
Miina Rautakorpi

USABILITY PROBLEMS IN VULNERABILITY

REPORTS

Bachelor’s thesis

Faculty of Information Technology and Communication Sciences

October 2022

i

ABSTRACT

Miina Rautakorpi: Usability problems in vulnerability reports
Bachelor’s thesis
Tampere University
Information Technology
October 2022

Security is important part of information technology industry. Cyber attacks are common and
often happen because of vulnerabilities that were already known before the attack happens. Au-
tomated and continuous process of tracking vulnerabilities is important to prevent these security
breaches. In DevSecOps process, developers are expected to find vulnerabilities early in the prod-
uct’s development cycle. One way to achieve this is to use vulnerability scanners and vulnerability
reports produced for developers. The meaning of the vulnerability report is to show the user a
statement of application’s vulnerabilities and weaknesses.

This study investigates what are the common usability problems in vulnerability reports. The
reports are often unclear, not taken seriously, have unnecessary or missing information, and are
divided between many different scanners. Usability problems lead to misunderstandings and un-
secure applications.

As a result, possible solutions to these usability problems are presented. To prevent the prob-
lems the design of the vulnerability report needs to be planned carefully. Designer should plan
the interface with usability in mind, combine different scanner results to get an overview, and not
make any assumptions on developer’s knowledge. The data needs to be minimized to necessary
information and the contents of the report should consider the needs of the developer.

Preventing usability problems in vulnerability reports requires lot of time and resources from
the organization. However, usable vulnerability reports enable effortless vulnerability management
systems and reliable applications.

Keywords: vulnerability report, vulnerability scanner, usability, developer, DevSecOps, information
security

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Miina Rautakorpi: Käytettävyysongelmat haavoittuvuusraporteissa
Kandidaatintyö
Tampereen yliopisto
Tietotekniikka
Lokakuu 2022

Tietoturva on tärkeä osa tietotekniikkateollisuutta. Useimmat kyberhyökkäykset ovat peräisin
haavoittuvuuksista ja virheistä, jotka olivat tiedossa jo ennen hyökkäystä. Automaattinen ja jatku-
va prosessi haavoittuvuuksien seuraamiseen on tärkeää, jotta nämä hyökkäykset voidaan estää.
DevSecOps-prosessissa oletetaan, että ohjelmistokehittäjät tunnistavat haavoittuvuudet jo aikai-
sessa vaiheessa tuotteen kehityssykliä. Yksi tapa saavuttaa tämä on käyttää haavoittuvuusskan-
nerien muodostamia haavoittuvuusraportteja, jotka ovat tuotettu juuri ohjelmistokehittäjille. Haa-
voittuvuusraportin tavoitteena on havainnollistaa käyttäjälle ohjelmiston tila löydettyjen haavoittu-
vuuksien perusteella.

Tässä tutkielmassa käydään läpi, mitä käytettävyysongelmia haavoittuvuusraporteissa yleen-
sä on. Raportit ovat usein epäselviä, niitä ei oteta vakavasti, niissä on turhaa tai puuttuvaa tietoa
ja ne ovat jakaantuneet useaan eri paikkaan. Käytettävyysongelmat johtavat väärinkäsityksiin ja
suojaamattomiin ohjelmistoihin.

Tuloksena esitetään mahdollisia ratkaisuja näihin käytettävyysongelmiin. Jotta ongelmia voi-
daan välttää, haavoittuvuusraportin muoto tulee suunnitella huolellisesti. Suunnittelijan tulisi suun-
nitella käyttöliittymä käytettävyys mielessään, yhdistää eri skannereiden tulokset yleiskatsauksen
saamiseksi, eikä tehdä mitään olettamuksia ohjelmistokehittäjien osaamisesta etukäteen. Datan
tulisi sisältää vain tarpeellista tietoa ja raportin sisältö tulisi suunnitella ohjelmistokehittäjien tar-
peiden mukaan.

Käytettävyysongelmien ehkäiseminen haavoittuvuusraporteissa vaatii paljon aikaa ja resurs-
seja yritykseltä. Käytettävyydeltään hyvät haavoittuvuusraportit kuitenkin mahdollistavat vaivatto-
man haavoittuvuusprosessin ja luotettavat ohjelmistot.

Avainsanat: haavoittuvuusraportti, haavoittuvuusskanneri, ohjelmistokehittäjä, käytettävyys, Dev-
SecOps, tietoturva

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

CONTENTS

1. Introduction . 1

2. Theory. 3

2.1 Vulnerability and vulnerability management systems 3

2.2 Vulnerability scanners . 3

2.3 Vulnerability reports . 4

3. Usability problems in vulnerability reports 6

3.1 Unclear reports . 6

3.2 Security as a secondary concern 7

3.3 Unnecessary information. 7

3.4 Missing information . 8

3.5 Many different scanners . 8

4. Solutions to usability problems . 10

4.1 Understandable reports . 10

4.2 Necessary information. 10

4.3 A specific tool: VULNUS . 11

4.4 Interface design . 12

5. Conclusion . 13

References . 15

1

1. INTRODUCTION

Security in the IT industry is important factor for both service providers and users. Failures

in security can be problematic or even catastrophic for information systems. Most of the

cyber attacks are results of vulnerabilities or failures that were already known before the

attack happens. That is why it is important to track vulnerabilities and possible risks early

and as a continuous process. (Karabašević et al., 2018)

DevOps, from words development and operations, is a crucial part of many organiza-

tion’s strategy. It aims to improve collaboration between programmers and operators,

reduce development life cycle and upgrade the quality of the software. DevSecOps is

DevOps process with security included. In DevSecOps, it is important to address security

problems early in the product’s development cycle. It is done with continuous testing,

deploying and validating the software. When bugs and vulnerabilities are found early,

the possible cost is usually smaller and the recovery is fast. (Akbar et al., 2022) This

kind of DevSecOps process requires ways for the developers to find the vulnerabilities.

There needs to be a fluent way to scan the code and see the security problems early

in the process. One way to accomplish this is to use vulnerability scanners. However,

based on a survey, many currently available vulnerability scanners are hard to operate or

the solutions provided for vulnerabilities are too difficult to understand (Yoshimoto et al.,

2005).

Vulnerability scanners are used to analyze the application. Scanners produce vulnerabil-

ity reports, which are meant to show the user the state of the application based on found

vulnerabilities. Research for vulnerability scanners is active, but there is not much re-

search made about scanner results (Reynolds et al., 2021). The study about vulnerability

reports is still essential and needed since the user acts based on vulnerability reports.

It is important to understand what the report should include so that it would be the most

useful for the specific user group and the possible organization as well. Nembhard et al.

express that many developers are sceptical of using code analyzing tools. It is mainly

because unusable interface design and poor presentations of vulnerability warnings. Vul-

nerability scanners are often focused on the technical aspects, leaving usability neglected

or forgotten. (Nembhard and Carvalho, 2019) This study investigates what are the com-

mon usability problems in vulnerability reports. Possible solutions to these problems are

also presented.

2

After the introduction, this study will continue with theory. Basic concepts like vulnerabil-

ity, vulnerability scanner and vulnerability report are explained. Example of a vulnerability

report is shown. Chapter 3 is about usability problems in vulnerability reports. Problems

include unclear reports, security as a secondary concern, unnecessary information, miss-

ing information and many different scanners. Chapter 4 is about solutions for problems

presented in chapter 3. Solutions include more understandable reports, how to define

necessary information, visual analytic tool called VULNUS, and suggestions on interface

design. Chapter 5 is the conclusion of the study.

3

2. THEORY

2.1 Vulnerability and vulnerability management systems

Dowd et al. present that software vulnerabilities are some kind of weaknesses in the

system. Vulnerabilities are a way for an attacker to get inside the system. Attacker could

for example want to steal some sensitive data, destroy the system or take control of the

system. Vulnerabilities are usually software bugs that have security issues. However, this

is not the case every time. Software can work exactly how it is supposed without any

bugs, but still have a vulnerability for example with access rights. (Dowd et al., 2007)

Vulnerability management systems are important for manufacturers and organizations.

Manually fixing and finding vulnerabilities is difficult and expensive (Zulkarneev and Ko-

zlov, 2021). The system should be automated and a continuous process, because new

vulnerabilities might come up daily. For example, new code containing vulnerabilities

might be written and added to the system or new versions of libraries could have come

up, leaving the old versions vulnerable. Attackers are trying to figure new ways to breach

the systems continuously, so keeping security defences up-to-date and secure is a chal-

lenging process that requires a lot of attention. One way to automatically control the vul-

nerabilities is to use vulnerability scanners. Vulnerability scans form vulnerability reports,

that can be used to view the current state of the software.

2.2 Vulnerability scanners

Vulnerability scanners are a way to collect information about the state of server operating

systems and network devices (Karabašević et al., 2018). Scanner’s idea is automatically

analyze the application. For example, scan can be configured to begin every time there

is changes in version control on the main branch.

Every vulnerability scanner has its own analysis method. The analysis can be categorized

to be either static analysis or dynamic analysis. Static analysis means that application’s

data is parsed into data structures. It does not notice change over time and only analyses

the current application as it is without running it. Dynamic analysis is the opposite from

static. It is made while the application is running and usually includes inputs and outputs

from the user interface. A problem with static analysis is that it usually shows a lot of

4

false positives. False positive in vulnerability scanners means that a vulnerability is found,

but with further inspecting it is noticed not to be actually relevant. Static analysis spots

a vulnerability, when scanning result is technically incorrect. However, some technically

incorrect parts might not be used at run time at all, which causes the finding to be false

positive. (Reynolds et al., 2021)

The result of a vulnerability scan could be viewed as a vulnerability report. For example

vulnerability scanners Anchore and SonarQube make static analyses and form vulner-

ability reports based on them. Example of a dynamic vulnerability scanner would be

Tenable.sc. Dynamic scanners also form reports.

2.3 Vulnerability reports

Vulnerability report is a statement of application’s vulnerabilities. Usually vulnerability

report is made by a vulnerability scanner. The goal of the report is to show the user the

state of the application based on found vulnerabilities. The report may for example include

how many vulnerabilities were found, what severities they were or which parts of the code

were unsecure. Severity is usually low, medium, high or critical regarding how dangerous

the vulnerability is. There may also be different graphs or visualizations to help the user

notice the overview.

Vulnerability reports are needed to identify, prioritize and remediate vulnerabilities (Chap-

ple, 2018). The organization can make its own strategy considering who will view the

reports and be responsible to act based on them. The reports should be different based

on who is meant to be reading them. One option would be to send vulnerability reports to

management and they could choose which vulnerabilities or actions are worth of putting

time and effort into them. Other option is to send reports straight to security architect,

who might have more knowledge regarding vulnerabilities. The architect could for ex-

ample know better, which vulnerabilities require immediate attention and which are false

positives. However, concept of "shift-to-left" is getting more popular in organizations. It

shifts more responsibility to the developers. The idea is that the issues are found and

quality risks are removed earlier in the cycle (Nader-Rezvani, 2018). This is a way to fas-

ten the process, create better customer experience and optimize cost (Nader-Rezvani,

2018). Developers make the code and therefore in the end they will be the ones fixing

the vulnerabilities as well. If someone else views the reports, the information would take

a while to return back to the developers. Management could have good ideas about pri-

oritization and security architect could know specific details about security, but this study

inspects the vulnerability reports from developer’s point of view.

There is an example of a vulnerability report in figure 2.1. At the top of the report user can

see some general numbers, like the total number of CVEs, exploitable CVEs, new CVEs

in the last week, and overall number of devices and exposed devices. CVE (Common

5

Vulnerabilities and Exposures) is an international number to identify the common vulner-

abilities. CVE number is often defined with Common Vulnerability Scoring System, CVSS

(Angelini et al., 2019). The report also includes two lists, vulnerabilities ordered by largest

number of exposed devices and just exposed devices. There is one table about the num-

ber of CVEs organized by severity and exploitability level. Two figures contain number

of vulnerabilities by their severity level, and number of CVEs and exposed devices by

vulnerability’s severity level.

Figure 2.1. Example of a vulnerability report (Kischel, 2021)

All vulnerability reports are not so informative as the example in figure 2.1. Reports can

vary a lot and this study will be focused into common usability problems the vulnerability

reports may have and solutions to these problems.

6

3. USABILITY PROBLEMS IN VULNERABILITY

REPORTS

3.1 Unclear reports

Researches have shown that a common reason for security tools’ usability problems is

that the developers making the tools assume the users to know or understand more than

they actually do. Developers can be expected to have high level of technical knowledge

and therefore it is easy to assume that they also have knowledge on security matters.

(Acar et al., 2016) This concludes, that vulnerability reports indicated to developers might

be too complicated and hard to understand. When a user is reading something he neces-

sarily does not understand, it is easy to give up and move to a next task without resolving

the problem. When important parts of the report are not understood, it might lead to

misunderstandings and incorrect assumptions. If no-one acts based on reports, or acts

based on minor understanding, the vulnerabilities pile up and the reliability of the program

worsens. In worst case scenario the acts or not acting at all leads to security breaches

and cyber attacks.

Angelini et al. present that most of the visual information in cyber security commercial

tools is simple, and does not support more abstract visualizations. In this context, sim-

ple visualizations would be for example bar and pie charts. They are commonly used in

vulnerability reports. More abstract visualizations like treemaps would be needed when

managing large networks. They are hierarchical structures that are presented with nested

rectangles (Sondag et al., 2018). Treemaps help to bring up all the important aspects and

relations, that would be missing in simple charts. (Angelini et al., 2019) However, too com-

plicated visualizations might lead to unclear reports. Simple visualizations can be easily

understood with common knowledge, for example without the need to understand the re-

lationships between nodes in treemaps. Abstract visualizations are better for presenting

large and complicated networks, but they can easily lead to unclear report, where user is

expected to understand complicated structures.

7

3.2 Security as a secondary concern

One usability problem is that security is often a secondary concern for developers (Acar

et al., 2016). Security itself does not show directly in organization’s success or profit.

Meaning that security work is often invisible and happens in the background. That is why

security work is easy to ignore or work around (Acar et al., 2016).

However, security should be one of the top priorities in organizations. Many applications

handle sensitive information, which needs to be kept safe. Security breaches could have

enormous effects, like a loss of trust or reputation from customers and public. Managing

these breaches is consuming and expensive for the organization. Some customers can

have their own vulnerability scanning methods and if they are not happy with the product’s

safety, they might buy the product from somewhere else. When ignoring security matters

is easy, it can easily lead to poor vulnerability management.

3.3 Unnecessary information

Sometimes it is hard to find meaningful information from vulnerability report, since there

can be too much irrelevant data. As Acar et al. present, continuous adding of more data

and security advice to vulnerability report is not a viable solution to make the report more

usable (Acar et al., 2016). Big amounts of data can overwhelm users and make it harder

to spot the vulnerabilities and errors that actually matter and need to be fixed.

Static analysis tools produce large amounts of false positives (Thomas, 2015). A way to

detect these false positives is that a security expert goes through all the vulnerabilities and

whitelists the ones that do not count. Whitelisting means, that the vulnerability is allowed

and it does not effect scans or safety, based on whitelister’s opinion and knowledge. This

approach is slow and dangerous. Some vulnerabilities might be whitelisted by accident

or without valid knowledge.

Vulnerability triage is a process of ruling out false positives. It aims to estimate the crit-

icality of the issues and prioritize them. Unfortunately this process needs to be made

manually by a security expert and takes a lot of time and effort. (Reynolds et al., 2021)

False positives compromise the overview of the report. It is hard to spot relevant infor-

mation if only some of the vulnerabilities are valid. Not all developers can be masters in

security, but in this approach, they would still be expected to know details about specific

vulnerabilities. In a better approach, there should be verification that the vulnerabilities in

the report are actually correct (Thomas, 2015).

8

3.4 Missing information

Different scanners find different kind of vulnerabilities. Predicting missing information

is hard, because it is unclear how well each scanner performs with different types of

vulnerabilities. Different scanners can be tested with benchmarks that are specifically

designed for this purpose. The tests show how much variation there is between different

scanner results. Testing starts with vulnerable code, and when the same code is run with

different scanners, the results can be compared with each other. Benchmarks can also be

used to test how the scanner spots false positives. Famous benchmarks are for example

OWASP and WAVSEP, which both include several different test cases with most common

vulnerabilities found from applications. (Lavens et al., 2022)

Lavens et al. conducted a study where they tested several vulnerability scanners and

gave them a score based on true positives, false positives, true negatives, and false neg-

atives. They wanted to find out which scanners were most effective to spot certain vulner-

ability types. As a result, dynamic scanners only detected small amount of vulnerabilities

compared to static scanners, but the amount of false positives was significantly smaller.

Static scanners gave user feedback and location of the vulnerability, but dynamic scan-

ners only generated an exploit. Injection vulnerabilities like cross-site scripting and SQL

injection were mostly found by dynamic scanners. Static scanners were better in catching

configuration issues, like weak cryptography and trust boundary violation. (Lavens et al.,

2022) Dynamic scanners seem to miss more information and static scanners seem to

have more unnecessary information in them.

3.5 Many different scanners

As explained in the chapter 2.2, vulnerability scanners can be separated into static and

dynamic analysis methods. However, also static and dynamic analysis can be separated

into smaller sections.

Static scanners can be divided into vulnerability scanners and static code analyzers. Vul-

nerability scanners, for example Anchore, Grype and Black Duck, investigate third party

software versions and compare the vulnerabilities found to newest available versions. An-

chore and Black Duck also produce software Bill of Material (BOM). BOM is a listing of the

primary data that supports the information technology of complex products (Wang et al.,

2022). Static code analyzers, like SonarQube and Coverity, examine the code and find

coding errors or dangerous implementations that can cause vulnerabilities.

Dynamic scanners can be separated into remote and local scans. Remote scans only run

tests to interfaces that can be accessed from outside the system, without authentication

or certificate details. Local scan runs the tests from inside the system. It means that the

scanner is given needed authentication and certificates, so that the scanner is able to

9

test all possible actions. These actions may for example include getting into the web user

interface or being able to connect and fetch data from API.

To get a decent view of application’s safety, different scans are needed for different stages.

For example, dynamic analysis scanners are needed for port scanning, vulnerability scan-

ning, API scanning and robustness testing. One scanner is not enough to fulfill all security

regulations. All the scanners produce their own vulnerability reports, which concludes that

there is vulnerability reports scattered in many different places. Vulnerability report’s goal

is to show the user the state of the application, but this way none of the reports give satis-

fying overviews. Instead, user is expected to know how to find, combine and understand

several different reports together.

10

4. SOLUTIONS TO USABILITY PROBLEMS

4.1 Understandable reports

When designing a vulnerability report, there should not be any assumptions about user’s,

in this case developer’s, knowledge. The report should be made in a way that all devel-

opers can understand it without specific knowledge on security matters. Tool developers

should consider the needs of the developer and focus to usability and the main goals

developers have considering the report.

Vulnerability reports are better understood, if there is not too much data in them. It is

good to minimize the possible vulnerabilities by removing the user from the loop (Acar

et al., 2016). User should have as little responsibilities considering safety as possible.

Developer can for example make the updates automatic, force browsers to use HTTPS

and choose secure defaults (Acar et al., 2016). However, sometimes it is not possible to

make secure choices for user’s behalf. In those times developers should use opinionated

design, where users are encouraged to make secure choices without the need to actually

understand the situation (Acar et al., 2016). Minimizing the overall of vulnerabilities helps

with decent sized vulnerability reports where the amount of information is not overwhelm-

ing. Other option to decrease the amount of data is to prioritize available data and only

show some of it in vulnerability reports.

One way to make more understandable reports is to educate developers in security mat-

ters. They should all understand simple security terms and the vulnerability management

plan. As presented in chapter 3.2, security is often a secondary concern for developers.

The organizations should make security more visible part of the work, so it would be more

routine standard and not an extra burden.

4.2 Necessary information

Reynold et al. conducted a survey about the most important aspects in a vulnerability

analysis system. Users were asked about their experience, goals and tasks with vulnera-

bility scanners. There were 18 participants and seven of them were software developers

and 11 were security experts. The study focused into attributes in a vulnerability report

and in a single vulnerability. Visual and interactive aspects were taken into account as

11

well. Participants told that important things in the reports were high and medium sever-

ity vulnerabilities, and metadata. Each vulnerability needed to include category, title and

description. Visualizations of overview, most relevant data and different app versions that

had new vulnerabilities were wanted. Interactively, the ability to search and filter, export-

ing the vulnerabilities to other systems and viewing the vulnerabilities in the code were

the most important. Based on this survey, the most necessary aspects in a vulnerabil-

ity report are overview and the ability to find relevant vulnerabilities that require fixing.

(Reynolds et al., 2021)

Too much information often leads to unclear reports. Other problem with unnecessary

information was to handle the amount of false positives. Predefined rules that scanners

have can not fully determine the accuracy of a vulnerability (Gowda et al., 2018). Gowda

et al. present a machine learning solution, where Decision tree classifier and Random

forest classifier algorithms are built into scanners. Decision tree uses observations from

the item and based on item’s target value formats conclusions. Random forest produces

a class, which is individual tree’s class mode or mean prediction. Both algorithms spotted

over 90 percent of the false positives. (Gowda et al., 2018)

4.3 A specific tool: VULNUS

Angelini et al. introduce a solution called VULNUS (VULNerabilities visUal aSsessment),

which is a visual analytic tool that helps developers to understand the network status and

vulnerability spreading visually. VULNUS presents a visualization about the role of each

vulnerability in possible attack paths with other features like CVSS scores. Most often

used CVSS score is Overall score. However, with Overall score, some details from other

scores are left out. VULNUS aims to get the details by visually encoding all the scores,

relying on the Target Environment score, which aims to define the dangerousness of a

vulnerability. The goal of VULNUS is to increase situational awareness and help detecting

and prioritizing the vulnerability fixes. (Angelini et al., 2019)

Visually VULNUS uses the structure of the classical User Centered Design approach, but

users are taken into more active role with the design process. Parts of the requirement

collection included semi-structured interviews with the key users, direct observation of the

operators handling the vulnerabilities, and comparative study of the potential competitors.

As a result, sub-networks were ordered by the ascending number of vulnerabilities and

colours were used to implicate for example the dangerousness. A scaling option for colour

blind people was added. User was able to for example select elements in different ways,

get more data from certain vulnerability by mouse-overing, and easily compare multiple

vulnerabilities with each other. (Angelini et al., 2019)

VULNUS is one possible solution when planning the visualization of a vulnerability report.

However, the solution is new and does not have any external studies made from it. There

12

are no benchmarks available for systems like VULNUS, and therefore some evaluations

have not been made at all (Angelini et al., 2019). The studies Angelini et al. organized

were mostly involved with security experts (Angelini et al., 2019), so developer’s point of

view for the reports was left out. To conclude, VULNUS is a work in progress, not a ready

solution to be used yet. In the future it might be used in many vulnerability reports.

4.4 Interface design

Interface design has a huge impact on usability of the tool. Developers designing vulner-

ability scanners should take a user-centered approach. (Nembhard and Carvalho, 2019)

Scanners are used and interpreted by people, so people should also be the first priority

of developers.

Developers of vulnerability scanners can follow ten best design principles to ensure user-

centered approach. Firstly, there must be an obvious start, so that user knows how to

start interacting with the tool. The tool must have clear reverse and consistent logic, which

helps user to identify logical patterns between actions. The interface of the tool should

be designed with familiar words, images and conventions. Users should receive feedback

from actions they do, know their location in the interface and be able to perform similar

actions with little navigation. The tool should be open to adaptation for users to modify the

interface based on their frequent actions. If user comes across insurmountable problems,

some kind of support source should be provided. The purpose of the interface should be

to access the content. By following these principles interacting with the scanner should

be more productive and require less effort from the user. (Nembhard and Carvalho, 2019)

Vulnerability reports can be interactive, or just pictures or texts about software’s state.

Most of the design principles are configured for interactive interfaces, but some of them

can be adapted to vulnerability reports without interactive actions. For example, first

design principle was that user must know how to start interacting with the tool. When

user sees a report, he mentally organizes the elements to understand the meaning behind

them (Pang et al., 2016). Vulnerability report should be presented in a way user’s eye can

follow a certain path from element to element. The path should start with most critical

findings and end with less important data. Designer can create the path with for example

images, color, size, space and position (Pang et al., 2016). This kind of design requires a

lot of psychological knowledge from the designer.

13

5. CONCLUSION

It is important to track vulnerabilities and risks early, as a continuous process. Tracking

can be made with vulnerability scanners that analyze the application and produce vulner-

ability reports. In this study, common usability problems in the vulnerability reports and

solutions to them were presented.

Common reason for usability problems is that developers making the tool often expect

users to understand more than they actually do. Unclear reports lead to misunderstand-

ings, incorrect assumptions and giving up. Abstract visualizations might be too hard to

understand, but simple visualizations might not be informative enough. Security is also

often a secondary concern for developers. Security itself does not show directly in orga-

nization’s profit, so it is easy to ignore or work around. Many vulnerability reports include

unnecessary information, like overwhelming amounts of data or big amounts of false pos-

itives. However, it is common that there is missing information as well. It is complicated

to balance between the right amount of data. Different scanners are needed to find dif-

ferent types of vulnerabilities. All scanners produce their own vulnerability reports, so it is

impossible to get a satisfying overview from one report at the moment.

Ways to make vulnerability reports more understandable are minimizing the amount of

possible vulnerabilities from the beginning, not make any assumptions on user’s knowl-

edge or train users to understand reports. The vulnerability reports are better understood

if there is not too much data in them. Solution to handle false positives with machine

learning was presented. Reports should be designed with the goal in mind and not make

them too complicated. VULNUS is a visual analytic tool in progress, that helps to increase

situational awareness, and detect and prioritize vulnerability fixes. Regarding interface de-

sign, designers of the vulnerability reports should try to follow ten best design principles

presented in chapter 4.4.

It would be beneficial to have one main vulnerability report that gathers data from each

scanner’s vulnerability reports. This report would provide an overview, which takes more

than one scanner results into account. These kind of overview reports are not publicly

available in the markets at the moment. Based on the survey presented in 4.2, the most

necessary aspects in vulnerability reports are the overview and the ability to find relevant

vulnerabilities. It proves that an overview report would be beneficial, since one vulnera-

14

bility scanner can not provide a decent overview of the whole application, as explained in

chapter 3.5.

Designing vulnerability reports and correcting their usability mistakes is not easy, and

requires lot of time and resources. However, the work is necessary. Usable vulnerability

reports enable effortless vulnerability management systems and reliable applications.

15

REFERENCES

Acar, Y., Fahl, S., & Mazurek, M. L. (2016). You are not your developer, either: A research

agenda for usable security and privacy research beyond end users. 2016 IEEE

Cybersecurity Development (SecDev), 3–8. https://doi.org/10.1109/SecDev.2016.

013

Akbar, M. A., Smolander, K., Mahmood, S., & Alsanad, A. (2022). Toward successful

devsecops in software development organizations: A decision-making framework.

Information and Software Technology, 147, 106894. https://doi.org/https://doi.org/

10.1016/j.infsof.2022.106894

Angelini, M., Blasilli, G., Catarci, T., Lenti, S., & Santucci, G. (2019). Vulnus: Visual vulner-

ability analysis for network security. IEEE Transactions on Visualization and Com-

puter Graphics, 25(1), 183–192. https://doi.org/10.1109/TVCG.2018.2865028

Chapple, a., Mike. (2018). Vulnerability scanning (1st edition). Sybex.

Dowd, M., McDonald, J., & Schuh, J. (2007). The art of software security assessment :

Identifying and preventing software vulnerabilities (1st edition). Addison-Wesley.

Gowda, S., Prajapati, D., Singh, R., & Gadre, S. S. (2018). False positive analysis of soft-

ware vulnerabilities using machine learning. 2018 IEEE International Conference

on Cloud Computing in Emerging Markets (CCEM), 3–6. https://doi.org/10.1109/

CCEM.2018.00010

Karabašević, D., Stanujkić, D., Brzaković, M., Maksimović, M., & Jevtić, M. (2018). Impor-

tance of vulnerability scanners for improving security and protection of the web

servers. BizInfo, 9(1), 19–29.

Kischel, K. (2021). New threat vulnerability management apis - create reports, automate,

integrate. TechCommunity. https : / / techcommunity.microsoft .com/ t5 /microsoft -

defender-vulnerability/new- threat-amp-vulnerability-management-apis-create-

reports/ba-p/2445813

Lavens, E., Philippaerts, P., & Joosen, W. (2022). A quantitative assessment of the detec-

tion performance of web vulnerability scanners. Proceedings of the 17th Interna-

tional Conference on Availability, Reliability and Security. https://doi.org/10.1145/

3538969.3544416

Nader-Rezvani, N. (2018). Agile quality test strategy: Shift left. An executive’s guide to

software quality in an agile organization (pp. 121–138). Apress.

Nembhard, F., & Carvalho, M. (2019). The impact of interface design on the usability of

code analyzers. 2019 SoutheastCon, 1–6. https://doi.org/10.1109/SoutheastCon42311.

2019.9020339

https://doi.org/10.1109/SecDev.2016.013
https://doi.org/10.1109/SecDev.2016.013
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106894
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106894
https://doi.org/10.1109/TVCG.2018.2865028
https://doi.org/10.1109/CCEM.2018.00010
https://doi.org/10.1109/CCEM.2018.00010
https://techcommunity.microsoft.com/t5/microsoft-defender-vulnerability/new-threat-amp-vulnerability-management-apis-create-reports/ba-p/2445813
https://techcommunity.microsoft.com/t5/microsoft-defender-vulnerability/new-threat-amp-vulnerability-management-apis-create-reports/ba-p/2445813
https://techcommunity.microsoft.com/t5/microsoft-defender-vulnerability/new-threat-amp-vulnerability-management-apis-create-reports/ba-p/2445813
https://doi.org/10.1145/3538969.3544416
https://doi.org/10.1145/3538969.3544416
https://doi.org/10.1109/SoutheastCon42311.2019.9020339
https://doi.org/10.1109/SoutheastCon42311.2019.9020339

16

Pang, X., Cao, Y., Lau, R., & Chan, A. (2016). Directing user attention via visual flow on

web designs. ACM Transactions on Graphics, 35(6), 1–11.

Reynolds, S. L., Mertz, T., Arzt, S., & Kohlhammer, J. (2021). User-centered design of

visualizations for software vulnerability reports. 2021 IEEE Symposium on Visual-

ization for Cyber Security (VizSec), 68–78. https://doi.org/10.1109/VizSec53666.

2021.00013

Sondag, M., Speckmann, B., & Verbeek, K. (2018). Stable treemaps via local moves.

IEEE Transactions on Visualization and Computer Graphics, 24(1), 729–738. https:

//doi.org/10.1109/TVCG.2017.2745140

Thomas, T. (2015). Exploring the usability and effectiveness of interactive annotation and

code review for the detection of security vulnerabilities. 2015 IEEE Symposium

on Visual Languages and Human-Centric Computing (VL/HCC), 295–296. https:

//doi.org/10.1109/VLHCC.2015.7357234

Wang, Y., Ren, W., Zhang, C., & Zhao, X. (2022). Bill of material consistency reconstruc-

tion method for complex products driven by digital twin. International Journal of

Advanced Manufacturing Technology, 120(1-2), 185–202.

Yoshimoto, M., Bista, B., & Takata, T. (2005). Development of security scanner with high

portability and usability. 19th International Conference on Advanced Information

Networking and Applications (AINA’05) Volume 1 (AINA papers), 2, 407–410 vol.2.

https://doi.org/10.1109/AINA.2005.163

Zulkarneev, I., & Kozlov, A. (2021). New approaches of multi-agent vulnerability scan-

ning process. 2021 Ural Symposium on Biomedical Engineering, Radioelectronics

and Information Technology (USBEREIT), 0488–0490. https://doi.org/10.1109/

USBEREIT51232.2021.9455061

https://doi.org/10.1109/VizSec53666.2021.00013
https://doi.org/10.1109/VizSec53666.2021.00013
https://doi.org/10.1109/TVCG.2017.2745140
https://doi.org/10.1109/TVCG.2017.2745140
https://doi.org/10.1109/VLHCC.2015.7357234
https://doi.org/10.1109/VLHCC.2015.7357234
https://doi.org/10.1109/AINA.2005.163
https://doi.org/10.1109/USBEREIT51232.2021.9455061
https://doi.org/10.1109/USBEREIT51232.2021.9455061

	Introduction
	Theory
	Vulnerability and vulnerability management systems
	Vulnerability scanners
	Vulnerability reports

	Usability problems in vulnerability reports
	Unclear reports
	Security as a secondary concern
	Unnecessary information
	Missing information
	Many different scanners

	Solutions to usability problems
	Understandable reports
	Necessary information
	A specific tool: VULNUS
	Interface design

	Conclusion
	References

