

Tommi Aalto

FLEXIBLE ENVIRONMENT PROVISION-
ING WITH INFRASTRUCTURE AS CODE

TOOLS

Master’s thesis
Faculty of Information

Technology and Communication
Sciences

Examiners: Kari Systä,
Terhi Kilamo

September 2022

i

ABSTRACT

Tommi Aalto: Flexible environment provisioning with Infrastructure as Code tools

Master’s thesis

Tampere University

Master’s Programme in information Technology

September 2022

Infrastructure as Code is a method where automation is extended from already popular
DevOps methods also to manage IT infrastructure. Automation in fundamental role when software
is desired to be delivered to the customers faster than before and without additional human inter-
action.

Now the automation is extended to management of servers, to enable more efficient use of

employee’s resources and to reduce the dependency of software developers from other teams of
the organization, enabling more agile software development and testing.

Infrastructure as code consist of multiple sectors of infrastructure management, like configu-

ration management and orchestration, which are introduced through literature review. In this the-
sis the main topics are server provisioning, and installation and configuration of the services. For
these purposes sufficient tools and their usage are introduced.

In this thesis, virtual machines are provisioned to a virtual datacenter and software is installed

and configured to those VMs. The goal is to create re-usable Terraform and Ansible configura-
tions, that can then be used to, flexibly and with low effort, create new environment to support
testing and quality assurance. At the same time automatic deployment is enabled for individual
components straight from pipeline. The done work also enables Infrastructure as Code solutions
to be used in Production environment in the future.

Keywords: Infrastructure as Code, Terraform, Ansible

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Tommi Aalto: Kettärä ympäristön provisiointi infrastruktuuri koodina -työkaluilla

Diplomityö

Tampereen yliopisto

Tietotekniikan DI-ohjelma

Syyskuu 2022

Infrastruktuuri koodina on menetelmä, jossa automaatiota ulotetaan jo tavaksi muodostuneista
DevOps käytännöistä myös IT infrastruktuurin hallintaan. Automaatio on keskeisessä osassa, kun
ohjelmistoja halutaan toimittaa loppukäyttäjälle yhä nopeammin ja ilman ylimääräistä ihmisten
vuorovaikutusta.

Nyt myös palvelinympäristöjen hallinnassa halutaan ottaa käyttöön automaatiota, jotta työnte-

kijöiden resursseja voidaan käyttää tehokkaammin ja ohjelmistokehittäjien riippuvuus muista or-
ganisaation osista vähenee mahdollistaen ketterämmän ohjelmistotuotannon ja testaamisen.

Infrastruktuuri koodina käsittää useita erityyppisiä infrastruktuurin hallintaan liittyviä osa-alu-

eita, kuten konfiguraatioiden hallintaa tai orkestrointia, joihin tutustutaan kirjallisuuden kautta.
Tässä työssä pääaiheena on palvelunympäristö provisiointi ja palveluiden asentaminen ja konfi-
gurointi. Tätä varten työssä tutustutaan sopiviin työkaluihin ja niiden käyttöön

Tässä työssä toteutetaan virtuaalikoneet virtuaalipalvelimelle sekä asennetaan että konfigu-

roidaan sovellukset luoduille virtuaalikoneille. Tavoitteena ovat uudelleenkäytettävät Ansible ja
Terraform konfiguraatiot, joilla ketterästi luodaan testauksen ja laadunvarmistuksen tueksi val-
miita ympäristöjä nopeasti ja pienellä vaivalla. Samalla mahdollistetaan automaattinen asentami-
nen yksittäisille komponenteille suoraan työjonosta. Työ mahdollistaa myös tulevaisuudessa Inf-
rastruktuuri koodina käytäntöjen laajentamisen myös tuotantoympäristöihin.

Avainsanat: Infrastruktuuri koodina, Terraform, Ansible

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

Thanks to OpenText and the people involved for the possibility to do this project as a

master’s thesis for the company. Thanks to thesis supervisor Kari for all the patience

and help on the way. Special thanks to my parents, Monika, and Jouni for pressure and

support throughout the studies and thesis project.

Tampere, 14 September 2022

Tommi Aalto

iv

CONTENTS

1. INTRODUCTION .. 1

2. MOTIVATION AND BACKGROUND ... 3

2.1 The current state of the platform .. 3

2.2 Research objective .. 5

2.3 The desired changes and their effects ... 6

2.4 Out of scope .. 8

3. INFRASTRUCTURE AS CODE .. 10

3.1 From DevOps to Infrastructure as Code ... 10

3.2 Terraform ... 12

3.2.1 Main concepts ... 12
3.2.2 Other solutions .. 14

3.3 Ansible ... 15

3.3.1 Building the inventory .. 15
3.3.2 Using playbooks and roles .. 18
3.3.3 Executing Ansible ... 20

3.4 Infrastructure automation using GitLab CI/CD 21

4. IMPLEMENTATION PROCESS .. 23

4.1 Requirements... 23

4.1.1 Limitations... 24
4.1.2 Networking and VMs ... 25

4.2 Infrastructure .. 26

4.3 Application deployment .. 30

4.4 Automation and CI/CD ... 34

4.5 Single component deployment ... 36

4.6 Creating new environment ... 37

5. EVALUATION OF THE SOLUTION .. 39

6. CONCLUSION .. 41

7. REFERENCES ... 42

v

LIST OF SYMBOLS AND ABBREVIATIONS

SDLC Software Development Lifecycle
QA Quality Assurance
DevOps Development and Operations
CI Continuous Integration
CD Continuous Deployment / Continuous Delivery
VM Virtual machine
vApp Virtual application, vCloud Director component
IaC Infrastructure as Code

1

1. INTRODUCTION

Infrastructure as Code is a new way of doing IT infrastructure management. Usually,

software companies have separate teams for infrastructure management, and the

environments are built manually after careful consideration of the requirements.

However, this thesis describes a modern approach to infrastructure management,

whereby using modern tools, the environment is configured in code, and changes to

the environment are applied by the tools automatically. The responsibility of building

the environment is now on also in the hands of development team instead of only being

a job of a separate infrastructure management team or operations.

The first implementation of IaC is building a quality assurance (QA) environment for the

product, to support DevOps practices and the software development lifecycle (SDLC).

The new QA environment is an essential part in the evolution of the platform and

ensuring that the code in the Production environment is reliable. All new code will be

deployed to QA prior to production. After that, new environments for development,

testing or quality assurance purposes can be set up flexibly with the configuration used

for QA environment provisioning.

To accomplish the above, this thesis introduces two state-of-the-art tools for

Infrastructure as Code solution: Terraform and Ansible, and both provide different view

for the process. Terraform is infrastructure management tool that is used to build the

virtual machines and other logical and physical components of the platform. Ansible is

configuration management tool, that is used to deploy and configure software on virtual

machines created with Terraform. Additionally, CI/CD pipeline is built for each tool

using GitLab CI to take infrastructure automation even further.

In this thesis, Infrastructure as Code solutions are introduced and discussed. Prior

research is used to take multiple points of view into account in the design process, and

to evaluate the possible benefit of DevOps practices. Different options for the work are

discussed and the tools are introduced. Benefits of the used solutions are evaluated

against the traditional or alternative practices of managing infrastructure. The

requirements of the environment are set, and the first implementation of IaC is built to

the VMWare vCloud Director environment using Terraform. Also, the software is

deployed and configured to the created environment using Ansible. Later, the

environment can be expanded following the learned processes and practices.

2

The objective of this thesis is to find out if Infrastructure as Code solution can help

testing by automating environment provisioning with minimal effort. The purpose is also

to describe the process of the development and to provide a hands-on example of the

work. This thesis clarifies if a legacy platform can benefit from a newly built QA and

testing environment and analyses how the Infrastructure as Code solutions are

affecting the development process.

This thesis describes the target product, ANI Platform, in the next chapter. Through the

introduction, the current state and challenges are evaluated, and desired changes are

introduced. Project scope is also mitigated in chapter two. Chapter three introduces

Infrastructure as Code through DevOps. Different types of IaC are presented.

Terraform and Ansible are introduced in detail by looking into the main concepts of

both tools. Also GitLab and CI/CD are introduced. The process of building IaC

configurations and CI/CD and creation of new environment, are then explained in detail

in chapter four. Results are then evaluated and concluded in last two chapters.

3

2. MOTIVATION AND BACKGROUND

This chapter describes the motivation behind the work that has been done. To

understand the goals of the project, the state of the platform needs to be understood.

First section describes the platform in general and the processes implemented in the

software development lifecycle. In the second chapter, research task and the desired

changes are introduced. The goals of the project are discussed in third section along

with possible outcomes and result and how they will effect on challenges that were

discussed in first section. Fourth section defines the things that are not included in this

project, limits the thesis scope, and clarifies what will happen after this project is

completed.

2.1 The current state of the platform

OpenText Liaison ANILinker, in short, ANI is a B2B EDI messaging platform, that has a

wide range of components of different technologies. In total, the platform contains

approximately 90 different components. Up on that, a database, lot of configurations,

and lots of customer solutions. The Platform is a legacy system, which can be

described in other terms as existing project that on all aspects is hard to maintain

because of the code itself, infrastructure, dependencies, documentation, or build tools.

[1] The platform was launched in the 90’s and has been expanding since. In recent

years, the platform has been placed into a maintenance mode and effort on new

development has decreased.

The platform can be divided into three main parts that all hold many different

components but are different based on the development responsibilities: ANI Internal

Core components, External components, Third party components. The ANI Internal

Core components contains the components that handle data inside the platform. These

components are developed by ANI development team. External components are also

developed by OpenText, but different teams. These systems provide additional

capabilities to Ani Platform such as visibility or connectivity. Third party components

are software that are not developed in OpenText but are important parts of ANI

Platform. These components provide form example standardized ways of transferring

data in and out of the platform. In this project we only focus on The ANI Internal Core

components to mitigate the project scope.

4

ANI Internal Core components part of ANI is mostly based on Windows operating

system, Microsoft SQL Server, and .NET Framework. In addition to Windows, Linux

servers support some of the software. Also, some components are built in Java, and

run on TomCat servers. Frameworks from .NET Framework 3.5 to .NET 6 are in use,

but some of the oldest components of the platform are written in VB6 and ASP 2. Most

of the code is written in C# or Visual Basic. Also, lot of custom libraries are developed

to hold the business logic and the database entities. Additionally, platform has a lot of

custom plugins that are mostly maintained by Professional Services and Customer

Support teams that also contain majority of the business logic of the platform. On top of

that, custom configurations and mappings are also important. Simplified architecture of

the platform is described in the figure 1.

Figure 1. Different parts of ANI platform explained.

ANI Platform consist of three environments that are copies of the same platform but for

different use cases, Test, QA, and Production. So called lower environments: Test and

QA, have same setup: Same service groups, services, and number of VMs. Higher

environment, Production has the same service groups and services deployed but the

5

capacity is different because of volume of data to be processed. Additionally,

Production also includes all implemented configuration and data transfer protocols.

Test and QA are used by multiple teams to test new software, configurations, and

mappings, while Production is the live environment for customers.

Operating the platform requires work of multiple teams. Development team is

responsible of the new code, bug fixes and testing in unit test level as well as

integration level. Operations -team are responsible of deploying, configuring, and

monitoring the Production environment of the platform. They should be able to

troubleshoot issues and fixing them by configurations and maintenance tasks.

Customer support team is responsible of the first line troubleshooting and support

request handling. Professional services team is responsible of customer specific

implementations to the platform and managing the customer relations. All these teams

have some sort of access to the code or configuration of the platform and the

responsibilities must be addressed.

Development team uses many common tools in their work such as git for version

control, GitLab CI and Nant for build automation to mention few. Lot of things could be

improved in development process by clarifying working habits and extending

automation. Test automation is very rarely implemented although various kinds of tests

exist. Packaged software is distributed also by manual manners. Operations team also

deploys and configures applications and servers mostly manually even though some

Ansible and PowerShell scripts are in use. Documentation is made by many teams

individually and it is distributed to many sources such as code repositories

2.2 Research objective

In this thesis the focus is to develop an IaC configurations that enable creating new

environments in flexible and automated means to enable better testing and bug fixing

capabilities. Suitable tools for such task will be evaluated during the research and the

work will be carried out using Terraform and Ansible. The first environment to be

developed is the new QA environment that will be used for testing purposes when

finished and will be replacing the existing QA environment. After QA, IaC configurations

are used to create other environment flexibly, using the same configurations.

Additionally, the work that is done helps to develop SDLC and automate many tasks of

multiple teams. The biggest benefit is to enable operations to start improving

automated deployments. The configurations Improvements are expected also in

Documentation. Following issue are addressed with these changes.

6

• Use IaC to flexibly deploy new environments.

• Enable IaC on Production deployments.

• Use newest versions of operating systems, servers, and third-party software in

QA environment, to test the changes that can be later be deployed to

Production.

• Deprecate and get rid of old Test and QA.

• Make SDLC more automated.

• Improve testing ability and reliability.

• Save developers time when less time is needed for bugfixes and debugging.

• Documentation of service installation and configuration.

The information search process of this thesis is based on the research questions "How

to build software infrastructure and deploy software automatically by using

Infrastructure as Code tools?", “How to use IaC tools to develop flexibly repeatable

environment?” and “Are Terraform and Ansible suitable to be used in Production

environment by Operations team?”. The topic is also related to software quality

assurance and DevOps which were also used as a reference keyword for information

search. Key topics are “Infrastructure as Code”, “IaC”, “Terraform”, “Ansible”,

“DevOps“, “Automation”, “software development lifecycle”, “SDLC”, “Continuous

integration”, “Continuous Delivery”, “Continuous Deployment”

Books, articles, and theses are used to gather information about IaC solutions,

DevOps, and other topics of the thesis to form an idea of the effects of IaC in the

software industry, and how people and companies are using it to make a change. For

Ansible and Terraform implementation the most useful resources are the official

documentation of the products. The concepts of the tools and the abilities and

disadvantages are clarified.

2.3 The desired changes and their effects

When the changes described in previous chapter have been implemented and the work

is completed, there are multiple things that are better than they were before the start of

the project.

The main goal is to enable developers to build new environments for different testing

purposes and only for short term benefits, for example, testing a new third-party

7

integration or custom solution for a single customer. Otherwise, it might be a safe

choice to test new features in completely isolated new environment without taking a

risk of breaking the commonly used QA or Dev environment.

The other part is the new QA environment and the benefits of infrastructure automation

and automatic deployment. The outcome of this project is to develop the QA platform to

the state where testing of some of the most important and most frequently changed

components is possible before deployment to Production environment. The QA

environment will be running on newer version of operating systems, webservers, and

databases. Also new frameworks of .NET or Java will be used. The main purpose of

the update is to enable changes to newer versions and frameworks also in production.

Production instance will later go through series of updates, and it will be moved to

newer environment as well. New QA environment makes possible to test each

component on the new environment in a trustworthy matter. With the knowledge

gathered during this project it is easy to continue expand the QA environment to

eventually include all the component in the platform. That will continue to expand the

ability to do comprehensive end to end testing.

The new QA environment will be built using Infrastructure as Code tools that are used

to automate the whole environment creation process. The environment is configured in

code and the tools automatically provision the desired environment. Once the QA

environment is set up, IaC tools enable building other similar environment with

minimum effort. Previously, a lot of manual effort would be required for building, and

keeping all the environments similar, would take considerable amount of work, which

would mean less time for the actual development work. Also changes to environment

are easily deployed by making changes to the code leading to CI pipeline provisioning

the desired environmental components. This could happen for example in case of lack

of computing capacity or memory in the platform, or if completely new components are

added to the platform. In that case it is easy to add a new virtual machine with required

computing capacity and then install and configure the component automatically. As a

result of new QA environment, the old Test and QA environments will be deprecated

once this project reaches a state when it is possible.

One part of making the platform better is the development of the SDLC process. Each

component can be deployed automatically using Ansible playbooks. Additionally, SDLC

of a single component should include building, testing, packing, and releasing the

software. When each component has a pipeline to perform these steps, the time from

developer changing the code to the software being deployed to Productions should

decrease. As part of that the software packages are published to a package manager

8

software from where the distribution and deployment is easy, either by using

automation or manual effort.

Operations team, that is responsible of Production environment, has been working with

manual practices throughout the history of platform. One goal of this project is also to

introduce IaC to Operations and enable automation for also Production environment

provisioning, deployment, and configuration. This would enable complete continuous

deployment for ANI Platform in the future, where new software can be released on

shorter cycle.

Code of the IaC solutions also work as a documentation of the platform. The

development team will have better control of the QA environment when everything is

documented in the code. Ansible playbooks contain detailed instructions for every

component about installation and configuration.

2.4 Out of scope

While this project concentrates to build a functional QA environment with deducted

number of components and automation for the environment provisioning, there will be

lot of work to continue with in the future. The automation can be extended for all the

component in the platform, also concerning 3rd party components and the required

configuration. In the end, the QA platform has all the functionalities as the production.

The scope of this project is not to develop applications of the platform themselves. The

assumption during this project is that there is a package, usually an installer, for all the

software that we want to install to the new QA environment. Also, CI/CD pipelines for

the applications are out of scope.

One big part of provisioning of a new environment is a database migration. Each

individual environment should have its own separated database instance. Ansible and

Terraform are not suitable for migrating databases, but there are many ways to

accomplish a good result. There are tools that are designed for database operations,

for example Flyway, but in OpenText the database administration is handled

completely by a separate team.

The most essential action after this project is to extend the environment provisioning

and deployment automation also to Production environment. The work done during this

project should be compatible to be used also in Production with slight modifications,

and as the knowledge of the tools has been gathered, it should be also expanded to

other teams and environments. That can help in multiple scenarios, including new

9

feature implementations, config changes, operating system and server updates, and

disaster recovery.

10

3. INFRASTRUCTURE AS CODE

This chapter describes the terminology and the basic theoretical background of the

topics of the thesis. At first, terms DevOps and CI/CD are explained by the benefits that

they have brought to software development during its evolution. After that, deeper look

into IaC is taken describing the roles of different teams and traditional ways of

operations compared to the IaC solutions. Finally, the IaC tools and their features are

introduced using official documentation.

3.1 From DevOps to Infrastructure as Code

Manual work of operations (ops) in a software company has led to increasing

difficulties of managing software in different environments when the scale of product

increased. Humans also make mistakes and software can drift to a state where the

configuration is not managed properly on all the instances. Because of these flaws,

software releases tend to become less frequent by time. DevOps is a result of software

development becoming vastly more agile and efficient, by implementing ideas and

processes where operations work is automated and thought differently. DevOps is

about delivering software faster and more efficiently to the customer and making more

maintainable and better software. [2]

Software is delivered through a release pipeline consist of different number of

environments that are configured to serve different purposes. A part of DevOps is

quality control or quality assurance, which is a way of testing the software in multiple

environments during the release pipeline before deployment to Production. Naming the

environments is not standardized but they serve different purpose in each stage,

DevOps helps to handle multi environment release pipelines by introducing deployment

automation. Before DevOps development team would make a software that would be

tested by quality assurance team and then deployed by operations. By automation, all

developers are capable of testing and deploying their own code whenever possible

through release pipelines. While working in multiple environments of the release

pipeline, automation is in even bigger role by a saving ops effort in multiple stages. [3]

Deployment automation is described often with terms Continuous Delivery (CD) and

Continuous Deployment (CD). A difference between them by manual intervention in a

release pipeline after a code change, usually a merge to a master branch, by a human

11

to deploy to the final Production environment. If the human interaction is used, the

process can be called Continuous Delivery but not Continuous Deployment. [4]

DevOps significantly reduces the effort needed from Operations to deploy software, but

DevOps is not about invalidating ops. Operations will still have the knowledge about

the environment, they will have time to work on reliability and maintainability and

monitoring.

Infrastructure as Code takes one core value of DevOps, automation, into consideration

and changes the way to manage infrastructure. Not by clicking and scripting, but by

code. In the end almost everything can be automated. Different tools are being develop

for different types of IaC tasks. There are 5 types of IaC tools:

• Ad hoc scripts

• Configuration management tools

• Server templating tools

• Orchestration tools

• Provisioning tools

Ad hoc scripts are the most straight forward way of automating infrastructure tasks.

Benefits of them are ability to use popular languages and to make specific things. They

are relatively easy to get started but when tasks get more complex, they are hard to

maintain and keep up to date.

Configuration management tools are designed to manage software on existing servers.

They offer many advantages compared to ad hoc scripts such as coding conventions,

idempotence and distribution, which means they force their users to follow patterns and

good practices and avoid repeating, while offering scaling for many purposes. Chef,

Puppet, and Ansible are examples of this kind of tools.

Server templating tools are used to pack an existing server setup into an image, either

a VM image or a container such as Docker, that can be then easily distribute across

environments, preferably by using other Infrastructure management tools.

Also orchestration tools come handy when dealing with packed images. Along with

deployment management they also keep track of the health of the running images as

well as handle load balancing and monitoring tasks. Kubernetes or Amazon Elastic

Container Service (Amazon ECS) are good examples of orchestration tools.

12

Instead of tools described above, that manage the running software, provision tools,

like Terraform and Pulumi, are used to manage the servers themselves, such as AWS

instances, VMs, Network structures and other. [5]

In following chapters, the most suitable tools for tasks of this project, Terraform and

Ansible, and their main concepts are introduced along with comparison to other similar

tools. With the gathered information it is possible to efficiently build an infrastructure

using those tools. The last chapter focusses on automating IaC with the practices

learned from DevOps and CI/CD and with the designated tool for that, GitLab CI.

3.2 Terraform

HashiCorp Terraform is an Infrastructure as Code (IaC) tool that allows you to build,

change, and version infrastructure safely and efficiently. It was initially launched in

2014 and version 1.0 was released in 2021. In terms of IaC tools Terraform can be

classified as provisioning tool, meaning that the tool does not define what is running on

a server, but instead is used to create the server, VM, or almost any other aspect of IT

infrastructure itself. It offers possibility to manage Kubernetes clusters, network

infrastructure, policies, and multi-cloud environments. Additionally Terraform can

perform tasks also outside of the scope of IaC. Interesting Terraform features are for

example secrets management and Virtual Machine Image management. [6] [7] [8]

Terraform is used with Terraform CLI. To provision infrastructure with Terraform the

most important commands are terraform init, plan and apply. terraform init initializes the

working directory that holds the configuration files. After running init, user is able to run

other commands. terraform plan compares the desired state defined in the

configuration file to the current state defined in the state files and in the real physical

infrastructure and creates a plan that describes the necessary changes to achieve the

desired state in the real-life environment. The changes in that plan can then be carried

out by running terraform apply command. [9]

3.2.1 Main concepts

Terraform includes many concepts that are used in different purposes. Terraform

concepts provider, state, backend, and module are introduced in this chapter and later

used in the configurations.

The most important base concept of Terraform are providers. Providers are plugins that

are distributed separately from Terraform. Providers are the way of Terraform

13

interacting with different environments, such as different Cloud Providers, and their

APIs to manage the desired environment. There are over 1700 providers written by

HashiCorp and Terraform community, for managing different services and resources.

Every Terraform configuration must declare which provider they are using. In this

project, the QA environment is built in VMWare vCloud Director environment, meaning

that the provider for that is “vcd”. It is verified provider which means it is managed by

third-party partner, in this case, VMWare. [10]

Provider documentation offers information about how to write configurations for this

specific provider. Each provider has custom configuration options to interact with the

specific API that the provider has been designed for. A single Terraform configuration

can include multiple providers to interact with multiple systems. If an environment that

is built on VMWare, would be built on another platform, such as AWS or Azure, using

the same configuration is not possible. The providers define the possible option for one

single platform. Without providers, Terraform cannot manage any kind of infrastructure.

Each provider comes with a different set of resources and data sources. Resources are

the real-life elements that are possible to be created with the provider. Each resource

then has arguments that can be used to define the resources options that match the

possibilities that are available also in real-life platform itself. For example, in vCloud

Director, it is possible to create networks, vApps, VMs and other type of objects and

configure them like they are configurable in vCloud Director UI. Data sources also

match the objects in the provider but are used to gather information about the objects

in the environment, that are often not created by Terraform or by a different Terraform

configuration, to be used when creating new resources. [11]

State is another important feature of Terraform. It is used to map Terraform

configurations to real life components such as servers or VMs. It is also used to

improve performance of the jobs Terraform is running during provisioning. By default,

the state is stored in the working directory of Terraform configurations in a file called

"terraform.tfstate". When Terraform plan command is executed, Terraform compares

the state that represent the current infrastructure to the newest configuration and

creates a plan that describes which items should be created, modified, or destroyed

and what will be the desired state after those modifications. After Terraform apply has

been run the new state is saved to be used in the next plan.

State can be managed in the working directory as long as changes are made only by

one person or from one computer. To enable working in teams, all team members must

have access to the latest state to make successful modifications. For that purpose,

14

Terraform state can be stored in a remote location where it will be updates after each

apply or destroy command. Terraform calls it the remote state. Remote state can be

stored in Terraform Cloud or a backend that can be a third-party solution with different

features such as authentication. Backend is defined in the Terraform configuration

along with all the other options. [12]

Terraform Module is a group of resources that are used together. Each Terraform

configuration has at least one module called root module. Other Terraform

configurations can call modules to include them in the configuration, to re-use existing

Terraform configurations. Modules can be included from multiple different sources, like

remote storages or local path. Variables are used when using modules to customize a

module to match requirements by passing them down in a module declaration. They

are declared in Terraform configuration under variable section with a possibility to

declare a type, description and other arguments, and the values are stored in a file with

.tfvars -extension as a key value pairs. Modules also benefit of output values, that are

used to fetch information about the infrastructure to be used in a Terraform

configuration and they work as a communication channel between root module and

other modules. [13]

3.2.2 Other solutions

Terraform has been compared with other tools that can solve similar problems, that can

be handled with Terraform as well, and many other tools that overlap with some of the

features of Terraform. Terraform documentation provides comparison with at least

Chef, Puppet, CloudFormation, Heat, Boto, Fog, and custom solutions. Chef and

Puppet are configuration management tools that compare better with Ansible and

Terraform is not meant to be used as configuration management tool. CloudFormation

and Heat Provide similar approach than Terraform as they represent the infrastructure

in a config file. Boto and Fog give low level access to APIs while Terraform is providing

high level syntax for managing the infrastructure with those APIs through providers.

[14]

The closest alternative solutions are other provisioning tools like Pulumi, that also

provides option to manage multiple different platforms. Different cloud platforms Like

Azure or AWS offer option for provisioning using IaC. For example, Azure Resource

Manager for Azure and AWS CloudFormation use declarative templates to provide IaC.

Although using cloud platforms for this project is not possible, the only considerable

solutions are Terraform and Pulumi. [15] [16] [17]

15

3.3 Ansible

Ansible was developed in 2012 by Michael DeHaan who also founded Ansible Inc.

Ansible is open-source Project. Red Hat acquired Ansible Inc. in 2015 and has since

been developing Red Hat Ansible platform. In this thesis the word Ansible is used to

refer to the tool, and features of Red Hat Ansible Automation Platform or Ansible Inc.

are not discussed.

Ansible is a simple IT automation tool that provides capabilities for application

deployment and configuration, and many other IT needs. Ansible uses simple human

readable language YAML, to describe the tasks. In this project, Ansible is used for

configuration management and application deployment for the platform. In the terms of

IaC tool type, Ansible has been classified as a configuration management tool. Other

configuration management tools are for example Chef, Puppet, and SaltStack. The

main concepts of Ansible; inventory, playbook, and role are introduced in following

chapters. [18]

3.3.1 Building the inventory

It is important to be able to install and configure a component of the platform similarly in

lower environments and in production. In context of Ansible it means that the same

playbooks and roles can be used in all environments. Different environment run in

different hosts and IP addresses, and number of nodes can be different. In Ansible

those hosts are managed by configuring an inventory. Inventory is a list, or group of

lists, that define the hosts. Inventory can be defined in many formats that depends on

the used plugins. The two common formats are INI and YAML. Inventory file in INI

format defines a single host as shown in figure 2 below. The same example also shows

how to group hosts under a name. [19] [20]

dc1-hostnameX.com

[component1]
dc1-hostname01.com

dc1-hostname02.com

[component2]

dc1-hostname01.com

Figure 2. Simple group and host definition in Ansible inventory using INI format.

16

Single host can be defined on one line, but more convenient way is to name a host

based on the name, use case or any other meaningful way. Same hostnames can be

defined multiple times on different groups. Imagine having a single host and wanting to

deploy two different services there. There are multiple reasons not to use a single

group for both services. After defining a single service as a smallest possible unit,

those services can then be defined in multiple other groups based on multiple use

cases. Simple group definition is described in figure 3.

[servicegroup1:children]

component1

component2

[windows:children]

component2

component3

Figure 3. Groups are defined using children directive.

Groups can be set to serve multiple purposes and can be based on for example

location, environment, type, operating system, or many other variables. For example,

two web services that run on different servers thus do not belong to same group by

locations, could still be added to same group defining then as webservices. Then if

both of those services need supporting software or configuration, such as web server

setup and configuration, a playbook can be created to target that group and both

services can have same configuration. There are two default groups all, and

ungrouped. [21]

Variables are essential part of enabling using the same roles and playbooks in different

environments. For example, a SQL Server instance in different environment has a

different name and that name is used to configure multiple components in all

environments. By having the value defined as a variable and referenced in playbooks

by variable name, playbooks can be reused in all the environments. In figure 4 is

described a simple use of variables.

17

[all:vars]

sql=SQL-INSTANCE

[windows:vars]

Ansible connection vars

ansible_user=User

ansible_password=Pass

[component1:vars]

app_user=App_user

Figure 4. Variables can be defined for single host or wider groups using vars directive.

Ansible Vault can be used to encrypt variables and files that contain sensitive content

like passwords. ansible-vault is a command line tool that lets user encrypt and decrypt

files by using a password, that can be then stored in a safe location. It lets user to turn

passwords into crypted string, that can then be visible in the variable file. When running

the playbooks, Ansible has an option to decrypt secrets on-the-fly when provisioning

the target. [22]

Variables are merged following a set of rules defined by Ansible. The order from lowest

to highest is:

• all group (because it is the ‘parent’ of all other groups)

• parent group

• child group

• host

There are multiple ways to achieve using the same playbooks in different

environments. Ansible documentation introduces three types of inventory setup:

1. one inventory per environment

2. group by function

3. group by location

[23] [24]

The option one requires having multiple inventory folders. For example, creating folders

inventory_DEV, inventory_QA, and inventory_PROD and having hosts -files in each of

the with environment specific hosts, groups, and variables. Different inventory file can

be then described at the command line using the -i <path> option in the ansible

18

command. Second option is to divide all hosts to groups that match their function in the

environment. For example, web services, gateways, and processing software could be

separated. Third option divides groups by the location, meaning that different

environments are in different datacenters or other physical locations. [19]

An ansible concept “patterns” are then used to define which groups or host the

playbooks target. To enable using the same playbooks in different environments, each

playbook must define a host that is present in each inventory or environment. The host

must be declared either in ansible or ansible-playbook command as the second

element, or in a playbook, in hosts -field, as shown in figure 5. It is more convenient to

have the pattern set up in the playbook to enable running all playbooks with similar

commands and make possible to include playbooks withing each other. Then, if all

inventories share the same structure, patterns are easy to manage. [25]

- name: <playbook_name>

 hosts: <pattern>

Figure 5. Host definition in playbook.

3.3.2 Using playbooks and roles

The main unit of configuration on Ansible is playbook. Playbooks are sets of steps that

are performed in the desired process of deploying and configuring IT infrastructure.

The complexity of tasks varies from simple to advanced. Playbooks are developed in

human readable language, usually YAML, and have file extension .yml. Tasks are units

of work, that are defined inside a playbook, and they invoke modules, that executes the

actual tasks, that Ansible is dedicated to do. [26]

Modules are the actual scripts that Ansible runs locally or on remote. They interact with

local machine, APIs, and remote systems to complete the desired tasks. Modules are

grouped into collections. Windows specific modules are in Ansible.Windows-collection.

Those modules provide functionality for many basic Windows configuration tasks such

as win_shell for running PowerShell scripts, win_dsc for Executing PowerShell

Modules, or win_package to download an installer file from network locations and

running the installer with necessary arguments. Collections can be browsed and

installed through Ansible Galaxy. Both modules and collections can be developed

easily if no suitable one is found. [27] [28]

Playbooks can be written in a single file where all the task for one goal are set and that

is the easiest way of getting started with Ansible. That will eventually cause writing the

19

same tasks multiple times. Ansible is designed to be re-used, so that a playbook or a

role can include or import tasks, variables, roles, or other plays, like shown in figure 6.

In this project the whole platform is deployed at once using a playbook that imports all

the individual playbooks that are used to deploy a single application or configure a

feature for wider group.

- import_playbook: webservers.yml
- import_playbook: databases.yml

Figure 6. Including playbooks to another playbook.

Many individual playbooks use roles to include re-usable tasks to a play. Roles are

repeatable sets of tasks that can be used to template similar set of tasks. Roles are

called from a playbook, and they are assigned with set of variables that differ between

playbooks. Role performs the same tasks for different purposes based on the variables

given when called. Variable defaults, files, templates etc. can be set for each Role to

be used. For example, a role can be used to deploy and configure a web site and web

application in IIS server. The role can have default values for those tasks such as web

application names or server port, but if required, those values can also be set from a

play that calls the role. Roles should be made from small parts that then are called from

bigger playbooks or other roles to avoid writing duplicate code. [29]

Templating in Ansible is a way to help configuring applications of other assets by

injecting variables into files. Many applications can be configured with a configuration

file that holds environment specific values. Those values can be set as a variable, and

by environment variables, inject the correct one to the file. Ansible uses Jinja2

templating language where variables are declared between curly braces as shown in

figure 7. [30]

{{ a_variable }}

Figure 7. Injecting variable to a configuration.

20

3.3.3 Executing Ansible

In Ansible, control node is the machine that runs Ansible. Any machine with Python 3.8

or newer installed can be used, except Windows machines are not supported. With

Ansible it is possible to execute multiple commands. The most important ones are

ansible that is used to run single tasks and modules, and ansible-playbook, that is used

to execute playbooks, that can contain multiple tasks and modules. [31] [32] [33] [34]

Both commands can take multiple arguments that are defined in the documentation.

Target inventory is defined by using -I, --inventory, --inventory-file -option, This is

important when using certain patterns that require choosing the inventory based on the

environment. Also, -l, --limit -option is useful when wanting to target a host outside the

pattern defined inside the playbook. Ansible connects to the target machine by using

either ssh or to Windows machines using winRM. These options can also be assigned

through command line options or preferably on variables in the inventory. [34]

When Ansible commands are run, Ansible prints an output to console about each play

and task. Ansible prints output to the console of your control node, and it is also

possible to save the output to separate file. Ansible prints the name of each play and

task with the name of the targeted host and status of the task: Ok, changed, skipped,

rescued, ignored, or failed. A recap of all executed tasks is displayed after all the tasks

have been executed, showing number of tasks with different statuses. Example of

output of ansible-playbook -command is shown in figure 8.

$ ansible-playbook -i inventory_test playbooks/install_application.yml

PLAY [Install Application] **

TASK [Gathering Facts] **

ok: [hostname.net]

TASK [Play to do something] ***

changed: [hostname.net]

PLAY RCAP**

hostname.net:

ok=2 changed=1 unreachable=0 failed=0 skipped=0 res-

cued=0 ignored=0

Figure 8. Output of ansible-playbook -command.

21

3.4 Infrastructure automation using GitLab CI/CD

Essential part of this project is to enable infrastructure creation and software

deployment by automated means. Terraform and Ansible alone provide advanced

automation abilities for multiple purposes in means of the need of running only a few

commands from your machine. Using CI/CD tools take the automation even further by

totally removing manual effort after the code changes. In practice that means building

CI/CD pipelines for both Ansible and Terraform configurations.

As a part of DevOps software has a pipeline that is used to automate different tasks

such as build, test and deployment. Same kind of pipeline can be developed for IaC

solution. There are multiple solutions that enable building pipelines and most of them

offer similar capabilities. Commonly used tools are for example GitLab CI, Jenkins,

Travis, Bamboo, and Azure DevOps. Jenkins, GitLab, and Bamboo has been

compared for software delivery without finding significant weaknesses among the tools.

The tools offer a pipeline structure where the user can define stages that are executed

in certain order. Usually, stages include option to run scripts on different shell programs

or programming languages, that are used to execute the desired operations for the

software. [35]

Jenkins have been used as a build and deployment automation tool in OpenText

products. Jenkins uses Groovy programming language to declare the pipeline steps

instead of YAML syntax in GitLab CI. For the purposes of this project the CI/DC

pipelines are built in GitLab CI which is a standard solution for OpenText products and

has required capabilities for executing desired tasks in a pipeline. GitLab is DevOps

platform that is mostly used as a git repository. It provides many useful features such

as merge requests, and issue management. As part of GitLab, Gitlab CI/CD is tool for

managing continuous software engineering methodologies that enables automatically

build, test, deploy, and monitor applications. It includes concepts like pipelines,

artifacts, and runners, that are later described. It enables simple YAML based

configuration and user interface for managing the pipelines. [36]

GitLab Runner is an application that works with GitLab CI/CD to run jobs in a pipeline.

It uses executors to run the jobs in the pipelines. Docker executor runs jobs inside

Docker containers enabling stable Linux environment for using all tools. [37] [38] [39]

Terraform and Ansible have requirements for the environment that they are running on.

That means that the Gitlab runner needs to be configured to serve operations of both

tools. Ansible cannot run on Windows environment and for both tools ssh and winRM

22

connectivity need to be working. Gitlab provides default template for Terraform

pipelines that has necessary steps for executing Terraform. [40] [41]

When changes to the environment is needed, and when using IaC tools, All the

changes are made to the code files of the tools. The developer creates the new

features in feature branch in the code and commits the changes to git. With GitLab, the

developer then opens a merge request for the changes to be merged into the main

branch. GitLab CI pipeline can run test and checks for the changes. For example,

Terraform plan can be generated for review or dry runs can be performed. Other

developers must then approve the changes before merge. After merge, GitLab CI

pipeline completes the environment provisioning to desired environment.

23

4. IMPLEMENTATION PROCESS

After the theoretical background of IaC, Terraform, and Ansible had been examined,

the next step is to build up the environment. This chapter describes the build process.

The plan was to implement total of three environments: Test, QA, and Dev. Test would

be the first to implement and would be used to test Terraform and Ansible scripts and

do manual testing and configuration on the environment before committing the changes

to version control. Then by using CI/CD, the QA environment would be built directly

from the code using GitLab and GitLab CI pipelines. In the end when also QA has been

proved working, the Dev environment would be set up using all working parts that are

deployed to QA. The actual application development would be done using Dev

environment, and the tests could be run on QA. Test environment would remain as a

sandbox for testing Terraform and Ansible scripts.

Code repositories were created for Terraform configurations and for Ansible playbooks.

First, the Terraform was configured and the first version of environment including virtual

machines were created. After that the platform deployment using Ansible started piece

by piece and the infrastructure pipeline was used to bring new features to use.

When first Terraform configurations and Ansible playbooks were ready, building the

pipelines started. Then after the initialization, all changes could be deployed through

CI/CD pipelines. Also pipeline for an individual component was built to test the scenario

of deploying a single component.

In the end a completely new environment is created based on the developed IaC

solutions to evaluate the goals of the thesis that was to be able to recreate

environments in flexible way. The steps to create new environment are described and

the problems and challenges of the solution are evaluated. Also, the use cases for

completely new environments are determined.

4.1 Requirements

The main idea of the QA environment is to be possible to test the software of the

platform before deployment to Production environment. It should be the best possible

copy of the Production environment. To reduce the scope of this thesis the whole

Production environment is not replicated to QA. In this project, the goal was to build a

system that can be tested in a way that proves that the few most frequently updated

24

and most critical components of the platform work. The main functional requirements

were set as follows:

1. Management application can connect to the platform and the data can be seen

and managed through the UI.

2. Messages (data) can be sent to the platform and platform processes them as it

should.

3. A web application is operational and can interact with the platform by receiving

and sending messages.

4. Possibility to easily continue deploying of other applications and expanding the

environment.

To achieve those requirements, various components need to be installed to the

environment. Applications serve different purposes of the platform and are in some

cases dependent on one another. All these pieces of the platform are directly installed

and configured on the VMs of the platform.

The same requirements apply to all environments. Each of them needs to have the

same VMs and software installed. All the environments are built in the same virtual

datacenter in a vCloud Director. To separate the environments from each other,

individual VMs of each environment are placed in a separate vApp, which is a construct

that consist of VMs that provide useful features for managing them. [42]

4.1.1 Limitations

While gathering the requirements of the project, there are lots of things that can be

affected in the process by making a choice. There are also things that cannot be

affected directly in this project but would have other options in other circumstances.

Project like this is made for a company that has established principles and tools for

special operations. At OpenText and in this project couple of things cannot be affected

on. VM Ware vCloud Director is used as a cloud platform where the VMs are built. It is

the standard solution for OpenText lab environments, and it is used by multiple teams

across organization. Also, GitLab and GitLab CI/CD are used as a git repository and as

a build automation and CI/CD tool.

An SQL Server database is the most crucial part of ANI Platform, and one is needed to

be set up for each individual environment. Database management is out of scope of

this project and is also handled by another team within OpenText. Most applications

25

need a connection to database, and it is assumed that the database is fully functional

and ready to serve the needs of the applications in QA environment. Also,

Management application is an application that user installs to users own computer and

connect to ANI Platform directly from the desktop. Because of that, it is not part of the

Ansible and Terraform configurations. Although it is dependent of few components

described in this project.

The operating system images are included in the vCloud Director environment and are

maintained by another team within the corporation. Images come with standard

OpenText features and configuration that help in the deployment, such as proxy server

configuration. It is trusted in this project that the images are valid and secure and

changes to the is out of scope of this project.

OpenText has a self-managed instances of JFrog Artifactory which is a DevOps tool for

package management for storing binaries like software installers, executables, library

packages, Docker images, etc. A generic repository was found for this project to hold

the Terraform state files, in other words, Artifactory was the backend solution for

Terraform. Artifactory is also a centralized location to store application installers that

are used within Ansible playbooks. [43]

4.1.2 Networking and VMs

To serve the needs of the QA environment, components of the platform were divided to

five service groups that each serve a simple and isolated purpose in the platform. One

VM was set up for each service group of the platform. Components could easily be

divided to these groups based on their task in the platform. VMs and Service groups

are named as follows.

• sql

• core

• web

• gateway

• utility

All VMs use Windows Server 2019 image and computing capacity of 8GB RAM, 4

cores, and 40GB of disk space. While Production environment has strict requirements

for computing capacity, requirement for the VMs in QA environment were not set and

default VM sizing was used. Processing power, memory and disk space are easy to

26

increase if needed in the future, with Terraform without even need to reboot the VM, by

using hot update option.

All VMs are also by default connected to OpenText Lab network has restricted access

that is protected by firewalls. That kind of network structure enables efficient

development while being secured from outside world. Environment could also be built

in isolated network when a jump host or Ansible control node would be the only way of

accessing the VMs.

4.2 Infrastructure

Terraform repository is initialized by creating a directory structure of necessary files

shown in figure 9. The folder contains Terraform configurations and other necessary

files such as .gitlab-ci.yml for GitLab CI pipeline configuration and CHANGELOG.md

for keeping track of changes. README.md is the main place for documentation of the

solution.

Figure 9. Terraform projects folder structure. The environment specific variables are
in envs/.. folders and main.tf in folder root is used

27

Each environment is configured in their own folder that contains the necessary options

and environment specific variables to be used to create the infrastructure. Following

code is in the main.tf file in each of the environment folders, Test, QA, and Dev. In the

main.tf, Terraform provider is declared in terraform block as shown in figure 10. The

provider for VMWare vCloud Director is vcd Also required_version option is declared

here, that tells what version of Terraform is used. Backend is configured in the same

section with required options. [44] [45]

terraform {

 required_providers {

 vcd = {

 source = "vmware/vcd"

 version = "~> 3.0.0"

 }

 }

 required_version = ">= 0.13"

 backend "artifactory" {

 username = "your_artifactory_username"

 password = "your_artifactory_password"

 url = "https://artifactory.instance.net/artifactory"

 repo = "artifactory_repository"

 subpath = "repository_path"

 }

}

Figure 10. Terraform block defines provider and backend.

Settings for the provider are declared according to the provider specific documentation.

Each provider has different configuration options. For vCloud Director, the options are

presented in figure 11.

28

provider "vcd" {

 user = var.vcd_user

 password = var.vcd_pass

 auth_type = "integrated"

 org = var.vcd_org

 vdc = var.vcd_vdc

 url = var.vcd_url

 max_retry_timeout = var.vcd_max_retry_timeout

 allow_unverified_ssl = var.vcd_allow_unverified_ssl

}

Figure 11. Vcd provider declaration.

Each environment uses the same configuration module, that is located in the projects

root folder. In each environment the source of the module must be declared. source

option point to the path where Terraform can find the main.tf file of the module.

Variables from the parent, environment specific, configuration must be injected to the

module by declaring the as shown in figure 12 below.

module "ani-qa-env" {

 source = "../../../terraform-vcd"

 vcd_env = var.vcd_env

 env_abbr = var.env_abbr

 vcd_user = var.vcd_user

 vcd_pass = var.vcd_pass

 vcd_url = var.vcd_url

 vcd_max_retry_timeout = var.vcd_max_retry_timeout

 vcd_allow_unverified_ssl = var.vcd_allow_unverified_ssl

 vcd_org = var.vcd_org

 vcd_vdc = var.vcd_vdc

}

Figure 12. Module usage.

The main module that contains the configuration holds the resources that Terraform

creates in the vCloud Directors virtual Datacenter. Each environment is built inside

logical group in vCloud Director called vApp. Terraform declaration of vApp is shown in

figure 13. Then each vApp hold the VMs designated for the specific environment. In the

Terraform configuration the vApp is declared in following way. The environments name

is injected to the vApp name using a variable.

29

vApp

resource "vcd_vapp" "ANI_vApp" {

 name = "ANI_${var.vcd_env}_env_vApp"

}

Figure 13. Declaring vApp resource.

The VMs are declared using resource vcd_vapp_vm, as shown in figure 14. Each VM

must be assigned to a vApp using vapp_name.

resource "vcd_vapp_vm" "web" {

 vapp_name = vcd_vapp.web.name

 name = "web"

 catalog_name = "my-catalog"

 template_name = "photon-os"

 memory = 1024

 cpus = 1

}

Figure 14. VM declaration for vcd provider.

Also other vCloud objects can be created using Terraform Resources. All the

configuration options for VMs are documented in the provider documentation.

There are also issues with Terraform configurations when something is not working as

intended. The VM configuration is heavily dependent on the VM image. Terraform, or

vCloud Director do not provide a VM images. That means that the organization must

upload their own images to the vCloud Director and the create VMs based on those

images. It is possible to select any of the templates in the libraries of the vCloud

Director in Terraform configuration and use those in VM creation. In some cases that

means that some of the features of Terraform does not work as expected. Setting a

computer_name parameter in Linux VMs changed the hostname of the VM to that

value, but in Windows images the value was not set as expected. Therefore running

scripts after resource creation was necessary to set the hostnames correct for windows

machines. Also, there are multiple options for the backend for Terraform, and the

current solution with Artifactory backend is deprecated. Other solutions for example

Gitlab managed Terraform state could be updated in the future. [45] [46]

30

4.3 Application deployment

The Ansible installation and configuration buildout could be divided into four different

parts:

1. Prepare VM for applications installation

2. Installations of an application

3. Configuration of the application

4. Additional configuration in the environment

First step includes for example turning on and off Windows features or creating folders

form applications. Next two parts are directly tied to a single component, a single

installer, or a software package, that can be delivered as a single unit, that usually also

contains a configuration file or another way of configuration. The fourth part is usually

more complex than first three, as there are multiple types of configurations an

application can require and many of them can be required cotemporally. Common

additional configurations in this project are for example IIS Server configuration,

Registry keys, Environmental variables, registering dll’s, or creating a Windows service.

The process with Ansible is different from Terraform development. While Terraform

configuration are meant to be used only for Test, QA, and Dev environments, Ansible

playbooks are meant to be used also for Production deployments. Production

deployments are done by operations team and requires cooperation between

development and operations. The most important part of the work is to use Ansible

patterns that are described in chapter 3.3.1 in a way that enables using the same

configurations in Production and QA.

The structure of different environments and especially their differences determine the

possible patterns that are usable in each case. In this project the solution is to have

each playbook define the pattern in hosts field. The name of the pattern must be the

name of the component the play installs, or a name of the software it is configuring. For

example, playbook that installs and configures a component called Core Application,

the pattern in the playbook is core_application. Then in the inventory the correct host is

defined and set to groups. Other example is an IIS Server installation and

configuration. The pattern in the playbook is iis_server. In the inventory group

iis_server can include multiple hosts and other groups.

Because of the great differences between QA and PROD environment it is not possible

to set the patterns in playbooks for wider groups. For example, if two webservices are

on different service groups in Production but on the same one in QA, the deployment

31

using service groups as a pattern is not possible without changing the pattern before

running Ansible commands or defining the pattern in the command. In complex system

like this remembering possible patterns in all environments every time when running

the playbooks is challenging and should be avoided. Instead using the patterns defined

in the playbook YAML. The differences between setup in QA and Production is shown

in table 1.

Table 1. QA and Production set up

COUNT QA PROD

VM 5 90

SERVICES 15 100

SERVICE GROUPS 5 30

QA and Production have different set of resources allocated. The biggest difference is

the number of VMs in the environment. Production environment needs to be capable to

handle large volumes of data and be fast in these operations. QA environment is used

for occasionally testing and just a small number of transactions needs to be processed

at a time. Eventually, all the services are installed to both QA and Production

environments. During this project, the number of services in QA has been limited to 15,

to define the scope of the work. Production environment has two to ten VMs per

service group where the QA will have one. To design a QA environment based on

production, some service groups need to be combined. When service groups are

combined, that means that all the services on those groups will be deployed on the

same VM in the QA environment. This is part of the planning process, and the plans

must be changed if issues on performance or stability of the environment come up

when more services are deployed to QA.

A service is a software component or an application, that is running on a VM. Many

services from a service group. Service Group is a set of services that work together

and form a logical group from the functionality perspective. Each service group can

have multiple instances, and all the instances hold the same services. Each Service

group has a designated number of VMs that are assigned to it. VM is a base unit of the

platform. Each VM is part of a server group. Each VM can have one or multiple

32

services installed to it, and those services belong to same service group. There can be

multiple VMs with exactly same setup.

The development process for Ansible playbooks was iterative and based on try and

error, and existing documentation. The work usually followed a pattern:

1. Pick an application (service) to install.

2. Choose to which service group the service belongs.

3. Gather installers, config files and other resources.

4. Follow existing instructions of manual installation and document the steps

carefully.

5. Transfer those manual steps into Ansible tasks.

6. Implement and test Ansible playbooks.

7. Confirm that component is working as desired.

8. If bugs are found, try fixing the manually and after fix is found, implement then

in Ansible. Document the steps.

The Ansible Inventory is built based on the analysis on patterns in chapter 3.3.1. All

playbooks must declare the host in a low level, meaning a host is the name of the

installed application. Then by organizing the inventory file, that is named by

environment name, those hosts are set to wider groups differently based on the

environment’s requirements. In QA environment, services would be divided into five

service groups in five hosts. Inventory was built in INI format. After inventory setup,

Ansible task are designed. Typical component would have following steps in the

playbook:

1. Prepare VM for installation, for example create folders, turn on windows

features, or configure IIS.

2. Download installer or zipped folder from network source.

3. Copy installer or unzip folder to installation location.

4. Run installer or executable.

5. Modify configuration file in the installation directory.

6. Create Windows service based on executable or create IIS web site and web

application.

7. Configure services start up settings.

33

8. Start service or a web application.

When working in a Windows environment, most of the tasks can be performed by using

ansible.windows -collection that has been described in chapter 3.3.2. For example,

preparing the VM by installing IIS using win_feature -module is shown in figure 15. [47]

- name: <playbook_name>

 hosts: <pattern>

 tasks:

 - name: Install IIS

 win_feature:

 name: Web-Server

 state: present

Figure 15. Ansible task using win_feature module.

As described in chapter 4.1.1, JFrog Artifactory is used to store released packages.

That means they need to be downloaded from the network location for the installation.

Downloading application installer from network location can be done using

win_package -module as shown in figure 16.

 - name: Install Application

 win_package:

 path: "{{ network_path }}\\application.exe"

 arguments: /S

 product_id: 1231238

Figure 16. Usage of win_package module.

Application configuration is mostly done using config files. The same files are used in

every environment. But some configurable values must be injected to files that are

environmental specific. Injecting variable to files can be done using win_template -

module, as shown in figure 17.

- name: Configure Application

 win_template:

 src: ../config.xml

 dest: "{{ installation_folder }}\\exe.config"

Figure 17. Usage of win_template module.

During the build-up, lot of other tools are needed outside of the scope of IaC. Because

of the VMs being Windows, for example Windows package manager Chocolatey

34

comes handy executing some of the tasks. There is also a Ansible module for such

tasks: win_chocolatey. Powershell and Windows command prompt are also important

tools when working with Windows environment. Lots of tasks can only be executed by

running a script. [48]

After all necessary tasks have been implemented to a playbook, Ansible playbook

command is executed. If the running of playbooks is successful, the results are tested

by processing messages or browsing to a web application. If errors appear, the fixes

are implemented to the playbooks and run again. In some cases, fixing error is initially

easier by manual matters, but when the fix is found, it is implemented to playbooks as

well. Sometimes Ansible also gives an OK status to a task even the task is not

successful these errors are usually caused by using scripts in a task instead of a

designated module. Ansible cannot always get the error status and a good error

message to user. However, most of the modules and tasks work without problems and

if problems occur the errors are comprehensive.

4.4 Automation and CI/CD

As described earlier, Terraform and Ansible configurations are stored in GitLab, and

GitLab CI/CD is used as a build automation tool. A build pipeline can be created for the

project by adding a .gitlab-ci.yml file to the project root. .gitlab-ci.yml file describes all

options in the pipeline. [49]

Configuration of the runner is not part of this projects but understanding the concept is

important when designing a CI/CD pipeline. OpenText’s GitLab instance has multiple

runners that can be used parallel. The task then is to determine a Docker image to run

the jobs in. As there is not dedicated GitLab runner set up for this project’s purposes, it

is the easiest and recommended way to use a docker runner with a suitable Docker

image for each job. The operative GitLab instance has runners to work as Docker

runners, so setting them up is not necessary. The requirements for the image are to

ability to run both Terraform and Ansible commands.

Terraform pipeline consist of four stages. First step prepares the image for the

execution of Terraform commands. Next steps are for running the Terraform

commands init, plan, and apply. The pipeline uses custom made, python-based Docker

image that has Terraform, Ansible, and ssh-agent installed. That enables performing

Terraform and Ansible tasks in isolated system. Pipeline steps are described in figure

18 and the view in GitLab is shown in figure 19.

35

Figure 18. Terraform pipeline structure.

Figure 19 Terraform pipeline after merge to master.

36

Pipeline of the Ansible repository runs on each commit to a merge request, as shown in

figure 20. Before the merge request is ready to be merged, it is not desired to deploy

anything with draft code. Before merge, the pipeline runs a connectivity check on the

Ansible control node to make sure that the changes can be deployed when they are

ready. After the merge, the task is first to make the configurations available on the

control node, because all Ansible deployments are run in an Ansible control node VM.

The latest code is always in the master branch of the repository and in the pipeline, the

lates code will be cloned or pulled to the VM using git. After the latest configurations

have been fetched, the next job takes an ssh-connection to control node an executes

Ansible commands. When making changes to Ansible configurations, all the changes

should be provisioned to all environments. The repository has a platform.yml file that

includes all playbooks that are needed to provision a functional environment, that is

executed in the Ansible pipeline after a merge to master.

Figure 20 Ansible pipeline after merge to master.

4.5 Single component deployment

Each component of the platform has its own CI/CD pipeline that is used to

automatically build, test, and deploy the application. Deployment of an individual

component is done with the same Ansible configurations than the whole platform.

When deploying the whole platform, the playbook used calls other playbooks and

includes them in the play. In the single component scenario, Only the component

specific playbook is called to perform just certain tasks. For example, when deploying

Application to QA environment the ansible-playbook -command is run with necessary

flags.

ansible-playbook -i inventory_qa application.yml

37

4.6 Creating new environment

The aim of this thesis is to flexibly create new environments for testing, development,

or other purposes. Terraform and Ansible require different kind of changes to the

configuration to enable creating a new environment. For both tools, the changes can be

managed by copying configurations or environmental variables from another

environment’s solution and changing the values according to new environment’s

requirements.

Terraforms abilities are based on the providers thus using the same configuration on

some other environment or cloud provider than VMWare vCloud Director is not

possible. That sets a condition for Terraform deployments. If a vCloud Director is

available, a Virtual Datacenter in vCloud Director is needed to be set up. It is not

required to be same used for QA and Test environments. As described in chapter 4.3

also VM images that are used are sometimes different by their features and Terraform

cannot guarantee that all images work the same with same Terraform configuration. If

using different vCloud Director, the virtual datacenter, catalogues, and image names

can be configured in the config files.

In the use case of ANI Platform, the creation of new environment is easy because of

existing vCloud Director platform with required computing capacity, VM images, and CI

tools for automated provisioning. The existing environment configs can be used when

creating new environment with Terraform. As described earlier, each environment has

its own folder in the repository that holds the configuration. Those configurations then

use the main.tf file in the root to apply desired changes. To create new environment,

copy the content of another environment specific folder to a new folder that is named

after the new environment and change the values in the .tfvars -file to match new

environment. Then terraform init, plan, and apply needs to be run from the newly

created directory.

Ansible is more flexible. The datacenter under the VMs can be any. Nevertheless,

playbooks always target a host with certain operating system, in this case Windows.

However, host files in the inventory can be configured to match different set of VMs

than the QA setup. That is why Ansible playbooks can also be used in future for higher

environment deployment and configuration. In Ansible repository provisioning to new

environment can be done by creating a new directory for the new environments hosts

file to the root of the repository, copying the hosts -file from another environment’s

hosts -file and changing the values based on environment’s requirements. The service

groups and the number of hosts per application might vary per environment.

38

Deployment is done by running ansible-playbook command with targeting the new host

file directory.

ansible-playbook -i inventory_env_name playbook_name

Both Terraform and Ansible configuration also contain GitLab CI pipeline configuration

file. A new environment is also possible to create without using any CI/CD solution by

running command independently. In the Gitlab configuration, the default pipeline uses

an image for the build making it a requirement to have a Docker runner set up in the

GitLab instance. Terraform requires an environmental variable to be set in GitLab

settings. The variable contains the .tfvars -file that is normally located in the project root

but is excluded from git because of sensitive values. It is used by terraform plan stage

to inject configurations with variables.

Changes are carried out through GitLab merge requests. After changes have been

made to Terraform and Ansible configurations. A merge request should be opened and

GitLab CI performs initial checks for the code. After the merge Request is merged, the

changes are applied to all environments.

39

5. EVALUATION OF THE SOLUTION

This project started with research of Infrastructure as Code where the history,

terminology, and tools for IaC were clarified and compared. After the research, it was

possible to determine what can be done with IaC and what cannot be done. Also,

suitable tools for different tasks were selected. This knowledge was then evaluated to

the requirements of the QA environment build out project, and the project was carried

out using the most comprehensive tools for the tasks, Terraform and Ansible.

Terraform and Ansible performed well for the designated tasks. Terraform offered a

provider for the vCloud Director that was well documented and easy to use. The VM

images caused some issues with the configuration. Although the images are designed

outside of the scope of the project, it would be an interesting topic to build also the

images using server templating tools like Packer.

Ansible proves also to be a powerful tool form configuration management. It offers

variety of modules for Windows tasks along with many for other operating systems. It is

easy to get started with but offers possibility to extend the configurations to more

complex sets of operations by using complex roles, variables, and patterns. The

greatest benefit of Ansible is that it is more flexibly usable in other environments than

the one it was developed against by simply building an inventory and using patterns.

Operations need to be involved on building other environments, to help them to gain

knowledge about IaC and start changing the way they work.

The build project of the QA environment was a success. The requirements set for the

QA environment were met. Management applications can connect to the platform and

manage configurations. Messages can be processed through platform and web

application can communicate with platform by sending and receiving transactions. Now

the platform is running on newer operating systems and software versions and

development, operations, and other teams can run tests on it. The QA environment can

be extended from now on to include more and more of the components of the platform

to enable comprehensive end to end testing. In the end the old Test an QA

environment can be deprecated.

Changes to the environments that are created using IaC is happening through GitLab

merge requests and CI/CD. When changes are needed, for example new component

or a version is needed to be deployed, developer makes code changes that are

approved by other developer and after merge the changes are automatically

40

provisioned through pipeline. Also individual applications in the environment can now

be deployed automatically from the component specific pipeline using the same

playbooks that can are used when deploying the whole environment.

This project enabled creating new environments for testing and QA purposes fast and

flexibly. Creation of completely new environment based on the QA setup is easy and is

made by making required configuration changes to both separate code repositories.

The same merge request procedure and pipeline will provision the new environment.

Certainly, other options beyond vCloud Director are possible. Public cloud providers

such as Microsoft Azure, AWS or Google Cloud all provide an environment for setting

up VMs. Terraform offers providers to work with each of those platforms and Ansible

requires just similar VMs. Azure would be an excellent choice for Windows based

Platform like ANI. IaC could also be used in case of containerization and orchestration

of the platform in the future.

This project also improved the state of documentation of the platform. Every detail

about installation and configuration of each component and their dependencies are

written in the Ansible configurations.

As described above, using IaC brought many benefits and increased the quality of the

platform and its testing abilities. The use of IaC should be extended also to Production

deployments and could be used if platform develops towards containerized

environment. Also server templating could be considered already now to improve

image stability.

41

6. CONCLUSION

Infrastructure as Code is an interesting topic to investigate. It is certain that using IaC

tools can bring benefits throughout software development lifecycle. Some of the tools,

like server templating tools, like Docker, and orchestration tools, like Kubernetes are

hot topics in software engineering. Also Terraform is gaining increasing popularity for

different kind of tasks.

The main result of this thesis is the reusable Terraform and Ansible configurations. The

other result of this thesis can be evaluated against the desired changes described in

research objective. Now it is possible to deploy new environments flexibly, fast, and low

effort with the configurations that were created. The usage of the configurations can be

extended to Production environment provisioning as well if such decisions are made.

The QA environment is running on new operating systems, servers, and third-party

software, and it is easy to start extending the QA environment to eventually include all

the components of the platform. This project also takes the organizations closer to the

goal of deprecations of old QA environment.

The components in the scope of this project can now all be deployed automatically and

the work to improve component pipelines can continue and automation will be

extended in component pipelines. Teams can now test software on more reliable

matter and customers benefit from more reliable software. Also, documentation is

better when IaC configurations are also detailed instructions for deployment and

configuration.

Infrastructure as Code tools offer a great chance to improve the processes currently

implemented in the SLDC. While already small changes like automated deployment

brings significant improvements, Configuration management and server templating can

help operations to save time to focus on monitoring and improving stability of the

platform. The tools and methods used in this project should be used also in Production

environment. Also, any kind of deployment of new software or a configuration should

be done by using automation. All manual work should be transformed into automated

tasks. That takes a lot of effort at first, but IaC is an upfront investment.

42

7. REFERENCES

[1] C. Birchall, “1.1. Definition of a legacy project,” in Re-engineering legacy software, 2016.

[2] Y. Brikman, “The Rise of DevOps,” in Terraform: Up and Running, 3rd Edition., O’Reilly Media,
Inc., 2022.

[3] F. N. Emily Freeman, “Embracing the New Development Life Cycle,” in DevOps, Hoboken, New
Jersey, 2019.

[4] P. Hodgson, “The Path to Production,” in Continuous delivery in the wild, Seabastopol, CA,
O'Reilly Media, 2020.

[5] Y. Brikman, “What Is Infrastructure as Code?,” in Terraform: Up and Running, 3rd Edition,
O'Reilly Media, Inc., 2022.

[6] Laura Paciliom, Hashicorp, “What is Terraform?,” Hashicorp, 22 1 2022. [Online]. Available:
https://www.terraform.io/intro. [Accessed 14 2 2022].

[7] K. Ruddy, “Announcing HashiCorp Terraform 1.0 General Availability,” HashiCorp, 8 6 2021.
[Online]. Available: https://www.hashicorp.com/blog/announcing-hashicorp-terraform-1-0-general-
availability. [Accessed 4 9 2022].

[8] Y. Brikman, “Provisioning Tools,” in Terraform: Up and Running, 3rd Edition, O'Reilly Media,
Inc..

[9] HashiCorp, “Basic CLI Features,” [Online]. Available: https://www.terraform.io/cli/commands.
[Accessed 1 7 2022].

[10] HashiCorp, “vcd,” 2022. [Online]. Available:
https://registry.terraform.io/providers/vmware/vcd/3.6.0. [Accessed 1 7 2022].

[11] HashiCorp, “Data Sources,” [Online]. Available: https://www.terraform.io/language/data-
sources. [Accessed 22 7 2022].

[12] HashiCorp, “Remote State,” [Online]. Available:
https://www.terraform.io/language/state/remote. [Accessed 1 7 2022].

[13] HashiCorp, “Modules,” [Online]. Available: https://www.terraform.io/language/modules.
[Accessed 22 7 2022].

[14] HashiCorp, “Terraform vs. Alternatives,” [Online]. Available: https://www.terraform.io/intro/vs.
[Accessed 7 1 2022].

[15] Microsoft, “What is Azure Resource Manager?,” 2022. [Online]. Available:
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview.
[Accessed 30 8 2022].

[16] Amazon Web Services, Inc., “AWS CloudFormation,” 2022. [Online]. Available:
https://aws.amazon.com/cloudformation/. [Accessed 30 8 2022].

[17] Pulumi, “Pulumi vs. Terraform,” 2022. [Online]. Available:
https://www.pulumi.com/docs/intro/vs/terraform/. [Accessed 30 8 2022].

[18] Red Hat, Inc., “How Ansible Works,” 2020. [Online]. Available:
https://www.ansible.com/overview/how-ansible-works. [Accessed 14 2 2022].

[19] Ansible project contributors, “How to build your inventory,” 21 12 2021. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html. [Accessed 9 3 2022].

[20] Ansible project contributors, “Inventory basics: formats, hosts, and groups,” 27 4 2022. [Online].
Available: https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#inventory-
basics-formats-hosts-and-groups. [Accessed 29 4 2022].

[21] Ansible project contributors, “How to build your inventory,” 27 4 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#default-groups.
[Accessed 29 4 2022].

[22] Ansible project contributors, “Encrypting content with Ansible Vault,” Red Hat, [Online].
Available: https://docs.ansible.com/ansible/latest/user_guide/vault.html. [Accessed 12 8 2022].

43

[23] Ansible project contributors, “How to build your inventory,” 27 4 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#how-variables-are-
merged. [Accessed 29 4 2022].

[24] Ansible project contributors, “How to build your inventory,” 27 4 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html#inventory-setup-
examples. [Accessed 29 4 2022].

[25] Ansible project contributors, “Patterns: targeting hosts and groups,” 21 12 2021. [Online].
Available: https://docs.ansible.com/ansible/latest/user_guide/intro_patterns.html#intro-patterns.
[Accessed 9 3 2022].

[26] Ansible project contributors, “Working with playbooks,” 21 12 2021. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/playbooks.html. [Accessed 9 3 2022].

[27] Ansible project contributors, “Developing modules,” Red Hat, [Online]. Available:
https://docs.ansible.com/ansible/latest/dev_guide/developing_modules_general.html#developing-
modules-general. [Accessed 12 8 2022].

[28] Ansible project contributors, “Using collections,” Red Hat, 5 8 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/collections_using.html. [Accessed 12 8 2022].

[29] Ansible project contributors, “Re-using Ansible artifacts,” [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse.html#playbooks-reuse.
[Accessed 15 7 2022].

[30] Pallets, “Template Designer Documentation,” [Online]. Available:
https://jinja.palletsprojects.com/en/latest/templates/. [Accessed 15 7 2022].

[31] Ansible project contributors, “Control node requirements,” 21 12 2021. [Online]. Available:
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html#control-node-
requirements. [Accessed 14 2 2022].

[32] Ansible project contributors, “Working with command line tools,” 26 9 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/user_guide/command_line_tools.html. [Accessed 1 9
2022].

[33] Ansible project contributors, “ansible,” 26 8 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/cli/ansible.html. [Accessed 1 9 2022].

[34] Ansible project contributors, “ansible-playbook,” 26 8 2022. [Online]. Available:
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html. [Accessed 1 9 2022].

[35] J. Salojärvi, Työkalujen vertailu, Tampere: Tampereen Ammattikorkeakoulu, 2021.

[36] “GitLab CI/CD,” [Online]. Available: https://docs.gitlab.com/ee/ci/index.html#concepts.
[Accessed 29 4 2022].

[37] “GitLab Runner,” [Online]. Available: https://docs.gitlab.com/runner/. [Accessed 29 4 2022].

[38] “Executors,” [Online]. Available: https://docs.gitlab.com/runner/executors/index.html.
[Accessed 29 4 2022].

[39] “Run your CI/CD jobs in Docker containers,” [Online]. Available:
https://docs.gitlab.com/ee/ci/docker/using_docker_images.html. [Accessed 29 4 2022].

[40] GitLab, “Infrastructure as Code with Terraform and GitLab,” GitLab, [Online]. Available:
https://docs.gitlab.com/ee/user/infrastructure/iac/. [Accessed 12 8 2022].

[41] GitLab, “Terraform.latest.gitlab-ci.yml,” GitLab, [Online]. Available: https://gitlab.com/gitlab-
org/gitlab/-/blob/master/lib/gitlab/ci/templates/Terraform.latest.gitlab-ci.yml. [Accessed 12 8 2022].

[42] D. Langenhan, “Chapter 3. Better vApps,” in VMware vCloud Director Cookbook, Birmingham,
Packt Publishing, 2013.

[43] E. B. Salomon, “JFrog Artifactory,” 21 4 2021. [Online]. Available:
https://www.jfrog.com/confluence/display/JFROG/JFrog+Artifactory. [Accessed 14 2 2022].

[44] HashiCorp, “How to use this provider,” [Online]. Available:
https://registry.terraform.io/providers/vmware/vcd/3.0.0/docs. [Accessed 15 7 2022].

[45] HashiCorp, “Artifactory,” [Online]. Available:
https://www.terraform.io/language/settings/backends/artifactory. [Accessed 15 7 2022].

[46] GitLab, “GitLab-managed Terraform state,” [Online]. Available:
https://docs.gitlab.com/ee/user/infrastructure/iac/terraform_state.html. [Accessed 1 9 2022].

44

[47] Ansible project contributors, “Ansible.Windows,” 21 12 2021. [Online]. Available:
https://docs.ansible.com/ansible/latest/collections/ansible/windows/index.html. [Accessed 14 2
2022].

[48] Red Hat, Inc., “win_chocolatey - Manage packages using chocolatey,” 2018. [Online].
Available: https://docs.ansible.com/ansible/2.6/modules/win_chocolatey_module.html. [Accessed
1 9 2022].

[49] “The .gitlab-ci.yml file,” [Online]. Available:
https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html. [Accessed 29 4 2022].

