ad-
43bd-4349-8fb9-0e0d1971a7e8

VGG16 suitable for our task, we added two dense layers on top
of the VGG16 convolutional output. The first added layer is
composed of 4069 neurons with ReLU activation. The second
added layer is the output layer composed of 39 neurons using
soft-max activation. We also added two dropout layers on top
of the mentioned dense layers to avoid overfitting. The dropout
rate was set to 40 percent. We fine-tuned the whole network for
50 epochs using Stochastic Gradient Descent with a learning
rate of 0.007 and selected the final network based on the
validation set accuracy. As the original images are of varying
size, we first scaled them to 64x64. The overall accuracy
of the network on the test set was 0.872. This is similar to
earlier published results [5], while we did not concentrate on
optimizing this step in this work.

We extracted the output of the second last VGG16 layer
(i.e., 4096-D) for further analysis and first applied PCA
for dimensionality reduction. We used only the target class
training samples to obtain the PCA mapping and then applied
this mapping for all the remaining data. We kept the first
100 principal components as our final feature vectors used
for training and testing the one-class classifiers. Finally, we
trained different one-class classifiers (separate models for each
target species) using feature vectors of the training images of
the target species. The hyper-parameters were optimized using
the validation set. In the end, we tested the models with the
full test set, where all the images not belonging to the target
class were considered as outliers.

Note that both the CNN architecture (VGG16) and the
dimensionality reduction techniques (PCA) are well-known
and widely used techniques and they were selected for the
experiments just as a proof-of-concept. The proposed approach
can be used with any CNN model and more advanced ap-
proaches for learning the optimal dimensionality reduction will
be a topic for future work.

The one-class classifiers considered were OC-SVM, SVDD,
S-SVDD, S-SVDDr1, and S-SVDDr2 (See Section II-B). We
used both linear and non-linear (kernel) versions. For the
kernel version, we used the RBF kernel, i.e.,

Kij = exp

(
−||xi − xj ||2

2σ2

)
, (5)

where σ is an additional hyper-parameter. The hyper-
parameters C, d, η, β and σ were selected from the following
values:

• C ∈ {0.01, 0.05, 0.1, 0.2, 0.3},
• d ∈ {1, 2, 3, 4, 5, 10, 20, 50, 100},
• η ∈ {10−4, 10−3, 10−2, 10−1},
• β ∈ {0.01, 0.1, 1, 10, 100},
• σ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}.
For comparison purposes, we used the PCA output as the

input also for S-SVDD even though it could be also used
to learn the projection from the original features. For both
linear and non-linear case, we also report the outcome of an
ensemble of all the considered one-class classifiers (Ensemble-
OCC). In Ensemble-OCC, a test instance is classified to the



TABLE II
ONE-CLASS CLASSIFIER RESULTS FOR DIFFERENT TARGET SPECIES

Capnopsis schilleri Nemoura cinerea Leuctra nigra
TPR GM TP TP+FP TPR GM TP TP+FP TPR GM TP TP+FP

CNN classification
VGG16 0.046 0.214 16 101 0.020 0.141 1 39 0.170 0.412 34 174
Linear one-class classification
OC-SVM 0.906 0.613 317 54367 0.660 0.357 33 74739 0.625 0.437 125 64304
SVDD 0.346 0.586 121 701 0.280 0.525 14 1422 0.730 0.832 146 4860
S-SVDD 0.557 0.740 195 1893 0.480 0.676 24 4385 0.805 0.838 161 11910
S-SVDDr1 0.609 0.773 213 1977 0.340 0.567 17 5209 0.805 0.837 161 12103
S-SVDDr2 0.706 0.825 247 3573 0.560 0.702 28 11178 0.855 0.876 171 9625
Ensemble-OCC 0.620 0.779 217 2077 0.380 0.601 19 4487 0.820 0.848 164 11497
Non-linear one-class classification
OC-SVM 0.034 0.185 12 87 0.000 0.000 0 51 0.220 0.469 44 102
SVDD 0.331 0.574 116 658 0.300 0.543 15 1441 0.730 0.832 146 4904
S-SVDD 0.503 0.705 176 1169 0.440 0.649 22 3890 0.815 0.853 163 10085
S-SVDDr1 0.540 0.730 189 1404 0.400 0.622 20 3138 0.780 0.854 156 6221
S-SVDDr2 1.000 0.000 350 92685 0.220 0.465 11 1762 0.995 0.003 199 92683
Ensemble-OCC 0.503 0.705 176 1160 0.300 0.542 15 1883 0.775 0.851 155 6245

target class if most of the one-class classifiers predict the
instance as positive.

C. Performance metrics

In one-class classification, sensitivity and specificity are
popular performance metrics used to evaluate the performance
of the trained models. Sensitivity, also known as recall or
True Positive Rate (TPR), is the fraction of correctly classified
target class samples correctly:

TPR =
TP
P
, (6)

where TP is the total number of correctly predicted positive
samples, and P is the total number of positive samples in the
dataset. Specificity, also called the True Negative Rate (TNR),
is the proportion of outlier samples that are correctly identified:

TNR =
TN
N
, (7)

where TN is an acronym for True Negatives, i.e., the total
number of correctly predicted outliers, and N represents the
total number of outliers in the dataset. Geometric Mean (GM)
takes into account both TPR and TNR, and it is defined as the
square root of the product of TPR and TNR:

GM =
√

TPR× TNR. (8)

GM reflects both the ability of the model to detect target class
samples and its ability to keep the overall amount of samples to
be manually identified low. Therefore, we use it as our primary
performance measure and use it for optimizing the hyper-
parameters also. Furthermore, we report the total number of
correctly identified target samples, i.e., True Positives (TP),
and the total number of samples needing manual identification,
i.e., True Positives and False Positives (TP+FP).

D. Experimental results

We give the experimental results in Table II. We see that
one-class classifiers, using the same features as VGG16, can
indeed detect samples from rare species much better than the
deep network with a reasonable overhead (TP+FP). Here, it
should be remembered that up to 50 images can represent the
same specimen and, therefore, the actual number of specimens
needing manual inspection may be significantly smaller than
the reported number of images.

Comparing the different one-class classifiers, we see that
the results for the linear versions are more robust, while the
kernel versions in some cases produce models that classify
(almost) all the samples as target class or outliers. The best
one-class classifier for all the considered taxa in terms of GM
is the linear S-SVDDr2 model. We also notice that ensembling
the one-class classifiers did not further improve the results.

V. CONCLUSION AND FUTURE WORK

We proposed a taxa identification framework, where spec-
imens potentially representing rare species are directed for
human expert inspection. We showed that one-class classifiers
can complement a deep neural network with high overall
classification accuracy in a way that allows dividing the tasks
between machine and human experts. This supports moving
from fully manual to semi-automated taxa identification in
biomonitoring. The best one-class classification model in terms
of Geometric Mean was regularized linear Subspace Support
Vector Data Description.

In this paper, we considered images separately, while we
actually have multiple images of a single specimen. In our
future work, we will consider how to exploit this information.
For example, we may require a certain fraction of images to be



classified as target class to assign the specimen for human in-
spection, or we may use multi-modal one-class classifiers, e.g.,
[28], by considering each image as a separate modality. We
will experiment with more advanced dimensionality reduction
techniques and consider how to use classification confidences
of both the CNN and one-class classifiers to further reduce
the number of samples requiring human inspection. We will
also experiment with different classifier types, such as class-
specific classifiers, in our general identification framework.
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V. Tirronen, M. Juhola, T. Turpeinen, and K. Meissner, “Classification
and retrieval on macroinvertabrate image databases,” Computers in
Biology and Medicine, vol. 41, no. 7, 2011.
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