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Depth estimation and image-based rendering are two of the essential tasks in computer vision 

and key enablers of many modern-day technologies such as autonomous navigation, robot-as-
sisted surgery, and 2-D to 3-D image conversion in the movie industry, to name but a few. Depth 
estimation can be defined as the problem of estimating the distance of each pixel within an image 
to the camera. Closely related to that, image-based rendering (IBR) is concerned with generating 
novel views from existing images. While the former is often considered one of the fundamental 
tasks in computer vision with a wide range of applications, the latter is mainly associated with 
virtual reality, immersive technologies, and 3-D reconstruction of the scene. 

  
Some of these applications' significant drawbacks are their large data throughput volume, 

large memory bandwidth requirement, and high processing time. Considering this, they often re-
quire hardware acceleration to work in real-time. In this thesis work, we investigate the parallel 
computing power of graphical processor unit (GPU) and also multi-core CPU by implementing a 
multi-view stereo algorithm for sparse light field depth estimation and an IBR algorithm based on 
plane-sweeping rendering on these platforms. We use Open Computing Language (OpenCL) as 
our programming framework of choice for GPU computing and OpenMP API for multi-core CPU 
implementation. We have shown that our GPU implementation can achieve up to hundreds of 
times of speed-up once it is compared against both single-core and multi-core CPU implementa-
tions. 

   
 
Keywords: Graphic Processor Unit, Multi-view Stereo, Image-based Rendering, OpenCL, 

Plane-sweeping 
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1. INTRODUCTION 

 

Retrieving the 3D geometry of the scene from the raw sensory data is one of the most 

fundamental problems in computer vision. The methods which perform such tasks, de-

pending on the type of sensors they use, can be categorized into two groups: active 

and passive. The active methods tend to measure the depth by physical interaction 

with the environment. Methods based on time of flight (ToF) and Ultrasound are exam-

ples of this type of approach [21][22]. Passive methods, on the other hand, are all com-

putation-based methods that analyze the optical features of the scene by capturing im-

ages via cameras. Methods based on stereo correspondences are a prominent exam-

ple of such methods that estimate the depth value for each pixel within an image (gen-

erating a depth map) by analyzing the scene from different views captured by a number 

of cameras. Consequently, these methods can be further categorized by the number of 

cameras they use, namely two-view stereo vision (uses two cameras only) and multi-

view stereo (uses more than two cameras). 

Stereo vision has a broad spectrum of applications ranging from robotics to 3-D and 

augmented reality. Most of these applications require real-time execution and highly 

accurate depth maps. However, satisfying these constraints is difficult due to the data-

intensive nature of algorithms and high memory and bandwidth requirements. Moreo-

ver, the ever-increasing resolution of images (HD, 4k, 6k, and 8k), increasing number 

of cameras (light field cameras, for example), and increase in depth value range are 

other factors that have made stereo algorithms increasingly time-consuming. 

Closely related to stereo vision and yet different are image-based rendering (IBR) algo-

rithms, which aim to create virtual views from already existing ones. Their applications 

are in virtual reality, where they create images from angles of the scene that cameras 

do not cover. In practical cases, IBR algorithms need to be executed in real-time to cre-

ate the immersive feeling that the users desire. Many IBR techniques require geometric 

information of the scene, which they use stereo vision techniques to achieve. As a re-

sult, they suffer from high computational cost for the same reasons as stereo algo-

rithms, such as high resolution of the images and extensive range of depth hypothesis. 

In order to address the computational issues of both problems, we can use a wide 
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range of hardware accelerators to reduce the execution time. In this thesis work, we 

use Graphic Processor Unit (GPU), which is optimized for data-parallel processing, as 

the platform of choice. 

GPUs are massively parallel arithmetic-oriented processors with high-throughput 

memory bandwidth, which allow for performing a large number of arithmetic operations 

in real-time. Originally designed exclusively for graphic computing, they later evolved to 

perform general purpose computing tasks, which have widely expanded the range of 

their applicability beyond graphic computing domain:  something which is called gen-

eral purpose computing with GPU or GPGPU. Today, GPUs are being used as hard-

ware accelerators in many high-performance and parallel computing systems to gain 

high speed-up for different applications. Alongside FPGAs and multi-core CPUs, they 

are often considered one of the major pillars of high-performance computing domain 

[11]. Compute Unified Device Architecture (CUDA), and Open Computing Language 

(OpenCL) are two of the most prominent GPGPU programming frameworks, while 

OpenGL and Directx3D are exclusively used for graphics computing. 

A GPU device can fetch a big chunk of data from memory all at once and process it 

through a large number of data-parallel computing units it possesses to produce the fi-

nal result. Optimized for performing matrix-like operations, they tend to perform very ef-

ficiently in processing image data types, making them a suitable choice for many com-

puter vision and image processing applications. In terms of programmability, GPUs are 

known to be far easier to program than FPGAs if the latter is programmed by hardware 

description languages (HDL). In fact, it is possible to reach a real-time or near real-time 

performance with a simple GPU implementation for a massively parallel data-intensive 

application such as those of computer vision and image processing. 

The objective of this thesis is to implement two different computer vision applications 

on GPU and report the speed-up by comparing it with the single-thread CPU imple-

mentation. The first application is a multi-view stereo vision pipeline that aims to pro-

duce dense depth map estimation for each of its input images which are obtained by a 

light field camera. The pipeline starts with an image segmentation engine to shrink the 

size of the images and proceeds with a depth initialization and later an optimization 

scheme to estimate and refine the depth values, respectively. The second application 

is an image-based rendering task in which a view interpolation algorithm is used to cre-

ate non-real images captured by a virtual camera that moves between two real stereo 

cameras. Both applications are extremely time-consuming when executed on a tradi-

tional single-core CPU mostly due to high image resolutions and large range of depth 
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quantization levels or depth hypothesis. We will show that a GPU implementation can 

significantly reduce the execution time of both applications. 

The rest of this thesis is organized as follows: Section 2 explains the necessary back-

ground for stereo vision, image-based rendering, and understanding the principles of 

GPU computing. In Section 3, we explain algorithms and our implementations. The re-

sults are represented in Section 4, and finally, we conclude the thesis in Section 5. 
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2. BACKGROUND 

2.1 Stereo Vision for Depth Estimation 

2.1.1 Pinhole Camera Model 

In its simplest form, the camera can be shown as a barrier with an ideally infinitely 

small aperture (abstract point) in the middle, which is placed between the 3D object 

and the image sensor. The reason for such a system is that each point within the 3D 

world emits several rays of light in different directions. If there is no barrier in between, 

each point on the 2D sensor plane will receive light rays from all the points within the 

3D scene. However, if there is a barrier with an ideal aperture in the middle, then only 

one ray of light from each 3D point can hit the sensor plane, creating a one-to-one 

mapping from the 3D world to the 2D sensor plane. The process has been demon-

strated in Figure 2.1. 

 

Figure 2.1 Only one ray of light from each 3D point can hit the sensor plane [86]. 

This simple system is referred to as pinhole camera model. Figure 2.2 shows a more 

detailed structure of an ideal pinhole camera model. In a pinhole camera, the distance 

between the pinhole and sensor plane is called the focal length. The line that passes 

through the pinhole and is perpendicular to the sensor plane is called optical axis and 

the intersection of this line with the sensor plane is called the principle point of the cam-

era, which has the coordinate of (0, 0). 
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Figure 2.2. Typical structure of pinhole camera model [87]. 

Camera Intrinsic Parameters 

The camera model is a mathematical description of how a camera captures images. 

Considering this, camera intrinsic are types of parameters that determine how the 3D 

points in the world are projected to 2D points on the image plane. Given the depicted 

scheme in Figure 2.3 and by using the triangles technique, the mapping formula for 

converting the 3-D point 𝑃(𝑋, 𝑌, 𝑍) to the 2-D point 𝑝(𝑥, 𝑦) can be done as follows: 

Equation 1: 𝒙 = 𝒇
𝑿

𝒁
,   𝒚 = 𝒇

𝒀

𝒁
 

 

  

Figure 2.3. Image plane of pinhole camera model [88]. 

Camera Extrinsic Parameters 

Camera intrinsics explain how the 3D coordinates are projected on the image plane,  

assuming that the camera and word coordinate systems are the same. The extrinsic 

parameters come into play when 3D points in the world are in the different coordinate 

system than that of the camera. A transformation is needed, as shown in Figure 2.4, to 

transfer these points from the world coordinate system to the camera coordinate sys-

tem before projecting them on the image plane. These transformations come in the 
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form of rotation matrix 𝑅3×3 and translation vector 𝑇3×1, both of which can be concate-

nated to form what is known as extrinsic matrix Equation 2. 

 

Figure 2.4. Rotation and translation changes coordinate system 

 

 

Equation 2: [𝑹𝟑×𝟑|𝑻𝟑×𝟏] = [

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒕𝟏

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑 𝒕𝟐

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑 𝒕𝟑

], where 𝑻𝟑×𝟏 =  −𝑹𝟑×𝟑 × 𝑪𝟑×𝟏  

The Equation 3 can be further updated with camera intrinsic and extrinsic matrices to 

form a new matrix 𝑃3×4 which is called projection matrix. 

Equation 3: 𝒁 [
𝒖
𝒗
𝟏

] = [
𝒇𝒙 𝒔 𝒄𝒙

𝟎 𝒇𝒚 𝒄𝒚

𝟎 𝟎 𝟏

] [

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒕𝟏

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑 𝒕𝟐

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑 𝒕𝟑

] [

𝑿
𝒀
𝒁
𝟏

] 

=  𝐾[𝑅3×3|𝑇3×1] [

𝑋
𝑌
𝑍
1

] 

= 𝑃3×4  [

𝑋
𝑌
𝑍
1

] 

2.1.2 Stereo Matching 

Stereo matching is the most traditional form of depth estimating with cameras. In a ste-

reo camera system, two identical cameras are put in slightly, horizontally or vertically, 

different positions from each other. The photos of the scene must be taken synchro-

nously by the two cameras to make sure that the configuration of the scene does not 

change during the image acquisition process. The images which are obtained in this 

way are referred to as stereo pair images or just stereo images. 

Taking the images from the same scene from two different perspectives allows the ste-

reo matching algorithms to extract the depth information by analyzing the similarities 
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between the two views. The key idea enabling these algorithms comes from a physical 

phenomenon called the parallax effect, based on which distant objects tend to move 

slower than closer ones [18]. This principle was originally used in astronomy to esti-

mate the distance of galactic objects such as stars and planets, but here it is being 

used to estimate the distance of each pixel from the camera [23]. 

According to the parallax, pixels belonging to the objects which are further away from 

the camera have more displacement (disparity) within the stereo images than the pixels 

of the closer objects. This implies that there is a reverse relationship between the depth 

of a pixel and its disparity in the stereo pair. However, finding the exact disparity for 

every single pixel has been shown to be an NP-hard problem for many stereo matching 

solutions [24]. Hence, many stereo matching algorithms are approximation solutions 

that aim at estimating the disparity of each pixel by finding the similar parts of two im-

ages. In this regard, it is often called the stereo correspondence problem. It can further 

be proved that by obtaining the disparity of a pixel, its depth can be calculated using 

the intrinsic parameters of the camera, which will be explained in more details in the 

next sections. 

The traditional methods of stereo matching are usually categorized into two main 

groups: local methods and global methods. The local methods use a supporting win-

dow and a similarity function to do a similarity search across the stereo images to find 

the corresponding pixel for each pixel in the corresponding stereo image [30][31][32]. 

Global methods, on the other hand, optimize  a global cost function for the entire image 

to obtain an approximately good disparity label for each pixel 

[33][34][35][36][37][38][39]. Generally speaking, local methods are faster but produce 

lower quality depth maps, while global methods are slower (more computationally in-

tensive) but tend to produce more accurate results. There is also a third approach 

called semi-global matching, which tries to find a trade-off between local and global 

methods [40][41]. 

Modern day stereo matching algorithms, however, are mostly based on neural net-

works which either directly learn a mapping from the stereo pair to the depth map 

[25][26][27] or indirectly by first computing a cost-volume from the stereo images, then 

using a neural network to find a mapping from the cost-volume to the disparity/depth 

map [28][29]. 

In the rest of this section, we introduce a general taxonomy of stereo matching algo-

rithms which can be shown as a four-stage pipeline. Figure 2.5 shows a diagram of a 
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typical stereo pipeline. All the traditional stereo algorithms tend to implement all or a 

subset of this pipeline [24]. 

 

 
Figure 2.5 A typical stereo matching pipeline [90]. 

In the first stage of the pipeline, a similarity search is performed over two images to 

form an initial estimate of similarities among horizontal (or vertical) pixels of images. 

This initial estimate is called cost-volume. In the second stage, extra post processing 

and filtering operations are performed on cost-volume to further improve the accuracy 

of the initial estimate. In the third stage, the best disparity found so far is picked as the 

most potential candidate for each pixel in the volume to form an initial disparity map. In 

the fourth and final stage, we try to further improve the initial disparity map using opti-

mization algorithms. In the rest of this section, we explain each stage of the pipeline in 

greater detail. 

Computing the matching cost 

The first step in computing matching cost is to select a similarity function, which is used 

to measure the degree of similarity between two pixels in the left and right images, re-

spectively. There are a number of similarity functions with their own specific properties. 

One of the most commonly used functions is squared intensity difference (SID). The 

SID formula is as follows, where 𝐿 and 𝑅 are left and right images, respectively: 

Equation 4: 𝑪𝑺𝑰𝑫(𝒙, 𝒚) =  (𝑳(𝒙, 𝒚) − 𝑹(𝒙, 𝒚))
𝟐
,            

Another common option is absolute intensity difference: 

Equation 5: 𝑪𝑨𝑰𝑫(𝒙, 𝒚) = |𝑳(𝒙, 𝒚) − 𝑹(𝒙, 𝒚)|,             

In some stereo matching algorithms, matching cost computation and cost aggregation 

steps are merged into a single step. This allows for employing similarity measures that 

work over a range of pixels rather individual pixels. Similarity measures based on cor-

relation coefficient [42] and more recently proposed functions based on Siamese net-

works [43][44] are such examples. Figure 2.6 shows an example of Siamese network 

which applies a series of convolutions on local patches of left and right images before 

using a dot product to produce the similarity score. 
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    Figure 2.6. The similarity function based on Siamese network [44]. 

It is important to note that in the context of multi-view stereo (MVS) the similarity func-

tion is referred to as the photo-consistency function.  

After selecting the similarity function, in the next step, we need to find the matching 

points between two stereo images to compute the initial cost-volume. The matching 

point can be found using the constraint induced by the epipolar geometry between two 

images. Figure 2.7 shows the general setup of epipolar geometry. 

 

Figure 2.7 general setup of epipolar geometry [45][89]. 

 In a more general case, two cameras can be placed in any arbitrary position to each 

other. Here, the image plane of each camera is placed in front of its principal point, and 

two principal points (𝑂 and 𝑂′) are connected through a green line called the baseline. 

The 3D point 𝑃, which is observed by both cameras, is projected on each image plane 

𝐼 and  𝐼′ to form points 𝑝  and 𝑝′, respectively.  By passing plane from the baseline and 

the point 𝑃 and intersecting it with each image plane (𝐼 and 𝐼′) we will obtain two lines 

(𝑙 and 𝑙′), which are being referred to as epipolar lines. By computing the essential ma-

trix, it can be shown that points on one epipolar line correspond to the points on an-

other epipolar line [45]. In other words, given the point 𝑝, in order to find the corre-

sponding point 𝑝′, we only need to search line 𝑙′ instead of the whole image. 
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Figure 2.8 epipolar setup for stereo matching system [89]. 

In the case of stereo matching with two horizontal cameras, since baseline is parallel to 

the both image-plane, Figure 2.8, the epipolar lines 𝑙 and 𝑙′ would become the corre-

sponding rows of the two image planes. Now by taking one image as the reference 

(usually the left image 𝐿), we can generate a three-dimensional matrix called cost-vol-

ume with the same height and width as the input image and the same depth as the 

number of the disparity levels. Considering this, each (𝑥, 𝑦, 𝑑) entry of this matrix con-

tains the similarity value at the disparity level 𝑑 for the pixel (𝑥, 𝑦) in the reference im-

age. The process is better shown in the following equation: 

Equation 6: 𝑪(𝒙, 𝒚, 𝒅) = 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑳(𝒙, 𝒚) − 𝑹(𝒙 − 𝒅, 𝒚)) 

Computing Cost Aggregation 

If we use the initial cost-volume created in the previous stage directly to compute the 

disparity, it will only generate a distorted (noisy) disparity map similar to the one in Fig-

ure 2.9-left, whereas the ground truth of the same scene is smooth and noiseless (Fig-

ure 2.9-right). 

We aim to remove the noise at the cost aggregation stage and improve the result by 

applying an aggregation function on the cost-volume produced in the previous stage. 

The aggregation function is defined based on the assumption that disparity/depth val-

ues change smoothly across the image and only change sharply near the boundary of 

the objects. This implies that there is a high correlation among the disparity values of 

neighbouring pixels. As a result, the aggregation for each pixel is performed over a lo-

cal region captured by a sliding support window which filters the entire cost-volume. 
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Figure 2.9. disparity map without aggregation (left) ground truth (right) [90].  

The local window can come in different sizes (e.g., 5 x 5 or 11 x 11), different shapes 

(one to three dimensions), and different weights (uniform, Gaussian) [46][47]. In some 

cases, we may use color proximity as a weighting factor for disparities or adjust the 

size of the local window to generate more robust results [48]. 

A simple example of an aggregation function is the box method with a N x N window, 

where N = 2r. The formula is as follows: 

Equation 7: 𝑪𝑨(𝒙, 𝒚) =
𝟏

𝑵𝟐
∑ ∑ 𝑪(𝒙 + 𝒏, 𝒚 + 𝒎)𝒓

𝒎=−𝒓
𝒓
𝒏= −𝒓  

Treating the cost-aggregation as a filtering operation, where each slice of the cost-vol-

ume across the disparity axis is considered as a depth map, could quickly lead to a 

computational inefficiency once the range of the disparity levels increases. The higher 

the disparity range, the more depth map slices needed to be filtered. For the simple 

box method, this issue has been addressed using the well-known SAT (summed area 

table) method, which is proposed in [49].  

The algorithm works in two stages. First, for each pixel location, the following summa-

tion will be done, and the results are stored in the table 𝑆, which has the same size as 

the image: 

Equation 8: 𝑺(𝒙, 𝒚) = ∑ ∑ 𝑪(𝒏, 𝒎)
𝒚
𝒎

𝒙
𝒏=𝟎  

In the second stage, the aggregation cost at each point is calculated using the following 

formula: 

Equation 9: 𝑪𝑨(𝒙, 𝒚) =
𝟏

𝑵𝟐 (𝑺(𝒙 + 𝒓, 𝒚 + 𝒓) − 𝑺(𝒙 − 𝒓 − 𝟏, 𝒚 + 𝒓) − 𝑺(𝒙 + 𝒓, 𝒚 − 𝒓 −

𝟏) + 𝑺(𝒙 − 𝒓 − 𝟏, 𝒚 − 𝒓 − 𝟏)) 

Disparity Computation 

In local methods, most of the focus is on the first two stages (matching cost computa-

tion and cost aggregation), and the disparity computation is simply done by choosing 
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the disparity with the minimum cost at each pixel location (x, y): the so-called WINNER-

TAKES-ALL approach [24].  

Global methods, on the other hand, tend to ignore cost aggregation or use it as a sim-

ple initialization process [24][45]. The reason for this is those global methods, unlike lo-

cal methods, enforce a global smoothness constraint, which removes any need for en-

forcing local smoothness by the cost aggregation step.  

Contrary to local methods, global methods do most of the job during the disparity com-

putation stage, where a global energy (cost) function is minimized to enhance the qual-

ity of the disparity map to a high level. The objective is to assign a disparity label to 

each pixel in such a way that minimizes an energy function with the following form: 

Equation 10: 𝑬(𝒅) = 𝑬𝒅𝒂𝒕𝒂(𝒅) +  𝝀𝑬𝑺𝒎𝒐𝒐𝒕𝒉(𝒅), 

where 𝐸𝑑𝑎𝑡𝑎(𝑑) measures how well the current disparity 𝑑 does fit in and 𝐸𝑆𝑚𝑜𝑜𝑡ℎ(𝑑) 

measures the cost of assigning two different labels (i.e., 𝑑𝑝and 𝑑𝑞) to two adjacent pix-

els. 

2.1.3 Multi-view Stereo 

Multi-view depth estimation is a general term used for describing a set of algorithms 

and methods which solve the stereo correspondence with more than two images. Alt-

hough one might consider MVS a natural improvement to stereo methods, as the addi-

tional number of views would lead to the generation of a more accurate depth map, the 

main goal of the MVS is to reconstruct the 3-D geometry of the scene [45]. As a result, 

the MVS algorithms follow a slightly different pipeline than that of the stereo, which we 

have introduced so far. In this section, we limit ourselves to the depth estimation aspect 

of the MVS and highlight some of its key features as well as similarities and differences 

with respect to stereo methods. 

The first difference between MVS and stereo vision is the way they represent the 

scene’s geometry. While the standard binocular stereo generates a single depth map 

by choosing one of the views as a reference view, an MVS approach would generate a 

depth map for each one of the views. In addition to depth maps, MVS methods would 

also use different ways to represent a scene’s geometry such as voxels, level sets, and 

polygon meshes. In this thesis, we mainly focused on the type of MVS algorithms that 

works with depth map [50]. 

Another critical difference between MVS and stereo matching is the camera setup. In 

the MVS, several cameras can be placed at any distance and angle from each other to 

capture different parts of an object. One of the consequences of such camera setup is 
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that the input images, unlike the stereo matching, are no longer rectified. For this rea-

son, it is no longer beneficial to use disparity as a substitution for depth since we need 

to perform a 2D search on all other views to find the corresponding points. Therefore, 

for MVS algorithms, it is more common to work directly with depth rather than disparity 

for which we only have to perform a 1-D search on a range of depth hypotheses to find 

the corresponding point on each view [51]. 

One advantages of the MVS method over stereo vison methods is in the photo-con-

sistency (similarity function), where adding extra views creates a better cost-volume. 

Given the disparity/depth 𝑑, the cost-volume for the MVS method is obtained by itera-

tively performing the following equation over different values of 𝑥, 𝑦, and k. 

Equation 11: 𝑪(𝒙, 𝒚, 𝒅) = ∑ 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑰𝒌(𝒙, 𝒚), 𝑰𝒓(𝒙, 𝒚), 𝒅)𝒌  

Here,  𝐶(𝑥, 𝑦, 𝑑) is obtained by summation of photo-consistency values of all the views. 

As MVS methods look at a scene (object) from a different perspective, they have to 

deal with the issue of visibility and occlusion (Figure 2.10). Photo-consistency computa-

tion cannot lead to a correct result if it is performed over an occluded region. As a re-

sult, occlusion modeling needs to be done to determine which views are visible and 

can be used for photo-consistency [50]. 

 

Figure 2.10. visible and occluded camera in MVS camera setup [51] 

2.2 Image-based Rendering 

Creating a computer-generated virtual environment that simulates the real world and 

gives users an immersive experience is one of the long-standing goals of virtual reality. 

Achieving such a goal requires modeling and rendering an entire environment from any 

arbitrary point of view. In this regard, constructing and representing 3D objects as well 

as free-viewpoint navigation within the environment are considered as two of the most 

fundamental challenges within this field [45]. 
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Modeling and rendering of a 3D scene have been traditionally done using computer 

graphics algorithms through 3-D geometry modelling followed by model-based render-

ing. While modeling is concerned with extracting the geometry and illumination charac-

teristics of the scene to form a 3D model, the rendering is about performing computa-

tion on this model to generate a desired photo-realistic view [52]. The rendering of the 

view can be done based on several variables such as user’s position, illumination, and 

color. Such rendering techniques include illumination/shading computation, geometric 

cropping, and simplification of the reconstructed scene [53].  

The strength of model-based techniques lies in the accuracy of their model and flexibil-

ity of the rendering. A 3D model is expected to represent the complete scene geome-

try. Rendering also can be applied with different specifications on the same model to 

create different images. The downside, however, is the high computation cost.  As the 

size of the scene and/or complexity of the objects grow, the complexity of the 3-D 

model increases, which makes it more time-consuming to obtain. Because of this, tradi-

tional graphics-based techniques are not preferred for rendering real-world scenes 

where the 3D model is hard to obtain. These techniques have applications in computer-

aided design, game development, and other engineering disciplines which employ syn-

thetic scenes, where the geometrical models are pre-defined. 

Contrary to model-based rendering methods, there are image-based rendering meth-

ods that use multi-perspective images as the fundamental building blocks to achieve 

the same goal. One of the direct consequences of using such approaches is reducing 

the computation time. The reason is that, first, traditional methods use complex geome-

try modeling and rendering, whereas in IBR we perform only simple operations and 

analysis on a set of images. Second, in IBR, computational complexity does not in-

crease with the increase in the complexity of the objects and their relationships. And fi-

nally, since we directly render the scene from the images, the generated views are al-

ready photo-realistic, and there is no need for additional computation on that. All these 

advantages together make IBR a very suitable alternative approach to traditional com-

puter graphics-based techniques.  

The IBR can be defined as the problem of reconstructing a non-existing view of the 

scene from a set of already existing views captured by a system of cameras. Generally, 

IBR techniques can be categorized in two groups, depending on the amount of the ge-

ometry information available, namely rendering without geometry and rendering with 

geometry [53]. In some references, the rendering with geometry is further broken down 

into rendering with implicit or explicit geometry [52][54]. Figure 2.11 shows the whole 

range of different IBR techniques. 
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Figure 2.11. The nomenclature of IBR techniques [52] 

Regarding rendering without geometry, a new scene is entirely reconstructed from 

multi-view images and videos using a special formalism based on the plenoptic func-

tion. Originally proposed in [55], a plenoptic function is a 7-dimension function that can 

describe the intensity of light at any given point, direction, and wavelength in the scene 

[56]. A new scene view can be rendered from the plenoptic function, which has to be 

reconstructed first from its sampled version (i.e., a set of multi-view images). Prominent 

examples of this type of rendering are techniques based on light field rendering and lu-

migraph [57][58], as well as Concentric Mosaics [59]. 

Geometry-based methods, on the other hand, incorporate the geometry of the scene to 

reduce the number of required images. Implicit geometry methods, for example, would 

use feature correspondences, e.g., point-to-point correspondences, to generate a new 

view without directly working with the depth information. Examples of such methods are 

view interpolation [60] and view morphing [61]. The explicit geometry methods, how-

ever, require receiving the whole geometry information of the scene, usually in the form 

of a depth map. Layered Depth Images [62] and 3D Warping techniques [63] are prom-

inent examples of this class of rendering. 

Image-based rendering, especially geometry-based methods, is often considered as a 

direct application of stereo vision. In this thesis, we target a view-interpolation method 

based on plane-sweeping principles to generate novel views from stereo images. Gen-

erally speaking, these algorithms heavily rely on point projection among different views 

as well as on camera calibration. 

2.3 Parallel Computing 

The early computers were originally designed based on the sequential model of ma-

chine languages to make them easy to program, even though the hardware itself is 
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inherently parallel [1]: the so-called serial illusion [2]. However, as time passed, the in-

creasing demand for more computational power led to the unleashing of more and 

more parallel processing potential of the computers. The early parallelism was done at 

three different levels: bit-level parallelism, instruction-level parallelism, and data-level 

parallelism. These types of parallelism, however, were implemented implicitly by the 

processor itself without impacting the software development process at all [7]. In addi-

tion to implicit parallelism, the software community also heavily relied on rapid improve-

ments in the clock frequency of microprocessors to consistently enhance the perfor-

mance of their software applications. The same serial version of the code could now 

enjoy faster execution on the next generation of hardware without programmers being 

needed to do anything regarding the performance of the software. As a result, the de-

velopment of new software applications became completely dependent on the recent 

advancements in hardware, not better software engineering.  

Things for the software community, however, started to change in 2003 when computer 

vendors could no longer increase the clock frequency of their processors easily: mostly 

due to issues like power consumption and heat dissipation [3]. To fill the performance 

gap, computer architects developed new models based on multiple computing units, 

known as processor cores, and created a new form of parallelism called thread-level or 

task-level parallelism. Unlike the previous types of parallelism, thread-level/task-level 

parallelism requires direct intervention of programmers, affecting many aspects of soft-

ware development: algorithm design, implementation, and debugging, to name but a 

few. From that time onward, only software written in parallel could enjoy the benefit of 

newer generations of hardware. It was a start of a paradigm shift for the software de-

velopment community, which is known today as the concurrency revolution [4]. One of 

the consequences of this shift was to make programmers become more aware of the 

architecture specifications of the processor under the hood to develop their applications 

based on that accordingly. Developing a good software application based on hardware 

requires better resource allocation [5] and assign each task to the best type of proces-

sor or processor core [6]. The latter is a key component in the embedded systems pro-

gramming and will be explained in more detail in the following sections. 

2.3.1 Heterogeneous Computing 

Different types of algorithms present a different range of computational behavior. Some 

algorithms, such as searching or parsing, are very control-intensive. This means that 

these algorithms use a high number of if-then-else statements within their coding struc-

ture. Unlike arithmetic operations like addition and multiplication, control operations are 
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handled by the control unit (CU) of the processor rather than the arithmetic logical unit 

(ALU). This class of algorithms is known to be very hard to parallelize. In contrast, 

data-intensive algorithms, which process a vast amount of data, tend to be more arith-

metic oriented and more parallel-friendly [7]. Most of the algorithms in computer 

graphics, image/signal processing, computer vision, and deep learning [8] belong to 

this category of computation. There is also another branch of the algorithms, which is 

known as compute-intensive. In this class of algorithms, lots of processing is being 

done on a limited amount of data. Many iterative algorithms, such as those in numerical 

methods and financial modeling, belong to this category of computation. 

In order to optimally cover this wide range of computing domain, different computer ar-

chitectures were developed with each of which being excelled at only one or few as-

pects of computation. Superscalar CPUs [7][11] with a large control unit and high clock 

frequency were designed to handle-control intensive tasks, while GPUs and vector pro-

cessors, where a single instruction is executed for multiple data (SIMD), tend to work 

better with data-intensive applications [9]. Field programmable gate arrays (FPGAs) 

are another type of platform that can be programmed either by HLS (high level synthe-

sis) using instruction-based languages such as C/C++, system C, and OpenCL or in 

traditional ways using Hardware Description Languages (HDL) like Verilog and VHDL. 

FPGA would allow developers to design and optimize an architecture of their choice, 

the one that perfectly fits into the computational structure of their application. Another 

advantage of FPGA is their low energy consumption compared to GPUs, while their 

downside is their low clock frequency [10]. Digital signal processors (DSPs) are an-

other worth mentioning spectrum of microprocessors, which are commonly used in em-

bedded systems such as smartphones to perform tasks such as audio processing, im-

age encoding/decoding, and voice recognition [7]. 

The problem, however, comes from the fact that each application is a mixture of differ-

ent types of computation, and there is no single best device to address them all per-

fectly. For example, an application might possess some areas which are control-inten-

sive, therefore more suitable to be executed on a CPU, while it has some other areas 

which have lots of bit-wise operations and are more suitable for an FPGA platform 

[11][12][13]. The solution is to use multiple processors, and the challenge is to find the 

right combination of devices to solve the problem optimally. Considering this, the pro-

grammer’s task is to map their applications on a wide array of architectures to find the 

best performance: execution time, power consumption, or both depending on the goal. 

This type of computation where comprising tasks of an application are divided among 
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processors with different architecture within the same framework is called heterogene-

ous computing. 

2.3.2 Heterogeneous Computing for parallel processors 

Heterogenous computing comes with an inherent opportunity to exploit parallelism in 

applications as it can combine parallel and serial processors in one framework. Since 

2003 and the beginning of the concurrency revolution, computer architects came up 

with two main trajectories for their newly designed parallel processors: multi-core and 

many-thread. Multi-core approach tends to utilize parallelism within the application 

while maintaining good performance on the sequential parts of the code. Examples of 

such are the latest series of intel core-i family for personal computers and Xeon family 

for servers [14]. In these processors, each core has its own program counter and exe-

cutes a full x86 instruction set [15]. Many-thread approach [3], on the other hand, tends 

to sacrifice the sequential performance of the code entirely in the favour of parallelism 

by dedicating a huge portion of silicon area (die) to arithmetic cores. Processors of this 

type are often referred to as massively parallel processors. The prime example of such 

is graphic processor units (GPUs), which are originally developed for the video game 

industry, but later found their way to high-performance computing community. Today 

modern GPUs like Nvidia RTX 2080Ti possess approximately 4000 cores with floating 

point performance of 13.45 teraflops. This number would become even more stunning 

when it is compared with the performance of the latest intel core i9 series which is no 

more than 1.3 teraflops [16]. 

A real-world application, however, is neither purely parallel nor sequential but a mixture 

of both. In fact, a typical program consists of both sequential and parallel parts, with the 

sequential parts taking the most volume of the code, while the parallel parts take the 

most execution time, as illustrated in Figure 2.12. GPUs tend to perform very poorly in 

the face of the sequential portion of the code, whereas CPUs, with their high working 

frequency and sophisticated control logic tend to work the best. This implies that nei-

ther GPU nor CPU alone is not enough to address the heterogeneous nature of the 

parallelism, while a joint CPU-GPU framework is a natural option to address this prob-

lem. 

2.3.3 GPU Architecture 

GPU’s architecture finds its roots in demand in computing 3-D graphics, where a large 

number of arithmetic operations had to be done in real-time. To gain a deeper insight 
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into the architecture of GPU, in this section, we contrast it against the CPU’s architec-

ture, which in many respects plays a complementary role to GPU. 

 

Figure 2.12 Distribution of sequential and parallel portion of an application [3]. 
Peach is the total execution time of application. Meat of the peach (orange) is 
the data-parallel part and pit of the peach (red) is the serial part of the core. 

CPU and GPU follow two fundamentally different philosophies of design. The former 

focuses on minimizing the program's latency, defined as the time delay to perform each 

task [2]. This requires the employment of strong cores which are optimized for single 

thread performance of the code. As a result, a CPU core tends to possess a very high 

clock frequency and a more sophisticated control unit for strong ILP support, namely 

superscalar, branch prediction, and out-of-order execution. Moreover, a large cache 

size is being employed to cover up high-latency memory access operations which have 

the highest clock cycle count among all instructions. All of this, however, comes at the 

cost of consuming an increasingly bigger portion of the chip area and more power sup-

ply, which, in turn, dramatically reduces the number of the cores that can be used on 

the chip. As a matter of fact, most of the modern-day CPUs do not possess more than 

thirty cores on their chip [19]. 

GPUs’ architecture, on the other hand, has been optimized to maximize the throughput 

of the program. The throughput is defined as the number of tasks being done in a given 

amount of time. Unlike latency, which is the unit of time per unit of the task, throughput 

measures the unit of work (number of tasks) per unit of time. The consequence of such 

an approach would lead to a significantly different design where the number of the 

cores is prioritized over the computing power of each core. This, however, can come at 

the cost of increasing the latency of each individual thread, causing the processor to 

perform poorly in the presence of a low amount of parallelism, unlike a latency-based 

design which tends to work poorly in the presence of a high amount of parallelism.  
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The schematic difference between CPU’s and GPU’s architectures has been demon-

strated inFigure 2.13. As it can be seen, a GPU is almost entirely made up of arithmetic 

cores that share control logic and cache memory among themselves. The GPU cores, 

though, are not nearly as powerful as their CPU counterpart. They are smaller in size 

(made up of fewer transistors), work with less clock frequency, and do not have their 

own independent control unit. As a result, they do not do very well in the face of com-

plex tasks where lots of control flow is involved. However, what they lack in speed and 

complexity, they compensate with numbers. Due to their huge number of cores, GPUs 

are capable of computing a massive number of arithmetic operations at the same time, 

maximizing the throughput of the program. As a result, GPUs tend to be extremely 

good at matrix and vector computation where lots of arithmetic operations are being 

done. 

     

Figure 2.13. the difference between CPU and GPU architecture [3]. 

Another major difference between CPU and GPU is the cache memory. Cache memo-

ries are great tools for decreasing the instruction and data latencies by fetching them 

before they are needed. However, GPUs tend to dedicate most of their die to arithmetic 

cores; hence, they do not possess a big cache size. In GPU, long latency operations, 

such as memory accesses, are being addressed in two other ways. Firstly, by taking 

advantage of a large number of available tasks, GPU can keep itself occupied doing 

the rest of the tasks in the queue while data for other groups of tasks is being fetched 

from memory: the so-called latency hiding. Secondly, GPUs tend to compensate for 

the long-latency memory operations by employing a very high memory bandwidth that 

exclusively focuses on the throughput. The GPU memory bandwidth can fetch a big 

chunk of data all at once. It might not fetch each data as fast as the CPU does, but it 

loads a big chunk of data in consecutive memory locations much faster. As a result, if 

applications can use consecutive data memory elements, the data can be loaded into 

the device much faster. In GPGPU, the techniques which allows programmers to do so 

are called memory coalescing techniques [3]. A limited cache memory is only 
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provided to control the data access congestion on the bandwidth, so that multiple 

threads do not access the same memory location. 

Computer Organization of GPU 

GPUs from different manufacturers, e.g., Nvidia and AMD, can have different computer 

organizations. A typical Nvidia GPU processor is organized as an array of computing 

units called streaming multiprocessor (SM). Each SM is a complete and independent 

processor. It has its own cache, control, and arithmetic logic unit and can work in any 

order to other SMs, allowing the GPU to support thread-level parallelism.  SMs are fur-

ther organized into building blocks called processor clusters (PC); Each PC can contain 

one or more SMs depending on the architecture of the device [20]. 

SMs are independent of each other but not isolated. They share a slow high-bandwidth 

off-chip global memory and fast on-chip L2-level cache memory, which can be ac-

cessed by all the cores within the device. These two memories are a place for SMs to 

collaborate and share data with each other. The global memory is separated from the 

CPU’s RAM, which is located in the computer's motherboard. Both global and RAM 

memories use a PCI-Express bus to transfer data between each other. 

Figure 2.14 shows a typical architecture of a SM. Each SM has a dedicated cache 

memory, which is partitioned into two different areas: The L1 level cache for fast in-

struction fetch and shared memory for low latency data access and thread-level collab-

oration. Furthermore, each SM has a large register bank to accelerate thread-level 

computation. SM is a heavily multithreaded processor. It contains an array of SIMD 

cores called streaming processor (SP). SP is a small vector processor capable of DLP 

(Data Level Parallelism) support [2]. 

In Nvidia GPUs, each consecutive 32 threads form a computing unit called warp, and 

each SM can handle at least one warp per cycle. All the threads of a warp are exe-

cuted in parallel by the SM. The unit called warp scheduler is provided to implement la-

tency hiding by switching between stalled and eligible warps [93]. A stalled warp is a 

warp whose instruction cannot be issued (mostly due to the high memory access la-

tency), and eligible warp is a warp whose instruction is ready to be executed. The key 

point here is that all the threads within a warp share the same control path (same warp 

scheduler and program counter register, for example), while each of them having their 

own arithmetic core. This means that they load and execute the same instruction with 

different operands at the same time. The terminology used by NVIDA to describe this 

model of execution is called SIMT or Single Instruction Multiple Thread. It is a similar 
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concept to SIMD with this difference that a single instruction is being executed for mul-

tiple thread not multiple data.  

 

            Figure 2.14. computing organization of an SM [20].                                   

2.3.4 Open Computing Language  

Open computing language (OpenCL) is a programming framework for parallel compu-

ting in heterogeneous environment. Initially, a project supported by Apple, it was soon 

joined by other major microprocessor vendors such as NVIDIA, Intel, and AMD. As a 

result, OpenCL is platform independent. It supports a wide range of devices, and its 

code can be executed on any combination of these devices. 

OpenCL introduces a number of API functions to interact with these devices. A general 

OpenCL program is made-up-of four parts, which are being referred to as models: The 

Platform model, the execution model, the kernel programming model, and the memory 

model. In the rest of this section, we explain each of these models and introduce their 

API functions 

Platform model 

The platform model determines the topology of the computing system. A typical hetero-

geneous system consists of a host processor, usually a CPU, and a number of devices. 

The host is the main processor of the system and is responsible for launching the exe-

cution of the program. Devices are co-processors, which are working in accordance 

with the host. OpenCL platform model has been designed to model such a framework. 

As a result, an OpenCL program has a host side of a code, which contains the main 

program and runs by the host processor and kernels. Kernels are OpenCL functions 
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that are executed on the device. In a typical CPU-GPU platform, the CPU is the host, 

and GPU is the device. CPU starts and finishes the execution of the program and can 

decide when and when not to use the GPU. 

In addition to defining the relationship between host and device, the platform defines an 

abstract hardware model for the devices (Figure 2.15). In this abstract model, each de-

vice consists of an independent block called compute unit, and each compute unit con-

tains at least one processing element. In the case of an NVIDIA GPU, we discussed 

earlier, each SM is a compute unit, and each SP is a processing element. 

 

Figure 2.15. OpenCL Abstract hardware model [7]. 

The platform is an implementation of OpenCL. This means that we have a number of 

devices on our system, and a specific platform may consider only a subset of the de-

vices to work with. For example, an NVIDIA-made platform may not recognize the Intel 

CPU installed on our system because it is from a different vendor, and its instruction 

set is not known by NVIDIA. 

Execution model 

After determining platform and devices within it, OpenCL program proceeds with an ex-

ecution model to run kernel codes on the set of devices.  In order to do that, an object 

named context is created. Context is an abstract framework for defining and managing 

other OpenCL objects, which have something to do with the execution of the kernels 

such as memory and kernel objects. The API function for creating context is as follows: 

cl_context 
clCreateContext ( 
const cl_context_properties *properties, 
cl_uint num_devices, 
const cl_device_id  *devices, 
void (CL_CALLBACK *pfn_notify)( 
 const charr *errinfo, 
 const void *private_info, 
 size_t cb, 
 void  *user_data), 
 void *user_data, 
 cl_int *errcode_ret) 
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Context is platform specific and take devices of the platform as an input argument. This 

means that it can be defined for any number of devices available within the platform, 

but it cannot be defined for devices associated to other platforms. The API function   

clCreateContextFromType() is also provided to create context for all the devices of the 

same type (all GPU or CPU devices) within the platform [7]. 

After defining the context, we can use it to define several other objects to initiate, con-

figure and execute our kernel codes. For example, we can use memory objects like 

buffers (cl_mem) to allocate memory on devices’ memories or kernel objects (cl_ker-

nel) to call our kernel functions. OpenCL kernel codes usually written in form of string. 

An object with the type of Program can be used to read the entire string code, compile 

it, and store it to be used by other objects later.  

Another important aspect of execution model is a communication mechanism called 

command-queue. A command-queue object is created to enable the host to directly 

command a specific device within the context to do a certain action. For this reason, a 

unique command-queue object has to be created for each single device within the con-

text.  There are three types of command which can be done by a command-queue ob-

ject: memory commands, kernel execution commands, and synchronization com-

mands. Memory commands are being used to transfer data between host and device 

memories. For example, the API function enqueueReadBuffer()  is being used to trans-

fer data from a certain memory location in device to a memory location in host. Kernel 

execution command can call the kernel function from the host side of the code. The 

API command for doing this is enqueueNDRange(). The synchronization commands, 

however, are not submitted on the queue. They are basically barrier operations de-

signed to synchronize the activity among different command-queue objects and host 

code. The API functions are Finish() and Flush(). The Finish() function, for example, 

halts the execution of the host code till all of the commands within the command-queue 

is completed. 

Kernel Programming Model 

Kernels are parts of the OpenCL application which are executed on the device. For this 

reason, they are often called device side of the code in contrast to host side, which 

contains all the API calls and runs on CPU. From the syntax point of view, kernels are 

very similar to a standard programming language such as C/C++ with some additional 

keywords which enables the OpenCL features to execute a code on device. For exam-

ple, the term global and local might be used to define a memory pointer on either global 

or local memories of the device respectively; or the keyword “kernel” can be used right 
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before the definition of the function to distinguish it from a standard C function. The 

most important difference, however, is that the kernel execution happens in parallel, 

while normal C/C++ code does not. In fact, kernel execution follows an abstract concur-

rency model defined by the Kernel Programming Model. 

The OpenCL concurrency model can be explained as a two-level coarse-to-grain hier-

archy of units, namely work-items and work-groups. In the first level, there is a grid of 

work-items. A work-item (also called thread in CUDA literature) is smallest unit in the 

concurrency model, which represents an independent task in our kernel function. In the 

broader picture, all the compromising tasks of an application must be mapped on an ar-

ray of work-items, generated by NDRange(), in host side of the code before kernel 

launch. Consequently, a copy of kernel function is being executed by each one of the 

work-items within the grid in a single parallel phase: a well-known style of programming 

called SPMD (Single Program Multiple Data) [2]. 

In the kernel function, each work-item is identified by three indexes provided by the 

OpenCL intrinsic function get_global_id(). The get_global_id(0), for example, would 

output the index in the x-dimension of the work-item that calls and it the same applies 

for get_global_id(1) and get_global_id(2) which output the y and z dimensions of the 

same work-item respectively. Here, we show a simple example of an array addition 

with OpenCL and compare it a with a standard C implementation to demonstrate how 

the indexing works. Figure 2.16 shows a diagram of a simple vector addition algorithm 

and Program 1 is a standard C code of the same algorithm. 

 

Figure 2.16. vector addition diagram. 

 
void vector_addition_sequential(float *A, float *B, float *C) 
{ 
for (int i = 0 ; i < 7 ; i++) 
 C[i] = A[i] + B[i] 
} 

Program 1. A serial vector addition  
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By considering each iteration of for loop as a work-item, we reimplement the algorithm 

on OpenCL in Program 2. As it can be seen the for loop is omitted. 

 

void vector_addition_parallel(float *A, float *B, float *C) 
{ 
 int i = get_global_id(0) 
 C[i] = A[i] + B[i] 
} 

Program 2. A parallel vector addition 

Work-items are isolated units which cannot collaborate with each other on their own. 

For this reason, they are further organized into units called work-groups or simply just 

groups, which enables the collaboration among member work-items. One of the most 

important ways of collaboration in a group is accessing the same local memory ad-

dress by work-items of that group. The local memory, as we explain later, is a shared 

memory space dedicated for group collaboration through which work-items can share 

the preliminary results of their computation with each other.  

In addition to local memory, groups also provide a robust runtime management mecha-

nism called barrier synchronization, through which work-items within a group can coor-

dinate their execution with each other using OpenCL barrier functions, e.g., barrier(). 

When a work-item reaches a barrier point within the code, it halts its execution until all 

the other work-items within a group reach the same point. After that they resume their 

execution at the same time.  

Both the work-item and work-group are not actual hardware, but rather abstract units 

which model the parallel workload of our program. As a result, their number can well 

exceed above the number of available resources in our hardware. Therefore, resource 

management is being performed by Kernel Programming model to map these units on 

our device hardware. In fact, each work-item is assigned to a processing element and 

each work-group is handled by a compute unit. In the case of a Nvidia GPU, for exam-

ple, a work-item is assigned to an SP (our device processing element) and a work-

group (our device compute unit) is assigned to a SM. 

Memory Model  

The CPU (host) and GPU (device) have two physically distinct memories from each 

other. The CPU’s RAM memory is located on the motherboard and can only be ac-

cessed by CPU, while GPU’s global memory is on the graphic card and is dedicated for 

GPU alone. Before the kernel can be executed on the device, the input data has to be 

transferred from the host to the device memory. In OpenCL, this usually happens in 

two steps. First, a memory space is encapsulated (allocated) as what we refer to 
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memory object on device memory. Then, the data is copied from a host array to that 

allocated memory area on the device.  

OpenCL has three types of memory objects which has different properties: buffers, im-

ages, and pipes. Buffer is equivalent to C/C++ array where data elements are stored in 

consecutive memory spaces. Image objects can store one, two, or three dimensional 

images with the same format as graphics applications. Pipe object is basically a queue 

data structure with FIFO (First in First Out) protocol with write and read endpoints. At 

the time, only one kernel can write and one kernel can read from two endpoints of the 

pipe.   Here, we limit our explanation to the buffers since we do not use the other type 

of memory objects in our works. 

 

The API call that creates the buffer objects is as follows: 

cl_mem 
clCreateBuffer( 
 cl_context context,  
 cl_mem_flags flags, 
 size_t size,  
 void *host_ptr, 
 cl_int *errcode_ret) 
  

The API call would take the associated context, memory flags (READONLY, 

WRITEONLY, AND ERADWRITE), size of data in bytes and a host pointer, which re-

fers to the starting element of an input array on host memory, and returns a memory 

object of the type buffer as output. The final argument, *errcode_ret, is optional and 

can be used to return the type of error if any happens during the function call. The 

buffer object is visible to all devices associated with the given context and can be 

treated as pointer on the device side of the code. 

The clCreateBuffer() function can also be used to transfer the data from the host 

pointer to the buffer object it creates. This is an implicit method to transfer data. How-

ever, there are also an explicit memory transfer API functions for transferring data be-

tween host and device. The advantage of using the explicit commands over the implicit 

one is merely the performance factor, since they transfers the data at faster rate. You 

can see an example of explicit memory transfer commands as follows: 

cl_int  
clEnqueueWriteBuffer ( 
 cl_command_queue command_queue, 
 cl_mem buffer, 
 cl_bool blocking_write, 

size_t offset, 
size_t cb, 
const void *ptr,  
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cl_uint  num_events_in_wait_list, 
const cl_event *event_wait_list, 

cl_event *event) 
 

 

Memory Regions 

The structure of the device memory in OpenCL (and also GPU) is divided into four dif-

ferent regions: global memory, local memory, private memory, and constant memory. 

Figure 2.17 demonstrate a general overview of all memory regions. All regions are log-

ically disjointed from each, and they are handled by the programmer. In this section, we 

briefly explain each region. 

  

Figure 2.17. The general diagram of OpenCL memory regions [7]. 

 

Global memory is a type of a memory which being used to transfer the data between 

host and device. For example, if the data need to be transferred from the host memory 

to device memory, it will be loaded into the global memory. An important point about 

the global memory is that all the work-items (threads) within the kernel will see the 

same version of a global variable. Moreover, the lifetime of a global variable is entire 

application, which means that the data within the memory will not be deleted after the 

current kernel is terminated. Global memory is the main memory of the GPU. It has the 

largest size, usually in order of gigabyte, but longest latency due to the fact that is a 

slow cheap off-chip memory. 
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Constant memory is an area of the global memory whose values are constant 

throughout the kernel execution. Similar to global memory, it is allocated and initialized 

by host.  

private memory, which is mapped to register memory in GPU, is the fastest type of 

memory with a very limited size. The scope of the private memory is each individual 

work-item. In other words, each work-item sees a unique private value. The lifetime of 

the private memory is during the kernel execution. 

 

In addition to the mentioned memory regions, OpenCL since version 2.0 allows for ex-

pansion of the device global memory region to host memory through a technology 

called shared virtual memory (SVM). SVM is particularly useful for pointer-based data 

structures (linked-list for example) which are defined on the host memory since there 

would be no way to transfer them to device memory. In addition to that, pointers de-

fined on the host are only valid on the host memory, so transferring them to the device 

memory is meaningless. However, thanks to the SVM technology, it is possible to 

simply pass data structure pointers as an argument to the device memory. 

OpenCL can use SVM in three different ways: Coarse-grained buffer SVM, Fine-

grained buffer SVM, Fine-grained system SVM. Coarse-grained buffer SVM means that 

host and device share same virtual pointer at granularity of buffers. Here, the mapped 

and unmapped processes need to be done to update the host memory regarding the 

latest changes on the device. Fine-grained buffer SVM is done on buffer at byte-level 

granularity. It does not require mapped and unmapped processes. Fine-grained system 

SVM expands the fine-grained SVM to the entire host memory region, making the 

buffer object effectively useless since any pointer allocated by simple malloc() can now 

be accessed by OpenCL kernel.    
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3. METHODS 

In this thesis, we introduce two different algorithms that we have implemented on GPU 

using the OpenCL. The first algorithm is a multi-view stereo depth estimation method, 

which is being used to estimate depth maps for images captured by camera array sys-

tem and the second one is an Image-based rendering method based on plane-sweep-

ing technique in [65][66][67]. 

3.1 Multi-view stereo on Sparse Light Field Data 

The ideal goal of light-field technology is to capture the entire visual information of the 

scene by capturing every single ray of light emitted from the scene. This, however, is 

not practically possible due to the existence of almost infinite number of rays of light 

[68]. For this reason, we use technologies that perform sampling for light field acquisi-

tion. Two of these technologies are plenoptic cameras [69][70] and camera array sys-

tems [71][72][73][74][75].  An example of these two types of cameras are shown in Fig-

ure 3.1. 

 

Figure 3.1. Camera array system (left) [91] and plenoptic camera (right) [92]. 

For depth estimation problem, since the input is a matrix of images, we can use MVS 

algorithms to solve the problem. The main MVS algorithm is based on plane-sweeping, 

which uses camera projection equation to estimate the initial depth values. Plane-

sweeping has shown to have a good performance for simple datasets [76][77] but it 

tends to work poorly in the face of occlusion and textureless regions [78]. More com-

plex but computationally intensive algorithms such as those based on patch-match 

methods and global optimizations (belief propagation and graph cuts) can be used to 

handle occlusion and textureless regions. In this section, we introduce a GPU-friendly 

MVS algorithm originally proposed in [78] to estimate the depth values for each pixel in 
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real-time. To reach this end, the proposed method uses superpixel instead of pixel as 

the main building block for depth estimation. Super-pixel is a compacted set of neigh-

boring pixels of an image, which have a homogenous color [79]. An example of super-

pixels segmentation is shown in the Figure 3.2. 

 

Figure 3.2. an example of super-pixel pixel segmentation [82]. 

There are several benefits to choose super-pixels over pixels. First, by using super-pix-

els, the total number of the computing threads in our GPU kernel is reduced dramati-

cally, causing the program to consume less memory and run significantly faster.  Sec-

ond, since super-pixel is formed by grouping pixels with similar colors, the negative ef-

fect related to occlusion, noise, and presence of textureless region is reduced. Finally, 

by shrinking the size of input image, information can propagate faster across the grid, 

reducing the overall chance of converging to local optima [78]. 

The general diagram of the algorithms has been shown in the Figure 3.3. The input to 

the algorithm is a set of images taken by camera array system, and the output is a set 

of dense depth maps for each input image. In the first stage of the algorithm, superpixel 

segmentation is performed on the images to create a regular grid of superpixels called 

superpixel map. In the second stage, a plane-sweeping strategy is applied to estimate 

an initial depth value for each superpixel. In the third stage, we use an iterative optimi-

zation algorithm to refine the initial depth values. The key idea behind this algorithm is 

to model each superpixel as a plane, using plane equation. As a result, each superpixel 

can be shown with (𝑑, �̅�), where 𝑑 is the depth value at superpixel centroid and �̅� is the 

normal vector. The goal of the optimizing refinement algorithm is to iteratively update 

the values of 𝑑 and �̅� for each superpixel to satisfy a certain cost-function. In the fourth 

and final stage, we use the refined planes to estimate the depth value for all the pixels 

in the image. 
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Figure 3.3.  Three stages of algorithms from left to right: superpixel segmentation, 
depth initialization, depth refinement. 

3.1.1 Simple Linear Iterative Clustering 

The main job of the super-pixel segmentation is to create a more compact and sophisti-

cated version of the image, while preserving its spatial content. Such segmentation 

method could effectively lead to a major performance increase, if it is added as a pre-

process to the begging of an image processing pipeline.  In this regard, several differ-

ent super-pixel generation algorithms have been proposed with each of which having 

its own specification and performance requirements [79][80][81]. 

One of the most well-known algorithms for super-pixel segmentation is Simple Linear 

Iterative Clustering (SLIC). Originally proposed in [79], it uses an array of local k-means 

clustering algorithms across the image to assign each pixel to the closest and most 

similar cluster. In order to do that, SLIC defines a five-dimensional similarity function, 

which consists of two different components: the color and spatial components. The 

color component measures the color similarity between two clusters, while using 

CIELAB (L*a*b) as the system of color [45]. The reason for such a choice though is 

that L*a*b color space tends to differentiate pixels with similar colors better from each 

other. The spatial component, on the other hand, implicitly restrict the superpixel spatial 

range by comparing it only to the eight neighboring superpixels. The equation describ-

ing the distance function is described as follows: 

Equation 12: 𝒅𝒍𝒂𝒃 = √(𝒍𝒌 − 𝒍𝒊)𝟐 +  (𝒂𝒌 − 𝒂𝒊)𝟐 + (𝒃𝒌 − 𝒃𝒊)𝟐  

𝒅𝒙𝒚 = √(𝒙𝒌 − 𝒙𝒊)𝟐 + (𝒚𝒌 − 𝒚𝒊)𝟐 

𝑫𝒔 = 𝒅𝒍𝒂𝒃 +  
𝒎

𝒔
𝒅𝒙𝒚 

The above equations compute the final distance 𝐷𝑠 between two pixels 𝑘 and 𝑖, using 

the color distance 𝑑𝑙𝑎𝑏  and the spatial distance 𝑑𝑥𝑦. The variable 𝑚 is being used as 

balancing factor between two distance components and basically determines the com-

pactness of the superpixel. For example, if we increase the value of 𝑚, the weight of 

the spatial distances increases and more distant pixels receives more penalty, which in 

turn makes our superpixels more spatially isolated and compact. 
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Figure 3.4. The SLIC pipeline on GPU [82]  

The Figure 3.4 shows a general diagram of SLIC algorithm. The demonstrated pipeline 

has six different stages with the last stage, Enforce Connectivity, being an optional one. 

The pipeline outputs two two-dimensional matrices: Index image and superpixel map. 

The former contains the superpixel (cluster) index of all pixels within the input image 

and latter models the superpixel grid and hold the information of all superpixels such as 

color or location of center. 

The algorithm starts by converting the RGB color space to CIELAB color space at the 

first stage and proceed with initializing the superpixel map and index image at second 

(Init_Cluster_Center) and third (Find_Center_Association) stage respectively. After 

that, the Update_Cluster_Center and Find_Center_Association procedures are itera-

tively called within a for loop to update the map and index matrices respectively. 

The final stage, Enforce_Connectivity, although optional, would contribute greatly to the 

quality of the segmentation by eliminating the small isolated clusters which have only 

one or two members (pixels).     
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3.2 Depth Initialization 

After partitioning our input stereo images into units of superpixels and organizing them 

in the form of regular 2-D grids which we named superpixel maps, in the next step, we 

assign a single depth value to each superpixel. This initial depth value is obtained by 

implementing a plane-sweeping strategy kernel function [76]. 

Plane-sweeping is the main algorithm for multi-view depth estimation, which unlike the 

traditional stereo matching methods works directly with the depth values rather than 

disparity. For this reason, it requires to receive camera parameters as input to perform 

the projection of pixels between different views. See Figure 3.5 for more details. 

  

Figure 3.5. Different projections of a single pixel for different depth hypothesis. 

For generating the depth map, plane-sweeping first assume a set of fronto-parallel 

planes in front of each image plane (view). Each plane is considered as a depth hy-

pothesis. Then one at a time, it picks one of the views as a reference view and use all 

the available depth hypotheses, one by one, to project each pixel of the reference view 

to their equivalent pixels in the neighboring views, using the camera projection matrix. 

After that, it computes the accumulated photo-consistency between the current pixel of 

reference view and the projected pixels of the neighboring views. Eventually, it returns 

the depth hypothesis which gives the maximum (or minimum depending on type of the 

function) photo-consistency as the initial depth value for the current pixel of the refer-

ence view. For computing photo-consistency value, we chose Truncated Square Sum 

Difference (TSSD) as the cost function. The formula is as follows: 

Equation 13: 𝑻𝑺𝑺𝑫(𝒑, 𝒑(𝒅, �̅�)) = 𝒎𝒊𝒏 (𝑻, 𝑺𝑺𝑫(𝒑, 𝒑(𝒅, �̅�))), 

Here, 𝑝 is the current pixel in reference view, 𝑝(𝑑, �̅�)is its projection on a neighboring 

view, 𝑇 is the threshold used to reduce the effect of the outliers, and 𝑆𝑆𝐷 is the sum 

square difference [78]. 
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However, in our case, since our algorithm works with superpixel instead of the pixel, we 

sample each superpixel in nine different points as a representation of whole area of the 

superpixel. The nine representative points are the centroid of superpixel as well as fur-

thest away pixels in eight main directions: north, south, east, west, northeast, north-

west, southeast, and southwest. Therefore, for each superpixel, we compute nine dif-

ferent projections on each of the neighboring views in our camera arrays system and 

compute the accumulate photo-consistency. This can be shown more accurately as the 

following equation: 

Equation 14: 𝒅Ω = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒅

(∑ ∑ 𝑻𝑺𝑺𝑫(𝒑, 𝒑𝒊(𝒅, �̅�))𝒑∈Ω
𝑵
𝒊=𝟏 ) 

In the above equation, the 𝑑Ω is the estimated depth for the superpixel Ω, 𝑝 is the cur-

rent representative point of the superpixel Ω, 𝑝𝑖(𝑑, �̅�) is projection of 𝑝 in the ith view in-

duced by plane (𝑑, �̅�). 

3.2.1 Depth Refinement 

Superpixels are small compact regions of image in which the depth value is expected 

to change smoothly. For this reason, each superpixel can be approximated as a plane 

where depth is changing linearly. Consequently, each superpixel is shown as plane 

equation (𝑑, �̅�), where 𝑑 is the depth value at the centroid of the superpixel and �̅� is the 

normal vector perpendicular to the plane. 

The goal is to refine the initial depth values obtained in the previous stage. To achieve 

that, the problem is formulated as an optimization algorithm to maximize the con-

sistency among different views, while imposing smoothness constraints within each 

view. Our energy function has the following form: 

Equation 15: 𝑬(𝒅, �̅�) = 𝑬𝒄(𝒅, �̅�)𝑬𝒔(𝒅, �̅�)    

Here, the 𝐸𝑐(𝑑, �̅�) and 𝐸𝑠(𝑑, �̅�) are consistency and smoothness terms respectively and 

𝑑and �̅� are the plane parameters that model the superpixel. The refinement algorithm 

updates these parameters by iteratively performing two procedures: plane propaga-

tion and plane refinement. 

In plane propagation, the superpixel centroid is interpolated in the plane equation of the 

neighboring superpixels. If the energy function using the new parameters is improved, 

then the current superpixel is updated with the parameters of its neighboring super-

pixel. 

Relying only on the immediate neighbors, however, can easily halts the progress of al-

gorithm within a local optimum [78]. To avoid that, we expand the range of the 
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propagation beyond the immediate neighbours by defining a propagation kernel as fol-

lows. First, we consider a square-like propagation window around the current super-

pixel. The size of the window is defined by the parameter 𝑆𝑖𝑧𝑒. We check additional su-

perpixels within the range of this window by sampling new ones. The frequency of can-

didate sampling is defined by parameter 𝑆𝑡𝑒𝑝𝑠.  The 𝑆𝑡𝑒𝑝𝑠 and 𝑆𝑖𝑧𝑒 together are called 

propagation parameters. This has been better shown in the Figure 3.6-left. 

          

Figure 3.6. Propagation kernel (left) and refinement procedure (right) [78]. 

It has been experimentally shown large kernel size is more suitable for large texture-

less regions while scenes with clutters and lots of fine details tends work better with 

smaller kernel size [66]. To take a more balance approach, we decrease the 𝑆𝑖𝑧𝑒 

and 𝑆𝑡𝑒𝑝𝑠 parameters by the iteration number 𝐼 in each round of iteration. 

The propagation of initial plane information alone does not converge to optimal solution 

as long as new planes are not introduced to the current state of the map. This is 

achieved by performing plane refinement alongside plane propagation in which new 

slanted planes are added to the superpixel map. This is done by letting a new plane 

pass through the centroid of the reference superpixel and the centroid of its two adja-

cent neighbours as it is illustrated in Figure 3.6 (right). After that, a new normal vector 

is computed using the cross-product principle. Since the reference superpixel has eight 

adjacent pairs of neighbours, this process can be repeated eight times. If each newly 

generated plane improves the energy function of the current parameters, then the cur-

rent normal vector is replaced as the new normal vector of the reference superpixel. 

Plane propagation and refinement are consistently using smoothness and consistency 

as well as occlusion terms as their main procedure. In the rest of this section, we ex-

plain each mentioned term with more specific details. 

 

The smoothness term is about enforcing spatial smoothness within each superpixel 

map. The basic assumption is that the neighbouring superpixels are expected to have 
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similar depth values rather than different ones. This assumption would become espe-

cially strong when two neighbouring superpixels have similar color. With this in mind, 

we tend to penalize the amount of difference on depth based on color similarity be-

tween the reference superpixel and its eight immediate neighbours. The neighbours 

with highest color similarity and lowest depth similarity tends to give the most penalty 

and the ones with highest color and depth similarity produces the least. 

The penalty between a superpixel and its neighbor is computed by extrapolating the 

plane equation of the reference superpixel in the centroid of its neighbor to obtain the 

extrapolated depth. After that, the difference between extrapolated and current depth of 

the neighbouring superpixel is normalized (by using a Gaussian function) to produce 

the penalty of the current superpixel. Eventually, the final penalty is computed by sum-

mation of all neighbour’s penalties. 

Here we use the color similarity between two superpixels as a weight factor which mul-

tiplies by the difference in depth between two superpixels. The mathematical expres-

sion of the smoothness energy function is described as follow: 

Equation 16: 𝑬𝒔(𝒅, �̅�) =  
𝟏

∑ ⍵(𝑪Ω,𝑪𝒊)𝑴
𝒊=𝟏

∑ ⍵(𝑪Ω, 𝑪𝒊)𝑺𝒊(𝒅𝒊, 𝒅𝒊(𝒅, �̅�))𝑴
𝒊=𝟏  

      𝐒𝐢(𝐝𝐢, 𝐝𝐢(𝐝, �̅�)) =  𝐞−(𝐝𝐢−𝐝𝐢(𝐝,�̅�))
𝟐

𝟐𝛔𝟐⁄  

     ⍵(𝐂Ω, 𝐂𝐢) = 𝐞−(𝐂𝐢−𝐂Ω)𝟐 𝟐⍺𝟐⁄  

In the Equation 1, the 𝑀 is the number is of neighbors (eight), ⍵(𝐶Ω, 𝐶𝑖) computes a 

normalized color similarity between reference superpixel Ω and its ith neighbour and 𝑑𝑖 

and 𝑑𝑖(𝑑, �̅�) are the current and extrapolated depth of the neighbouring superpixel re-

spectively. Consequently, 𝑆𝑖(𝑑𝑖 , 𝑑𝑖(𝑑, �̅�)) computes the normalize depth difference be-

tween 𝑑𝑖 and 𝑑𝑖(𝑑, �̅�). 

Consistency term measures the degree of visibility of each superpixel in other views. 

This can be done by computing the sum of photo-consistency values between the ref-

erence superpixel and its corresponding area in other views obtained by projecting ref-

erence superpixel in those views using the plane parameters (𝑑, �̅�). If the current pa-

rameters are good enough, then we should expect to receive a relatively high photo-

consistency since the depth of each pixel in all the views is the same.  

This assumption, however, does not always hold true due to the presence of occlu-

sions. To solve this issue, we break our consistency term into different terms: the visi-

bility term and occlusion term. Occlusion term is responsible for measuring the correct-

ness of the depth in the presence of occlusion. The general formula is as follows: 
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Equation 17: 𝑬𝒄(𝒅, �̅�) = 𝟏
𝑵

∑ (𝑽Ω
𝒊

(𝒅, �̅�) + 𝑶Ω
𝒊

(𝒅, �̅�))𝑵
𝒊=𝟏  

In the above equation, 𝑁 is the number of the superpixel’s representative pixels, 

𝑉Ω
𝑖(𝑑, �̅�) is visibility term and 𝑂Ω

𝑖 (𝑑, �̅�) is the occlusion term for the ith view. Here, if the 

depth candidate, which was used to do the projection between views, is the correct 

one, then both the color and the depth of the two regions should be the same. For this 

reason, the visibility term uses the color similarity as a weight factor to penalize the dif-

ference in depth between two corresponding superpixels. In other words, regions with 

similar depth and color would receive less penalty than regions with similar depth but 

different color. The formula for computing the color weight is as follows: 

Equation 18: 𝑺𝒊(𝒅, �̅�) =
𝟏

|Ω|
∑ ⍵ (𝑪Ω, 𝑪Ω

𝒊 (𝒑𝒊(𝒅, �̅�)))𝒑∈Ω  

In the Equation 18, |Ω| is superpixel area, 𝐶Ω  is the color of the reference super-pixel, 

𝐶Ω
𝑖  is the color of the corresponding super-pixel in the ith view, and ⍵(𝐶Ω, 𝐶𝑖) is the color 

similarity function explained in Equation 16.  

To compute the visibility term, assume all the representative pixels of the reference su-

per-pixel 𝑝 who has smaller depth and their correspond pixels in the ith view 𝑝𝑖 to define 

the 𝑋 as {𝑃 | 𝐷(𝑝) ≤ 𝐷(𝑝𝑖)}. 𝑋 is the set of all pixels which are closer to the ith camera. 

The visibility term is computed as follows: 

Equation 19:  𝑽Ω
𝒊 (𝒅, �̅�) = 𝑺𝒊(𝒅, �̅�)

𝟏

|𝑿|
∑ 𝒆−(𝑫(𝒑)−𝑫(𝒑𝒊))

𝟐
𝟐𝝈𝟐⁄

𝒑∈𝑿  

For the occlusion term, we further define 𝑌as {𝑃 | 𝐷(𝑝) > 𝐷(𝑝𝑖)}. 𝑌 is a set of all repre-

sentative pixels which are closer to the reference camera and hence are either incon-

sistent or occluded. The occlusion term is defined as: 

 

Equation 20: 𝑶Ω
𝒊 (𝒅, �̅�) = {

µ(𝟏 − 𝒎𝒊𝒏
𝟎≤𝒊≤𝑴

⍵(𝑪Ω, 𝑪𝒊)), 𝒀 ≠ 𝟎

𝟎                          , 𝒀 = 𝟎
 

where µ is a constant regularizer (typically set to 0.5). 

3.2.2 Implementation methodology 

Our depth estimation pipeline consists of several highly parallelizable functions which 

are serially connected to each other. Therefore, the natural implementation strategy for 

this problem is to execute each of these functions one at a time on a single GPU de-

vice.  

In order to implement our functions on a GPU, it is better to first recognize the parallel 

pattern of each of them. In this pipeline, except the Update Cluster Center function, 
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which is used as part of the SLIC segmentation, the rest of our function possess an 

embarrassingly parallel pattern, which can easily be implemented on a GPU platform.  

 

                

Figure 3.7. Embarrassingly parallel patterns: map (left) and stencil (right) [2].  

Embarrassingly parallel patterns are types of a parallel workloads which can easily be 

broken down into independent parallel tasks. As a result, a serial program can be writ-

ten for a single thread using global indexing parameters (get_global_id(0) and 

get_global_id(1)), and then, a private version of that program is generated for and exe-

cuted by each thread (work-item) within the grid. 

Embarrassingly parallel patterns can be further divided into two main groups: map and 

stencil patterns. The map pattern is the one-to-one connection between memory ele-

ment and execution thread (core) of the parallel device. There is no memory overlap-

ping between threads in either reading or writing phase (Figure 3.7-left). As a result, 

there is little to no point in using the shared (local) memory, as the nearby work-items 

do not share any data with each other. Convert_Color_Space and Find_Center_Asso-

ciation functions are examples of map pattern where one thread is dedicated for each 

pixel, and all the computation is done for each pixel independently.  

Similar to map pattern, in the stencil pattern, computation for each work-item is perform 

independently. The difference, however, is in the memory read phase where neighbor-

ing work-items share memory (data) elements (Figure 3.7-right) with each other, 

providing an opportunity to use shared memory. 

In addition to embarrassingly parallel patterns, our pipeline also uses reduction pattern 

as part of the Update_Cluster_Center function, where each cluster’s information gets 

updated by aggregating information from the most recent update on member pixels. 

Reduction technique is applied for summation of information, for example color aver-

age, for each cluster, which is routinely done serially. The process is better shown on 

array in the Figure 3.8.  



40 
 

 

 

Figure 3.8. Reduction pattern 

In reduction, the array is portioned into two equal parts. Each work-item being assigned 

to array elements (pixel in our case) of the first half is responsible for aggregating 

(summation in our case) and storing the information in its own respective element and 

its corresponding mirror element in the second half of the array. The work-items be-

longed to the second half are ignored. For example, if array has 100 elements, then the 

work-item index 0 is responsible for aggregating information of elements 0 and 50 (0 + 

100/2) and work-item number 1 is responsible for elements 1 and 51 (1 + 100/2). Then 

this process is performed iteratively to break the size of the current array at each itera-

tion. The process stops eventually when the size of the current array is equal to 1, and 

that single element holds all the aggregation (summation) of all the array.  

3.3 View-interpolation Rendering 

Our second application for harnessing the power of massively parallel GPU is a view-

interpolation rendering algorithm based on plane-sweeping, where an entire view is 

generated from already existing images using correspondences between two stereo 

images. In the previous sections, we explained the plane-sweeping in detail. Here we 

would use the same principle to combine two existing stereo images to render a new 

image. 

3.3.1 Plane-sweep Rendering 

Given two stereo cameras, the goal is to move a virtual camera alongside the baseline 

and render a series of virtual views. This has better been depicted in  Figure 3.9. 
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Figure 3.9. A general view (camera) setup of the algorithm 

The general form of the algorithm has been depicted in Algorithm 1. It first visits each 

pixel 𝑝 of virtual view one at a time and then it iterates through the whole range of the 

depth hypothesis 𝐷 to perform four different steps on each (𝑝, 𝑑) pair where 𝑑 is the 

current depth hypothesis. 

Algorithm 1: Serial Plane-sweep Rendering 
Input: left and right stereo images 

Output: virtual view I 

1 for each p ∈ I: 

2  for each d ∈ D: 

3   step 1: Project p from 2-D virtual image to 3-D space, using current d 

4   step 2: Apply rotation and translation to change the coordinate system to each real 

camera. 

5   step 3: Project the new 3-D points back into their corresponding 2-D camera plane 

6   step 4: use photo-consistency to update the best match so far 

7  end 

8  update I by averaging the color of best matches for p in left and right images 

9 end 

 

Algorithm 1: the general overview of the algorithm 

In the first step, the pixel p(x, y) is projected from a 2D plane to point P(X, Y, Z)  on 3D 

plane using the current depth hypothesis d. we implement the following lines of codes 

to do that: 

𝑋 =  
(𝑥 − 𝑐𝑥)

𝑓
× 𝑑, 𝑌 =  

(𝑦 − 𝑐𝑦)

𝑓
× 𝑑,    𝑍 = 𝑑 

The second step transfers the origin of the coordinate system from the virtual camera 

to the left and right cameras using the rotation (R) and translation (T) vectors. Here, 𝑇𝑟 

and 𝑇𝑙 are translation vector’s elements alongside X-axis in right and left directions re-

spectively. Since we are using horizontal images, we do not have any translation in y or 

z directions. Moreover, since the stereo images are already rectified, the rotation matrix 
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is an identity matrix with no effect on coordinate system. We implement the following 

equations to transform the coordinate system: 

𝑋𝑟 = 𝑋 + 𝑇𝑟, 𝑋𝑙 = 𝑋 + 𝑇𝑙 

In the third step, the newly generated 3-D coordinate is projected back to its corre-

sponding left and right camera planes. 

𝑥𝑟𝑝𝑟𝑜𝑗 =  𝑍 ×
𝑋𝑟

𝑓
 𝑥𝑙𝑝𝑟𝑜𝑗 = 𝑍 × 

𝑋𝑙

𝑓
 

𝑦𝑟𝑝𝑟𝑜𝑗 = 𝑍 ×  
𝑌𝑟

𝑓
 𝑦𝑙𝑝𝑟𝑜𝑗 =  𝑍 ×

𝑌𝑟

𝑓
 

 

In the final step, the photo-consistency term is computed to pick the best matching 𝑑 

for the pixel 𝑝. We use absolute some difference (L1 norm) as the cost function. At the 

end, the color of the best projected pixels (on left and right images), are averaged to 

make the color of the pixel p in the virtual image. 

3.3.2 GPU Implementation 

We developed two GPU-based implementations for this algorithm. The first one is a 

simple embarrassingly parallel (stencil pattern) implementation where each pixel of the 

virtual image is considered as a parallel thread [2]. In this way, a general code using 

thread indexing of OpenCL is written and then a private version of that code is gener-

ated for every thread within the grid. As a result, the first for loop, which iterates over all 

the pixels of the virtual camera, is omitted. Algorithm 2 shows the pseudo code of our 

first GPU implementation. 

Since GPU’s global memory, the main memory of GPU, is very slow, one of the best 

ways to reduce the running time of our GPU algorithm is to decrease the number of ac-

cesses to the global memory. This can be achieved by using shared memory to cache 

the data once they have been accessed. In this way, the same data can be accessed 

multiple times on fast on-chip shared memory without accessing the global memory 

multiple times. For our second implementation, we utilize shared memory to improve 

the data efficiency of our code. 

 

Algorithm 2:  GPU Plane-sweep Rendering 
Input: left and right stereo images 

Output: virtual view I 

1 x = get_global_id(0), y = get_global_id(1) 

2  for each d ∈ D: 

3   step 1: Project (x, y) from 2-D space to (X, Y, Z) in 3-D space, using current d 
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4   step 2: Apply rotation and translation to change the coordinate system to each real 
camera. 

5   step 3: Project the new 3-D points back into their corresponding 2-D camera plane 

6   step 4: use photo-consistency to update the best match so far 

7  end 

8  update I by averaging the color of best matches for p in left and right images 

9 end 

Algorithm 2: Naïve GPU implementation 

In our algorithm, once the equivalent location of virtual pixel 𝑝 is found on left(𝑃𝑙𝑝𝑟𝑜𝑗) 

and right (𝑃𝑟𝑝𝑟𝑜𝑗) images, using the current 𝑑, by current work-item (𝑥, 𝑦) , the photo-

consistency cost is computed between two projections.  The computation is done by 

placing a local support window around 𝑃𝑟𝑝𝑟𝑜𝑗 and 𝑃𝑙𝑝𝑟𝑜𝑗and compute the Sum of Abso-

lute Difference (SAD) between those two local regions. The problem with this ap-

proach, however, is that all the neighboring pixels will be accessed several times by the 

neighboring work-items, i.e.,(𝑥 − 1, 𝑦), during executions. As a result, the number of 

the global memory access would exponentially increase throughout the grid. 

The high overlapping data access pattern of Algorithm 1 has been better illustrated in 

Figure 3.10. As it is readily apparent, the three different work-items (red, green, yellow) 

from the same work-group (blue region) and their corresponding local windows 

(dashed lines) are sharing a significant area of the image with each other. The goal of 

our second implementation is to cache these areas on shared memory for efficient use. 

 

Figure 3.10. High data access overlapping between red, green, and yellow work-items 
in the naïve GPU kernel. All three work-items belong to the same group (blue box) 

The improved memory pattern access, for our second implementation, has been shown 

in Figure 3.11. The blue region (separated with solid blue line) is the location of an arbi-

trary 6x4 work-group on one of the input images, and each work-item of this group is 

responsible of loading a portion of that image from the global memory to the shared 

memory. In this figure, all pixels of a color group (i.e., all the red pixels) are loaded to 

the shared memory all at once using their corresponding work-item in the group. 
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Figure 3.11. Memory access pattern of the algorithm 2. 

Since the data overlapping comes at the photo-consistency computation, the only part 

of the code that changes from Algorithm 2 is the function that computes the photo-con-

sistency. The rest of the algorithm remain the same. Therefore, the only thing we need 

to do is to replace the function call of old photo-consistency function with the new one. 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1 Experimental Setting 

All our experiments are performed on a desktop computer equipped with a Nvidia GTX-

1080 GPU and Intel Core i7 CPU. We use OpenCL version 1.2 to implement our algo-

rithms on GPU and OpenMP version 5.0 for multi-core CPU.  

As previously explained, our multi-view depth estimation algorithm consists of three 

main stages: super-pixel segmentation, depth initialization, and depth refinement. In 

this section, we demonstrate the experimental results of each stage, try to provide a 

deeper insight into the performance of our methods, and finally report the speed up re-

sults. 

4.2 Multi-view Depth Estimation 

4.2.1 Dataset Specifications 

We use the Max Plank Institute’s light field dataset available at [85]. The dataset speci-

fication is described in Table 1. Dataset specification for MVS algorithm. 

Table 1. Dataset specification for MVS algorithm 
 

Name No views Resolution Disparity 
Levels 

Baseline Ratio(y/x) 

Bar 3x5 1920x1080 45 0.625 

Biergarten 3x3 1920x1080 30 1.03590 

Here, baseline ratio is the ratio of y and x elements of two diagonal camera’s baseline 

in the camera array system. 

4.2.2 Superpixel Segmentation Results 

As described in the section 3.1.1, we implement the simple linear iterative clustering 

(SLIC) as our method of choice for superpixel segmentation. Here, we have imple-

mented the Oxford’s gSLICr library, which was originally developed in CUDA [71], in 

OpenCL. 

Our implementation possesses several parameters that determines the execution flow 

of the algorithm. Based on this, we have designed and executed a number of experi-

ments to demonstrate the whole range of SLIC’s behaviour under different parameter 

settings. Our experiments are described in Table 1. 
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Table 2. SLIC experiments with different set of parameters 

No Super-
pixel Size 

SLIC Color 
Weight 

Number of Iterations Enforce Connectivity 

1 8 0.6 5 False 

2 8 0.6 5 True 

3 16 0.6 5 False 

In this table, superpixel size determines the initial size of the superpixel which itera-

tively get updated throughout the execution. SLIC is an iterative process, and it approx-

imately takes four or five iterations for the algorithms to converge to a stable result. So, 

we consider five as the default number of iterations for all our experiments. SLIC’s dis-

tance function, which measures the closeness of a pixel to the center of cluster, has 

two terms: spatial term and color term. The Color Weight parameter is a coefficient 

which emphasis the degree of importance of color term. Finally, in experiment 3, we 

enable the enforce connectivity to remove small isolated super-pixels to generate a 

cleaner result. We show our experiments output in Figure 4.1, Figure 4.2, and Figure 

4.3. 

 

Figure 4.1. The default SLIC output with superpixel size 8 

The reason for such result is that super-pixels are defined to be spatially restricted in a 

small neighborhood . The regular squares are, in fact, the default position of all super-

pixels before any update happening. Once the iterative update starts, each super-pixel 

falls within a race with its eight immediate neighbours for taking more pixels. This com-

petition especially is high near the bordering areas where color similarity plays a major 

role. However, as we move further and further away from the border area towards the 

center, the role of spatial term becomes increasingly more important. With this in mind, 

once the color weight is set to zero, super-pixels no longer have any leverage against 

each other and as a result they all become regular square with the same size. 
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Figure 4.2 Effect of the enforce connectivity. 

 

 

Figure 4.3 segmentation with super-pixel size 16 

4.2.3 Initialization and Refinement Results 

Our depth estimation parameters are listed in Table 3. We use superpixel size of 8 and 

16 for our simulations. We also generate the output without enforce connectivity and 

show the results. 

Table 3. depth estimation parameters for bar dataset 

No Name  Value Description 

1 Kernel_Size 1080 range of propagation kernel around superpixel 

2 Kernel_Steps 13 sampling step within a propagation kernel 

3 alpha 6 normalization coefficient for color distance 

4 gamma 2 spatial distance normalization coefficient in the smoothness 
and consistency coset function 

5 no_iteration 5 number of the times the propagation function is called to pro-
duce stable results 
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The result of our depth initialization part has been depicted in Figure 4.4 Initial depth 

estimation with super-pixel size 8. Since we are not using any optimization, the result is 

very noisy. 

 

Figure 4.4 Initial depth estimation with super-pixel size 8 

The result of depth refinement of our implementation as well as the result of reference 

paper are shown in the Figure 4.5 and Figure 4.6 respectively. 

 

Figure 4.5. Our refined disparity map. The super-pixel size is 8 
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Figure 4.6. Reference paper output using superpixel size 8 

4.2.4 Quality Analysis 

As it can be seen, the reference result is much smoother and less noisy compared to 

our own results. We tried to reduce the gap by utilizing larger superpixel size to reduce 

the amount of the noise. The previous experiments were done by using superpixel size 

8. For the new experiment we use superpixel size 16. The result has been shown in the 

Figure 4.7. 

 

Figure 4.7. The improved result on Bar dataset using superpixel size 16 
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Figure 4.8. Algorithm’s result on Biergarten dataset using superpixel 8  

For the Biergarten dataset, however, with superpixel pixel size 8, we can still have a 

decent result (Figure 4.8). The reported experiments were all done using three different 

platforms: single-core CPU, multi-core CPU, and GPU. This section reports the execu-

tion time and speed up gain of all our methods under different platforms. Moreover, Ta-

ble 4 and Table 5, show the speed up gain of different depth initialization and depth re-

finement stages for Bar and Biergarten dataset respectively. 

4.2.5 Performance Evaluation 

We evaluate the running time performance of our implementation on Bar and Biergar-

ten dataset  

Table 4 different platforms’s performance on Bar dataset for superpixel size 16 

platform name initialization 
time (msec) 

Refinement 
time (msec) 

Initialization 
Speed- up 

Refinement 
Speed- up 

single-core CPU 238905 954566 1.0x 1.0x 
multi-core CPU 182391 337808 1.3x 2.8x 
GPU 1415 605 168.83x 1577.8x 

 

Table 5 different platforms’ performance on Biergarten dataset for superpixel size 16 

platform name initialization 
time (msec) 

Refinement 
time (msec) 

Initialization 
Speed Up 

Refinement 
Speed Up 

single-core 
CPU 

106266 366279 1.0x 1.0x 

multi-core CPU 42398 131901 2.5x 2.77x 
GPU 421 167 252.4x 2193.2x 
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4.3 Plane-sweep Rendering 

4.3.1 Stereo Dataset Specification 

We use the 2014 Middleburry stereo dataset to develop our algorithm. The dataset can 

be found and downloaded in the Middleburry website at [84]. Each dataset contains 

several files which depict and describe two views captured under different illuminations 

and exposures. These files include calibration information of each camera, different 

versions of rectified stereo pairs of the same scene, and the disparity ground truth of 

left and right image. The dataset specification is described in the Table 6. 

Table 6. parameters for stereo datasets 

 

Since our algorithm works with depth instead of disparity, we, first, need to convert all 

the disparities to dept h using the following formula: 

𝑍 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓 (𝑑 +  𝑑𝑜𝑓𝑓𝑠)⁄  

As a result,  𝑑𝑚𝑖𝑛 (minimum depth) and 𝑑𝑚𝑎𝑥 (maximum depth) can be calculated as 

follows: 

𝑑𝑚𝑖𝑛 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓 (𝑣𝑚𝑎𝑥 +  𝑑𝑜𝑓𝑓𝑠)⁄  

𝑑𝑚𝑎𝑥 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓 (𝑑𝑚𝑖𝑛 +  𝑑𝑜𝑓𝑓𝑠)⁄  

 

We also convert the measurement of the focal point (𝑓) from millimetre to meter to use 

more accurate floating-point operation. 

4.3.2 Execution Parameters 

Our implementation works with few parameters which determines the flow of the exe-

cution. The parameters are listed in Table 7. 

 

 

Name Parameter Description 
cam0, 1 calibration matrices for left/right camera. The format is [ f 0 cx ; 0 f cy ; 0 0 1] where f is the 

focal length (in pixel) and cx and cy are the deviations from the principle point 

doffs x-difference of principle point or cx1 – cx2 

baseline the distance between two camera’s principal point (in mm) 

width, 
height 

image resolution 

ndisp number of the disparities. 

isint whether ground truth disparities have integer precision 

vmin, 
vmax 

a tight bound on minimum and maximum amount of disparity 

dyavg,dy-
max 

average and maximum absolute y-disparities, providing an indication of the calibration error 
present in the imperfect datasets 
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Table 7. execution parameters of our implementation 

Name Description 
wSize Size of the local supporting window for plane sweeping and view ren-

dering 

dScale Scaling coefficient for input images (default value is 1) 

delta The distance of the principle point of virtual camera from the left camera 

 

These parameters are input to the rendering function. Since we want to generate a se-

ries of images moving from left image to the right image, we call the rendering function 

in a loop with increasing delta value. 

4.3.3 Plane-sweep Results 

Our implementation methodology is to first implement plane-sweeping on GPU and 

then develop a separate rendering function base on that GPU code. Figure 4.9 demon-

strate the output of our plane-sweeping algorithms on chairs and piano datasets. 

 

Figure 4.9. Plane-sweeping depth map for Chair dataset (left) and Piano dataset 
(right). 

4.3.4 Rendering Results 

The result of our viewport rendering is demonstrated in Figure 4.10 and Figure 4.11 for 

chair and piano dataset respectively. A series of images can be generated consecu-

tively by moving the virtual camera from the left image toward the right image (increas-

ing the delta parameter). 
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Figure 4.10. Rendering view for living room dataset with delta equals to 0.55 

 

 

Figure 4.11. Rendered view for piano dataset with delta equal to 0.55 

As it can be seen, the quality of the generated images is much better for the Piano da-

taset than the chair dataset. The reason is that plane-sweeping is a simple local win-

dow-based algorithm without any global optimization constraints. As a result, it tends to 

work poorly in the presence of fine details such as those in the chair dataset. 

4.3.5 Execution Time 

The execution time of our experiments is reported in this section. Table 8 shows the 

performance of four different implementations of rendering algorithms: single-core im-

plementation, multi-core CPU implementation, simple GPU implementation, and ad-

vanced GPU implementation. In addition to, Table 9 shows the execution time of the 

plane-sweeping method on the same three platforms. 
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Table 8. execution time and speed up for Living room dataset 

Platform Name Windows size (pixels) Execution time (msec) speed up 

Single-core CPU 13 123325 1.0x 

Multi-core CPU 13 29069 4.24x 

Naive GPU 13 154 800.8x 

Shared memory GPU 13 60 2055.4x 

 

Table 9. execution time and speed up for piano dataset 

Platform Name Windows Size (pixels) Execution time (msec) speed up 

single-core CPU 13 126512 1.0x 

multi-core CPU 13 28053 4.5x 

GPU 13 144 878.5x 

Shared memory GPU 13 57 2219x 
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5. CONCLUSIONS 

In this thesis, we examine the massively parallel power of GPU on computer vision al-

gorithms for depth estimation and image-based rendering applications. We imple-

mented our algorithms on three different platforms (single-core and multi-core CPU as 

well as GPU) and chose single-core implementation as anchor for calculating the 

speed up. We have shown for both applications, which hold a significant amount of par-

allelism, a GPU-based implementation would achieve a very high speed up compared 

to a standard CPU implementation.  

The first application, a multi-view depth estimation algorithm proposed in [78], is a 

three-stage pipeline process. First, it partitions the input images into compact homoge-

nous regions called superpixels. Then, it initializes the depth for each superpixel using 

a plane-sweeping-based strategy. Finally, it refines depth value using an iterative opti-

mization technique to fit a proper plane surface to each superpixel.  In this thesis, we 

have shown that our GPU implementation has significantly improved compared to 

standard sequential and multi-core CPU implementations. 

For the second application, the goal is to render a novel view from two calibrated ste-

reo images. To this end, we have chosen a less complex but computationally efficient 

approach based on a plane-sweeping algorithm. In our algorithm, we avoid producing a 

plane-sweeping volume due to its large memory size and the fact that the off-chip 

global memory of the GPU is very slow. Instead, we kept all the computations on the 

GPU’s register memory and update the best candidate for the current virtual pixel in 

real-time. As a result, our algorithm has gained a high amount of speed-up. Taking 

such approach, however, could come at the cost of dropping the quality of generated 

view in case of fine details and sharp edges in stereo images due to the lack of a cost-

aggregation process. 
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