
Comparison of Machine Learning Algorithms for
Priority-Based Network Slicing in 5G Systems

Anna Gaydamaka
Higher School of Economics
National Research University

Moscow, Russia
agajdamaka@hse.ru

Natalia Yarkina
Unit of Electrical Engineering

Tampere University
Tampere, Finland

natalia.yarkina@tuni.fi

Viktoriia Khalina
Higher School of Economics
National Research University

Moscow, Russia
vhalina@hse.ru

Dmitri Moltchanov
Unit of Electrical Engineering

Tampere University
Tampere, Finland

dmitri.moltchanov@tuni.fi

Abstract—Network slicing is a technique to enable multi-
tenant operation in future 5G systems. Efficient implementation
of slicing at the air interface requires comprehensive optimiza-
tion algorithms characterized by high execution complexity. To
address this issue in the paper, we first present a priority-based
mechanism enabling performance isolation between slices com-
peting for resources. Then, to speed up the resource arbitration
process under high traffic conditions, when resource shares need
to be re-calculated in sub-second timescales, we propose and
compare several machine learning techniques: linear regression,
polynomial regression, a random forest regressor, and a two-layer
artificial neural network. The techniques’ performance is assessed
by utilizing the mean squared error. Our results show that a high
order polynomial regression provides the desired balance between
computational complexity and accuracy, outperforming both the
simpler linear regression and the more complex random forest
and neural network algorithms.

I. INTRODUCTION

The introduction of 5G cellular architecture not only in-
creases resource use efficiency at the air interface, but will
also enable flexibility of end-to-end resource control and
management [1], [2]. One of these advanced functionalities
is network slicing providing the tools for end-to-end resource
management, including the wireless access interface [3].

Following [4], a network slice is defined as a logical net-
work that provides specific network capabilities and network
characteristics. The document also demands slice isolation,
although defined in a broad sense encompassing multiple
levels, e.g., security, performance, etc. Providing performance
isolation of slices along with efficient use of system resources
and fairness of their allocation is a difficult task since these
requirements are largely contradictory [5], [6]. The problem
is even more challenging when slicing is extended to the air
interface, where channel conditions need to be accounted for
when designing efficient isolation schemes.

Up to date, a number of algorithms have been proposed for
network slicing at the air interface with various performance
isolation criteria taken into account, see Section II for a review.
As most of those approaches formalize and solve an opti-
mization problem, the solution complexity becomes a critical
issue. In dynamically changing wireless channel conditions,
ensuring both isolation and fairness of resource allocation may
lead to the inability to timely redistribute resources between
slices and flows that belong to different slices. As a result,

lightweight approximations of exact solutions could prove
crucial for practical implementations.

In this paper, we first formalize a model of resource slicing
at the air interface aimed at fair priority-based isolation of
slices [5]. Then, to reduce the solution complexity, we propose
machine learning (ML) techniques for the efficient solution
of the optimization problem. Particularly, we consider and
analyze the performance of four candidate algorithms: linear
regression, polynomial regression, the random forest regressor,
and the two-layer artificial neural network (ANN). The main
conclusions of our work can be formulated as follows:
• supervised learning techniques are able to provide suit-

able approximations for the resource allocation process,
ensuring both slice performance isolation and fairness;

• a comparison of ML approximations shows that the
balance between accuracy and complexity is provided by
a high-order polynomial regression.

The rest of the paper is organized as follows. In Section
II we review the recent work related to network slicing and
two approaches to it: reservation techniques and priorities.
Section III presents the system model and its components.
In Section IV we provide the exact solution algorithms and
discuss ML techniques for speeding up resource arbitration.
The numerical results and their interpretation are provided in
Section V. Conclusions are drawn in the last section.

II. BACKGROUND AND RELATED WORK

Overall, the algorithms and solutions for performance iso-
lation of slices at the air interface can be divided into three
categories: (i) priority-based solutions, (ii) reservation-based
solutions, and (iii) a mixture of these. The study in [7] provides
a survey of resource allocation for network slicing.

The logarithmic utility maximization of a two-tier hetero-
geneous wireless network for various vehicular applications is
considered in [8]. The authors present a joint optimization
solution for bandwidth reservation and priority-based slice
allocation. Computer simulations show that the proposed
priority-based reservation and slice allocation scheme uses
network resources more efficiently than traditional ones. The
authors of [9] look for an optimal scheduling policy for a
wireless network. In cases of high computational complexity
tasks where traditional optimization techniques cannot be

applied, they propose to use a priority-based, “most energy-
efficient resource first” policy. Simulation results show that the
proposed policy is scalable, reliable, and achieves significant
improvement in energy efficiency.

The paper [10] introduces a scheme for dynamic resource
allocation based on priorities. Based on the priorities and
demand profiles of slices, the agent dynamically allocates
resources between slices. The optimization problem is solved
using linear programming. The proposed policy proves effi-
cient in terms of QoS and resource use efficiency. In [11]
the authors propose a heuristic method based on an admis-
sion control mechanism that dynamically allocates network
resources between slices. Simulations show that the proposed
method uses network resources more efficiently and gives high
scalability when the number of users in each slice increases.
In [12] the authors focus on a challenging problem of resource
isolation in multi-hop wireless networks similar to integrated
access and backhaul architecture [13]. The authors propose to
utilize the shortest paths for higher priority traffic. In lower-
priority slices, transport flows are routed to minimize the
weighted sum of interference for other slices. The proposed
slice control scheme significantly increases the average slice
throughput and reduces the average slice delay.

To reduce the computational complexity, several ML-based
approaches have been proposed for network slicing at the air
interface. In their study [14], the authors investigate whether it
is worth applying deep reinforcement learning in the network
resource management schemes. They consider two network
slicing scenarios: radio resource slicing and priority-based
core network slicing. The simulations show that deep learning
enhances the effectiveness and agility of network slicing. The
authors in [15] propose a system for dynamic reservation of
unused resources for next-generation mobile networks based
on deep reinforcement learning algorithms. They show that
by tuning the objective function, significant improvements in
resource utilization are achieved. However, no guidance is
provided on the choice of these functions.

III. SYSTEM MODEL

In this section, we introduce our system model and its com-
ponents. We start with the radio part providing an abstraction
of resources at the air interface. Then, we specify the traffic
process for each slice and introduce the slice performance
isolation scheme. Finally, we define the metrics of interest.

1) Radio Access and Resources: Consider a base station
(BS) providing the virtualization of radio access resources
and network slicing. We study the downlink transmission of
such a BS. The considered network structure corresponds to a
heterogeneous network of a single operator – the infrastructure
provider (InP). We consider a network of one InP.

The BS has a number of radio access technologies (RAT),
denoted by RAT A, RAT B, RAT C, etc. Each RAT X ,
X = A,B,C, ..., has resource blocks allocated to users,
see Fig. 1. The capacity of resource blocks is denoted by
QX = (QXm[Gbps]

)m=1,...,MX
, where MX represents the num-

ber of different channels in RAT X . The corresponding Radio

SliM

Ten 1 SLA 1

Fig. 1. Illustration of the considered slicing model.

Resource Management (RRM) entity controls the resources of
each RAT. The maximum capacity of RRM is denoted by
KX[Gbps], X = A,B,C, Further, a Common Resource
Manager (CoRM) globally controls the RRMs. The slicing
Manager (SliM) is assumed to be responsible for aggregating
the capacities of each RAT to an overall capacity of the BS,
denoted by C[Gbps]. Another function of SliM is to distribute
C among slice tenants (Ten 1, Ten 2, ..., Ten S).

Each RAT has an assigned frequency band. Its maximum
capacity is achieved for the best Adaptive Modulation and
Coding (AMC) conditions and Multiple-Input-Multiple-Output
(MIMO) order, among other factors. The actual data rate
available to users depends on the radio channel propagation
conditions, as the data rate of each physical channel varies
over time depending on the Signal to Interference plus Noise
Ratio (SINR). Using these parameters, the session rate can
be related to the amount of requested resources. In what
follows, we consider the total maximum capacity, C[Gbps],
when optimizing the resource allocation. This parameter can
be adjusted to the network dynamics if needed. It is assumed
that the resulting slicing distribution is valid over a time
interval in which network conditions do not change drastically.

2) Traffic and Slices: We assume that there are S slices at
the BS. The set of all slices is denoted by S, |S| = S. Let Cs ≥
0 denote the capacity of slice s ∈ S. We assume that each slice
is responsible for one type of service (e.g., video streaming,
video conferencing, gaming). Thus, the traffic in each slice is
homogeneous. Considering that C is the total capacity of the
BS, the capacities of slices are such that

∑
s∈S Cs ≤ C.

Let Ns denote the number of users in slice s and let the
data rate Rs given to each user in slice s be the result of the
even distribution of the slice’s resource, i.e.,

Rs = Cs/Ns, s ∈ S. (1)

The row vector containing the numbers of users in all slices is
denoted by N = (Ns)s∈S . We underline that it is assumed that
each user has only one connection in only one slice. If a user
has multiple connections, he or she is considered and served
as multiple users, one per connection. The column vector of
data rates is denoted by R = (Rs)s∈S .

We further propose two predefined thresholds to satisfy the
SLA requirements between the InP and the slice tenant: Rmin

s

and Rmax
s . As long as the number of users in the slice does

not exceed a contracted number N cont
s , i.e. for Ns ≤ N cont

s ,
the data rate must not go below the predefined threshold, i.e.,

0 < Rmin
s ≤ Rs. The Rmin

s threshold corresponds to the
minimum required data rate to meet the QoS requirements
of the service provided in slice s. It is assumed that a user
cannot get a proper service if the data rate is below this value.
In any case, we assume that Rmin

s is agreed upon between
the InP and the slice tenant. We also introduce a row vector
Ncont = (N cont

s)s∈S .
The second threshold, Rmax

s , is the maximum user data
rate for a slice, Rs ≤ Rmax

s ≤ C, determined by the service
provided in the slice. It corresponds to such a value that
allocating a data rate higher than this will not result in any
gain in QoS for the user. The value of Rmax

s is agreed upon
between the InP and the slice tenant. Let Rmin = (Rmin

s)s∈S ,
Rmax = (Rmax

s)s∈S be column vectors.
3) Dynamic Priority-Based Slice Isolation: Due to capacity

limitations, slice performance isolation cannot be guaranteed
for unrestricted traffic in all slices, so it is assumed that slice
isolation is ensured as long as the number of users in that
slice does not exceed the contracted threshold 0 ≤ N cont

s ≤
bC/Rmin

s c. Thus, the InP guarantees the performance isolation
of slice s by providing it with at least

Cguar
s = min{Ns, N

cont
s }Rmin

s . (2)

Any capacity remaining after allocating Cguar
s to each slice

is distributed among all slices on the basis of fairness, but so
that Rs ≤ Rmax

s , s ∈ S. Note that we allow for overbooking,
i.e., the sum of the contracted slice capacities, NcontRmin,
can be larger than C.

The considered slicing scheme provides a flexible and
dynamic partitioning of the total BS capacity among slices
based upon (i) the parameters Rmin, Rmax and Ncont, and
(ii) their demand expressed in terms of the number of users
N, see Fig.1. Flexibility is assured by the fact that when some
slices do not use all their contracted capacity N cont

s Rmin
s , the

remaining capacity (N cont
s − Ns)R

min
s becomes available to

other slices if they need it. Thus, each slice has priority to its
contracted capacity over other slices.

4) Performance Criteria: In this work, we utilize conven-
tional performance criteria for comparing exact and approxi-
mate solutions – the mean squared error.

IV. MACHINE LEARNING ALGORITHMS

In this section, we first formalize a model of resource
slicing at the air interface aimed at fair priority-based isolation
of slices. Then, we proceed to present the exact solution
algorithm. Finally, we introduce four supervised learning tech-
niques for speeding up resource arbitration execution.
A. Assumed Resource Arbitration Scheme

We are interested in the demand range in which resources
are enough to provide the users with the minimum data rates
but insufficient for allocating the maximum data rates to all.
This corresponds to population vectors N ∈ NS such that

NRmin ≤ C ≤ NRmax. (3)

For such N, a resource allocation that (i) provides max–min
fairness to users taking account of slice priorities in terms
of whether the contracted number of users is exceeded and

by how much, (ii) satisfies the minimum and maximum data
rate constraints, and (iii) uses up the whole available resource
quantity, can be found as a solution to the problem [5]

maximize U(R) =
∑
s∈S

Ws(Ns)Ns ln(Rs) (4)

subject to NR = C (5)

over R ∈ RS : Rmin
s ≤ Rs ≤ Rmax

s . (6)

Let the weight function in (4) be given by

Ws(Ns) =

{
1, Ns ≤ N cont

s ,
N cont

s /Ns, Ns > N cont
s ,

(7)

thus ensuring the max–min fair resource allocation to users
as long as their number in the corresponding slices does
not exceed the contracted quantity. The “violating” slices,
in which Ns > N cont

s , are penalized in such a way that
their resource allocation is calculated for only N cont

s users
whenever it is possible without compromising the minimum
data rates. The constraint (5) ensures not only that the total
allocation does not exceed the available capacity C, but also
that all available resources are allocated. Finally, the box
constraints (6) guarantee that the minimum and maximum
data-rate requirements in slices are satisfied. Let us denote
the column vector of weights by W = (Ws(Ns))s∈S .

The objective function in (4) is differentiable and strictly
concave, and the feasible region is compact and convex. Thus,
there exists a unique (up to Rs corresponding to Ns = 0)
maximum for U(R) in the feasible region, which Lagrangian
methods can find. In the next subsection we provide an
algorithm for finding the exact solution of (4)–(6).
B. Exact Solution

For finding the exact solution of the problem (4)–(6) we
propose to employ Algorithm 1. It uses a recursive function,
findCandidates, which populates the set of solution candidates,
R, by considering all possible combinations of active con-
straints (6). The algorithm operates as follows. The unique
solution to the problem (4)–(5), with the box constraints (6)
lifted, can be easily found as

Rstat
s =

WsC

NW
, s ∈ S. (8)

If Rstat satisfies (6) then it is the optimum and R contains
only one element. If, however, Rstat is not feasible then find-
Candidates is run recursively with one additional constraint,
Rs = Rmax

s or Rs = Rmin
s , activated at each call for all

s ∈ S corresponding to non-zero Ns. If, e.g., at the current
call, the boundary Rs = Rmax

s is activated, then Rs is set
to Rmax

s in the solution candidate while its other entries are
searched for as the solution to the problem under study with
C − NsR

max
s in place of C and Ns set to zero, hence the

recursion. Once all possible combinations of active constraints
have been considered and R populated, the vector maximizing
the objective function (4) is chosen among the members of R.

Note that, unfortunately, whenever (8) does not provide
a feasible solution, the time complexity of Algorithms 1 is
exponential on S. The problem was tackled by iterative meth-
ods, namely the Gradient Projection method, in [5], however,

it implied matrix inversion, which brings its complexity to
O(S4) in the worst case. Under high traffic conditions, when
the number of sessions in slices may change on sub-second
timescales, and when the number of slices is rather high
this could be problematic. For this reason, we need faster
algorithms that can be found in the ML field. Further in this
section, we address several such approximations to speed up
the resource arbitration process.

Algorithm 1: Exact Solution of (4)–(6)

Input: such N ∈ NS that satisfies (3), the parameters
Rmin, Rmax, Ncont and C, the weights W
obtained by (7)

Output: R solving (4)–(6)
Function FINDCANDIDATES(Ncur, Rcur, Ccur, ŝ):

if NcurRmin ≤ Ccur ≤ NcurRmax then
R := Rcur

Rstat := Ccur

NcurWW // stationary
point

if Rmin
s ≤ Rstat

s ≤ Rmax
s ∀s ∈ S such that

N cur
s > 0 then
for such s ∈ S that N cur

s > 0 do
Rs := Rstat

s

R := R
⋃
{R} // add candidate

if ŝ = 1 then
return

else
for such s = ŝ, ..., S that N cur

s > 0 do
Nnext := Ncur

Rnext := Rcur

Nnext
s := 0

for Rbound
s := Rmin

s , Rmax
s do

Rnext
s := Rbound

s

Cnext := Ccur −N cur
s Rbound

s

FINDCANDIDATES(Nnext, Rnext,
Cnext, s+ 1)

R := ∅ // set of candidate solutions
FINDCANDIDATES(N, Rmax, C, 1)

// populate R
R := argmax

R̂∈R
U(R̂)

C. ML Approximations

As illustrated in Fig. 1, the resource arbitration scheme
has two types of parameters: the SLA thresholds, Rmin,
Rmax and Ncont, as well as the number of instantiated
slices S change rarely (e.g., when a slice is added or re-
moved), whereas the demand parameters N corresponding to
the numbers of ongoing sessions in slices may change on
sub-second timescales. Therefore, we can consider prolonged
periods of time when the only parameter that varies is N, thus
allowing for efficient use of supervised learning techniques. In
this work, we investigate four techniques: linear regressions,

polynomial regression, the random forest regressor, and the
two-layer ANN.

Assume S, Rmin, Rmax, Ncont and C constant and con-
sider training data
D = {(N(1),R(1)), (N(2),R(2)), ..., (N(K),R(K))}, (9)

where, for any sample k = 1, ...,K, N(k) satisfies (3) and
R(k) represents the solution to (4)–(6) for N = N(k). Our task
is to use D to build such a vector function f that, for any N
satisfying (3), R̃ = f(N) represents a suitable approximation
of the solution of (4)–(6) for N.

1) Linear Regression: The baseline technique we use is
linear regression. Here, we obtain the vector of user data rate
approximations as

R̃ = (1, N1, ..., NS)B, (10)

with the regression coefficients to be determined from the
training data D. For this, we employ the method of least
squares. Then, the matrix of regression coefficients, B =
(βi,s)i=0,S,s=1,S can be computed by the well-known formula

B = (XTX)−1XTY (11)

with

X =

1 N

(1)
1 . . . N

(1)
S

1 N
(2)
1 . . . N

(2)
S

...
. . .

1 N
(K)
1 . . . N

(K)
S

 , (12)

Y = [y1 . . . yS] where ys = (R
(k)
s)k=1,K is a column vector.

2) Polynomial Regression: The next technique we are inter-
ested in is polynomial regression. In a polynomial regression
of degree m the user data rate approximation is computed as

R̃ = (1, N1, ..., NS , N
2
1 , ..., N

2
S , ..., N

m
1 , ..., N

m
S ,)B, (13)

where B is obtained by (11) in which each row of matrix X

is appended on the right with the powers of N (k)
s(

N
(k)
1

)2
, . . . ,

(
N

(k)
S

)2
, . . . ,

(
N

(k)
1

)m
, . . . ,

(
N

(k)
S

)m
.

(14)
3) Random Forest Regressor: Another technique that we

consider is the random forest (RF) regressor. Random forest
is a classification algorithm consisting of multiple decision
trees. Based on the characteristics of the training data set, the
algorithm builds a decision tree consisting of simple questions
(e.g., “Is N1 greater than 20?”). The decision of splitting is
based on a special criterion, which in our case is the mean
squared error. Each sample from the data set passing through
the branches of the tree (answering all questions) as a result
will fall into some data rate group.

4) Two-Layer Artificial Neural Network: The last ML
technique investigated is an ANN with one sigmoid-activated
hidden layer of size J and a linear activation output. More
specifically, the approximation is computed as

R̃ = (1, h1, ..., hJ)B
(2),

hj =
1

1 + e−ĥj

, j = 1, ..., J,

ĥ = (1, N1, ..., NS)B
(1). (15)

The weight matrices B(1) and B(2) are obtained from D
via the Gradient Descent method using the sum quadratic loss

Lk =
∑
s∈S

(
fs(N

(k))−R(k)
s

)2
. (16)

V. NUMERICAL EVALUATION

In this section, we present our results. We start by sug-
gesting an implementation scenario for ML-enhanced resource
arbitration and then proceed providing the parameters and
assessing the approximation accuracy.
A. Proposed Implementation Scenario

A proposed scenario of the ML-enhanced resource arbitra-
tion consists of two phases shown in Fig. 2. Each time a
slice is instantiated, removed or modified, a training phase
begins, during which the problem (4)–(6) is solved exactly
and the observed system states along with the exact solutions
are collected into a training data set. Once the training set
is populated, an ML model is trained. Training data can be
collected and employed in batches in the case of ANN.

A part of the collected data is reserved for ML model
validation. Once a sufficient level of accuracy is achieved on
the validation data, the process moves on to the ML use phase.
Here the ML technique is used to solve the problem (4)–(6).
However, the accuracy is monitored either through periodical
comparison with the exact solution or some relevant perfor-
mance measures. Whenever insufficient accuracy is detected,
e.g., due to a change in demand yielding population vectors
substantially differing from the training data, the process starts
over from the training phase.

B. Accuracy Assessment

The parameters for numerical evaluation are shown in
Table I. The overall data set contains K = 700 training
and 300 test samples. Each N

(i)
s , s ∈ S , was sampled from

the uniform distribution on [0, bC/Rmin
s c], after which the

population vectors N(i) were validated by checking (3). R(i)

were computed via Algorithm 1. Our dataset contains 300
test samples and 700 training samples. The sample generation
is subject to a uniform distribution from 0 to bC/Rmin

s c.
The dataset contains only those samples, who fulfill the

TABLE I
NUMERICAL EVALUATION PARAMETERS

Parameter Value
Number of slices, S 3
Total capacity, C (Gbps) 150
Minimum threshold, Rmin (Gbps) [2, 12, 1]
Maximum threshold, Rmax (Gbps) [5, 15, 10]
Contracted numbers of users, Ncont [22, 3, 45]
Training data set size, K 700
Test data set size 300
Polynomial regression: degree 2, 5
RF: number of trees 100
RF: maximum depth of trees 5, None
RF: number of features to select splitting 2
ANN: hidden layer size, J 10
ANN: gradient descent iterations 5× 105

ANN: learning rate 10−3

sufficient accuracy is achieved

- a slice is added, removed or modified
- accuracy degradation is detected
 (e.g., due to demand change)

Fig. 2. Considered implementation scenario.

condition (3). To implement the RF regressor we utilized the
RandomForestRegressor function from the scikit-learn library
[16]. The ML techniques were compared in terms of average
loss (16) over the test data set.

Recalling the need for simple yet efficient algorithms, we
start our numerical evaluation by presenting the results for
regression models in Fig. 3, where in addition to linear
regression, two polynomial regressions of different orders
are presented. By analyzing the presented result, one may
observe that the linear regression model is characterized by
the worst approximation for all the considered ranges of users
in slices. Qualitatively similar approximation is produced by
the low-order polynomial regression, see Fig. 3(b) for order
2. However, increasing the order of the regression, we may
observe significant improvements in terms of accuracy. Note
that the computational complexity of polynomial regression
does not heavily depend on its order, and the underlying algo-
rithms are relatively lightweight, see Section IV-C, especially
compared to the exact solution provided in Section IV-B. Thus,
polynomial regressions of high orders can be considered as
potential candidates for practical implementation.

We now proceed by comparing the results of the high-order
polynomial regression to those of more advanced algorithms
such as RF and ANN. To this aim, Fig. 4 demonstrates the
performance of RF, RF of depth 5 and two-layer ANN algo-
rithms. By comparing the presented results, one may observe
that RF provides accuracy that is comparable to the high-order
polynomial regression algorithm. Surprisingly, both RF of
depth 5 and the two-layer ANN provide slightly worse results
for all considered numbers of sessions in slices. In general, our
results imply that for the considered conditions polynomial
regression can provide the trade-off between computational
complexity and accuracy.

VI. CONCLUSIONS

Enabling network slicing for the 5G system requires so-
lution of complex optimization problems that try to simul-
taneously ensure performance isolation and fairness among
slices sharing the air interface. Motivated by this challenge,
we implemented several approximate solutions based on ML
algorithms in this paper. Aiming for balance between computa-
tional complexity and accuracy, the tested algorithms included
linear regression, polynomial regression of different orders, the
random forest regressor, and the two-layer artificial neural net-
work. Our results demonstrate that a polynomial regression or

No. of UEs in slice 1

0
10

20
30

40
50

60
70 No. o

f U
Es in

 sli
ce

2

0

2
4

6
8

10

No
. o

f U
Es

 in
 sl

ice
 3

0
20
40
60
80
100
120

(a) Linear Regression

No. of UEs in slice 1

0
10

20
30

40
50

60
No. o

f U
Es in

 sli
ce

2

0
2

4
6

8
10

No
. o

f U
Es

 in
 sl

ice
 3

0
20
40
60
80
100
120
140

(b) Polynomial regression, degree 2

No. of UEs in slice 1

0
10

20
30

40
50

60
70 No. o

f U
Es

in s
lice

 2

0

2
4

6
8

10

No
. o

f U
Es

 in
 sl

ice
 3

0
20
40
60
80
100
120

1

2

3

4

5

(c) Polynomial regression, degree 5

Fig. 3. The results of linear and polynomial regression algorithms.

No. of UEs in slice 1

0
10

20
30

40
50

60
70 No. of U

Es in
 sli

ce 2

0
2

4
6

8
10

No
. o

f U
Es

 in
 sl

ice
 3

0
20
40
60
80
100
120

(a) Random forest

No. of UEs in slice 1

0
10

20
30

40
50

60
70 No. o

f U
Es in

 sli
ce

2

0

2
4

6
8

10

No
. o

f U
Es

 in
 sl

ice
 3

0
20
40
60
80
100
120

(b) Random forest, depth 5

No. of UEs in slice 1

0
10

20
30

40
50

60
70 No. o

f U
Es

in s
lice

 2

0
2

4
6

8
10

No
. o

f U
Es

 in
 sl

ice
 3

0
20
40
60
80

100

120

1

2

3

4

5

(c) Two-layer neural network

Fig. 4. The results of random forest and two-layer neural network algorithms.

high order provides the desired balance between computational
complexity and accuracy of results. The performance of this
algorithm is comparable to those of random forest and neural
network and much superior compared to linear regression.
The future work includes addressing realitic constraints on
the approximation, analysis of the system under a variable
number of slices and total capacity C, and use of detailed
sample distributions to assess accuracy vs. demand trade-offs.

REFERENCES

[1] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva,
F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview
of standards, trials, challenges, deployment, and practice,” IEEE journal
on selected areas in communications, vol. 35, pp. 1201–1221, 2017.

[2] V. Petrov, M. A. Lema, M. Gapeyenko, K. Antonakoglou,
D. Moltchanov, F. Sardis, A. Samuylov, S. Andreev, Y. Koucheryavy,
and M. Dohler, “Achieving end-to-end reliability of mission-critical
traffic in softwarized 5G networks,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 3, pp. 485–501, 2018.

[3] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 94–100, 2017.

[4] “5G; System architecture for the 5G system,” ETSI, 3GPP TS
23.501 version 15.2.0 Release 15, 2018. [Online]. Available:
http://www.etsi.org/deliver/etsi/15.02.00 60/ts 123501v150200p.pdf

[5] N. Yarkina, Y. Gaidamaka, L. M. Correia, and K. Samouylov, “An
analytical model for 5G network resource sharing with flexible SLA-
oriented slice isolation,” Mathematics, vol. 8, no. 7, p. 1177, 2020.

[6] Y. Koucheryavy, E. Lisovskaya, D. Moltchanov, R. Kovalchukov, and
A. Samuylov, “Quantifying the millimeter wave new radio base stations
density for network slicing with prescribed SLAs,” Computer Commu-
nications, vol. 174, pp. 13–27, 2021.

[7] A. Banchs, G. de Veciana, V. Sciancalepore, and X. Costa-Perez,
“Resource allocation for network slicing in mobile networks,” IEEE
Access, vol. 8, pp. 214 696–214 706, 2020.

[8] A. A. Al-Khatib and A. Khelil, “Priority-and reservation-based slicing
for future vehicular networks,” in 2020 6th IEEE Conference on Network
Softwarization (NetSoft). IEEE, 2020, pp. 36–42.

[9] Q. Wang, J. Fu, J. Wu, B. Moran, and M. Zukerman, “Energy-efficient
priority-based scheduling for wireless network slicing,” in 2018 IEEE
Global Communications Conference. IEEE, 2018, pp. 1–6.

[10] H. Ko, J. Lee, and S. Pack, “Priority-based dynamic resource alloca-
tion scheme in network slicing,” in 2021 International Conference on
Information Networking (ICOIN). IEEE, 2021, pp. 62–64.

[11] M. Jiang, M. Condoluci, and T. Mahmoodi, “Network slicing manage-
ment & prioritization in 5G mobile systems,” in European Wireless
2016; 22th European Wireless Conference. VDE, 2016, pp. 1–6.

[12] N. An, Y. Kim, J. Park, D.-H. Kwon, and H. Lim, “Slice management for
quality of service differentiation in wireless network slicing,” Sensors,
vol. 19, no. 12, p. 2745, 2019.

[13] Y. Sadovaya, D. Moltchanov, H. Nikopour, S.-p. Yeh, W. Mao, O. Orhan,
S. Talwar, and S. Andreev, “Self-interference assessment and mitigation
in 3GPP IAB deployments,” in ICC 2021-IEEE International Conference
on Communications. IEEE, 2021, pp. 1–6.

[14] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[15] G. Sun, Z. T. Gebrekidan, G. O. Boateng, D. Ayepah-Mensah, and
W. Jiang, “Dynamic reservation and deep reinforcement learning based
autonomous resource slicing for virtualized radio access networks,” Ieee
Access, vol. 7, pp. 45 758–45 772, 2019.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

