

Kianoush Jafari

MULTI-VIEW DEPTH ESTIMATION AND
PLANE-SWEEPING REDNERING ON

GRAPHIC PROCESSOR UNIT

Master of Science Thesis
Faculty of Information Technology and Communication Sciences

Atanas Gotchev
Pekka Jääskeläinen

August 2022

i

ABSTRACT

Kianoush Jafari: MULTI-VIEW DEPTH ESTIMATION AND PLANE-SWEEPING RENDERING

ON GRAPHICAL PROCESSOR UNIT

Master of Science Thesis

Tampere University

Master’s Degree Program in Information Technology

August 2022

Depth estimation and image-based rendering are two of the essential tasks in computer vision

and key enablers of many modern-day technologies such as autonomous navigation, robot-as-
sisted surgery, and 2-D to 3-D image conversion in the movie industry, to name but a few. Depth
estimation can be defined as the problem of estimating the distance of each pixel within an image
to the camera. Closely related to that, image-based rendering (IBR) is concerned with generating
novel views from existing images. While the former is often considered one of the fundamental
tasks in computer vision with a wide range of applications, the latter is mainly associated with
virtual reality, immersive technologies, and 3-D reconstruction of the scene.

Some of these applications' significant drawbacks are their large data throughput volume,

large memory bandwidth requirement, and high processing time. Considering this, they often re-
quire hardware acceleration to work in real-time. In this thesis work, we investigate the parallel
computing power of graphical processor unit (GPU) and also multi-core CPU by implementing a
multi-view stereo algorithm for sparse light field depth estimation and an IBR algorithm based on
plane-sweeping rendering on these platforms. We use Open Computing Language (OpenCL) as
our programming framework of choice for GPU computing and OpenMP API for multi-core CPU
implementation. We have shown that our GPU implementation can achieve up to hundreds of
times of speed-up once it is compared against both single-core and multi-core CPU implementa-
tions.

Keywords: Graphic Processor Unit, Multi-view Stereo, Image-based Rendering, OpenCL,

Plane-sweeping

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 4

2.1 Stereo Vision for Depth Estimation ... 4

2.1.1 Pinhole Camera Model.. 4
Camera Intrinsic Parameters .. 5
Camera Extrinsic Parameters .. 5
2.1.2 Stereo Matching .. 6
2.1.3 Multi-view Stereo .. 12

2.2 Image-based Rendering ... 13

2.3 Parallel Computing ... 15

2.3.1 Heterogeneous Computing ... 16
2.3.2 Heterogeneous Computing for parallel processors 18
2.3.3 GPU Architecture .. 18
2.3.4 Open Computing Language .. 22

3. METHODS .. 30

3.1 Multi-view stereo on Sparse Light Field Data 30

3.1.1 Simple Linear Iterative Clustering ... 32
3.1.2 Depth Initialization ... 34
3.1.3 Depth Refinement ... 35
3.1.4 Implementation methodology .. 38

3.2 View-interpolation Rendering ... 40

3.2.1 Plane-sweep Rendering .. 40
3.2.2 GPU Implementation ... 42

4. EXPERIMENTAL RESULTS AND ANALYSIS .. 45

4.1 Experimental Setting .. 45

4.2 Multi-view Depth Estimation ... 45

4.2.1 Dataset Specifications .. 45
4.2.2 Superpixel Segmentation Results ... 45
4.2.3 Initialization and Refinement Results .. 47
4.2.4 Quality Analysis .. 49
4.2.5 Performance Evaluation .. 50

4.3 Plane-sweep Rendering ... 51

4.3.1 Stereo Dataset Specification ... 51
4.3.2 Execution Parameters ... 51
4.3.3 Plane-sweep Results .. 52
4.3.4 Rendering Results .. 52
4.3.5 Execution Time ... 53

5. CONCLUSIONS .. 55

REFERENCES... 56

iii

LIST OF FIGURES

FIGURE 2.1 ONLY ONE RAY OF LIGHT FROM EACH 3D POINT CAN HIT THE SENSOR PLANE 4
FIGURE 2.2. TYPICAL STRUCTURE OF PINHOLE CAMERA MODEL .. 5
FIGURE 2.3. IMAGE PLANE OF PINHOLE CAMERA MODEL ... 5
FIGURE 2.4. ROTATION AND TRANSLATION CHANGES COORDINATE SYSTEM 6
FIGURE 2.5 A TYPICAL STEREO MATCHING PIPELINE ... 8
FIGURE 2.6. THE SIMILARITY FUNCTION BASED ON SIAMESE NETWORK .. 9
FIGURE 2.7 GENERAL SETUP OF EPIPOLAR GEOMETRY ... 9
FIGURE 2.8 EPIPOLAR SETUP FOR STEREO MATCHING SYSTEM .. 10
FIGURE 2.9. DISPARITY MAP WITHOUT AGGREGATION (LEFT) GROUND TRUTH (RIGHT) 11
FIGURE 2.10. VISIBLE AND OCCLUDED CAMERA IN MVS CAMERA SETUP ... 13
FIGURE 2.11. THE NOMENCLATURE OF IBR TECHNIQUES [52]. ... 15
FIGURE 2.12 DISTRIBUTION OF SEQUENTIAL AND PARALLEL PORTION OF AN APPLICATION [3]. PEACH IS

THE TOTAL EXECUTION TIME OF APPLICATION. MEAT OF THE PEACH (ORANGE) IS THE DATA-
PARALLEL PART AND PIT OF THE PEACH (RED) IS THE SERIAL PART OF THE CORE. 19

FIGURE 2.13. THE DIFFERENCE BETWEEN CPU AND GPU ARCHITECTURE [3]. .. 20
FIGURE 2.14. COMPUTING ORGANIZATION OF AN SM [20]. ... 22
FIGURE 2.15. OPENCL ABSTRACT HARDWARE MODEL [7]. .. 23
FIGURE 2.16. VECTOR ADDITION DIAGRAM... 25
FIGURE 2.17. THE GENERAL DIAGRAM OF OPENCL MEMORY REGIONS [7]. ... 28
FIGURE 3.1. CAMERA ARRAY SYSTEM (LEFT) AND PLENOPTIC CAMERA (RIGHT). 30
FIGURE 3.2. AN EXAMPLE OF SUPER-PIXEL PIXEL SEGMENTATION [82]. ... 31
FIGURE 3.3. THREE STAGES OF ALGORITHMS FROM LEFT TO RIGHT: SUPERPIXEL SEGMENTATION,

DEPTH INITIALIZATION, DEPTH REFINEMENT. ... 32
FIGURE 3.4. THE SLIC PIPELINE ON GPU [82] ... 33
FIGURE 3.5. DIFFERENT PROJECTIONS OF A SINGLE PIXEL FOR DIFFERENT DEPTH HYPOTHESIS. 34
FIGURE 3.6. PROPAGATION KERNEL (LEFT) AND REFINEMENT PROCEDURE (RIGHT) 36
FIGURE 3.7. EMBARRASSINGLY PARALLEL PATTERNS: MAP (LEFT) AND STENCIL (RIGHT). 39
FIGURE 3.8. REDUCTION PATTERN ... 40
FIGURE 3.9. A GENERAL VIEW (CAMERA) SETUP OF THE ALGORITHM .. 41
FIGURE 3.10. HIGH DATA ACCESS OVERLAPPING BETWEEN RED, GREEN, AND YELLOW WORK-ITEMS IN

THE NAÏVE GPU KERNEL. ALL THREE WORK-ITEMS BELONG TO THE SAME GROUP (BLUE BOX) 43
FIGURE 3.11. MEMORY ACCESS PATTERN OF THE ALGORITHM 2. .. 44
FIGURE 4.1. THE DEFAULT SLIC OUTPUT WITH SUPERPIXEL SIZE 8 ... 46
FIGURE 4.2 EFFECT OF THE ENFORCE CONNECTIVITY. ... 47
FIGURE 4.3 SEGMENTATION WITH SUPER-PIXEL SIZE 16 ... 47
FIGURE 4.4 INITIAL DEPTH ESTIMATION WITH SUPER-PIXEL SIZE 8... 48
FIGURE 4.5. OUR REFINED DISPARITY MAP. THE SUPER-PIXEL SIZE IS 8 .. 48
FIGURE 4.6. REFERENCE PAPER OUTPUT USING SUPERPIXEL SIZE 8 ... 49
FIGURE 4.7. THE IMPROVED RESULT ON BAR DATASET USING SUPERPIXEL SIZE 16 49
FIGURE 4.8. ALGORITHM’S RESULT ON BIERGARTEN DATASET USING SUPERPIXEL 8 50
FIGURE 4.9. PLANE-SWEEPING DEPTH MAP FOR CHAIR DATASET (LEFT) AND PIANO DATASET (RIGHT). 52
FIGURE 4.10. RENDERING VIEW FOR LIVING ROOM DATASET WITH DELTA EQUALS TO 0.55 53
FIGURE 4.11. RENDERED VIEW FOR PIANO DATASET WITH DELTA EQUAL TO 0.55 53

iv

LIST OF SYMBOLS AND ABBREVIATIONS

ALU Arithmetic Logic Unit
CU Control Unit
CUDA Compute Unified Device Architecture
DLP Data Level Parallelism
DSP Digital Signal Processor
FPGA Field Programmable Gate Array
FIFO First In First Out
GPU Graphic Processor Unit
HDL Hardware Description Language
HSL High Level Synthesis
MVS Multi-view Stereo
OpenCL Open Computing Language
PC Processor Cluster
SLIC Simple Linear Iterative Clustering
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
SPMD Single Program Multiple Data
SVM Shared Virtual Memory
SID Squared Intensity Difference
SM Streaming Multiprocessor
SP Streaming Processor
SSD Sum Square Difference
TSSD Truncated Squared Sum Difference
ToF Time of Flight

a position between red and green colors in CIELAB color space
⍺ normalization coefficient for color distance
b position between blue and yellow colors in CIELAB color space
C superpixel color
d disparity / depth
dlab Euclidian-based color distance in CIELAB
dxy Euclidian-based spatial distance
Ds SLIC distance function
E energy function
Ec consistency term of energy function
Es smoothness term of energy function
K intrinsic matrix
L lightness term in CIELAB / left stereo image
Lab CIELAB
n normal vector
O occlusion term
P pixel
R rotation matrix / right stereo image
S depth similarity function
σ spatial distance normalization coefficient
T threshold / translation vector
u pixel index on x-axis
v pixel index on y-axis
V visibility term
Ω reference superpixel

v

⍵ color similarity function

Z third dimension

1

1. INTRODUCTION

Retrieving the 3D geometry of the scene from the raw sensory data is one of the most

fundamental problems in computer vision. The methods which perform such tasks, de-

pending on the type of sensors they use, can be categorized into two groups: active

and passive. The active methods tend to measure the depth by physical interaction

with the environment. Methods based on time of flight (ToF) and Ultrasound are exam-

ples of this type of approach [21][22]. Passive methods, on the other hand, are all com-

putation-based methods that analyze the optical features of the scene by capturing im-

ages via cameras. Methods based on stereo correspondences are a prominent exam-

ple of such methods that estimate the depth value for each pixel within an image (gen-

erating a depth map) by analyzing the scene from different views captured by a number

of cameras. Consequently, these methods can be further categorized by the number of

cameras they use, namely two-view stereo vision (uses two cameras only) and multi-

view stereo (uses more than two cameras).

Stereo vision has a broad spectrum of applications ranging from robotics to 3-D and

augmented reality. Most of these applications require real-time execution and highly

accurate depth maps. However, satisfying these constraints is difficult due to the data-

intensive nature of algorithms and high memory and bandwidth requirements. Moreo-

ver, the ever-increasing resolution of images (HD, 4k, 6k, and 8k), increasing number

of cameras (light field cameras, for example), and increase in depth value range are

other factors that have made stereo algorithms increasingly time-consuming.

Closely related to stereo vision and yet different are image-based rendering (IBR) algo-

rithms, which aim to create virtual views from already existing ones. Their applications

are in virtual reality, where they create images from angles of the scene that cameras

do not cover. In practical cases, IBR algorithms need to be executed in real-time to cre-

ate the immersive feeling that the users desire. Many IBR techniques require geometric

information of the scene, which they use stereo vision techniques to achieve. As a re-

sult, they suffer from high computational cost for the same reasons as stereo algo-

rithms, such as high resolution of the images and extensive range of depth hypothesis.

In order to address the computational issues of both problems, we can use a wide

2

range of hardware accelerators to reduce the execution time. In this thesis work, we

use Graphic Processor Unit (GPU), which is optimized for data-parallel processing, as

the platform of choice.

GPUs are massively parallel arithmetic-oriented processors with high-throughput

memory bandwidth, which allow for performing a large number of arithmetic operations

in real-time. Originally designed exclusively for graphic computing, they later evolved to

perform general purpose computing tasks, which have widely expanded the range of

their applicability beyond graphic computing domain: something which is called gen-

eral purpose computing with GPU or GPGPU. Today, GPUs are being used as hard-

ware accelerators in many high-performance and parallel computing systems to gain

high speed-up for different applications. Alongside FPGAs and multi-core CPUs, they

are often considered one of the major pillars of high-performance computing domain

[11]. Compute Unified Device Architecture (CUDA), and Open Computing Language

(OpenCL) are two of the most prominent GPGPU programming frameworks, while

OpenGL and Directx3D are exclusively used for graphics computing.

A GPU device can fetch a big chunk of data from memory all at once and process it

through a large number of data-parallel computing units it possesses to produce the fi-

nal result. Optimized for performing matrix-like operations, they tend to perform very ef-

ficiently in processing image data types, making them a suitable choice for many com-

puter vision and image processing applications. In terms of programmability, GPUs are

known to be far easier to program than FPGAs if the latter is programmed by hardware

description languages (HDL). In fact, it is possible to reach a real-time or near real-time

performance with a simple GPU implementation for a massively parallel data-intensive

application such as those of computer vision and image processing.

The objective of this thesis is to implement two different computer vision applications

on GPU and report the speed-up by comparing it with the single-thread CPU imple-

mentation. The first application is a multi-view stereo vision pipeline that aims to pro-

duce dense depth map estimation for each of its input images which are obtained by a

light field camera. The pipeline starts with an image segmentation engine to shrink the

size of the images and proceeds with a depth initialization and later an optimization

scheme to estimate and refine the depth values, respectively. The second application

is an image-based rendering task in which a view interpolation algorithm is used to cre-

ate non-real images captured by a virtual camera that moves between two real stereo

cameras. Both applications are extremely time-consuming when executed on a tradi-

tional single-core CPU mostly due to high image resolutions and large range of depth

3

quantization levels or depth hypothesis. We will show that a GPU implementation can

significantly reduce the execution time of both applications.

The rest of this thesis is organized as follows: Section 2 explains the necessary back-

ground for stereo vision, image-based rendering, and understanding the principles of

GPU computing. In Section 3, we explain algorithms and our implementations. The re-

sults are represented in Section 4, and finally, we conclude the thesis in Section 5.

4

2. BACKGROUND

2.1 Stereo Vision for Depth Estimation

2.1.1 Pinhole Camera Model

In its simplest form, the camera can be shown as a barrier with an ideally infinitely

small aperture (abstract point) in the middle, which is placed between the 3D object

and the image sensor. The reason for such a system is that each point within the 3D

world emits several rays of light in different directions. If there is no barrier in between,

each point on the 2D sensor plane will receive light rays from all the points within the

3D scene. However, if there is a barrier with an ideal aperture in the middle, then only

one ray of light from each 3D point can hit the sensor plane, creating a one-to-one

mapping from the 3D world to the 2D sensor plane. The process has been demon-

strated in Figure 2.1.

Figure 2.1 Only one ray of light from each 3D point can hit the sensor plane [86].

This simple system is referred to as pinhole camera model. Figure 2.2 shows a more

detailed structure of an ideal pinhole camera model. In a pinhole camera, the distance

between the pinhole and sensor plane is called the focal length. The line that passes

through the pinhole and is perpendicular to the sensor plane is called optical axis and

the intersection of this line with the sensor plane is called the principle point of the cam-

era, which has the coordinate of (0, 0).

5

Figure 2.2. Typical structure of pinhole camera model [87].

Camera Intrinsic Parameters

The camera model is a mathematical description of how a camera captures images.

Considering this, camera intrinsic are types of parameters that determine how the 3D

points in the world are projected to 2D points on the image plane. Given the depicted

scheme in Figure 2.3 and by using the triangles technique, the mapping formula for

converting the 3-D point 𝑃(𝑋, 𝑌, 𝑍) to the 2-D point 𝑝(𝑥, 𝑦) can be done as follows:

Equation 1: 𝒙 = 𝒇
𝑿

𝒁
, 𝒚 = 𝒇

𝒀

𝒁

Figure 2.3. Image plane of pinhole camera model [88].

Camera Extrinsic Parameters

Camera intrinsics explain how the 3D coordinates are projected on the image plane,

assuming that the camera and word coordinate systems are the same. The extrinsic

parameters come into play when 3D points in the world are in the different coordinate

system than that of the camera. A transformation is needed, as shown in Figure 2.4, to

transfer these points from the world coordinate system to the camera coordinate sys-

tem before projecting them on the image plane. These transformations come in the

6

form of rotation matrix 𝑅3×3 and translation vector 𝑇3×1, both of which can be concate-

nated to form what is known as extrinsic matrix Equation 2.

Figure 2.4. Rotation and translation changes coordinate system

Equation 2: [𝑹𝟑×𝟑|𝑻𝟑×𝟏] = [

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒕𝟏

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑 𝒕𝟐

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑 𝒕𝟑

], where 𝑻𝟑×𝟏 = −𝑹𝟑×𝟑 × 𝑪𝟑×𝟏

The Equation 3 can be further updated with camera intrinsic and extrinsic matrices to

form a new matrix 𝑃3×4 which is called projection matrix.

Equation 3: 𝒁 [
𝒖
𝒗
𝟏

] = [
𝒇𝒙 𝒔 𝒄𝒙

𝟎 𝒇𝒚 𝒄𝒚

𝟎 𝟎 𝟏

] [

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑 𝒕𝟏

𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑 𝒕𝟐

𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑 𝒕𝟑

] [

𝑿
𝒀
𝒁
𝟏

]

= 𝐾[𝑅3×3|𝑇3×1] [

𝑋
𝑌
𝑍
1

]

= 𝑃3×4 [

𝑋
𝑌
𝑍
1

]

2.1.2 Stereo Matching

Stereo matching is the most traditional form of depth estimating with cameras. In a ste-

reo camera system, two identical cameras are put in slightly, horizontally or vertically,

different positions from each other. The photos of the scene must be taken synchro-

nously by the two cameras to make sure that the configuration of the scene does not

change during the image acquisition process. The images which are obtained in this

way are referred to as stereo pair images or just stereo images.

Taking the images from the same scene from two different perspectives allows the ste-

reo matching algorithms to extract the depth information by analyzing the similarities

7

between the two views. The key idea enabling these algorithms comes from a physical

phenomenon called the parallax effect, based on which distant objects tend to move

slower than closer ones [18]. This principle was originally used in astronomy to esti-

mate the distance of galactic objects such as stars and planets, but here it is being

used to estimate the distance of each pixel from the camera [23].

According to the parallax, pixels belonging to the objects which are further away from

the camera have more displacement (disparity) within the stereo images than the pixels

of the closer objects. This implies that there is a reverse relationship between the depth

of a pixel and its disparity in the stereo pair. However, finding the exact disparity for

every single pixel has been shown to be an NP-hard problem for many stereo matching

solutions [24]. Hence, many stereo matching algorithms are approximation solutions

that aim at estimating the disparity of each pixel by finding the similar parts of two im-

ages. In this regard, it is often called the stereo correspondence problem. It can further

be proved that by obtaining the disparity of a pixel, its depth can be calculated using

the intrinsic parameters of the camera, which will be explained in more details in the

next sections.

The traditional methods of stereo matching are usually categorized into two main

groups: local methods and global methods. The local methods use a supporting win-

dow and a similarity function to do a similarity search across the stereo images to find

the corresponding pixel for each pixel in the corresponding stereo image [30][31][32].

Global methods, on the other hand, optimize a global cost function for the entire image

to obtain an approximately good disparity label for each pixel

[33][34][35][36][37][38][39]. Generally speaking, local methods are faster but produce

lower quality depth maps, while global methods are slower (more computationally in-

tensive) but tend to produce more accurate results. There is also a third approach

called semi-global matching, which tries to find a trade-off between local and global

methods [40][41].

Modern day stereo matching algorithms, however, are mostly based on neural net-

works which either directly learn a mapping from the stereo pair to the depth map

[25][26][27] or indirectly by first computing a cost-volume from the stereo images, then

using a neural network to find a mapping from the cost-volume to the disparity/depth

map [28][29].

In the rest of this section, we introduce a general taxonomy of stereo matching algo-

rithms which can be shown as a four-stage pipeline. Figure 2.5 shows a diagram of a

8

typical stereo pipeline. All the traditional stereo algorithms tend to implement all or a

subset of this pipeline [24].

Figure 2.5 A typical stereo matching pipeline [90].

In the first stage of the pipeline, a similarity search is performed over two images to

form an initial estimate of similarities among horizontal (or vertical) pixels of images.

This initial estimate is called cost-volume. In the second stage, extra post processing

and filtering operations are performed on cost-volume to further improve the accuracy

of the initial estimate. In the third stage, the best disparity found so far is picked as the

most potential candidate for each pixel in the volume to form an initial disparity map. In

the fourth and final stage, we try to further improve the initial disparity map using opti-

mization algorithms. In the rest of this section, we explain each stage of the pipeline in

greater detail.

Computing the matching cost

The first step in computing matching cost is to select a similarity function, which is used

to measure the degree of similarity between two pixels in the left and right images, re-

spectively. There are a number of similarity functions with their own specific properties.

One of the most commonly used functions is squared intensity difference (SID). The

SID formula is as follows, where 𝐿 and 𝑅 are left and right images, respectively:

Equation 4: 𝑪𝑺𝑰𝑫(𝒙, 𝒚) = (𝑳(𝒙, 𝒚) − 𝑹(𝒙, 𝒚))
𝟐
,

Another common option is absolute intensity difference:

Equation 5: 𝑪𝑨𝑰𝑫(𝒙, 𝒚) = |𝑳(𝒙, 𝒚) − 𝑹(𝒙, 𝒚)|,

In some stereo matching algorithms, matching cost computation and cost aggregation

steps are merged into a single step. This allows for employing similarity measures that

work over a range of pixels rather individual pixels. Similarity measures based on cor-

relation coefficient [42] and more recently proposed functions based on Siamese net-

works [43][44] are such examples. Figure 2.6 shows an example of Siamese network

which applies a series of convolutions on local patches of left and right images before

using a dot product to produce the similarity score.

9

 Figure 2.6. The similarity function based on Siamese network [44].

It is important to note that in the context of multi-view stereo (MVS) the similarity func-

tion is referred to as the photo-consistency function.

After selecting the similarity function, in the next step, we need to find the matching

points between two stereo images to compute the initial cost-volume. The matching

point can be found using the constraint induced by the epipolar geometry between two

images. Figure 2.7 shows the general setup of epipolar geometry.

Figure 2.7 general setup of epipolar geometry [45][89].

 In a more general case, two cameras can be placed in any arbitrary position to each

other. Here, the image plane of each camera is placed in front of its principal point, and

two principal points (𝑂 and 𝑂′) are connected through a green line called the baseline.

The 3D point 𝑃, which is observed by both cameras, is projected on each image plane

𝐼 and 𝐼′ to form points 𝑝 and 𝑝′, respectively. By passing plane from the baseline and

the point 𝑃 and intersecting it with each image plane (𝐼 and 𝐼′) we will obtain two lines

(𝑙 and 𝑙′), which are being referred to as epipolar lines. By computing the essential ma-

trix, it can be shown that points on one epipolar line correspond to the points on an-

other epipolar line [45]. In other words, given the point 𝑝, in order to find the corre-

sponding point 𝑝′, we only need to search line 𝑙′ instead of the whole image.

10

Figure 2.8 epipolar setup for stereo matching system [89].

In the case of stereo matching with two horizontal cameras, since baseline is parallel to

the both image-plane, Figure 2.8, the epipolar lines 𝑙 and 𝑙′ would become the corre-

sponding rows of the two image planes. Now by taking one image as the reference

(usually the left image 𝐿), we can generate a three-dimensional matrix called cost-vol-

ume with the same height and width as the input image and the same depth as the

number of the disparity levels. Considering this, each (𝑥, 𝑦, 𝑑) entry of this matrix con-

tains the similarity value at the disparity level 𝑑 for the pixel (𝑥, 𝑦) in the reference im-

age. The process is better shown in the following equation:

Equation 6: 𝑪(𝒙, 𝒚, 𝒅) = 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑳(𝒙, 𝒚) − 𝑹(𝒙 − 𝒅, 𝒚))

Computing Cost Aggregation

If we use the initial cost-volume created in the previous stage directly to compute the

disparity, it will only generate a distorted (noisy) disparity map similar to the one in Fig-

ure 2.9-left, whereas the ground truth of the same scene is smooth and noiseless (Fig-

ure 2.9-right).

We aim to remove the noise at the cost aggregation stage and improve the result by

applying an aggregation function on the cost-volume produced in the previous stage.

The aggregation function is defined based on the assumption that disparity/depth val-

ues change smoothly across the image and only change sharply near the boundary of

the objects. This implies that there is a high correlation among the disparity values of

neighbouring pixels. As a result, the aggregation for each pixel is performed over a lo-

cal region captured by a sliding support window which filters the entire cost-volume.

11

Figure 2.9. disparity map without aggregation (left) ground truth (right) [90].

The local window can come in different sizes (e.g., 5 x 5 or 11 x 11), different shapes

(one to three dimensions), and different weights (uniform, Gaussian) [46][47]. In some

cases, we may use color proximity as a weighting factor for disparities or adjust the

size of the local window to generate more robust results [48].

A simple example of an aggregation function is the box method with a N x N window,

where N = 2r. The formula is as follows:

Equation 7: 𝑪𝑨(𝒙, 𝒚) =
𝟏

𝑵𝟐
∑ ∑ 𝑪(𝒙 + 𝒏, 𝒚 + 𝒎)𝒓

𝒎=−𝒓
𝒓
𝒏= −𝒓

Treating the cost-aggregation as a filtering operation, where each slice of the cost-vol-

ume across the disparity axis is considered as a depth map, could quickly lead to a

computational inefficiency once the range of the disparity levels increases. The higher

the disparity range, the more depth map slices needed to be filtered. For the simple

box method, this issue has been addressed using the well-known SAT (summed area

table) method, which is proposed in [49].

The algorithm works in two stages. First, for each pixel location, the following summa-

tion will be done, and the results are stored in the table 𝑆, which has the same size as

the image:

Equation 8: 𝑺(𝒙, 𝒚) = ∑ ∑ 𝑪(𝒏, 𝒎)
𝒚
𝒎

𝒙
𝒏=𝟎

In the second stage, the aggregation cost at each point is calculated using the following

formula:

Equation 9: 𝑪𝑨(𝒙, 𝒚) =
𝟏

𝑵𝟐 (𝑺(𝒙 + 𝒓, 𝒚 + 𝒓) − 𝑺(𝒙 − 𝒓 − 𝟏, 𝒚 + 𝒓) − 𝑺(𝒙 + 𝒓, 𝒚 − 𝒓 −

𝟏) + 𝑺(𝒙 − 𝒓 − 𝟏, 𝒚 − 𝒓 − 𝟏))

Disparity Computation

In local methods, most of the focus is on the first two stages (matching cost computa-

tion and cost aggregation), and the disparity computation is simply done by choosing

12

the disparity with the minimum cost at each pixel location (x, y): the so-called WINNER-

TAKES-ALL approach [24].

Global methods, on the other hand, tend to ignore cost aggregation or use it as a sim-

ple initialization process [24][45]. The reason for this is those global methods, unlike lo-

cal methods, enforce a global smoothness constraint, which removes any need for en-

forcing local smoothness by the cost aggregation step.

Contrary to local methods, global methods do most of the job during the disparity com-

putation stage, where a global energy (cost) function is minimized to enhance the qual-

ity of the disparity map to a high level. The objective is to assign a disparity label to

each pixel in such a way that minimizes an energy function with the following form:

Equation 10: 𝑬(𝒅) = 𝑬𝒅𝒂𝒕𝒂(𝒅) + 𝝀𝑬𝑺𝒎𝒐𝒐𝒕𝒉(𝒅),

where 𝐸𝑑𝑎𝑡𝑎(𝑑) measures how well the current disparity 𝑑 does fit in and 𝐸𝑆𝑚𝑜𝑜𝑡ℎ(𝑑)

measures the cost of assigning two different labels (i.e., 𝑑𝑝and 𝑑𝑞) to two adjacent pix-

els.

2.1.3 Multi-view Stereo

Multi-view depth estimation is a general term used for describing a set of algorithms

and methods which solve the stereo correspondence with more than two images. Alt-

hough one might consider MVS a natural improvement to stereo methods, as the addi-

tional number of views would lead to the generation of a more accurate depth map, the

main goal of the MVS is to reconstruct the 3-D geometry of the scene [45]. As a result,

the MVS algorithms follow a slightly different pipeline than that of the stereo, which we

have introduced so far. In this section, we limit ourselves to the depth estimation aspect

of the MVS and highlight some of its key features as well as similarities and differences

with respect to stereo methods.

The first difference between MVS and stereo vision is the way they represent the

scene’s geometry. While the standard binocular stereo generates a single depth map

by choosing one of the views as a reference view, an MVS approach would generate a

depth map for each one of the views. In addition to depth maps, MVS methods would

also use different ways to represent a scene’s geometry such as voxels, level sets, and

polygon meshes. In this thesis, we mainly focused on the type of MVS algorithms that

works with depth map [50].

Another critical difference between MVS and stereo matching is the camera setup. In

the MVS, several cameras can be placed at any distance and angle from each other to

capture different parts of an object. One of the consequences of such camera setup is

13

that the input images, unlike the stereo matching, are no longer rectified. For this rea-

son, it is no longer beneficial to use disparity as a substitution for depth since we need

to perform a 2D search on all other views to find the corresponding points. Therefore,

for MVS algorithms, it is more common to work directly with depth rather than disparity

for which we only have to perform a 1-D search on a range of depth hypotheses to find

the corresponding point on each view [51].

One advantages of the MVS method over stereo vison methods is in the photo-con-

sistency (similarity function), where adding extra views creates a better cost-volume.

Given the disparity/depth 𝑑, the cost-volume for the MVS method is obtained by itera-

tively performing the following equation over different values of 𝑥, 𝑦, and k.

Equation 11: 𝑪(𝒙, 𝒚, 𝒅) = ∑ 𝒔𝒊𝒎𝒊𝒍𝒂𝒓𝒊𝒕𝒚_𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏(𝑰𝒌(𝒙, 𝒚), 𝑰𝒓(𝒙, 𝒚), 𝒅)𝒌

Here, 𝐶(𝑥, 𝑦, 𝑑) is obtained by summation of photo-consistency values of all the views.

As MVS methods look at a scene (object) from a different perspective, they have to

deal with the issue of visibility and occlusion (Figure 2.10). Photo-consistency computa-

tion cannot lead to a correct result if it is performed over an occluded region. As a re-

sult, occlusion modeling needs to be done to determine which views are visible and

can be used for photo-consistency [50].

Figure 2.10. visible and occluded camera in MVS camera setup [51]

2.2 Image-based Rendering

Creating a computer-generated virtual environment that simulates the real world and

gives users an immersive experience is one of the long-standing goals of virtual reality.

Achieving such a goal requires modeling and rendering an entire environment from any

arbitrary point of view. In this regard, constructing and representing 3D objects as well

as free-viewpoint navigation within the environment are considered as two of the most

fundamental challenges within this field [45].

14

Modeling and rendering of a 3D scene have been traditionally done using computer

graphics algorithms through 3-D geometry modelling followed by model-based render-

ing. While modeling is concerned with extracting the geometry and illumination charac-

teristics of the scene to form a 3D model, the rendering is about performing computa-

tion on this model to generate a desired photo-realistic view [52]. The rendering of the

view can be done based on several variables such as user’s position, illumination, and

color. Such rendering techniques include illumination/shading computation, geometric

cropping, and simplification of the reconstructed scene [53].

The strength of model-based techniques lies in the accuracy of their model and flexibil-

ity of the rendering. A 3D model is expected to represent the complete scene geome-

try. Rendering also can be applied with different specifications on the same model to

create different images. The downside, however, is the high computation cost. As the

size of the scene and/or complexity of the objects grow, the complexity of the 3-D

model increases, which makes it more time-consuming to obtain. Because of this, tradi-

tional graphics-based techniques are not preferred for rendering real-world scenes

where the 3D model is hard to obtain. These techniques have applications in computer-

aided design, game development, and other engineering disciplines which employ syn-

thetic scenes, where the geometrical models are pre-defined.

Contrary to model-based rendering methods, there are image-based rendering meth-

ods that use multi-perspective images as the fundamental building blocks to achieve

the same goal. One of the direct consequences of using such approaches is reducing

the computation time. The reason is that, first, traditional methods use complex geome-

try modeling and rendering, whereas in IBR we perform only simple operations and

analysis on a set of images. Second, in IBR, computational complexity does not in-

crease with the increase in the complexity of the objects and their relationships. And fi-

nally, since we directly render the scene from the images, the generated views are al-

ready photo-realistic, and there is no need for additional computation on that. All these

advantages together make IBR a very suitable alternative approach to traditional com-

puter graphics-based techniques.

The IBR can be defined as the problem of reconstructing a non-existing view of the

scene from a set of already existing views captured by a system of cameras. Generally,

IBR techniques can be categorized in two groups, depending on the amount of the ge-

ometry information available, namely rendering without geometry and rendering with

geometry [53]. In some references, the rendering with geometry is further broken down

into rendering with implicit or explicit geometry [52][54]. Figure 2.11 shows the whole

range of different IBR techniques.

15

Figure 2.11. The nomenclature of IBR techniques [52]

Regarding rendering without geometry, a new scene is entirely reconstructed from

multi-view images and videos using a special formalism based on the plenoptic func-

tion. Originally proposed in [55], a plenoptic function is a 7-dimension function that can

describe the intensity of light at any given point, direction, and wavelength in the scene

[56]. A new scene view can be rendered from the plenoptic function, which has to be

reconstructed first from its sampled version (i.e., a set of multi-view images). Prominent

examples of this type of rendering are techniques based on light field rendering and lu-

migraph [57][58], as well as Concentric Mosaics [59].

Geometry-based methods, on the other hand, incorporate the geometry of the scene to

reduce the number of required images. Implicit geometry methods, for example, would

use feature correspondences, e.g., point-to-point correspondences, to generate a new

view without directly working with the depth information. Examples of such methods are

view interpolation [60] and view morphing [61]. The explicit geometry methods, how-

ever, require receiving the whole geometry information of the scene, usually in the form

of a depth map. Layered Depth Images [62] and 3D Warping techniques [63] are prom-

inent examples of this class of rendering.

Image-based rendering, especially geometry-based methods, is often considered as a

direct application of stereo vision. In this thesis, we target a view-interpolation method

based on plane-sweeping principles to generate novel views from stereo images. Gen-

erally speaking, these algorithms heavily rely on point projection among different views

as well as on camera calibration.

2.3 Parallel Computing

The early computers were originally designed based on the sequential model of ma-

chine languages to make them easy to program, even though the hardware itself is

16

inherently parallel [1]: the so-called serial illusion [2]. However, as time passed, the in-

creasing demand for more computational power led to the unleashing of more and

more parallel processing potential of the computers. The early parallelism was done at

three different levels: bit-level parallelism, instruction-level parallelism, and data-level

parallelism. These types of parallelism, however, were implemented implicitly by the

processor itself without impacting the software development process at all [7]. In addi-

tion to implicit parallelism, the software community also heavily relied on rapid improve-

ments in the clock frequency of microprocessors to consistently enhance the perfor-

mance of their software applications. The same serial version of the code could now

enjoy faster execution on the next generation of hardware without programmers being

needed to do anything regarding the performance of the software. As a result, the de-

velopment of new software applications became completely dependent on the recent

advancements in hardware, not better software engineering.

Things for the software community, however, started to change in 2003 when computer

vendors could no longer increase the clock frequency of their processors easily: mostly

due to issues like power consumption and heat dissipation [3]. To fill the performance

gap, computer architects developed new models based on multiple computing units,

known as processor cores, and created a new form of parallelism called thread-level or

task-level parallelism. Unlike the previous types of parallelism, thread-level/task-level

parallelism requires direct intervention of programmers, affecting many aspects of soft-

ware development: algorithm design, implementation, and debugging, to name but a

few. From that time onward, only software written in parallel could enjoy the benefit of

newer generations of hardware. It was a start of a paradigm shift for the software de-

velopment community, which is known today as the concurrency revolution [4]. One of

the consequences of this shift was to make programmers become more aware of the

architecture specifications of the processor under the hood to develop their applications

based on that accordingly. Developing a good software application based on hardware

requires better resource allocation [5] and assign each task to the best type of proces-

sor or processor core [6]. The latter is a key component in the embedded systems pro-

gramming and will be explained in more detail in the following sections.

2.3.1 Heterogeneous Computing

Different types of algorithms present a different range of computational behavior. Some

algorithms, such as searching or parsing, are very control-intensive. This means that

these algorithms use a high number of if-then-else statements within their coding struc-

ture. Unlike arithmetic operations like addition and multiplication, control operations are

17

handled by the control unit (CU) of the processor rather than the arithmetic logical unit

(ALU). This class of algorithms is known to be very hard to parallelize. In contrast,

data-intensive algorithms, which process a vast amount of data, tend to be more arith-

metic oriented and more parallel-friendly [7]. Most of the algorithms in computer

graphics, image/signal processing, computer vision, and deep learning [8] belong to

this category of computation. There is also another branch of the algorithms, which is

known as compute-intensive. In this class of algorithms, lots of processing is being

done on a limited amount of data. Many iterative algorithms, such as those in numerical

methods and financial modeling, belong to this category of computation.

In order to optimally cover this wide range of computing domain, different computer ar-

chitectures were developed with each of which being excelled at only one or few as-

pects of computation. Superscalar CPUs [7][11] with a large control unit and high clock

frequency were designed to handle-control intensive tasks, while GPUs and vector pro-

cessors, where a single instruction is executed for multiple data (SIMD), tend to work

better with data-intensive applications [9]. Field programmable gate arrays (FPGAs)

are another type of platform that can be programmed either by HLS (high level synthe-

sis) using instruction-based languages such as C/C++, system C, and OpenCL or in

traditional ways using Hardware Description Languages (HDL) like Verilog and VHDL.

FPGA would allow developers to design and optimize an architecture of their choice,

the one that perfectly fits into the computational structure of their application. Another

advantage of FPGA is their low energy consumption compared to GPUs, while their

downside is their low clock frequency [10]. Digital signal processors (DSPs) are an-

other worth mentioning spectrum of microprocessors, which are commonly used in em-

bedded systems such as smartphones to perform tasks such as audio processing, im-

age encoding/decoding, and voice recognition [7].

The problem, however, comes from the fact that each application is a mixture of differ-

ent types of computation, and there is no single best device to address them all per-

fectly. For example, an application might possess some areas which are control-inten-

sive, therefore more suitable to be executed on a CPU, while it has some other areas

which have lots of bit-wise operations and are more suitable for an FPGA platform

[11][12][13]. The solution is to use multiple processors, and the challenge is to find the

right combination of devices to solve the problem optimally. Considering this, the pro-

grammer’s task is to map their applications on a wide array of architectures to find the

best performance: execution time, power consumption, or both depending on the goal.

This type of computation where comprising tasks of an application are divided among

18

processors with different architecture within the same framework is called heterogene-

ous computing.

2.3.2 Heterogeneous Computing for parallel processors

Heterogenous computing comes with an inherent opportunity to exploit parallelism in

applications as it can combine parallel and serial processors in one framework. Since

2003 and the beginning of the concurrency revolution, computer architects came up

with two main trajectories for their newly designed parallel processors: multi-core and

many-thread. Multi-core approach tends to utilize parallelism within the application

while maintaining good performance on the sequential parts of the code. Examples of

such are the latest series of intel core-i family for personal computers and Xeon family

for servers [14]. In these processors, each core has its own program counter and exe-

cutes a full x86 instruction set [15]. Many-thread approach [3], on the other hand, tends

to sacrifice the sequential performance of the code entirely in the favour of parallelism

by dedicating a huge portion of silicon area (die) to arithmetic cores. Processors of this

type are often referred to as massively parallel processors. The prime example of such

is graphic processor units (GPUs), which are originally developed for the video game

industry, but later found their way to high-performance computing community. Today

modern GPUs like Nvidia RTX 2080Ti possess approximately 4000 cores with floating

point performance of 13.45 teraflops. This number would become even more stunning

when it is compared with the performance of the latest intel core i9 series which is no

more than 1.3 teraflops [16].

A real-world application, however, is neither purely parallel nor sequential but a mixture

of both. In fact, a typical program consists of both sequential and parallel parts, with the

sequential parts taking the most volume of the code, while the parallel parts take the

most execution time, as illustrated in Figure 2.12. GPUs tend to perform very poorly in

the face of the sequential portion of the code, whereas CPUs, with their high working

frequency and sophisticated control logic tend to work the best. This implies that nei-

ther GPU nor CPU alone is not enough to address the heterogeneous nature of the

parallelism, while a joint CPU-GPU framework is a natural option to address this prob-

lem.

2.3.3 GPU Architecture

GPU’s architecture finds its roots in demand in computing 3-D graphics, where a large

number of arithmetic operations had to be done in real-time. To gain a deeper insight

19

into the architecture of GPU, in this section, we contrast it against the CPU’s architec-

ture, which in many respects plays a complementary role to GPU.

Figure 2.12 Distribution of sequential and parallel portion of an application [3].
Peach is the total execution time of application. Meat of the peach (orange) is
the data-parallel part and pit of the peach (red) is the serial part of the core.

CPU and GPU follow two fundamentally different philosophies of design. The former

focuses on minimizing the program's latency, defined as the time delay to perform each

task [2]. This requires the employment of strong cores which are optimized for single

thread performance of the code. As a result, a CPU core tends to possess a very high

clock frequency and a more sophisticated control unit for strong ILP support, namely

superscalar, branch prediction, and out-of-order execution. Moreover, a large cache

size is being employed to cover up high-latency memory access operations which have

the highest clock cycle count among all instructions. All of this, however, comes at the

cost of consuming an increasingly bigger portion of the chip area and more power sup-

ply, which, in turn, dramatically reduces the number of the cores that can be used on

the chip. As a matter of fact, most of the modern-day CPUs do not possess more than

thirty cores on their chip [19].

GPUs’ architecture, on the other hand, has been optimized to maximize the throughput

of the program. The throughput is defined as the number of tasks being done in a given

amount of time. Unlike latency, which is the unit of time per unit of the task, throughput

measures the unit of work (number of tasks) per unit of time. The consequence of such

an approach would lead to a significantly different design where the number of the

cores is prioritized over the computing power of each core. This, however, can come at

the cost of increasing the latency of each individual thread, causing the processor to

perform poorly in the presence of a low amount of parallelism, unlike a latency-based

design which tends to work poorly in the presence of a high amount of parallelism.

20

The schematic difference between CPU’s and GPU’s architectures has been demon-

strated inFigure 2.13. As it can be seen, a GPU is almost entirely made up of arithmetic

cores that share control logic and cache memory among themselves. The GPU cores,

though, are not nearly as powerful as their CPU counterpart. They are smaller in size

(made up of fewer transistors), work with less clock frequency, and do not have their

own independent control unit. As a result, they do not do very well in the face of com-

plex tasks where lots of control flow is involved. However, what they lack in speed and

complexity, they compensate with numbers. Due to their huge number of cores, GPUs

are capable of computing a massive number of arithmetic operations at the same time,

maximizing the throughput of the program. As a result, GPUs tend to be extremely

good at matrix and vector computation where lots of arithmetic operations are being

done.

Figure 2.13. the difference between CPU and GPU architecture [3].

Another major difference between CPU and GPU is the cache memory. Cache memo-

ries are great tools for decreasing the instruction and data latencies by fetching them

before they are needed. However, GPUs tend to dedicate most of their die to arithmetic

cores; hence, they do not possess a big cache size. In GPU, long latency operations,

such as memory accesses, are being addressed in two other ways. Firstly, by taking

advantage of a large number of available tasks, GPU can keep itself occupied doing

the rest of the tasks in the queue while data for other groups of tasks is being fetched

from memory: the so-called latency hiding. Secondly, GPUs tend to compensate for

the long-latency memory operations by employing a very high memory bandwidth that

exclusively focuses on the throughput. The GPU memory bandwidth can fetch a big

chunk of data all at once. It might not fetch each data as fast as the CPU does, but it

loads a big chunk of data in consecutive memory locations much faster. As a result, if

applications can use consecutive data memory elements, the data can be loaded into

the device much faster. In GPGPU, the techniques which allows programmers to do so

are called memory coalescing techniques [3]. A limited cache memory is only

21

provided to control the data access congestion on the bandwidth, so that multiple

threads do not access the same memory location.

Computer Organization of GPU

GPUs from different manufacturers, e.g., Nvidia and AMD, can have different computer

organizations. A typical Nvidia GPU processor is organized as an array of computing

units called streaming multiprocessor (SM). Each SM is a complete and independent

processor. It has its own cache, control, and arithmetic logic unit and can work in any

order to other SMs, allowing the GPU to support thread-level parallelism. SMs are fur-

ther organized into building blocks called processor clusters (PC); Each PC can contain

one or more SMs depending on the architecture of the device [20].

SMs are independent of each other but not isolated. They share a slow high-bandwidth

off-chip global memory and fast on-chip L2-level cache memory, which can be ac-

cessed by all the cores within the device. These two memories are a place for SMs to

collaborate and share data with each other. The global memory is separated from the

CPU’s RAM, which is located in the computer's motherboard. Both global and RAM

memories use a PCI-Express bus to transfer data between each other.

Figure 2.14 shows a typical architecture of a SM. Each SM has a dedicated cache

memory, which is partitioned into two different areas: The L1 level cache for fast in-

struction fetch and shared memory for low latency data access and thread-level collab-

oration. Furthermore, each SM has a large register bank to accelerate thread-level

computation. SM is a heavily multithreaded processor. It contains an array of SIMD

cores called streaming processor (SP). SP is a small vector processor capable of DLP

(Data Level Parallelism) support [2].

In Nvidia GPUs, each consecutive 32 threads form a computing unit called warp, and

each SM can handle at least one warp per cycle. All the threads of a warp are exe-

cuted in parallel by the SM. The unit called warp scheduler is provided to implement la-

tency hiding by switching between stalled and eligible warps [93]. A stalled warp is a

warp whose instruction cannot be issued (mostly due to the high memory access la-

tency), and eligible warp is a warp whose instruction is ready to be executed. The key

point here is that all the threads within a warp share the same control path (same warp

scheduler and program counter register, for example), while each of them having their

own arithmetic core. This means that they load and execute the same instruction with

different operands at the same time. The terminology used by NVIDA to describe this

model of execution is called SIMT or Single Instruction Multiple Thread. It is a similar

22

concept to SIMD with this difference that a single instruction is being executed for mul-

tiple thread not multiple data.

 Figure 2.14. computing organization of an SM [20].

2.3.4 Open Computing Language

Open computing language (OpenCL) is a programming framework for parallel compu-

ting in heterogeneous environment. Initially, a project supported by Apple, it was soon

joined by other major microprocessor vendors such as NVIDIA, Intel, and AMD. As a

result, OpenCL is platform independent. It supports a wide range of devices, and its

code can be executed on any combination of these devices.

OpenCL introduces a number of API functions to interact with these devices. A general

OpenCL program is made-up-of four parts, which are being referred to as models: The

Platform model, the execution model, the kernel programming model, and the memory

model. In the rest of this section, we explain each of these models and introduce their

API functions

Platform model

The platform model determines the topology of the computing system. A typical hetero-

geneous system consists of a host processor, usually a CPU, and a number of devices.

The host is the main processor of the system and is responsible for launching the exe-

cution of the program. Devices are co-processors, which are working in accordance

with the host. OpenCL platform model has been designed to model such a framework.

As a result, an OpenCL program has a host side of a code, which contains the main

program and runs by the host processor and kernels. Kernels are OpenCL functions

23

that are executed on the device. In a typical CPU-GPU platform, the CPU is the host,

and GPU is the device. CPU starts and finishes the execution of the program and can

decide when and when not to use the GPU.

In addition to defining the relationship between host and device, the platform defines an

abstract hardware model for the devices (Figure 2.15). In this abstract model, each de-

vice consists of an independent block called compute unit, and each compute unit con-

tains at least one processing element. In the case of an NVIDIA GPU, we discussed

earlier, each SM is a compute unit, and each SP is a processing element.

Figure 2.15. OpenCL Abstract hardware model [7].

The platform is an implementation of OpenCL. This means that we have a number of

devices on our system, and a specific platform may consider only a subset of the de-

vices to work with. For example, an NVIDIA-made platform may not recognize the Intel

CPU installed on our system because it is from a different vendor, and its instruction

set is not known by NVIDIA.

Execution model

After determining platform and devices within it, OpenCL program proceeds with an ex-

ecution model to run kernel codes on the set of devices. In order to do that, an object

named context is created. Context is an abstract framework for defining and managing

other OpenCL objects, which have something to do with the execution of the kernels

such as memory and kernel objects. The API function for creating context is as follows:

cl_context
clCreateContext (
const cl_context_properties *properties,
cl_uint num_devices,
const cl_device_id *devices,
void (CL_CALLBACK *pfn_notify)(
 const charr *errinfo,
 const void *private_info,
 size_t cb,
 void *user_data),
 void *user_data,
 cl_int *errcode_ret)

24

Context is platform specific and take devices of the platform as an input argument. This

means that it can be defined for any number of devices available within the platform,

but it cannot be defined for devices associated to other platforms. The API function

clCreateContextFromType() is also provided to create context for all the devices of the

same type (all GPU or CPU devices) within the platform [7].

After defining the context, we can use it to define several other objects to initiate, con-

figure and execute our kernel codes. For example, we can use memory objects like

buffers (cl_mem) to allocate memory on devices’ memories or kernel objects (cl_ker-

nel) to call our kernel functions. OpenCL kernel codes usually written in form of string.

An object with the type of Program can be used to read the entire string code, compile

it, and store it to be used by other objects later.

Another important aspect of execution model is a communication mechanism called

command-queue. A command-queue object is created to enable the host to directly

command a specific device within the context to do a certain action. For this reason, a

unique command-queue object has to be created for each single device within the con-

text. There are three types of command which can be done by a command-queue ob-

ject: memory commands, kernel execution commands, and synchronization com-

mands. Memory commands are being used to transfer data between host and device

memories. For example, the API function enqueueReadBuffer() is being used to trans-

fer data from a certain memory location in device to a memory location in host. Kernel

execution command can call the kernel function from the host side of the code. The

API command for doing this is enqueueNDRange(). The synchronization commands,

however, are not submitted on the queue. They are basically barrier operations de-

signed to synchronize the activity among different command-queue objects and host

code. The API functions are Finish() and Flush(). The Finish() function, for example,

halts the execution of the host code till all of the commands within the command-queue

is completed.

Kernel Programming Model

Kernels are parts of the OpenCL application which are executed on the device. For this

reason, they are often called device side of the code in contrast to host side, which

contains all the API calls and runs on CPU. From the syntax point of view, kernels are

very similar to a standard programming language such as C/C++ with some additional

keywords which enables the OpenCL features to execute a code on device. For exam-

ple, the term global and local might be used to define a memory pointer on either global

or local memories of the device respectively; or the keyword “kernel” can be used right

25

before the definition of the function to distinguish it from a standard C function. The

most important difference, however, is that the kernel execution happens in parallel,

while normal C/C++ code does not. In fact, kernel execution follows an abstract concur-

rency model defined by the Kernel Programming Model.

The OpenCL concurrency model can be explained as a two-level coarse-to-grain hier-

archy of units, namely work-items and work-groups. In the first level, there is a grid of

work-items. A work-item (also called thread in CUDA literature) is smallest unit in the

concurrency model, which represents an independent task in our kernel function. In the

broader picture, all the compromising tasks of an application must be mapped on an ar-

ray of work-items, generated by NDRange(), in host side of the code before kernel

launch. Consequently, a copy of kernel function is being executed by each one of the

work-items within the grid in a single parallel phase: a well-known style of programming

called SPMD (Single Program Multiple Data) [2].

In the kernel function, each work-item is identified by three indexes provided by the

OpenCL intrinsic function get_global_id(). The get_global_id(0), for example, would

output the index in the x-dimension of the work-item that calls and it the same applies

for get_global_id(1) and get_global_id(2) which output the y and z dimensions of the

same work-item respectively. Here, we show a simple example of an array addition

with OpenCL and compare it a with a standard C implementation to demonstrate how

the indexing works. Figure 2.16 shows a diagram of a simple vector addition algorithm

and Program 1 is a standard C code of the same algorithm.

Figure 2.16. vector addition diagram.

void vector_addition_sequential(float *A, float *B, float *C)
{
for (int i = 0 ; i < 7 ; i++)
 C[i] = A[i] + B[i]
}

Program 1. A serial vector addition

26

By considering each iteration of for loop as a work-item, we reimplement the algorithm

on OpenCL in Program 2. As it can be seen the for loop is omitted.

void vector_addition_parallel(float *A, float *B, float *C)
{
 int i = get_global_id(0)
 C[i] = A[i] + B[i]
}

Program 2. A parallel vector addition

Work-items are isolated units which cannot collaborate with each other on their own.

For this reason, they are further organized into units called work-groups or simply just

groups, which enables the collaboration among member work-items. One of the most

important ways of collaboration in a group is accessing the same local memory ad-

dress by work-items of that group. The local memory, as we explain later, is a shared

memory space dedicated for group collaboration through which work-items can share

the preliminary results of their computation with each other.

In addition to local memory, groups also provide a robust runtime management mecha-

nism called barrier synchronization, through which work-items within a group can coor-

dinate their execution with each other using OpenCL barrier functions, e.g., barrier().

When a work-item reaches a barrier point within the code, it halts its execution until all

the other work-items within a group reach the same point. After that they resume their

execution at the same time.

Both the work-item and work-group are not actual hardware, but rather abstract units

which model the parallel workload of our program. As a result, their number can well

exceed above the number of available resources in our hardware. Therefore, resource

management is being performed by Kernel Programming model to map these units on

our device hardware. In fact, each work-item is assigned to a processing element and

each work-group is handled by a compute unit. In the case of a Nvidia GPU, for exam-

ple, a work-item is assigned to an SP (our device processing element) and a work-

group (our device compute unit) is assigned to a SM.

Memory Model

The CPU (host) and GPU (device) have two physically distinct memories from each

other. The CPU’s RAM memory is located on the motherboard and can only be ac-

cessed by CPU, while GPU’s global memory is on the graphic card and is dedicated for

GPU alone. Before the kernel can be executed on the device, the input data has to be

transferred from the host to the device memory. In OpenCL, this usually happens in

two steps. First, a memory space is encapsulated (allocated) as what we refer to

27

memory object on device memory. Then, the data is copied from a host array to that

allocated memory area on the device.

OpenCL has three types of memory objects which has different properties: buffers, im-

ages, and pipes. Buffer is equivalent to C/C++ array where data elements are stored in

consecutive memory spaces. Image objects can store one, two, or three dimensional

images with the same format as graphics applications. Pipe object is basically a queue

data structure with FIFO (First in First Out) protocol with write and read endpoints. At

the time, only one kernel can write and one kernel can read from two endpoints of the

pipe. Here, we limit our explanation to the buffers since we do not use the other type

of memory objects in our works.

The API call that creates the buffer objects is as follows:

cl_mem
clCreateBuffer(
 cl_context context,
 cl_mem_flags flags,
 size_t size,
 void *host_ptr,
 cl_int *errcode_ret)

The API call would take the associated context, memory flags (READONLY,

WRITEONLY, AND ERADWRITE), size of data in bytes and a host pointer, which re-

fers to the starting element of an input array on host memory, and returns a memory

object of the type buffer as output. The final argument, *errcode_ret, is optional and

can be used to return the type of error if any happens during the function call. The

buffer object is visible to all devices associated with the given context and can be

treated as pointer on the device side of the code.

The clCreateBuffer() function can also be used to transfer the data from the host

pointer to the buffer object it creates. This is an implicit method to transfer data. How-

ever, there are also an explicit memory transfer API functions for transferring data be-

tween host and device. The advantage of using the explicit commands over the implicit

one is merely the performance factor, since they transfers the data at faster rate. You

can see an example of explicit memory transfer commands as follows:

cl_int
clEnqueueWriteBuffer (
 cl_command_queue command_queue,
 cl_mem buffer,
 cl_bool blocking_write,

size_t offset,
size_t cb,
const void *ptr,

28

cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,

cl_event *event)

Memory Regions

The structure of the device memory in OpenCL (and also GPU) is divided into four dif-

ferent regions: global memory, local memory, private memory, and constant memory.

Figure 2.17 demonstrate a general overview of all memory regions. All regions are log-

ically disjointed from each, and they are handled by the programmer. In this section, we

briefly explain each region.

Figure 2.17. The general diagram of OpenCL memory regions [7].

Global memory is a type of a memory which being used to transfer the data between

host and device. For example, if the data need to be transferred from the host memory

to device memory, it will be loaded into the global memory. An important point about

the global memory is that all the work-items (threads) within the kernel will see the

same version of a global variable. Moreover, the lifetime of a global variable is entire

application, which means that the data within the memory will not be deleted after the

current kernel is terminated. Global memory is the main memory of the GPU. It has the

largest size, usually in order of gigabyte, but longest latency due to the fact that is a

slow cheap off-chip memory.

29

Constant memory is an area of the global memory whose values are constant

throughout the kernel execution. Similar to global memory, it is allocated and initialized

by host.

private memory, which is mapped to register memory in GPU, is the fastest type of

memory with a very limited size. The scope of the private memory is each individual

work-item. In other words, each work-item sees a unique private value. The lifetime of

the private memory is during the kernel execution.

In addition to the mentioned memory regions, OpenCL since version 2.0 allows for ex-

pansion of the device global memory region to host memory through a technology

called shared virtual memory (SVM). SVM is particularly useful for pointer-based data

structures (linked-list for example) which are defined on the host memory since there

would be no way to transfer them to device memory. In addition to that, pointers de-

fined on the host are only valid on the host memory, so transferring them to the device

memory is meaningless. However, thanks to the SVM technology, it is possible to

simply pass data structure pointers as an argument to the device memory.

OpenCL can use SVM in three different ways: Coarse-grained buffer SVM, Fine-

grained buffer SVM, Fine-grained system SVM. Coarse-grained buffer SVM means that

host and device share same virtual pointer at granularity of buffers. Here, the mapped

and unmapped processes need to be done to update the host memory regarding the

latest changes on the device. Fine-grained buffer SVM is done on buffer at byte-level

granularity. It does not require mapped and unmapped processes. Fine-grained system

SVM expands the fine-grained SVM to the entire host memory region, making the

buffer object effectively useless since any pointer allocated by simple malloc() can now

be accessed by OpenCL kernel.

30

3. METHODS

In this thesis, we introduce two different algorithms that we have implemented on GPU

using the OpenCL. The first algorithm is a multi-view stereo depth estimation method,

which is being used to estimate depth maps for images captured by camera array sys-

tem and the second one is an Image-based rendering method based on plane-sweep-

ing technique in [65][66][67].

3.1 Multi-view stereo on Sparse Light Field Data

The ideal goal of light-field technology is to capture the entire visual information of the

scene by capturing every single ray of light emitted from the scene. This, however, is

not practically possible due to the existence of almost infinite number of rays of light

[68]. For this reason, we use technologies that perform sampling for light field acquisi-

tion. Two of these technologies are plenoptic cameras [69][70] and camera array sys-

tems [71][72][73][74][75]. An example of these two types of cameras are shown in Fig-

ure 3.1.

Figure 3.1. Camera array system (left) [91] and plenoptic camera (right) [92].

For depth estimation problem, since the input is a matrix of images, we can use MVS

algorithms to solve the problem. The main MVS algorithm is based on plane-sweeping,

which uses camera projection equation to estimate the initial depth values. Plane-

sweeping has shown to have a good performance for simple datasets [76][77] but it

tends to work poorly in the face of occlusion and textureless regions [78]. More com-

plex but computationally intensive algorithms such as those based on patch-match

methods and global optimizations (belief propagation and graph cuts) can be used to

handle occlusion and textureless regions. In this section, we introduce a GPU-friendly

MVS algorithm originally proposed in [78] to estimate the depth values for each pixel in

31

real-time. To reach this end, the proposed method uses superpixel instead of pixel as

the main building block for depth estimation. Super-pixel is a compacted set of neigh-

boring pixels of an image, which have a homogenous color [79]. An example of super-

pixels segmentation is shown in the Figure 3.2.

Figure 3.2. an example of super-pixel pixel segmentation [82].

There are several benefits to choose super-pixels over pixels. First, by using super-pix-

els, the total number of the computing threads in our GPU kernel is reduced dramati-

cally, causing the program to consume less memory and run significantly faster. Sec-

ond, since super-pixel is formed by grouping pixels with similar colors, the negative ef-

fect related to occlusion, noise, and presence of textureless region is reduced. Finally,

by shrinking the size of input image, information can propagate faster across the grid,

reducing the overall chance of converging to local optima [78].

The general diagram of the algorithms has been shown in the Figure 3.3. The input to

the algorithm is a set of images taken by camera array system, and the output is a set

of dense depth maps for each input image. In the first stage of the algorithm, superpixel

segmentation is performed on the images to create a regular grid of superpixels called

superpixel map. In the second stage, a plane-sweeping strategy is applied to estimate

an initial depth value for each superpixel. In the third stage, we use an iterative optimi-

zation algorithm to refine the initial depth values. The key idea behind this algorithm is

to model each superpixel as a plane, using plane equation. As a result, each superpixel

can be shown with (𝑑, �̅�), where 𝑑 is the depth value at superpixel centroid and �̅� is the

normal vector. The goal of the optimizing refinement algorithm is to iteratively update

the values of 𝑑 and �̅� for each superpixel to satisfy a certain cost-function. In the fourth

and final stage, we use the refined planes to estimate the depth value for all the pixels

in the image.

32

Figure 3.3. Three stages of algorithms from left to right: superpixel segmentation,
depth initialization, depth refinement.

3.1.1 Simple Linear Iterative Clustering

The main job of the super-pixel segmentation is to create a more compact and sophisti-

cated version of the image, while preserving its spatial content. Such segmentation

method could effectively lead to a major performance increase, if it is added as a pre-

process to the begging of an image processing pipeline. In this regard, several differ-

ent super-pixel generation algorithms have been proposed with each of which having

its own specification and performance requirements [79][80][81].

One of the most well-known algorithms for super-pixel segmentation is Simple Linear

Iterative Clustering (SLIC). Originally proposed in [79], it uses an array of local k-means

clustering algorithms across the image to assign each pixel to the closest and most

similar cluster. In order to do that, SLIC defines a five-dimensional similarity function,

which consists of two different components: the color and spatial components. The

color component measures the color similarity between two clusters, while using

CIELAB (L*a*b) as the system of color [45]. The reason for such a choice though is

that L*a*b color space tends to differentiate pixels with similar colors better from each

other. The spatial component, on the other hand, implicitly restrict the superpixel spatial

range by comparing it only to the eight neighboring superpixels. The equation describ-

ing the distance function is described as follows:

Equation 12: 𝒅𝒍𝒂𝒃 = √(𝒍𝒌 − 𝒍𝒊)𝟐 + (𝒂𝒌 − 𝒂𝒊)𝟐 + (𝒃𝒌 − 𝒃𝒊)𝟐

𝒅𝒙𝒚 = √(𝒙𝒌 − 𝒙𝒊)𝟐 + (𝒚𝒌 − 𝒚𝒊)𝟐

𝑫𝒔 = 𝒅𝒍𝒂𝒃 +
𝒎

𝒔
𝒅𝒙𝒚

The above equations compute the final distance 𝐷𝑠 between two pixels 𝑘 and 𝑖, using

the color distance 𝑑𝑙𝑎𝑏 and the spatial distance 𝑑𝑥𝑦. The variable 𝑚 is being used as

balancing factor between two distance components and basically determines the com-

pactness of the superpixel. For example, if we increase the value of 𝑚, the weight of

the spatial distances increases and more distant pixels receives more penalty, which in

turn makes our superpixels more spatially isolated and compact.

33

Figure 3.4. The SLIC pipeline on GPU [82]

The Figure 3.4 shows a general diagram of SLIC algorithm. The demonstrated pipeline

has six different stages with the last stage, Enforce Connectivity, being an optional one.

The pipeline outputs two two-dimensional matrices: Index image and superpixel map.

The former contains the superpixel (cluster) index of all pixels within the input image

and latter models the superpixel grid and hold the information of all superpixels such as

color or location of center.

The algorithm starts by converting the RGB color space to CIELAB color space at the

first stage and proceed with initializing the superpixel map and index image at second

(Init_Cluster_Center) and third (Find_Center_Association) stage respectively. After

that, the Update_Cluster_Center and Find_Center_Association procedures are itera-

tively called within a for loop to update the map and index matrices respectively.

The final stage, Enforce_Connectivity, although optional, would contribute greatly to the

quality of the segmentation by eliminating the small isolated clusters which have only

one or two members (pixels).

34

3.2 Depth Initialization

After partitioning our input stereo images into units of superpixels and organizing them

in the form of regular 2-D grids which we named superpixel maps, in the next step, we

assign a single depth value to each superpixel. This initial depth value is obtained by

implementing a plane-sweeping strategy kernel function [76].

Plane-sweeping is the main algorithm for multi-view depth estimation, which unlike the

traditional stereo matching methods works directly with the depth values rather than

disparity. For this reason, it requires to receive camera parameters as input to perform

the projection of pixels between different views. See Figure 3.5 for more details.

Figure 3.5. Different projections of a single pixel for different depth hypothesis.

For generating the depth map, plane-sweeping first assume a set of fronto-parallel

planes in front of each image plane (view). Each plane is considered as a depth hy-

pothesis. Then one at a time, it picks one of the views as a reference view and use all

the available depth hypotheses, one by one, to project each pixel of the reference view

to their equivalent pixels in the neighboring views, using the camera projection matrix.

After that, it computes the accumulated photo-consistency between the current pixel of

reference view and the projected pixels of the neighboring views. Eventually, it returns

the depth hypothesis which gives the maximum (or minimum depending on type of the

function) photo-consistency as the initial depth value for the current pixel of the refer-

ence view. For computing photo-consistency value, we chose Truncated Square Sum

Difference (TSSD) as the cost function. The formula is as follows:

Equation 13: 𝑻𝑺𝑺𝑫(𝒑, 𝒑(𝒅, �̅�)) = 𝒎𝒊𝒏 (𝑻, 𝑺𝑺𝑫(𝒑, 𝒑(𝒅, �̅�))),

Here, 𝑝 is the current pixel in reference view, 𝑝(𝑑, �̅�)is its projection on a neighboring

view, 𝑇 is the threshold used to reduce the effect of the outliers, and 𝑆𝑆𝐷 is the sum

square difference [78].

35

However, in our case, since our algorithm works with superpixel instead of the pixel, we

sample each superpixel in nine different points as a representation of whole area of the

superpixel. The nine representative points are the centroid of superpixel as well as fur-

thest away pixels in eight main directions: north, south, east, west, northeast, north-

west, southeast, and southwest. Therefore, for each superpixel, we compute nine dif-

ferent projections on each of the neighboring views in our camera arrays system and

compute the accumulate photo-consistency. This can be shown more accurately as the

following equation:

Equation 14: 𝒅Ω = 𝒂𝒓𝒈𝒎𝒊𝒏
𝒅

(∑ ∑ 𝑻𝑺𝑺𝑫(𝒑, 𝒑𝒊(𝒅, �̅�))𝒑∈Ω
𝑵
𝒊=𝟏)

In the above equation, the 𝑑Ω is the estimated depth for the superpixel Ω, 𝑝 is the cur-

rent representative point of the superpixel Ω, 𝑝𝑖(𝑑, �̅�) is projection of 𝑝 in the ith view in-

duced by plane (𝑑, �̅�).

3.2.1 Depth Refinement

Superpixels are small compact regions of image in which the depth value is expected

to change smoothly. For this reason, each superpixel can be approximated as a plane

where depth is changing linearly. Consequently, each superpixel is shown as plane

equation (𝑑, �̅�), where 𝑑 is the depth value at the centroid of the superpixel and �̅� is the

normal vector perpendicular to the plane.

The goal is to refine the initial depth values obtained in the previous stage. To achieve

that, the problem is formulated as an optimization algorithm to maximize the con-

sistency among different views, while imposing smoothness constraints within each

view. Our energy function has the following form:

Equation 15: 𝑬(𝒅, �̅�) = 𝑬𝒄(𝒅, �̅�)𝑬𝒔(𝒅, �̅�)

Here, the 𝐸𝑐(𝑑, �̅�) and 𝐸𝑠(𝑑, �̅�) are consistency and smoothness terms respectively and

𝑑and �̅� are the plane parameters that model the superpixel. The refinement algorithm

updates these parameters by iteratively performing two procedures: plane propaga-

tion and plane refinement.

In plane propagation, the superpixel centroid is interpolated in the plane equation of the

neighboring superpixels. If the energy function using the new parameters is improved,

then the current superpixel is updated with the parameters of its neighboring super-

pixel.

Relying only on the immediate neighbors, however, can easily halts the progress of al-

gorithm within a local optimum [78]. To avoid that, we expand the range of the

36

propagation beyond the immediate neighbours by defining a propagation kernel as fol-

lows. First, we consider a square-like propagation window around the current super-

pixel. The size of the window is defined by the parameter 𝑆𝑖𝑧𝑒. We check additional su-

perpixels within the range of this window by sampling new ones. The frequency of can-

didate sampling is defined by parameter 𝑆𝑡𝑒𝑝𝑠. The 𝑆𝑡𝑒𝑝𝑠 and 𝑆𝑖𝑧𝑒 together are called

propagation parameters. This has been better shown in the Figure 3.6-left.

Figure 3.6. Propagation kernel (left) and refinement procedure (right) [78].

It has been experimentally shown large kernel size is more suitable for large texture-

less regions while scenes with clutters and lots of fine details tends work better with

smaller kernel size [66]. To take a more balance approach, we decrease the 𝑆𝑖𝑧𝑒

and 𝑆𝑡𝑒𝑝𝑠 parameters by the iteration number 𝐼 in each round of iteration.

The propagation of initial plane information alone does not converge to optimal solution

as long as new planes are not introduced to the current state of the map. This is

achieved by performing plane refinement alongside plane propagation in which new

slanted planes are added to the superpixel map. This is done by letting a new plane

pass through the centroid of the reference superpixel and the centroid of its two adja-

cent neighbours as it is illustrated in Figure 3.6 (right). After that, a new normal vector

is computed using the cross-product principle. Since the reference superpixel has eight

adjacent pairs of neighbours, this process can be repeated eight times. If each newly

generated plane improves the energy function of the current parameters, then the cur-

rent normal vector is replaced as the new normal vector of the reference superpixel.

Plane propagation and refinement are consistently using smoothness and consistency

as well as occlusion terms as their main procedure. In the rest of this section, we ex-

plain each mentioned term with more specific details.

The smoothness term is about enforcing spatial smoothness within each superpixel

map. The basic assumption is that the neighbouring superpixels are expected to have

37

similar depth values rather than different ones. This assumption would become espe-

cially strong when two neighbouring superpixels have similar color. With this in mind,

we tend to penalize the amount of difference on depth based on color similarity be-

tween the reference superpixel and its eight immediate neighbours. The neighbours

with highest color similarity and lowest depth similarity tends to give the most penalty

and the ones with highest color and depth similarity produces the least.

The penalty between a superpixel and its neighbor is computed by extrapolating the

plane equation of the reference superpixel in the centroid of its neighbor to obtain the

extrapolated depth. After that, the difference between extrapolated and current depth of

the neighbouring superpixel is normalized (by using a Gaussian function) to produce

the penalty of the current superpixel. Eventually, the final penalty is computed by sum-

mation of all neighbour’s penalties.

Here we use the color similarity between two superpixels as a weight factor which mul-

tiplies by the difference in depth between two superpixels. The mathematical expres-

sion of the smoothness energy function is described as follow:

Equation 16: 𝑬𝒔(𝒅, �̅�) =
𝟏

∑ ⍵(𝑪Ω,𝑪𝒊)𝑴
𝒊=𝟏

∑ ⍵(𝑪Ω, 𝑪𝒊)𝑺𝒊(𝒅𝒊, 𝒅𝒊(𝒅, �̅�))𝑴
𝒊=𝟏

 𝐒𝐢(𝐝𝐢, 𝐝𝐢(𝐝, �̅�)) = 𝐞−(𝐝𝐢−𝐝𝐢(𝐝,�̅�))
𝟐

𝟐𝛔𝟐⁄

 ⍵(𝐂Ω, 𝐂𝐢) = 𝐞−(𝐂𝐢−𝐂Ω)𝟐 𝟐⍺𝟐⁄

In the Equation 1, the 𝑀 is the number is of neighbors (eight), ⍵(𝐶Ω, 𝐶𝑖) computes a

normalized color similarity between reference superpixel Ω and its ith neighbour and 𝑑𝑖

and 𝑑𝑖(𝑑, �̅�) are the current and extrapolated depth of the neighbouring superpixel re-

spectively. Consequently, 𝑆𝑖(𝑑𝑖 , 𝑑𝑖(𝑑, �̅�)) computes the normalize depth difference be-

tween 𝑑𝑖 and 𝑑𝑖(𝑑, �̅�).

Consistency term measures the degree of visibility of each superpixel in other views.

This can be done by computing the sum of photo-consistency values between the ref-

erence superpixel and its corresponding area in other views obtained by projecting ref-

erence superpixel in those views using the plane parameters (𝑑, �̅�). If the current pa-

rameters are good enough, then we should expect to receive a relatively high photo-

consistency since the depth of each pixel in all the views is the same.

This assumption, however, does not always hold true due to the presence of occlu-

sions. To solve this issue, we break our consistency term into different terms: the visi-

bility term and occlusion term. Occlusion term is responsible for measuring the correct-

ness of the depth in the presence of occlusion. The general formula is as follows:

38

Equation 17: 𝑬𝒄(𝒅, �̅�) = 𝟏
𝑵

∑ (𝑽Ω
𝒊

(𝒅, �̅�) + 𝑶Ω
𝒊

(𝒅, �̅�))𝑵
𝒊=𝟏

In the above equation, 𝑁 is the number of the superpixel’s representative pixels,

𝑉Ω
𝑖(𝑑, �̅�) is visibility term and 𝑂Ω

𝑖 (𝑑, �̅�) is the occlusion term for the ith view. Here, if the

depth candidate, which was used to do the projection between views, is the correct

one, then both the color and the depth of the two regions should be the same. For this

reason, the visibility term uses the color similarity as a weight factor to penalize the dif-

ference in depth between two corresponding superpixels. In other words, regions with

similar depth and color would receive less penalty than regions with similar depth but

different color. The formula for computing the color weight is as follows:

Equation 18: 𝑺𝒊(𝒅, �̅�) =
𝟏

|Ω|
∑ ⍵ (𝑪Ω, 𝑪Ω

𝒊 (𝒑𝒊(𝒅, �̅�)))𝒑∈Ω

In the Equation 18, |Ω| is superpixel area, 𝐶Ω is the color of the reference super-pixel,

𝐶Ω
𝑖 is the color of the corresponding super-pixel in the ith view, and ⍵(𝐶Ω, 𝐶𝑖) is the color

similarity function explained in Equation 16.

To compute the visibility term, assume all the representative pixels of the reference su-

per-pixel 𝑝 who has smaller depth and their correspond pixels in the ith view 𝑝𝑖 to define

the 𝑋 as {𝑃 | 𝐷(𝑝) ≤ 𝐷(𝑝𝑖)}. 𝑋 is the set of all pixels which are closer to the ith camera.

The visibility term is computed as follows:

Equation 19: 𝑽Ω
𝒊 (𝒅, �̅�) = 𝑺𝒊(𝒅, �̅�)

𝟏

|𝑿|
∑ 𝒆−(𝑫(𝒑)−𝑫(𝒑𝒊))

𝟐
𝟐𝝈𝟐⁄

𝒑∈𝑿

For the occlusion term, we further define 𝑌as {𝑃 | 𝐷(𝑝) > 𝐷(𝑝𝑖)}. 𝑌 is a set of all repre-

sentative pixels which are closer to the reference camera and hence are either incon-

sistent or occluded. The occlusion term is defined as:

Equation 20: 𝑶Ω
𝒊 (𝒅, �̅�) = {

µ(𝟏 − 𝒎𝒊𝒏
𝟎≤𝒊≤𝑴

⍵(𝑪Ω, 𝑪𝒊)), 𝒀 ≠ 𝟎

𝟎 , 𝒀 = 𝟎

where µ is a constant regularizer (typically set to 0.5).

3.2.2 Implementation methodology

Our depth estimation pipeline consists of several highly parallelizable functions which

are serially connected to each other. Therefore, the natural implementation strategy for

this problem is to execute each of these functions one at a time on a single GPU de-

vice.

In order to implement our functions on a GPU, it is better to first recognize the parallel

pattern of each of them. In this pipeline, except the Update Cluster Center function,

39

which is used as part of the SLIC segmentation, the rest of our function possess an

embarrassingly parallel pattern, which can easily be implemented on a GPU platform.

Figure 3.7. Embarrassingly parallel patterns: map (left) and stencil (right) [2].

Embarrassingly parallel patterns are types of a parallel workloads which can easily be

broken down into independent parallel tasks. As a result, a serial program can be writ-

ten for a single thread using global indexing parameters (get_global_id(0) and

get_global_id(1)), and then, a private version of that program is generated for and exe-

cuted by each thread (work-item) within the grid.

Embarrassingly parallel patterns can be further divided into two main groups: map and

stencil patterns. The map pattern is the one-to-one connection between memory ele-

ment and execution thread (core) of the parallel device. There is no memory overlap-

ping between threads in either reading or writing phase (Figure 3.7-left). As a result,

there is little to no point in using the shared (local) memory, as the nearby work-items

do not share any data with each other. Convert_Color_Space and Find_Center_Asso-

ciation functions are examples of map pattern where one thread is dedicated for each

pixel, and all the computation is done for each pixel independently.

Similar to map pattern, in the stencil pattern, computation for each work-item is perform

independently. The difference, however, is in the memory read phase where neighbor-

ing work-items share memory (data) elements (Figure 3.7-right) with each other,

providing an opportunity to use shared memory.

In addition to embarrassingly parallel patterns, our pipeline also uses reduction pattern

as part of the Update_Cluster_Center function, where each cluster’s information gets

updated by aggregating information from the most recent update on member pixels.

Reduction technique is applied for summation of information, for example color aver-

age, for each cluster, which is routinely done serially. The process is better shown on

array in the Figure 3.8.

40

Figure 3.8. Reduction pattern

In reduction, the array is portioned into two equal parts. Each work-item being assigned

to array elements (pixel in our case) of the first half is responsible for aggregating

(summation in our case) and storing the information in its own respective element and

its corresponding mirror element in the second half of the array. The work-items be-

longed to the second half are ignored. For example, if array has 100 elements, then the

work-item index 0 is responsible for aggregating information of elements 0 and 50 (0 +

100/2) and work-item number 1 is responsible for elements 1 and 51 (1 + 100/2). Then

this process is performed iteratively to break the size of the current array at each itera-

tion. The process stops eventually when the size of the current array is equal to 1, and

that single element holds all the aggregation (summation) of all the array.

3.3 View-interpolation Rendering

Our second application for harnessing the power of massively parallel GPU is a view-

interpolation rendering algorithm based on plane-sweeping, where an entire view is

generated from already existing images using correspondences between two stereo

images. In the previous sections, we explained the plane-sweeping in detail. Here we

would use the same principle to combine two existing stereo images to render a new

image.

3.3.1 Plane-sweep Rendering

Given two stereo cameras, the goal is to move a virtual camera alongside the baseline

and render a series of virtual views. This has better been depicted in Figure 3.9.

41

Figure 3.9. A general view (camera) setup of the algorithm

The general form of the algorithm has been depicted in Algorithm 1. It first visits each

pixel 𝑝 of virtual view one at a time and then it iterates through the whole range of the

depth hypothesis 𝐷 to perform four different steps on each (𝑝, 𝑑) pair where 𝑑 is the

current depth hypothesis.

Algorithm 1: Serial Plane-sweep Rendering
Input: left and right stereo images

Output: virtual view I

1 for each p ∈ I:

2 for each d ∈ D:

3 step 1: Project p from 2-D virtual image to 3-D space, using current d

4 step 2: Apply rotation and translation to change the coordinate system to each real

camera.

5 step 3: Project the new 3-D points back into their corresponding 2-D camera plane

6 step 4: use photo-consistency to update the best match so far

7 end

8 update I by averaging the color of best matches for p in left and right images

9 end

Algorithm 1: the general overview of the algorithm

In the first step, the pixel p(x, y) is projected from a 2D plane to point P(X, Y, Z) on 3D

plane using the current depth hypothesis d. we implement the following lines of codes

to do that:

𝑋 =
(𝑥 − 𝑐𝑥)

𝑓
× 𝑑, 𝑌 =

(𝑦 − 𝑐𝑦)

𝑓
× 𝑑, 𝑍 = 𝑑

The second step transfers the origin of the coordinate system from the virtual camera

to the left and right cameras using the rotation (R) and translation (T) vectors. Here, 𝑇𝑟

and 𝑇𝑙 are translation vector’s elements alongside X-axis in right and left directions re-

spectively. Since we are using horizontal images, we do not have any translation in y or

z directions. Moreover, since the stereo images are already rectified, the rotation matrix

42

is an identity matrix with no effect on coordinate system. We implement the following

equations to transform the coordinate system:

𝑋𝑟 = 𝑋 + 𝑇𝑟, 𝑋𝑙 = 𝑋 + 𝑇𝑙

In the third step, the newly generated 3-D coordinate is projected back to its corre-

sponding left and right camera planes.

𝑥𝑟𝑝𝑟𝑜𝑗 = 𝑍 ×
𝑋𝑟

𝑓
 𝑥𝑙𝑝𝑟𝑜𝑗 = 𝑍 ×

𝑋𝑙

𝑓

𝑦𝑟𝑝𝑟𝑜𝑗 = 𝑍 ×
𝑌𝑟

𝑓
 𝑦𝑙𝑝𝑟𝑜𝑗 = 𝑍 ×

𝑌𝑟

𝑓

In the final step, the photo-consistency term is computed to pick the best matching 𝑑

for the pixel 𝑝. We use absolute some difference (L1 norm) as the cost function. At the

end, the color of the best projected pixels (on left and right images), are averaged to

make the color of the pixel p in the virtual image.

3.3.2 GPU Implementation

We developed two GPU-based implementations for this algorithm. The first one is a

simple embarrassingly parallel (stencil pattern) implementation where each pixel of the

virtual image is considered as a parallel thread [2]. In this way, a general code using

thread indexing of OpenCL is written and then a private version of that code is gener-

ated for every thread within the grid. As a result, the first for loop, which iterates over all

the pixels of the virtual camera, is omitted. Algorithm 2 shows the pseudo code of our

first GPU implementation.

Since GPU’s global memory, the main memory of GPU, is very slow, one of the best

ways to reduce the running time of our GPU algorithm is to decrease the number of ac-

cesses to the global memory. This can be achieved by using shared memory to cache

the data once they have been accessed. In this way, the same data can be accessed

multiple times on fast on-chip shared memory without accessing the global memory

multiple times. For our second implementation, we utilize shared memory to improve

the data efficiency of our code.

Algorithm 2: GPU Plane-sweep Rendering
Input: left and right stereo images

Output: virtual view I

1 x = get_global_id(0), y = get_global_id(1)

2 for each d ∈ D:

3 step 1: Project (x, y) from 2-D space to (X, Y, Z) in 3-D space, using current d

43

4 step 2: Apply rotation and translation to change the coordinate system to each real
camera.

5 step 3: Project the new 3-D points back into their corresponding 2-D camera plane

6 step 4: use photo-consistency to update the best match so far

7 end

8 update I by averaging the color of best matches for p in left and right images

9 end

Algorithm 2: Naïve GPU implementation

In our algorithm, once the equivalent location of virtual pixel 𝑝 is found on left(𝑃𝑙𝑝𝑟𝑜𝑗)

and right (𝑃𝑟𝑝𝑟𝑜𝑗) images, using the current 𝑑, by current work-item (𝑥, 𝑦) , the photo-

consistency cost is computed between two projections. The computation is done by

placing a local support window around 𝑃𝑟𝑝𝑟𝑜𝑗 and 𝑃𝑙𝑝𝑟𝑜𝑗and compute the Sum of Abso-

lute Difference (SAD) between those two local regions. The problem with this ap-

proach, however, is that all the neighboring pixels will be accessed several times by the

neighboring work-items, i.e.,(𝑥 − 1, 𝑦), during executions. As a result, the number of

the global memory access would exponentially increase throughout the grid.

The high overlapping data access pattern of Algorithm 1 has been better illustrated in

Figure 3.10. As it is readily apparent, the three different work-items (red, green, yellow)

from the same work-group (blue region) and their corresponding local windows

(dashed lines) are sharing a significant area of the image with each other. The goal of

our second implementation is to cache these areas on shared memory for efficient use.

Figure 3.10. High data access overlapping between red, green, and yellow work-items
in the naïve GPU kernel. All three work-items belong to the same group (blue box)

The improved memory pattern access, for our second implementation, has been shown

in Figure 3.11. The blue region (separated with solid blue line) is the location of an arbi-

trary 6x4 work-group on one of the input images, and each work-item of this group is

responsible of loading a portion of that image from the global memory to the shared

memory. In this figure, all pixels of a color group (i.e., all the red pixels) are loaded to

the shared memory all at once using their corresponding work-item in the group.

44

Figure 3.11. Memory access pattern of the algorithm 2.

Since the data overlapping comes at the photo-consistency computation, the only part

of the code that changes from Algorithm 2 is the function that computes the photo-con-

sistency. The rest of the algorithm remain the same. Therefore, the only thing we need

to do is to replace the function call of old photo-consistency function with the new one.

45

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Experimental Setting

All our experiments are performed on a desktop computer equipped with a Nvidia GTX-

1080 GPU and Intel Core i7 CPU. We use OpenCL version 1.2 to implement our algo-

rithms on GPU and OpenMP version 5.0 for multi-core CPU.

As previously explained, our multi-view depth estimation algorithm consists of three

main stages: super-pixel segmentation, depth initialization, and depth refinement. In

this section, we demonstrate the experimental results of each stage, try to provide a

deeper insight into the performance of our methods, and finally report the speed up re-

sults.

4.2 Multi-view Depth Estimation

4.2.1 Dataset Specifications

We use the Max Plank Institute’s light field dataset available at [85]. The dataset speci-

fication is described in Table 1. Dataset specification for MVS algorithm.

Table 1. Dataset specification for MVS algorithm

Name No views Resolution Disparity
Levels

Baseline Ratio(y/x)

Bar 3x5 1920x1080 45 0.625

Biergarten 3x3 1920x1080 30 1.03590

Here, baseline ratio is the ratio of y and x elements of two diagonal camera’s baseline

in the camera array system.

4.2.2 Superpixel Segmentation Results

As described in the section 3.1.1, we implement the simple linear iterative clustering

(SLIC) as our method of choice for superpixel segmentation. Here, we have imple-

mented the Oxford’s gSLICr library, which was originally developed in CUDA [71], in

OpenCL.

Our implementation possesses several parameters that determines the execution flow

of the algorithm. Based on this, we have designed and executed a number of experi-

ments to demonstrate the whole range of SLIC’s behaviour under different parameter

settings. Our experiments are described in Table 1.

46

Table 2. SLIC experiments with different set of parameters

No Super-
pixel Size

SLIC Color
Weight

Number of Iterations Enforce Connectivity

1 8 0.6 5 False

2 8 0.6 5 True

3 16 0.6 5 False

In this table, superpixel size determines the initial size of the superpixel which itera-

tively get updated throughout the execution. SLIC is an iterative process, and it approx-

imately takes four or five iterations for the algorithms to converge to a stable result. So,

we consider five as the default number of iterations for all our experiments. SLIC’s dis-

tance function, which measures the closeness of a pixel to the center of cluster, has

two terms: spatial term and color term. The Color Weight parameter is a coefficient

which emphasis the degree of importance of color term. Finally, in experiment 3, we

enable the enforce connectivity to remove small isolated super-pixels to generate a

cleaner result. We show our experiments output in Figure 4.1, Figure 4.2, and Figure

4.3.

Figure 4.1. The default SLIC output with superpixel size 8

The reason for such result is that super-pixels are defined to be spatially restricted in a

small neighborhood . The regular squares are, in fact, the default position of all super-

pixels before any update happening. Once the iterative update starts, each super-pixel

falls within a race with its eight immediate neighbours for taking more pixels. This com-

petition especially is high near the bordering areas where color similarity plays a major

role. However, as we move further and further away from the border area towards the

center, the role of spatial term becomes increasingly more important. With this in mind,

once the color weight is set to zero, super-pixels no longer have any leverage against

each other and as a result they all become regular square with the same size.

47

Figure 4.2 Effect of the enforce connectivity.

Figure 4.3 segmentation with super-pixel size 16

4.2.3 Initialization and Refinement Results

Our depth estimation parameters are listed in Table 3. We use superpixel size of 8 and

16 for our simulations. We also generate the output without enforce connectivity and

show the results.

Table 3. depth estimation parameters for bar dataset

No Name Value Description

1 Kernel_Size 1080 range of propagation kernel around superpixel

2 Kernel_Steps 13 sampling step within a propagation kernel

3 alpha 6 normalization coefficient for color distance

4 gamma 2 spatial distance normalization coefficient in the smoothness
and consistency coset function

5 no_iteration 5 number of the times the propagation function is called to pro-
duce stable results

48

The result of our depth initialization part has been depicted in Figure 4.4 Initial depth

estimation with super-pixel size 8. Since we are not using any optimization, the result is

very noisy.

Figure 4.4 Initial depth estimation with super-pixel size 8

The result of depth refinement of our implementation as well as the result of reference

paper are shown in the Figure 4.5 and Figure 4.6 respectively.

Figure 4.5. Our refined disparity map. The super-pixel size is 8

49

Figure 4.6. Reference paper output using superpixel size 8

4.2.4 Quality Analysis

As it can be seen, the reference result is much smoother and less noisy compared to

our own results. We tried to reduce the gap by utilizing larger superpixel size to reduce

the amount of the noise. The previous experiments were done by using superpixel size

8. For the new experiment we use superpixel size 16. The result has been shown in the

Figure 4.7.

Figure 4.7. The improved result on Bar dataset using superpixel size 16

50

Figure 4.8. Algorithm’s result on Biergarten dataset using superpixel 8

For the Biergarten dataset, however, with superpixel pixel size 8, we can still have a

decent result (Figure 4.8). The reported experiments were all done using three different

platforms: single-core CPU, multi-core CPU, and GPU. This section reports the execu-

tion time and speed up gain of all our methods under different platforms. Moreover, Ta-

ble 4 and Table 5, show the speed up gain of different depth initialization and depth re-

finement stages for Bar and Biergarten dataset respectively.

4.2.5 Performance Evaluation

We evaluate the running time performance of our implementation on Bar and Biergar-

ten dataset

Table 4 different platforms’s performance on Bar dataset for superpixel size 16

platform name initialization
time (msec)

Refinement
time (msec)

Initialization
Speed- up

Refinement
Speed- up

single-core CPU 238905 954566 1.0x 1.0x
multi-core CPU 182391 337808 1.3x 2.8x
GPU 1415 605 168.83x 1577.8x

Table 5 different platforms’ performance on Biergarten dataset for superpixel size 16

platform name initialization
time (msec)

Refinement
time (msec)

Initialization
Speed Up

Refinement
Speed Up

single-core
CPU

106266 366279 1.0x 1.0x

multi-core CPU 42398 131901 2.5x 2.77x
GPU 421 167 252.4x 2193.2x

51

4.3 Plane-sweep Rendering

4.3.1 Stereo Dataset Specification

We use the 2014 Middleburry stereo dataset to develop our algorithm. The dataset can

be found and downloaded in the Middleburry website at [84]. Each dataset contains

several files which depict and describe two views captured under different illuminations

and exposures. These files include calibration information of each camera, different

versions of rectified stereo pairs of the same scene, and the disparity ground truth of

left and right image. The dataset specification is described in the Table 6.

Table 6. parameters for stereo datasets

Since our algorithm works with depth instead of disparity, we, first, need to convert all

the disparities to dept h using the following formula:

𝑍 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓 (𝑑 + 𝑑𝑜𝑓𝑓𝑠)⁄

As a result, 𝑑𝑚𝑖𝑛 (minimum depth) and 𝑑𝑚𝑎𝑥 (maximum depth) can be calculated as

follows:

𝑑𝑚𝑖𝑛 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓 (𝑣𝑚𝑎𝑥 + 𝑑𝑜𝑓𝑓𝑠)⁄

𝑑𝑚𝑎𝑥 = 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 × 𝑓 (𝑑𝑚𝑖𝑛 + 𝑑𝑜𝑓𝑓𝑠)⁄

We also convert the measurement of the focal point (𝑓) from millimetre to meter to use

more accurate floating-point operation.

4.3.2 Execution Parameters

Our implementation works with few parameters which determines the flow of the exe-

cution. The parameters are listed in Table 7.

Name Parameter Description
cam0, 1 calibration matrices for left/right camera. The format is [f 0 cx ; 0 f cy ; 0 0 1] where f is the

focal length (in pixel) and cx and cy are the deviations from the principle point

doffs x-difference of principle point or cx1 – cx2

baseline the distance between two camera’s principal point (in mm)

width,
height

image resolution

ndisp number of the disparities.

isint whether ground truth disparities have integer precision

vmin,
vmax

a tight bound on minimum and maximum amount of disparity

dyavg,dy-
max

average and maximum absolute y-disparities, providing an indication of the calibration error
present in the imperfect datasets

52

Table 7. execution parameters of our implementation

Name Description
wSize Size of the local supporting window for plane sweeping and view ren-

dering

dScale Scaling coefficient for input images (default value is 1)

delta The distance of the principle point of virtual camera from the left camera

These parameters are input to the rendering function. Since we want to generate a se-

ries of images moving from left image to the right image, we call the rendering function

in a loop with increasing delta value.

4.3.3 Plane-sweep Results

Our implementation methodology is to first implement plane-sweeping on GPU and

then develop a separate rendering function base on that GPU code. Figure 4.9 demon-

strate the output of our plane-sweeping algorithms on chairs and piano datasets.

Figure 4.9. Plane-sweeping depth map for Chair dataset (left) and Piano dataset
(right).

4.3.4 Rendering Results

The result of our viewport rendering is demonstrated in Figure 4.10 and Figure 4.11 for

chair and piano dataset respectively. A series of images can be generated consecu-

tively by moving the virtual camera from the left image toward the right image (increas-

ing the delta parameter).

53

Figure 4.10. Rendering view for living room dataset with delta equals to 0.55

Figure 4.11. Rendered view for piano dataset with delta equal to 0.55

As it can be seen, the quality of the generated images is much better for the Piano da-

taset than the chair dataset. The reason is that plane-sweeping is a simple local win-

dow-based algorithm without any global optimization constraints. As a result, it tends to

work poorly in the presence of fine details such as those in the chair dataset.

4.3.5 Execution Time

The execution time of our experiments is reported in this section. Table 8 shows the

performance of four different implementations of rendering algorithms: single-core im-

plementation, multi-core CPU implementation, simple GPU implementation, and ad-

vanced GPU implementation. In addition to, Table 9 shows the execution time of the

plane-sweeping method on the same three platforms.

54

Table 8. execution time and speed up for Living room dataset

Platform Name Windows size (pixels) Execution time (msec) speed up

Single-core CPU 13 123325 1.0x

Multi-core CPU 13 29069 4.24x

Naive GPU 13 154 800.8x

Shared memory GPU 13 60 2055.4x

Table 9. execution time and speed up for piano dataset

Platform Name Windows Size (pixels) Execution time (msec) speed up

single-core CPU 13 126512 1.0x

multi-core CPU 13 28053 4.5x

GPU 13 144 878.5x

Shared memory GPU 13 57 2219x

55

5. CONCLUSIONS

In this thesis, we examine the massively parallel power of GPU on computer vision al-

gorithms for depth estimation and image-based rendering applications. We imple-

mented our algorithms on three different platforms (single-core and multi-core CPU as

well as GPU) and chose single-core implementation as anchor for calculating the

speed up. We have shown for both applications, which hold a significant amount of par-

allelism, a GPU-based implementation would achieve a very high speed up compared

to a standard CPU implementation.

The first application, a multi-view depth estimation algorithm proposed in [78], is a

three-stage pipeline process. First, it partitions the input images into compact homoge-

nous regions called superpixels. Then, it initializes the depth for each superpixel using

a plane-sweeping-based strategy. Finally, it refines depth value using an iterative opti-

mization technique to fit a proper plane surface to each superpixel. In this thesis, we

have shown that our GPU implementation has significantly improved compared to

standard sequential and multi-core CPU implementations.

For the second application, the goal is to render a novel view from two calibrated ste-

reo images. To this end, we have chosen a less complex but computationally efficient

approach based on a plane-sweeping algorithm. In our algorithm, we avoid producing a

plane-sweeping volume due to its large memory size and the fact that the off-chip

global memory of the GPU is very slow. Instead, we kept all the computations on the

GPU’s register memory and update the best candidate for the current virtual pixel in

real-time. As a result, our algorithm has gained a high amount of speed-up. Taking

such approach, however, could come at the cost of dropping the quality of generated

view in case of fine details and sharp edges in stereo images due to the lack of a cost-

aggregation process.

56

REFERENCES

[1] Pacheco P, Malensek M. An introduction to parallel programming. Morgan Kauf-

mann; 2021 Aug 27.

[2] McCool M, Reinders J, Robison A. Structured parallel programming: patterns for
efficient computation. Elsevier; 2012 Jul 9.

[3] Kirk D, Wen-Mei WH. Programming massively parallel processors: a hands-on
approach. Morgan kaufmann; 2016 Nov 24.

[4] Sutter, H., & Larus, J. (2005). Software and the Concurrency Revolution. ACM
Queue, 3(7), 5462.

[5] Tunc C, Kumbhare N, Akoglu A, Hariri S, Machovec D, Siegel HJ. Value of ser-
vice based task scheduling for cloud computing systems. In 2016 International
Conference on Cloud and Autonomic Computing (ICCAC) 2016 Sep 12 (pp. 1-
11). IEEE.

[6] Khemka B, Machovec D, Blandin C, Siegel HJ, Hariri S, Louri A, Tunc C, Fargo
F, Maciejewski AA. Resource management in heterogeneous parallel computing
environments with soft and hard deadlines. In11th Metaheuristics International
Conference (MIC 2015) 2015 Jun (p. 10).

[7] Kaeli DR, Mistry P, Schaa D, Zhang DP. Heterogeneous computing with
OpenCL 2.0. Morgan Kaufmann; 2015 Jun 18.

[8] S. Likun Xi et al., “SMAUG: End-to-End Full-Stack Simulation Infrastructure for
Deep Learning Workloads,” arXiv e-prints, p. arXiv:1912.04481, Dec 2019.

[9] Nurvitadhi E, Venkatesh G, Sim J, Marr D, Huang R, Ong Gee Hock J, Liew YT,
Srivatsan K, Moss D, Subhaschandra S, Boudoukh G. Can fpgas beat gpus in
accelerating next-generation deep neural networks?. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
2017 Feb 22 (pp. 5-14).

[10] Muslim FB, Ma L, Roozmeh M, Lavagno L. Efficient FPGA implementation of
OpenCL high-performance computing applications via high-level synthesis.
IEEE Access. 2017 Feb 20;5:2747-62.

[11] Mario Vestias and Horácio Neto. 2014. Trends of CPU, GPU and FPGA for
high-performance computing. International Conference on Field Programmable
Logic and Applications (FPL’14). IEEE, 1–6.

[12] Vestias M, Neto H. Trends of CPU, GPU and FPGA for high-performance com-
puting. In2014 24th International Conference on Field Programmable Logic and
Applications (FPL) 2014 Sep 2 (pp. 1-6). IEEE.

[13] Eskandari N, Tarafdar N, Ly-Ma D, Chow P. A modular heterogeneous stack for
deploying fpgas and cpus in the data center. InProceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
2019 Feb 20 (pp. 262-271).

57

[14] Intel corporation. Xeon Processor [Internet]. [place unknown]; Intel corporation.
2022. Available at: https://www.intel.com/content/www/us/en/products/de-
tails/processors/xeon/w.html

[15] Hennessy JL, Patterson DA. Computer architecture: a quantitative approach.
Elsevier; 2011 Oct 7.

[16] Intel Corporation. Intel Product Information. [unknown place]:[unknown pub-
lisher]. [reviewed 2021 Oct 25; cited 2021 March 2021]. Available at:
https://www.intel.com/content/www/us/en/developer/articles/news/raw-compute-
power-of-new-intel-core-i9-processor-based-systems-enables-extreme-mega-
tasking.html#:~:text=The%20new%20In-
tel%C2%AE%20Core,cores%2C%20performing%20at%20124.5%20petaflops.

[17] OpenMP ARB. OpenMP guide. [unknown place]: OpenMP ARB. 2021. Available
at: https://www.openmp.org/resources/refguides/

[18] Mansour M, Davidson P, Stepanov O, Piché R. Relative importance of binocular
disparity and motion parallax for depth estimation: a computer vision approach.
Remote Sensing. 2019 Jan;11(17):1990.

[19] UC Brekely. CPU Performance Information [Internet]. [place unknown]:[univer-
sity of California].2022. Available at: https://setiathome.berke-
ley.edu/cpu_list.php

[20] Nvidia Corporation. NVIDIA Fermi Architecture Whitepaper [Internet]. [place un-
known]: Nvidia. Available at: NVIDIA Fermi Compute Architecture White Paper |
Dell

[21] Sanz PR, Mezcua BR, Pena JM. Depth estimation-an introduction. IntechOpen;
2012 Jul 11.

[22] Khan F, Salahuddin S, Javidnia H. Deep learning-based monocular depth esti-
mation methods—A state-of-the-art review. Sensors. 2020 Jan;20(8):2272.

[23] Jain P, Ralston JP. Direct determination of astronomical distances and proper
motions by interferometric parallax. Astronomy & Astrophysics. 2008 Jun
1;484(3):887-95.

[24] Scharstein D, Szeliski R. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International journal of computer vision. 2002
Apr;47(1):7-42.

[25] Feng D, Haase-Schütz C, Rosenbaum L, Hertlein H, Glaeser C, Timm F,
Wiesbeck W, Dietmayer K. Deep multi-modal object detection and semantic
segmentation for autonomous driving: Datasets, methods, and challenges. IEEE
Transactions on Intelligent Transportation Systems. 2020 Feb 17;22(3):1341-60.

[26] Ummenhofer B, Zhou H, Uhrig J, Mayer N, Ilg E, Dosovitskiy A, Brox T. Demon:
Depth and motion network for learning monocular stereo. InProceedings of the
IEEE Conference on Computer Vision and Pattern Recognition 2017 (pp. 5038-
5047).

[27] Wang K, Shen S. MVDepthNet: Real-time multiview depth estimation neural
network. In 2018 International conference on 3d vision (3DV) 2018 Sep 5 (pp.
248-257). IEEE.

https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

58

[28] Flynn J, Neulander I, Philbin J, Snavely N. Deepstereo: Learning to predict new
views from the world's imagery. InProceedings of the IEEE conference on com-
puter vision and pattern recognition 2016 (pp. 5515-5524).

[29] Huang PH, Matzen K, Kopf J, Ahuja N, Huang JB. Deepmvs: Learning multi-
view stereopsis. InProceedings of the IEEE Conference on Computer Vision
and Pattern Recognition 2018 (pp. 2821-2830).

[30] Bleyer M, Rhemann C, Rother C. PatchMatch Stereo-Stereo Matching with
Slanted Support Windows. InBmvc 2011 Aug 29 (Vol. 11, pp. 1-11).

[31] Zhan Y, Gu Y, Huang K, Zhang C, Hu K. Accurate image-guided stereo match-
ing with efficient matching cost and disparity refinement. IEEE Transactions on
Circuits and Systems for Video Technology. 2015 Aug 26;26(9):1632-45.

[32] Kitagawa M, Shimizu I, Sara R. High accuracy local stereo matching using DoG
scale map. In2017 Fifteenth IAPR International Conference on Machine Vision
Applications (MVA) 2017 May 8 (pp. 258-261). IEEE.

[33] Felzenszwalb PF, Huttenlocher DP. Efficient belief propagation for early vision.
International journal of computer vision. 2006 Oct;70(1):41-54.

[34] Tippetts B, Lee DJ, Lillywhite K, Archibald J. Review of stereo vision algorithms
and their suitability for resource-limited systems. Journal of Real-Time Image
Processing. 2016 Jan;11(1):5-25.

[35] Murphy K, Weiss Y, Jordan MI. Loopy belief propagation for approximate infer-
ence: An empirical study. arXiv preprint arXiv:1301.6725. 2013 Jan 23.

[36] Kolmogorov V, Zabih R. Multi-camera scene reconstruction via graph cuts. In
European conference on computer vision 2002 May 28 (pp. 82-96). Springer,
Berlin, Heidelberg.

[37] Zhang G, Jia J, Wong TT, Bao H. Consistent depth maps recovery from a video
sequence. IEEE Transactions on pattern analysis and machine intelligence.
2009 Mar 6;31(6):974-88.

[38] Ulusoy AO, Geiger A, Black MJ. Towards probabilistic volumetric reconstruction
using ray potentials. In 2015 International Conference on 3D Vision 2015 Oct 19
(pp. 10-18). IEEE.

[39] Besse FO. PatchMatch Belief Propagation for Correspondence Field Estimation
and Its Applications (Doctoral dissertation, UCL (University College London)).

[40] Scharstein D, Taniai T, Sinha SN. Semi-global stereo matching with surface ori-
entation priors. In2017 International Conference on 3D Vision (3DV) 2017 Oct
10 (pp. 215-224). IEEE.A Resource-Efficient Pipelined Architecture for Real-
Time Semi-Global Stereo Matching Semi-Global Stereo Matching Algorithm
Based on Minimum Spanning Tree

[41] Lu Z, Wang J, Li Z, Chen S, Wu F. A resource-efficient pipelined architecture for
real-time semi-global stereo matching. IEEE Transactions on Circuits and Sys-
tems for Video Technology. 2021 Feb 26.

59

[42] Dinh VQ, Pham CC, Jeon JW. Robust adaptive normalized cross-correlation for
stereo matching cost computation. IEEE Transactions on Circuits and Systems
for Video Technology. 2016 Mar 8;27(7):1421-34.

[43] Zbontar J, LeCun Y. Computing the stereo matching cost with a convolutional
neural network. InProceedings of the IEEE conference on computer vision and
pattern recognition 2015 (pp. 1592-1599).

[44] Zbontar J, LeCun Y. Stereo matching by training a convolutional neural network
to compare image patches. J. Mach. Learn. Res.. 2016 Jan 1;17(1):2287-318.

[45] Szeliski R. Computer vision: algorithms and applications. Springer Science &
Business Media; 2010 Sep 30.

[46] Zhang K, Fang Y, Min D, Sun L, Yang S, Yan S, Tian Q. Cross-scale cost ag-
gregation for stereo matching. InProceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition 2014 (pp. 1590-1597).

[47] Tombari F, Mattoccia S, Di Stefano L, Addimanda E. Classification and evalua-
tion of cost aggregation methods for stereo correspondence. In2008 IEEE Con-
ference on Computer Vision and Pattern Recognition 2008 Jun 23 (pp. 1-8).
IEEE.

[48] Yang Q, Wang L, Yang R, Stewénius H, Nistér D. Stereo matching with color-
weighted correlation, hierarchical belief propagation, and occlusion handling.
IEEE Transactions on Pattern Analysis and Machine Intelligence. 2008 Apr
18;31(3):492-504.

[49] Crow FC. Summed-area tables for texture mapping. InProceedings of the 11th
annual conference on Computer graphics and interactive techniques 1984 Jan 1
(pp. 207-212).

[50] Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R. A comparison and eval-
uation of multi-view stereo reconstruction algorithms. In 2006 IEEE computer
society conference on computer vision and pattern recognition (CVPR'06) 2006
Jun 17 (Vol. 1, pp. 519-528). IEEE.

[51] Hernández C, Furukawa Y. Multi-View Stereo: A Tutorial. Comput. Graph. Vi-
sion2. 2013; 9:1-48.

[52] A Review of Image-based Rendering Techniques, Heung-Yeung Shum and
Sing Bing Kang, Microsoft research

[53] Chang Y, Guo-Ping WA. A review on image-based rendering. Virtual Reality &
Intelligent Hardware. 2019 Feb 1;1(1):39-54.

[54] Sun W, Xu L, Au OC, Chui SH, Kwok CW. An overview of free view-point depth-
image-based rendering (DIBR). InAPSIPA Annual Summit and Conference
2010 Dec 14 (pp. 1023-1030).

[55] Adelson EH, Bergen JR. The plenoptic function and the elements of early vision.
Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Tech-
nology; 1991 Oct.

60

[56] Wong TT, Heng PA, Or SH, Ng WY. Image-based rendering with controllable
illumination. InEurographics workshop on Rendering Techniques 1997 Jun 16
(pp. 13-22). Springer, Vienna.

[57] Levoy M, Hanrahan P. Light field rendering. InProceedings of the 23rd annual
conference on Computer graphics and interactive techniques 1996 Aug 1 (pp.
31-42).

[58] Gortler SJ, Grzeszczuk R, Szeliski R, Cohen MF. The lumigraph. InProceedings
of the 23rd annual conference on Computer graphics and interactive techniques
1996 Aug 1 (pp. 43-54).

[59] Shum HY, He LW. Rendering with concentric mosaics. InProceedings of the
26th annual conference on Computer graphics and interactive techniques 1999
Jul 1 (pp. 299-306).

[60] Chen SE, Williams L. View interpolation for image synthesis. InProceedings of
the 20th annual conference on Computer graphics and interactive techniques
1993 Sep 1 (pp. 279-288).

[61] Seitz SM, Dyer CR. View morphing. InProceedings of the 23rd annual confer-
ence on Computer graphics and interactive techniques 1996 Aug 1 (pp. 21-30).

[62] Shade J, Gortler S, He LW, Szeliski R. Layered depth images. InProceedings of
the 25th annual conference on Computer graphics and interactive techniques
1998 Jul 24 (pp. 231-242).

[63] Narayanan PJ, Penta SK, Reddy S. Depth+ Texture Representation for Image
Based Rendering. InICVGIP 2004 Dec (pp. 113-118).

[64] McMillan Jr L. An image-based approach to three-dimensional computer
graphics. The University of North Carolina at Chapel Hill; 1997.

[65] Geys I, Koninckx TP, Van Gool L. Fast interpolated cameras by combining a
GPU based plane sweep with a max-flow regularisation algorithm. InProceed-
ings. 2nd International Symposium on 3D Data Processing, Visualization and
Transmission, 2004. 3DPVT 2004. 2004 Sep 9 (pp. 534-541). IEEE.

[66] Goorts P, Maesen S, Dumont M, Rogmans S, Bekaert P. Optimization of free
viewpoint interpolation by applying adaptive depth plane distributions in plane
sweeping a histogram-based approach to a non-uniform plane distribution.
In2013 International Conference on Signal Processing and Multimedia Applica-
tions (SIGMAP) 2013 Jul 29 (pp. 7-15). IEEE.

[67] Mori T, Takahashi K, Fujii T. Real-Time Free-Viewpoint Image Synthesis Sys-
tem Using Time Varying Projection. ITE Transactions on Media Technology and
Applications. 2014;2(4):370-7.

[68] Wu G, Masia B, Jarabo A, Zhang Y, Wang L, Dai Q, Chai T, Liu Y. Light field
image processing: An overview. IEEE Journal of Selected Topics in Signal Pro-
cessing. 2017 Aug 30;11(7):926-54.

[69] Ng R, Levoy M, Brédif M, Duval G, Horowitz M, Hanrahan P. Light field photog-
raphy with a hand-held plenoptic camera (Doctoral dissertation, Stanford Uni-
versity).

61

[70] Perwass C, Wietzke L. Single lens 3D-camera with extended depth-of-field. In-
Human vision and electronic imaging XVII 2012 Feb 17 (Vol. 8291, p. 829108).
International Society for Optics and Photonics.

[71] Wilburn B, Joshi N, Vaish V, Talvala EV, Antunez E, Barth A, Adams A, Horo-
witz M, Levoy M. High performance imaging using large camera arrays. InACM
SIGGRAPH 2005 Papers 2005 Jul 1 (pp. 765-776).

[72] camera arrays", ACM Trans. Graph, vol. 24, no. 3, pp. 765-776, 2005.

[73] Liu Y, Dai Q, Xu W. A real time interactive dynamic light field transmission sys-
tem. In2006 IEEE International Conference on Multimedia and Expo 2006 Jul 9
(pp. 2173-2176). IEEE.

[74] Dąbała Ł, Ziegler M, Didyk P, Zilly F, Keinert J, Myszkowski K, Seidel HP,
Rokita P, Ritschel T. Efficient Multi‐image Correspondences for On‐line Light
Field Video Processing. InComputer Graphics Forum 2016 Oct (Vol. 35, No. 7,
pp. 401-410).

[75] Sabater N, Boisson G, Vandame B, Kerbiriou P, Babon F, Hog M, Gendrot R,
Langlois T, Bureller O, Schubert A, Allie V. Dataset and pipeline for multi-view
light-field video. InProceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops 2017 (pp. 30-40).

[76] Collins RT. A space-sweep approach to true multi-image matching. InProceed-
ings CVPR IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition 1996 Jun 18 (pp. 358-363). IEEE.

[77] Gallup D, Frahm JM, Mordohai P, Yang Q, Pollefeys M. Real-time plane-sweep-
ing stereo with multiple sweeping directions. In2007 IEEE Conference on Com-
puter Vision and Pattern Recognition 2007 Jun 17 (pp. 1-8). IEEE.

[78] Chuchvara A, Barsi A, Gotchev A. Fast and accurate depth estimation from
sparse light fields. IEEE Transactions on Image Processing. 2019 Dec
17;29:2492-506.

[79] Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S. SLIC superpixels
compared to state-of-the-art superpixel methods. IEEE transactions on pattern
analysis and machine intelligence. 2012 May 29;34(11):2274-82.

[80] Qin F, Guo J, Lang F. Superpixel segmentation for polarimetric SAR imagery
using local iterative clustering. IEEE Geoscience and Remote Sensing Letters.
2014 Jun 24;12(1):13-7.

[81] Yang F, Sun Q, Jin H, Zhou Z. Superpixel segmentation with fully convolutional
networks. InProceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition 2020 (pp. 13964-13973).

[82] Ren CY, Prisacariu VA, Reid ID. gSLICr: SLIC superpixels at over 250Hz. arXiv
preprint arXiv:1509.04232. 2015 Sep 14.

[83] Oxford University. gSLICr source code [Internet]. [place unknown]: Robotic La-
boratory.2022. Available at: GitHub - carlren/gSLICr: gSLICr: Real-time super-
pixel segmentation

62

[84] Middlebury College. Middlebury Stereo Dataset [Internet]. Vermont: [publisher
unknown].2021. Available at: vision.middlebury.edu/stereo/data

[85] Max Plank Institute. Efficient Multi-image Correspondences for On-line Light
Field Video Processing [Internet]. Germany: [publisher unknown].2018. Availa-
ble at: https://resources.mpi-inf.mpg.de/LightFieldVideo/Dataset.html

[86] Savaresa S, Week 1: Camera Model. CS231A: Computer Vision From 3D Re-
construction to Recogntion, Stanford University; lecture given winter 2022,
Available at: https://web.stanford.edu/class/cs231a/course_notes/01-camera-
models.pdf

[87] Makinen T, Modeling Environment Using Multi-view Stereo [MS.c Thesis], Tam-
pere: University of Tampere; 2019

[88] Ewbank T, Efficient and Precise Stereoscopic Vision for Humanoid Robots
[MS.c Thesis], Liege Universite ; 2016-2017

[89] Savaresa S, Week 3: Epipolar Geometry. CS231A: Computer Vision From 3D
Reconstruction to Recogntion, Stanford University; lecture given winter 2022,
Available at: https://web.stanford.edu/class/cs231a/course_notes/03-epipolar-
geometry.pdf

[90] Suominen O, Transform-based Methods for Stereo Matching and Dense Depth
Estimation [MS.c Thesis], Tampere: Tampere University of Technology; 2012

[91] Stanford University. The Stanford Multi-camera Array [Internet]. [place un-
known]: [publisher unknown].2002. Available at: http://graphics.stan-
ford.edu/projects/array/

[92] Wikipedia. Light field camera [Internet]. [place unknown]: [publisher un-
known].2012. Available at: https://en.wikipedia.org/wiki/Light_field_camera

[93] Anantpur J, Dwarakanath NG, Kalyanakrishnan S, Bhatnagar S, Govindarajan
R. RLWS: A Reinforcement Learning based GPU Warp Scheduler. arXiv pre-
print arXiv:1712.04303. 2017 Nov 17.

