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Abstract — A new Mixture of Experts Neural Network
(ME-NN) approach is described and proposed for modeling of
nonlinear RF power amplifiers (PAs). The proposed ME-NN is
compared with various piece-wise polynomial models and the
time-delay neural network (TDNN) regarding their ability to
scale in terms of modeling accuracy and parameter count. To
this end, measurements with GaN Doherty PA at 1.8 GHz and a
load modulated balanced (LMBA) PA operating at 2.1 GHz with
strong nonlinear behavior and dynamics are employed, assessing
the potential benefits of ME-NN over the existing models.
Implementation-related advantages of the proposed ME-NN over
TDNNs at increasing network sizes are furthermore discussed.
The measurement results show that the ME-NN approach offers
increased modeling accuracy, particularly in the LMBA PA case,
compared to the existing reference methods.

Keywords — power amplifier, nonlinear distortion, behavioral
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I. INTRODUCTION

The evolving target capacities of modern wireless
communication systems are coupled with stringent efficiency
and linearity requirements. The waveforms employed, e.g.,
in 5G systems are challenging to amplify, due to their wide
bandwidth and high peak-to-average power ratio [1]. Highly
optimized components in the radio frequency (RF) front-end,
most notably the RF power amplifier (PA), add strong
nonlinear and dynamic distortion to the transmitted signals
when operated in an efficient mode, while digital compensation
techniques allow us to correct for the impairments and meet the
linearity requirements. Digital pre-distortion (DPD) is the most
established compensation approach, where appropriate inverse
nonlinear distortion is induced prior to the RF transmitter thus
yielding linearized transmission [2], [3].

Accurate models describing the nonlinear behavior of PAs
are essential for DPD, with Volterra-based polynomial models
(PM), such as the generalized memory polynomial (GMP),
being commonly used. However, these models prove unable
to model strong nonlinearities over a wide dynamic range [3],
[4]. To overcome these limitations, piece-wise modeling
approaches, such as the decomposed piece-wise (DPW-GMP)
model [2] or the vector switched (VS-GMP) model [3], have
been proposed, which utilize multiple sub-models for different
input level regions. However, these models may lack the
ability to properly model dynamics between the different
sub-models [4]. To this end, the Mixture of Experts framework
was introduced for GMP modeling (ME-GMP) in [4], which
employs a soft partitioning of the input level range and
combines several GMPs based on a probabilistic scheme that
allows the sub-models to be overlapped. Thus, modeling of the
dynamic behavior across regions was improved. However, as
we show in this paper, the GMP-based modeling approaches

may have limited capability to scale, i.e. they have a bounded
accuracy as the number of parameters increases.

More recently, time-delay neural networks (TDNN) have
gained attraction due to their superior modeling capabilities
[5], [6]. While their complexity in terms of parameter count
and training effort is usually large, they make it possible to
scale the modeling capabilities further, when compared to
the PMs – an aspect that is shown in this paper. However,
increasing the NN size and depth results in many sequentially
dependent computations which causes an increased processing
latency and need for on-chip buffering of intermediate
results. Therefore, implementation-related limitations arise
when scaling TDNNs.

In this paper, we translate the successful ME framework
to TDNNs by proposing a novel ME-NN structure for PA
modeling. The structure consists of neural network (NN)
experts, which are combined in a soft-switching manner by
a gating NN. The ME-NN is trained as a single entity, so that
the partitioning and gating of the experts are obtained during
the training process. Based on true RF measurement data of a
GaN Doherty PA at 1.8 GHz and a load modulated balanced
(LMBA) GaN PA at 2.1 GHz, we compare the ME-NN with
the PMs and the TDNN with regard to their ability to scale.
We demonstrate that the ME-NN model is more capable than
large TDNNs, while giving additional implementation benefits
due to its parallel structure. Additionally, the results also show
that the ME-NN approach can facilitate increased modeling
accuracy, particularly in the LMBA PA case, compared to all
the existing reference methods.

The remainder of the paper is organized as follows. In
Section II, we describe TDNN modeling in general and extend
it by introducing the ME-NN framework. Section III provides
the RF measurement results, compares the performance of
the various models regarding their scalability, and discusses
implementation-related aspects. Finally, conclusions are drawn
in Section IV.

II. MIXTURE OF EXPERTS NEURAL NETWORK

With PMs, the PA input-to-output behavior is described
as a linear mapping of nonlinear regressors to the output. Let
x(k) and y(k) denote the complex-valued baseband input and
output signals of the PA. The general model is given by

ŷ = Φxa , (1)

where ŷ = [ŷ(1), ..., ŷ(K)]T and the model output ŷ(k)
is an approximation to y(k). Φx ∈ CK×W is a matrix
containing W input regressors, or input features, typically
consisting of the complex-valued instantaneous and delayed
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Fig. 1. Block diagram illustrating the ME-NN structure. N independent NN experts are combined by the gating NN based on the input envelope |x(k)|.

input samples of x(k), their envelope powers, and their partition
into sub-regions. The input features are weighted by a set of
parameters a ∈ CW×1 chosen such that the difference between
ŷ(k) and y(k) is minimized in the least-squares sense.

A. NN-based Modeling

In NN-based modeling, the linear weighting of the input
features is replaced by a TDNN [5] such that

ŷ = Ξχ [Φx|c] , (2)

where Ξχ denotes the mapping by the TDNN with structure χ
given parameters c. The TDNN is a forward-oriented network
that consists of a number of neurons which are arranged in L
consecutive, fully connected layers of width Bl. The output of
a neuron b in layer l is given by

υb,l = hl

Bl−1∑
i=1

ωb,l,iξl,i

+ ψb,l , (3)

with hl being a nonlinear activation function, ξi representing
the inputs to the neuron, ωb,l,i are the respective input weights,
and ψb,l is an offset applied at the neuron’s output. All ωb,l,i

and and ψb,l form the set of adjustable parameters c and are
learned during a training phase. We use the Sigmoid function
as an activation function hl for the layers l = 1, ..., L−1, also
referred to as hidden layers (HL), while the final output layer
l = L uses a linear activation.

Since complex-valued NNs are cumbersome to operate and
train, real-valued networks are employed to operate the parallel
I and Q parts of the signal. Consequently, the output layer BL

has two neurons which provide the model output as real-valued
I and Q components, interpreted as ŷ = ŷI(k) + jŷQ(k). The
input features Φx serve as an input to the first layer. For the
NN, Φx is composed from the instantaneous and previous I and
Q samples of x(k −m) = xI(k −m) + jxQ(k −m), as well
as the envelope signal |x(k−m)|, m = 1, 2, ...,M . Although
the NN is inherently nonlinear, it has been shown in [5]
to be advantageous to also include the so called augmented
terms and their respective delayed versions |x(k −m)|p, p =
3, 5, ..., P . All input features are individually normalized to
unit power.

B. Proposed Mixture of Experts Neural Network (ME-NN)

We now describe and construct the proposed ME-NN
structure, with the end-to-end network structure shown in
Figure 1. The underlying concept is to have multiple parallel
TDNNs, n = 1, ..., N , that each specialize to a part of the
PA’s amplitude range. These so called expert NNs, Ξe, share
an identical structure, but use their own set of specialized
parameters cn. Each of the experts receives the full set of
input features and has two real-valued outputs In and Qn.

The joint output of the aggregate network is then composed
from the experts’ outputs through weighting and summation.
An additional gating NN, Ξg, with parameters cg is added
to the network, to provide N weights in relation to the
instantaneous envelope input to combine the experts in a
probabilistic and soft manner. Softmax activation is used for the
gating NN’s output layer since Softmax layers are especially
well-suited for modeling of probabilities and constrain the
outputs of the gating NN to always sum up to one. The output
of the aggregate ME-NN is thus given by

ŷ =

N∑
n=1

(
Ξe [Φx|cn] Ξ(n)

g [Ax|cg]
)
, (4)

where Ax = [ |x(1)|, ..., |x(K)| ], and Ξ
(n)
g = gn is the nth

output of the gating NN.

III. RF MEASUREMENT RESULTS AND ANALYSIS

A. Data and Training

In order to evaluate the modeling performance, the models
are applied to real-world data measured from two different
RF PAs. The first dataset is taken from a GaN Doherty
PA (model RTH18008S-30) measured at 1.8425 GHz center
frequency with an average output power of +39 dBm. The
operated waveform consists of three 20 MHz wide OFDM
carriers which together span a total bandwidth of 60 MHz. The
sampling frequency is 360 Msamples/s. The second dataset is
taken from a load modulated balanced (LMBA) GaN PA [7],
operated at 2.1 GHz carrier frequency, and with a mean output
power of +37 dBm under stimulus of a carrier aggregated
signal comprising a total bandwidth of 320 MHz.

The NNs are implemented and processed using the
Keras [8] framework and Python. We let the ME-NN train
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Fig. 2. Comparison of the modeling performance for the GaN Doherty PA at
1.8 GHz. The modeling NMSE of different PMs (gray/black) and NN models
(colored) is shown with respect to the number of parameters. The solid lines
illustrate the trends in the point clouds.

in its entirety, so that the experts and gating NN specialize
during the training. For training of the NN parameters, we
used the Adaptive Moment (Adam) optimizer and 300 epochs
on a data set of T = 40k samples. The training optimizes the
NN towards minimizing the mean square error Γ given by

Γ =
1

2T

T∑
k=1

(
(ŷI(k)− yI(k))

2 + (ŷQ(k)− yQ(k))
2
)

(5)

The trained models are evaluated in terms of normalized
Γ (NMSE), normalized to the root-mean square power of the
PA output, using separate validation data with 25k samples.
Furthermore, we repeat the training 10 times and average the
validation results to mitigate the impact of randomly initialized
parameters during training. The trained TDNNs and ME-NNs
use input features with P = 3 and M = 9, resulting in W =
40 input features for the Doherty PA case and P = 3 and
M = 11, W = 48, in the LMBA PA case. In both cases,
the size B1 of the first HL is varied to generate TDNNs and
experts of different sizes. The width of the remaining HLs is
B2 = 10 in the two layer case and B2 = 20 and B3 = 5 for
a NN with three HLs. Below 3k parameters, the sizes of the
respective second HLs were halved, to also allow for NNs of
smaller size. For the ME-NNs, we use N = 3 experts and a
gating NN with one HL Bg,1 = 10. Note that the individual
experts of the ME-NN are significantly smaller compared to
the TDNN. The below comparision refers to the total size of
the NNs, including the gate.

The different PMs use varied parametrization for the
basis functions of the GMP. The provided instances are the
best-performing ones selected from a large number of tested
parameterizations. The piece-wise PMs use three regions or
sub-models, as do the ME-NNs. The complex-valued nature
of PM parameters is properly mapped to the corresponding
real-valued parameter count for fair comparison.
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Fig. 3. Modeling NMSE for the LMBA PA behavior at 2.1 GHz. Comparison
of various PMs (gray/black) and NN models (colored) versus their parameter
count. The solid lines illustrate the trends in the point clouds.

B. Results

Fig. 2 and Fig. 3 show performance comparisons in terms
of modeling NMSE of the various PMs (trained and assessed
with the same data as the NNs), TDNNs, and ME-NNs with
regard to their real-valued parameter count. We find that
increasing the parameter count in PMs soon reaches a optimum
for the NMSE. With increased model size, we observe the
robustness of the GMP based models to decrease. A logical
reasoning is that the only way to scale these models is to
provide more basis functions through an increase of nonlinear
order and memory depth, which can lead to ill-conditioned
parameter estimation and rank deficiency. Therefore, Ridge
regression [9] is applied to mitigate numerical impairments and
to stabilize the coefficient estimate at large parameter counts.
Piece-wise models benefit from employing multiple smaller
sub-models allowing them to scale their accuracy further, but
our experiments show limited margin.

In the LMBA PA case shown in Fig. 3, the NN-based
models significantly outperform the PMs when the number
of parameters is increased. The respective depths of the
neural networks are thereby limiting the achievable modeling
accuracy of the NN. We observe that ME-NNs significantly
outperform TDNNs given an identical number of parameters
and HLs. The ME structure allows each of the experts to
specialize for a part of the nonlinear behavior, thus enabling
the ME-NN to also map strong nonlinearities.

Examining the output of the gating NN, illustrated in Fig. 4
for the case of the Doherty PA, reveals how the experts are
combined. The weights for the experts are determined by the
gating NN as a function of the instantaneous input envelope
|x(k)| and can range from 0 to 1. These weights are then
applied to the experts’ outputs to form the joint output of the
ME-NN. The distribution of the weights in Fig. 4 shows that in
the Doherty PA case, none of the experts is fully suppressed
or solely selected at any given input magnitude. Rather, the
composition of the output varies as the input signal changes.
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Fig. 4. Weights provided at the output of the gating NN to showcase the
soft selection of experts as a function of the input signal’s envelope |x(k)|
alongside the output magnitude of the GaN Doherty PA.
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Fig. 5. Power spectral density (PSD) graph of the LMBA PA output and error
spectra for selected PMs and NN models with approximately 2.5k parameters.

We observe that adding further HLs enables the TDNN
to keep up with ME-NN, as more HLs improve the TDNN’s
nonlinear modeling abilities. The example error spectra of
different models with approximately 2.5k parameters provided
in Fig. 5 show the TDNN and ME-NN modeling errors
to behave mostly similarly, however, a slight performance
advantage can be credited towards the ME-NN.

C. Discussion

Although it is possible to scale the TDNN by adding
more HLs, there are implementation-related aspects that
favor the ME-NN over a regular TDNN. Since the
ME-NN essentially employs several independent expert NNs,
those can be processed in parallel before combining their
results. A deeper NN structure through more HLs causes
sequential dependencies while processing, increasing the
number of dependent computations and thus processing
latency. Consequently, a NN with fewer layers is favored,

which benefits the ME-NN over the TDNN. In conventional
TDNNs, every neuron in a layer is dependent on every
other neuron’s output in the previous layer. This will be
limiting in terms of building a hardware implementation as
on-chip buffering of data will grow with the network size for
storing intermediate computations. Consequently, the latency
of processing the NN with limited compute and memory
resources will grow exponentially. By employing several
smaller expert NNs, we reduce the average count of input
connections per neuron yielding fewer dependencies. This
relaxes the needs for local buffering (i.e. on-chip memory) and
the amount of data transfers between the logic and memory,
thus improving the overall power consumption and latency.

IV. CONCLUSION

In this paper, we studied the scaling ability of polynomial
and TDNN approaches in RF PA behavioral modeling.
Moreover, we proposed and investigated the new ME-NN
model, which realizes the ME framework as an aggregate NN.
All investigated polynomial models show bounded modeling
abilities, while the NN models show excellent scaling abilities
by adding more neurons and layers. We identified several
implementation related aspects which favor the ME-NN over
a conventional TDNN. In our future work, we will consider
the ME-NN also in the context of digital pre-distortion and
utilize the identified implementation advantages.
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