

Amirhossein Moshfeghifar

ACTIVE DISASTER RECOVERY STRAT-
EGY FOR APPLICATIONS DEPLOYED
ACROSS MULTIPLE KUBERNETES
CLUSTERS, USING SERVICE MESH
AND SERVERLESS WORKLOADS

Master Thesis
Faculty of Information

Technology and Communication
Sciences

Associate Professor
Davide Taibi

June 2022

i

ii

ABSTRACT

Amirhossein Moshfeghifar: Active Disaster Recovery Strategy for Applications Deployed

Across Multiple Kubernetes Clusters, Using Service Mesh and Serverless Workloads

Master of Science Thesis

Tampere University

Master’s Degree Program in Information Technology

June 2022

The popularity of cloud computing has gained significantly throughout the recent years. There
would be no cloud computing without Virtualization technologies. Virtualization is the foundation
of cloud computing, and containerization is the next generation. Kubernetes is one of the most
highly used container orchestration solutions available. It provides clusters with a set of control
planes and workers to manage the containers' lifecycles. Deploying an application across multiple
clusters provides features such as high availability, isolation, and scalability to the system. Ku-
bernetes is a great tool for managing a single cluster; however, it has limitations in multi-cluster
management. One of the fundamental approaches to multi-cluster Kubernetes is utilizing a Ku-
bernetes network service mesh solution. This way, all clusters are meshed across the network.
However, another big challenge is architecting an application deployment across geographically
separated clusters. Any failure in one cluster or a running application service can impact other
clusters causing a disaster in the whole system. In this thesis, we propose and design an active
disaster recovery strategy for applications that are spread across multiple Kubernetes clusters,
eliminating the failure points. Meanwhile, part of the application will run on a serverless platform
hosted on one of the clusters to provide higher performance and optimize resource utilization.
Such use cases are the clusters running on the edge of the cloud or backup clusters running in
the same region in case there is a burst of unpredictable incoming traffic to the system. The
performance and resource utilization of the designed solution was evaluated by running several
experiments. The experiments simulate several failure scenarios, and the designed architect
availability was promising and practical to implement.

Keywords: Kubernetes, multi-cluster, high availability, service mesh, serverless computing

iii

ACKNOWLEDGMENTS

This thesis concludes my Master's degree studies in Information Technology with the

consent of the Faculty of Information Technology and Communication Sciences at Tam-

pere University.

I would like to express my sincere gratitude to my supervisor, Associate Professor Dr.

Davide Taibi, for his input and support throughout the duration of my thesis. I also wish

to thank Dr. Fabiano Pecorelli for his valuable suggestions and thesis review.

My special thanks and appreciation are extended to my line managers, Timo Vehmaro

and Eveliina Vuolli, for their dedicated support and guidance throughout my studies.

This endeavor would not have been possible without the generous support from my dear

friend Hesam Jafarian who has always been there for me. I am also thankful to my friend

Samuli Jortikka and his lovely family for making Finland feel like home.

I would like to express the most profound appreciation to my dear Rita for our endless

adventures, loving support, and the joy her company brings into my life.

I dedicate this thesis to my beloved family. My father, Shahram Moshfeghifar, my great-

est inspiration, who taught me to believe in myself. My beautiful mother, Soudabeh

Salehi, for her pure love, care, and support. My sister, Faezeh Moshfeghifar, my best

friend, soul mate, and the best part of me.

Tampere, 25 June 2022

Amirhossein Moshfeghifar

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 Problem Statement .. 2

1.2 Thesis Structure ... 2

2. KUBERNETES ARCHITECTURE AND SERVERLESS PLATFORMS.................. 4

2.1 Container Orchestration ... 4

2.2 Kubernetes – K8s .. 4

2.2.1 Kubernetes Components .. 5
2.2.2 Kubernetes Architecture .. 7

2.3 Serverless Computing .. 10

2.3.1 Serverless Computing Benefits ... 10
2.3.2 Serverless Computing Use Cases .. 11
2.3.3 Serverless Platforms ... 12

2.4 Summary ... 13

3. KUBERNETES MULTI-CLUSTER .. 15

3.1 Multi-Cluster Kubernetes .. 15

3.2 Kubernetes-Centric .. 16

3.2.1 Kubernetes Cluster Federation ... 16
3.2.2 GitOps .. 17

3.3 Network-Centric ... 19

3.3.1 Istio ... 19
3.3.2 Linkerd .. 20

3.4 Multi-Cluster Application Architecture ... 22

3.4.1 Replication .. 22
3.4.2 Split-by-Service ... 22

3.5 Multi-Cluster Challenges .. 23

3.5.1 Application Topology ... 23
3.5.2 Data Replication ... 23
3.5.3 Traffic Routing .. 23
3.5.4 Service Discovery ... 24
3.5.5 Security ... 24
3.5.6 Image Distribution ... 24
3.5.7 Latency, Bandwidth and Resiliency ... 24
3.5.8 Scalability ... 25
3.5.9 Logging, Monitoring and Tracing ... 25

3.6 Summary ... 25

4. PROPOSED SOLUTION REQUIREMENTS ... 26

4.1 Service Mesh Multi-Cluster Design Patterns 26

4.1.1 Single Network, Single Control Plane .. 26
4.1.2 Separate Networks, Single Control Plane 27
4.1.3 Separate Networks, Separate Control Planes 28

4.2 Proposed Solution Requirements ... 29

4.2.1 Hierarchal Networks .. 29
4.2.2 Maintain Independent Clusters.. 29

v

4.2.3 Maintain Independent Control Planes ... 30
4.2.4 High Availability and Isolation Requirements 30
4.2.5 Serverless Workload Requirements .. 31

4.3 Summary ... 32

5. DESIGN AND IMPLEMENTATION ... 33

5.1 Proposed Solution .. 33

5.2 Prerequisite .. 33

5.2.1 Regional Clusters.. 33
5.2.2 Context Configured ... 33
5.2.3 Ingress Controller with Public IP address 34

5.3 Implementation .. 34

5.3.1 Create and Configure the Clusters .. 34
5.3.2 Create Shared Trust Anchor ... 34
5.3.3 Install Service Mesh Using Credentials 35
5.3.4 Prepare Kubernetes Multi-cluster .. 36
5.3.5 Linking the Clusters .. 38
5.3.6 Install Test Application .. 39
5.3.7 Exporting the Target Services ... 40
5.3.8 Verify Connection and Mirrored Services 42
5.3.9 Deploy Application as Serverless Workload on Cluster-car 42
5.3.10 Failover Traffic Splitting .. 43

5.4 Failure Zones ... 45

5.5 Summary ... 45

6. EVALUATION ... 47

6.1 Performance and Scalability ... 47

6.1.1 Experiment Setup ... 47
6.1.2 Test Features .. 48
6.1.3 Gateway Latency .. 48
6.1.4 Test Approaches ... 48
6.1.5 Failover Performance Conclusion ... 53

6.2 Resource Utilization ... 54

6.3 Security .. 56

6.4 Summary ... 57

7. CONCLUSION AND FUTURE WORK .. 59

7.1 Conclusion and limitations.. 59

7.2 Future Work ... 61

REFERENCES... 62

vi

LIST OF FIGURES

Figure 2.1, High-level Kubernetes Architecture ... 9
Figure 3.1, Example of a Kubernetes-Centric cluster configuration 16
Figure 3.2, Example of an external resource reconciler pattern 18
Figure 3.3, Example of Kubernetes-Centric cluster configuration 19
Figure 3.4, Example of Istio multi-cluster configuration solution 20
Figure 3.5, Example of Linkerd multi-cluster configuration solution 21
Figure 4.1, Shared network and share control plane pattern 27
Figure 4.2, Separate networks, shared control plane pattern 28
Figure 4.3, Separate network and separate control plane pattern 29
Figure 5.1, Generating trust anchor using Step command-line tool 34
Figure 5.2, Generating issuer credential using the trust anchor 35
Figure 5.3, Created trust anchor and the intermediate issuer certificates 35
Figure 5.4, Install the service mesh using the issuer credentials 35
Figure 5.5, Install multi-cluster components .. 36
Figure 5.6, Cluster-fin multi-cluster components and the including the gateway 37
Figure 5.7, Service LoadBalancer with a public IP address as the cluster gateway 37
Figure 5.8, Multi-cluster server authorization policy .. 38
Figure 5.9, Multi-cluster gateways listed from cluster-fin ... 38
Figure 5.10, Microservice application architecture .. 39
Figure 5.11, Install and inject the microservice application .. 40
Figure 5.12, Application installed on each cluster ... 40
Figure 5.13, list of mirrored services from cluster-fin ... 41
Figure 5.14, High level view of the designed multi-cluster implementation 41
Figure 5.15, List of connected gateways and number of mirrored services

"NUM_SVC" ... 42
Figure 5.16, Endpoints pointing to the target cluster gateways 42
Figure 5.17, Application deployed as Serverless on cluster-car 43
Figure 5.18, Static traffic splitting example .. 44
Figure 5.19, Dynamic and active traffic splitting example .. 44
Figure 5.20, Failover design inside a network region .. 45
Figure 5.21, Full high-available multi-cluster designed solution 46
Figure 6.1, Cluster gateways latency .. 48
Figure 6.2, Service mesh added overhead.. 49
Figure 6.3, Direct request latency to one of the mirrored services 50
Figure 6.4, Latency of the mirrored services ... 50
Figure 6.5, 10RPS latency distribution .. 51
Figure 6.6, 100RPS load latency distribution with a sudden failure after 120sec

with no serverless backups .. 52
Figure 6.7, 100RPS load latency distribution with a failure after 120sec 52
Figure 6.8, Serverless cold start latency ... 53
Figure 6.9, Increase in latency during failover ... 54
Figure 6.10, Pod CPU usage .. 55
Figure 6.11, Serverless workflow CPU usage ... 55
Figure 6.12, Pod memory consumption .. 56
Figure 6.13, Serverless workflow memory consumption ... 56
Figure 6.14, Attack over 30s to web-svc service ... 57
Figure 6.15, All requests coming outside the mesh are refused by the gateway 57

file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497646
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497647
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497648
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497649
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497650
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497651
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497652
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497653
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497655
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497656
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497657
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497660
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497661
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497664
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497666
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497667
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497668
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497669
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497669
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497670
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497671
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497672
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497673
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497674
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497675
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497676
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497677
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497679
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497680
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497681
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497681
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497682
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497683
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497685
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497686
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497687
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497688
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497689
file:///C:/Users/User/Desktop/Masters-thesis-final/MoshfeghifarAmirhossein.docx%23_Toc107497690

vii

LIST OF SYMBOLS AND ABBREVIATIONS

API Application Programming Interface
VM Virtual Machine
CNCF Cloud Native Computing Foundation
CRDs Custom Resource Definitions
CRs Custom Resources
K8S Kubernetes
NSM Network Service Mesh
OS Operating System
HPA Horizontal Pod Autoscaling
KPA Knative Pod Autoscaling
NSR Network Service Registry
RBAC Role-Based Access Control
AWS Amazon Web Service
IP Internet Protocol
DNS Domain Name System
HTTP Hypertext Transfer Protocol
REST Representational state transfer
gRPS Remote Procedure Call
TLS Transport Layer Security
SSH Secure Shell Protocol
RPS Requests Per Second
IoT Internet of Things
MQTT Message Queuing Telemetry Transport

1

1. INTRODUCTION

Cloud computing has gained tremendous attention over the past years and has become

one of the most significant and known evolutions of the computing paradigm [1]. Cloud

computing technologies provide different types of on-demand services to end-users over

the network. It has several characteristics such as flexibility, multi-tenant support, re-

source pooling, broad network access, and scalability, due to which most organizations

use cloud services [1]. Virtualization plays a significant role in cloud computing, providing

an abstract view of a system. Virtualization creates a virtual software-based instance of

computing resources such as servers, storage, underlying network, and applications.

What makes virtualization feasible is the hypervisor. A Hypervisor is software that runs

above the physical server or host [2]. Hypervisors pool the resources from the physical

server and allocate them to the virtual environments [2]. Virtual environments or so-called

Virtual Machines (VMs) are software-based computers that run similar to a physical com-

puter. While a VM has its Kernel and applications layer, it also virtualizes the complete

operating system (OS). However, containers running on one instance of an operating

system enable OS-level virtualization. Containers are isolated processes running in the

same environment [3]. Even though containers share the same OS and kernel, each

container appears to have its specific operating system. Therefore, containers are much

faster, more portable, and easier to scale than VMs. Managing a high number of con-

tainers across multiple environments can be very complex and impossible. Therefore,

there is a demand for a proper container orchestration technology to handle all running

containers. Kubernetes [4] is the most highly used container orchestration solution. Ku-

bernetes enables automated application deployment, resources management, and scal-

ing. This leads to an increase in the overall operation of containerized applications across

the infrastructure [5].

Kubernetes is an excellent tool for managing microservice within a single cluster. How-

ever, it has limitations when it comes to multi-cluster management. Moving from one

cluster to multiple clusters reduces a single point of failure, provides a higher isolation

level, and brings more scalability to the system. Therefore, companies are moving to-

wards deploying their application on several Kubernetes clusters to achieve high availa-

bility and scalability. Moving application workloads across multiple Kubernetes clusters

comes with several challenges, which are not only limited to Kubernetes itself. There are

2

two main factors to consider when designing a multi-cluster architecture, application ar-

chitecture and cluster configuration [6]. While there are many existing solutions to multi-

clustering challenges, there is no single solution to achieve high availability, isolation,

and cross-cluster scalability out of the box. However, most solutions follow the same

design principle of having a separate control plane managing the workload across mul-

tiple clusters.

1.1 Problem Statement

As discussed in the previous section, there are two main factors to consider before de-

signing any multi-cluster architecture. First is how to deploy an application across multi-

ple clusters, and secondly, how to configure the clusters to work together as part of a

whole system. There are several patterns to design and architect the application and

cluster but not all provide high availability, isolation, and both in-cluster and cross-cluster

scalability.

This thesis aims to design an automatic cross-cluster disaster recovery strategy for ap-

plications running on multiple Kubernetes clusters. Therefore, we will target scenarios

where failure or disaster occurs in the system. This including the clusters, application

services, and the network. A Kubernetes service mesh solution will be used to configure

the clusters, and sample application services will be split across clusters into different

regions. Meanwhile, part of the workload will be running as serverless workloads to in-

crease availability and optimize the service resource utilization within a network region.

Optimizing the resource utilization reduces service costs and leads to elastic and dy-

namic resource provisioning, which is the key to ensuring cloud performance [7].

We define four primary requirements for the proposed solution, which act as the pillar of

the architecture. The cluster configuration and application deployment design should not

violate any of the defined requirements at any point.

1.2 Thesis Structure

The thesis consists of seven chapters. Chapter 2 explains the Kubernetes architecture

and Serverless platforms focusing on the components used to achieve high availability.

Chapter 3 describes Kubernetes multi-cluster design patterns, existing challenges, limi-

tations, and the overall benefits. In Chapter 4, we define the Kubernetes multi-cluster

and serverless workflows requirements to address failure scenarios. Chapter 5 explains

the designed solution implementation and describes the system behavior during a dis-

aster. Chapter 6 describes the test environment and experiments performed to simulate

3

real-world failure scenarios evaluating the practicality of the designed solution. Chapter

7 concludes the dissertation and provides improvements for future work.

4

2. KUBERNETES ARCHITECTURE AND SERVER-

LESS PLATFORMS

2.1 Container Orchestration

Moving from monolith to microservices, the rise of microservices caused an increased

usage of container technologies. The growth of microservice technologies resulted in

applications that are comprised of several containers. Managing the large number of

containers across multiple environments using scripts and self-made tools can be com-

plex and impossible [8]. Therefore, there is a demand for a proper container orchestration

technology for managing all existing containers. Container orchestration is a solution

consisting of tools and scripts that can help host containers in a production environment

[8].

Typically, a container orchestration solution consists of multiple Docker hosts hosting the

containers; that way, if one fails, the application is yet accessible to the others. There are

multiple container orchestration solutions, such as Docker Swarm [9] from Docker, Ku-

bernetes by Google, and Mesos [10] from Apache. While Docker Swarm is very easy to

use, it lacks some advanced autoscaling features for complex production-grade applica-

tions [11]. While Mesos supports many advanced features, it is not easy to set up and

start. Kubernetes, arguably the most popular of all, is still more difficult to set up than

Docker Swarm. However, it provides many options to customize deployments and has

more support for different vendors. Kubernetes is supported on all public cloud service

providers such as Google Cloud Platform [12], Microsoft Azure [13], and Amazon AWS

[14].

2.2 Kubernetes – K8s

Kubernetes is an open-source container orchestration framework initially developed by

Google [4]. Kubernetes on the foundation manages containers, which means that Ku-

bernetes helps manage microservice applications made of several containers in various

environments [15]. The environments can be physical machines, virtual machines, or

cloud environments.

Kubernetes as a container orchestrator guarantees the following features.

 High availability: Generally, high availability means that the application does

not have downtimes and is also accessible by the users.

5

 Scalability: Scalability means that the application managed by Kubernetes has

high performance. The application should be able to load fast, enabling high re-

sponse rates to the user experience.

 Disaster recovery: In case of a failure in the infrastructure, there should be a

mechanism to backup and restore the data, restoring it to the latest state so that

the running application do not lose data. Upon recovery, the containerized appli-

cation can run in their final state after the recovery.

The fundamental promise behind Kubernetes is to enforce a “desired state manage-

ment,” meaning that the running component will have a specific configuration, and it will

be up to the components to run the configuration in the infrastructure.

Kubernetes provides a variety of components; in the following section, we overview the

ones applicable to this thesis.

2.2.1 Kubernetes Components

This section outlines the components of a working Kubernetes cluster.

 Namespaces: Kubernetes resources can be grouped by wrapping them to a spe-

cific name, using Namespaces [16]. Resource names must be unique within a

namespace but not across different namespaces. Namespaces can be consid-

ered as virtual clusters inside a Kubernetes cluster. By creating a cluster, Kuber-

netes provides four default namespaces, i.e., "default" for default resources,

"Kube-code-lease" that contains the availability of a node, "Kube-system" for Ku-

bernetes components such as system processes, master and managing pro-

cesses, and "Kube-public" for publicly accessible data, including the cluster in-

formation. Meanwhile, each user can create namespaces to deploy objects within

them [17]. While performing a command against any resource Kubernetes, the

user should specify the resource's namespace; otherwise, the default

namespace is chosen. There is no limitation on the number of created

namespaces within a cluster. Even though created namespaces inside a cluster

are logically separated, resources can communicate with each other [17].

 Pods: Pods [18] are the smallest deployment computing unit that can be created

and managed in Kubernetes. Each pod contains one or more containers, sharing

storage and network resources [19], [20]. Kubernetes networking has one im-

portant fundamental concept: every pod has a unique IP address and is reacha-

ble from all other pods in the cluster. One main concern on distributed infrastruc-

ture is allocating ports to services and applications running on servers without

6

conflicts. Kubernetes addresses this issue by abstracting the containers using

pods where pods can be known as small machines with their IP address. While

a pod is created, it will have its network namespace and a virtual Ethernet con-

nection to connect it to the underlying infrastructure network. A pod is a host with

IP addresses and a range of ports that can be allocated to its containers. There-

fore, there is no need for port mapping on the pod's server. The Pod Ip address

is from the Nodes range IP addresses internal in the cluster.

 Service: In Kubernetes, Services [21] are an abstract way to expose a running

application on a set of Pods. Kubernetes Pods are ephemeral, meaning that they

terminate and die frequently. When a pod restarts, a new IP address will be as-

signed to the new Pod. Therefore, it does not make sense to use pod IP ad-

dresses to expose an application since it changes frequently. Services will have

a persistent stable IP address that does not change even if the Pod dies. Service

also provides a load balancing mechanism between the application pods. Ser-

vices are suitable for loose coupling for communication within and outside the

cluster. There are several types of services in Kubernetes [21]:

- ClusterIP Service: This is a default type of service. Each service with

the type ClusterIP will assign IP addresses to pods only accessible from

within the cluster. Therefore, no external traffic can directly address the

ClusterIP service.

- Headless Service: This service enables clients or an endpoint pod to

communicate directly with a specific Pod of an application. A use case for

Headless Services is a stateful application such as databases where the

Pod replicas are not identical, and each has its state and characteristic.

- NodePort Service: It is a service accessible on a static port on each

worker node in the cluster. In contrast to ClusterIP services, NodePort

services make the external traffic accessible on a static or fixed port on

each worker node. NodePort services are not secure since, basically

there is a direct port from outside the cluster with a direct connection to

the service pods.

- LoadBalancer Service: The service becomes accessible externally

through a cloud provider's LoadBalancer functionality. In this case, the

traffic entry point will be the load balancer and from there, the traffic is

directed to the NodePort and clusterIP on the worker node.

7

 Deployment: A deployment [22] provides declarative updates for Pods. To de-

ploy a Pod into Kubernetes, deployment resources are needed. The deployment

acts as a controller to create and manage the application pods. Deployments also

control the scaling of the pods, rolling out updates and rolling back the pods to

their earlier state [23]. The deployment controller is responsible for keeping the

created pods within the deployment in the desired state. It monitors the pod states

continuously to make sure it stays in the desired state.

 Secrets: A Secret is an object containing sensitive data such as a password,

token, or SSH key [24]. The secret might be put in a Pod specification or the

container image. A Pod can utilize a secret in three different ways, i.e., as a file

in the container, as a container environment variable, and using Kubelet while

fetching the image. Using a Secret prevents the need to include confidential data

inside the application code.

 Custom Resource Definitions: Kubernetes APIs are extended by adding addi-

tional Custom Resources (CRs) [25]. The additional CRs are referred to as Ku-

bernetes Custom Resource Definitions (CRDs). Kubernetes flexibility allows us

to add more abilities by using CRDs to instruct Kubernetes to manage more than

just containers. CRDs enable users to define additional custom-type objects

available as Kubernetes resources. A custom resource can be created using the

custom resources using CRDs then Kubernetes will manage the resources simi-

lar to all other Kubernetes core resources.

2.2.2 Kubernetes Architecture

One of the main components of the Kubernetes architecture is the worker nodes [26].

Each worker node will have multiple pods with running containers. Kubernetes uses

three processes to manage and orchestrate the containers. These processes should be

installed on every node that are used to manage and schedule the pods. These pro-

cesses are Container runtime, Kubelet, and Kubeproxy Container runtime [27]. There-

fore, nodes are the cluster servicers that do the work. That is why they are also referred

to as worker nodes.

 Container runtime: The container runtime is the initial process to run on each

node, i.e., Docker [28] or Containerd [29]. The container runtime should be in-

stalled on all nodes since the application pods have containers running inside

them.

8

 Kubelet: Kubelet is the process of scheduling the pod and the containers below

it. Kubelet is a Kubernetes process with interfaces to both the container runtime

and the node [27]. Kubelet is responsible for getting the configuration, launching

the pod with the container inside, and then allocating resources to the container

from the selected node, i.e., CPU, RAM, and storage resources. Kubernetes clus-

ters typically contain several nodes, which also must have container runtime and

Kubelet services installed. The system can contain other pods and containers, as

well as multiple nodes running replicas of existing pods.

 Kube-proxy: The nodes communicate with each other using load balancer ser-

vices, receiving requests and forwarding them to the respective pod. Kube-proxy

is the Kubernetes process that is responsible for forwarding the requests from

services to pods [27]. Kube-proxy has intelligent routing logic that ensures that

communication works efficiently with little overhead. Thus, it can avoid the net-

work overhead of requests sent to other nodes.

How to interact with the cluster or decide on which node a new application pod or data-

base pod should be scheduled. Alternatively, if a replica pod dies, what process monitors

it and reschedules and restarts it again. The answer is that these managing processes

are controlled by a controller node called Master Node. Master nodes have entirely dif-

ferent running processes. The master node container has four processes, controlling the

cluster and worker nodes' state [27].

 Kube-apiserver: Whenever a new application is deployed in a Kubernetes clus-

ter, a user can interact with the resources through the API server. API server acts

as a cluster gateway receiving the initial requests of any updates into the cluster

or even the queries from the cluster. It also acts as a gatekeeper for authentica-

tion, ensuring only authenticated and authorized requests get through to the clus-

ter. The API Server will validate the requests, and if everything is fine, it will for-

ward the request to other processes to schedule the requested components. This

provides higher security since there is only one entry point to the cluster.

 Kube-scheduler: The schedular is responsible for starting an application pod on

one of the worker nodes. Instead of randomly assigning a pod to any node, the

scheduler has an intelligent decision-making mechanism to schedule compo-

nents on the nodes. It initially checks the request and sees how much resources

the application needs. Next, it checks the available resource on each worker node

to know where to schedule the pod. Note that the schedular is only responsible

9

for making the decision, and the Kubelet does the actual process of starting a

pod with a container.

 Kube-controller-manager: Whenever a cluster desired state changes, there

must be a way to detect the change and recover as soon as possible. The Ku-

bernetes Controller-manager process does this. Upon changes in the cluster

state, the controller-manager detects the change and requests the schedular to

reschedule the changes in the cluster.

 Etcd: The etcd is a key-value store of a cluster state. The etcd is the cluster brain,

meaning that all changes get saved or updated into the key-value store of etcd.

The decision-making by schedular and controller checking the available re-

sources and cluster state changes are all done using the data from etcd. On the

other hand, the actual application data is not stored in etcd. Etcd is a place to

store cluster state information used for master processes to communicate with

the work processes.

Master processes are crucial for the cluster operations, especially the etcd store, which

contains data that must be reliably stored or replicated. In practice, Kubernetes clusters

are made of multiple master nodes where each master node runs its processes. The API

Server is load-balanced, and etcd store forms a distributed storage across all of the mas-

ter nodes.

Figure 2.1, High-level Kubernetes Architecture

10

2.3 Serverless Computing

According to Cloud Native Computing Foundation, “Serverless computing refers to build-

ing and running applications that do not require server management.” [30] Serverless is

a deployment model where applications are divided into functions; each function gets

managed on a hosting platform. It provides a small runtime container to execute lines of

code without needing infrastructure management [31]. This way, the developers and

IT/operators teams are no longer responsible for managing, provisioning, and scaling

running applications. As a result, the developers will focus on writing code or business

logic, and operators will focus on more business-critical tasks.

There are two different perspectives on serverless computing:

 Provider: Responsible for deploying the serverless platform.

 Developer: Write the code, deploy it on the platform, and benefit from the pro-

vided features. From the developers' point of view, there are no servers, and their

application is not always running.

Serverless computing does not mean that no servers are running at all. Even though the

deployment model is referred to as serverless, servers are always required to run a serv-

erless platform. Since there are still actual servers required, a provider team needs to

manage the servers. The servers can be physical, virtual machines, or even small run-

ning containers. Whether there is a server load or running idle, a provider is required to

manage the servers. Therefore, a self-hosted system can generally be called serverless

while one team acts as a developer and one as a provider [30].

2.3.1 Serverless Computing Benefits

Serverless computing delivers several benefits to the developers:

 Zero Server Ops: Serverless computing greatly changes the model of running

applications by stopping the added server resource maintenance overhead.

Serverless significantly eliminated the cost of provisioning, updating, and man-

aging infrastructure servers, virtual machines, and containers. On the other hand,

running application on a serverless platform provide high flexibility and scalability

to the system [30]. A product can immediately and strictly scale according to the

incoming requests. The scaling happens automatically without the developer’s

intercession. After requests are severed and processes are complete, the serv-

erless platform automatically scales down the compute resources preventing idle

capacity [30].

11

 Zero Compute Cost when Idle: When no code is running, the virtual machines

or containers are idle. Therefore, no compute resource is consumed by the run-

ning application on the serverless platform; in other words, there will be no charge

when the code is not running. This is an excellent benefit for serverless products

since the costs are only based on usage and demand [30].

Additionally, elastic provisioning is one of the most critical benefits of serverless compu-

ting, along with its ease of use. At the same time, virtual machines need some time to

scale with the system settings [31].

2.3.2 Serverless Computing Use Cases

Currently, serverless computing is extensively available, and many cloud providers al-

ready offer great support for customers planning to run their applications in a serverless

fashion. Depending on the application workload types, the serverless approach should

be considered while:

 The workload is asynchronous, concurrent, and easy to be divided into separate

units [32].

 There is a chance of infrequent and unpredictable contention in demand.

 Microservices are stateless and ephemeral, so there is no need to store the state

of a function.

There can be trade-offs while considering running an application on serverless platforms.

Since the functions are not running while there are no incoming requests, the start-up

after the inactivity might cause performance declines [33]. This is because no ready in-

stance of the function is prepared to serve the incoming requests. Latency is crucial for

serverless computing and has a key role in broadening its usage. Otherwise, developers

would merge application functions avoiding the latency penalty, making the application

less modular and losing its serverless benefits [34]. However, Non-HTTP-centric work-

loads can dramatically benefit from the efficient cost model of a serverless architecture.

Here we mention some most use cases of serverless:

 Internet of Things – IoT: Cloud services should be able to respond quickly to

messages from IoT devices and scale the application in response to a sud-

den load of messages. IoT is an example of various events containing messages

to be processed by the event handlers [31]. Serverless capabilities allow you to

manage MQTT messages from IoT devices and flexibly scale and protect other

services downstream of your load [30].

12

 HTTP REST APIs and Web Applications: Web applications are a good candi-

date for serverless, whether a workload is static, or responses are generated

based on demand. One great benefit of deploying a web application as serverless

is that individual REST calls can be separated while scaling independently [30].

Even if they all use the same backend.

 Continues Integration Pipeline: CI pipelines include a pool of worker hosts,

mostly idle and waiting for jobs to be dispatched. While considering serverless

build, jobs will get triggered whenever a new code is committed to the pipe. The

function is called, run, tests are performed, and terminated. This lowers the idle

resource utilization through autoscaling.

 Edge Computing: Cloud industries are moving infrastructure to the network

edge, decreasing users' network latency. This requires a highly resource-efficient

design since edge data centers usually have fewer resources [35]–[38].

2.3.3 Serverless Platforms

One of the most significant drawbacks of moving an application on serverless platforms

is the lock-in vendor potential. The concern is whether the API interface layer and runtime

contract can be unified for serverless workloads [39]. The concern of vendor lock-in is

that Alex Polvi, CEO at CoreOs, refers to it “as one of the worst forms of proprietary lock-

in ever seen in humans’ history” [40]. The primary reason is that many public serverless

platforms require adopting specific proprietary company-specific technologies for them

to operate.

The alternative solution to public serverless platforms is the open-source serverless plat-

forms, also known as installable serverless platforms. These platforms should be able to

avoid vendor lock-in by offering a standard API interface and compatible runtime con-

tracts. In this section, we will have a brief look at two popular installable serverless plat-

forms. Note that the selected platform support Kubernetes as the container orchestrator.

 Knative: Knative is an open-source serverless framework initiated by Google

[41]. Knative extends Kubernetes providing the capability to manage serverless

workloads on the clusters [41] Knative registers its custom APIs into Kubernetes

core APIs, enabling users to interact with it using Kubernetes CLI, Kubectl. Some

benefits of using Knative as the serverless platform is:

- Run on any Kubernetes cluster: Knative can run serverless applications

on any Kubernetes cluster, regardless of where and how the cluster is

hosted [41].

13

- Support variety of programming languages: The platform is not bound

to specific programming languages since Knative services require a con-

tainer image to run a function [41].

- Kubernetes Pod Autoscaling: Knative scales the pods according to the

average of incoming requests to the service [41]. This way, the pods are

scaled according to the incoming load in contrast to Kubernetes Horizon-

tal Pod Autoscaling (HPA), whereas scaling is based on the pod CPU

usage. HPA makes autoscaling dependent on the fast calculation of re-

spective system components [42].

Knative consists of two main components, Serving and Eventing. Each compo-

nent is installed separately according to the need.

- Serving: The serving component is the core of the Knative API interface.

It is responsible for hosting the functions, autoscaling, and connecting the

pods.

- Eventing: The evening component is the logic of loose coupling micro-

services in serverless. To ensure interoperability, the eventing component

is consistent with the CloudEvent specification developed by the CNCF

Serverless workgroup [43].

 OpenFaaS: OpenFaas [44] is one of the oldest serverless projects created by

Alex Ellis. OpenFaas offers a web interface and CLI tool to manage the platform

and the function repositories. In contrast to Knative, OpenFaaS provides its spe-

cific template store containing various templates supporting different program-

ming languages [45]. OpenFaas also provides an interface called “faas-netes” to

manage and invoke functions deployed based on unchangeable Docker images.

OpenFaas supports two ways of autoscaling. First is an OpenFaas autoscaling

method which is based on the number of incoming requests. An additional com-

ponent monitors the flow and sends Alerts to scale accordingly. Secondly, scaling

is based on other metrics, which in this case is HPA which scales based on both

CPU and memory usage [44].

2.4 Summary

This chapter described the main concepts of container orchestrator systems, Kubernetes

architecture, and its components. Next, we discussed serverless computing and how

14

cloud-native application could benefit from its flexibility, performance, and optimized re-

source utilization. In the next chapter, we will deep dive into Kubernetes multi-clustering

and how to deploy an application across multiple clusters.

15

3. KUBERNETES MULTI-CLUSTER

The previous chapter described the concepts of container orchestration systems, espe-

cially Kubernetes. We went through Kubernetes components and how Kubernetes man-

age the cluster and running applications. Next, we discussed serverless computing, its

benefits, use cases and how we can benefit from running the scalable application on an

installable serverless platform. This chapter overviews the basic concepts behind Kuber-

netes multi-clustering management with a focused aspect such as high availability, resil-

iency and scalability. Two main approaches for cluster configuration and application ar-

chitecture will be explained. Additionally, we will overview the most CNCF Kubernetes

multi-cluster projects providing Kubernetes cluster federation solutions as well as their

advantages and limitations.

3.1 Multi-Cluster Kubernetes

Organizations are increasingly deploying more Kubernetes clusters and treating them as

disposable [46]. The general idea of having disposable clusters is that instances of a

system should be treated as replicable rather than irreplaceable [47]. For instance, if a

virtual machine gets corrupted, it should be replaced as soon as possible rather than

trying to fix the issue and bring it back to health.

This approach results in many benefits [46], [48]:

 Improving operational readiness: Operations, troubleshooting, and tools get

significantly simplified while standardizing cluster creations.

 Increase availability and performance: Deploying applications across clusters

improves availability and regional performance.

 Isolation: Strong cluster isolations simplify the critical operational processes

such as system upgrades and reduce the clusters outage.

 Remove vendor lock-in: The workload can be shifted between different Kuber-

netes vendors.

 Compliance: A single cluster has less chance to comply with every regulation,

while a multi-cluster strategy decreases each cluster's compliance scope.

16

Multi-cluster generally refers to a strategy for deploying an application on or across mul-

tiple Kubernetes clusters. Meanwhile, such action aims to achieve high availability, scala-

bility, and isolation in the system.

There are multiple ways to configure Kubernetes multi-cluster, two of which are dis-

cussed in the following sections [46].

3.2 Kubernetes-Centric

Kubernetes-Centric configuration approaches are built around extending the existing

core Kubernetes primitives enabling a centralized management plane for multiple Kuber-

netes clusters. The main idea is to have a single cluster responsible for federating and

managing multi-cluster workloads across the connected clusters. The most notable pro-

jects are the Kubernetes Cluster Federation [49] , part of the Multicluster Special Interest

Group (SIG) [50]. Figure 3.1 shows a simple Kubernetes-centric configuration while clus-

ter host in region-a manages two other Kubernetes clusters running in separate network

regions.

3.2.1 Kubernetes Cluster Federation

Kubernetes Cluster Federation (KubeFed), managed by Kubernetes Multicluster Special

Interest Group, uses Kubernetes primitives to provide a centralized management plane

to achieve Kubernetes multi-clustering. It allows for coordination of the configuration of

multiple Kubernetes clusters from a single set of APIs in a central hosting cluster [49].

The goal is to provide different mechanisms to express which cluster should manage by

the control plane and what should be configuration be [51].

Figure 3.1, Example of a Kubernetes-Centric cluster configuration

17

KubeFed is a Kubernetes operator leveraging Custom Resource Definitions, providing

tools for managing applications and services in multiple Kubernetes clusters tracked by

the Kubernetes Cluster Registry [52]. The users can deploy different workloads to clus-

ters listed in the registry, set DNS information, and adjust the replicas in the target clus-

ters.

KubeFed is configured with two types of information [52]:

 Type configuration: Declares which type of the APIs should KubeFed handle

on the target clusters

 Cluster configuration: Define the clusters that KubeFed will target

KubeFed type configuration has three concepts that provide a concise representation of

a resource to appear in the multiple managed clusters.

 Templates: Representation of the common base specification of a resource

across clusters

 Placement: Handles clusters specification of which the resource will appear in

 Overrides: Determines the template resource variation per-cluster

3.2.2 GitOps

GitOps is a well-established framework for orchestrating CI/CD workflows [53].

GitOps is a set of practices for using Git pull requests to both application and infrastruc-

ture configuration. In GitOps, a Git repository is considered the only source of truth con-

taining the entire state of a system. GitOps advocates applied the same git principles,

such as review, pull, push, tagging, and et, to the application and infrastructure. This

way, the dev teams benefit from the same assurance as they do for the application

source code [54].

The following principles are what constitutes a GitOps practice:

 The system definition is described as code

 All desired system configuration and state is versioned in Git

 Changes to the current configuration are automatically applied using the Git Pull

Requests mechanism

 A controller ensures that no configuration drifts are present

Facing multi-cluster topologies, GitOps can represent a centralized Kubernetes multi-

cluster control plane. In this case, an application is initially templated with the correct

18

value and pushed to the Git repository. The desired state of the application is then de-

ployed on the target clusters, watching the changes on the control plane. There are two

main multi-cluster GitOps patterns [55],

 On-Cluster Resource Reconciler: In this pattern, a controller on a cluster is

responsible for checking the current state of the cluster resources with the de-

sired state on the Kubernetes desired resources in the Git repository. The con-

troller will raise notifications when a discrepancy is detected and pull the desired

state to the target clusters. Figure 6 shows how the to reconcile action is per-

formed in this pattern.

 External Resource Reconciler: In contrast to the on-cluster pattern, the con-

troller is not allocated to the clusters in this pattern. A set of CRDs is defined to

compare the configuration in the Git repo with the Kubernetes cluster resources

and take action according to the comparison result. This pattern uses Git Push

to make changes to all target clusters.

Figure 3.2 represents GitOps external resource reconciler pattern with the push method

to sync the cluster states.

Currently, Kubernetes-centric multi-cluster approaches lack several features. They do

not provide a dynamic pod placement across the multi-cluster topology [53]. They do not

support active disaster recovery or cross-cluster bursting technics. In other words, in

case of a failure in the system, there is not possible to automatically migrate the work-

loads to other clusters.

Figure 3.2, Example of an external resource reconciler pattern

19

3.3 Network-Centric

In contrast to Kubernetes-centric, this approach mainly focuses on creating a network of

clusters. This way, network connectivity is created between clusters so that the deployed

applications or different components of a system communicate with one another.

Service-mesh solutions such as Istio [56], Linkerd [57], and Consul [58] support multi-

cluster communication by extending the mesh across multiple Kubernetes clusters.

Figure 3.3 is an example of a Kubernetes-centric multi-cluster design based on service

mesh. As seen, clusters are not under a single centralized management plane but

connected using a Kubernetes service mesh solution.

3.3.1 Istio

Istio is a Kubernetes-native service mesh solution initially released by Lyft [59]. It intro-

duces an interface to control how pods communicate and exchange data with each other.

Istio separates the data and control planes by using a sidecar-loaded proxy which makes

decisions locally and does not entirely rely on the control plane. Because of the number

of features, Istio has become a trendy service mesh of choice among companies such

as Google, IBM, and Microsoft.

Regarding multi-clustering support, Istio has two main strategies, a shared control plane

and replicated control plane. As a result, replicated control plane brings higher system

availability and resiliency, and Istio provides powerful primitives for Kubernetes multi-

cluster communication. However, this comes with higher complexity. Istio has specific

APIs for exposing multi-cluster capability, which typically needs to be provided per ser-

vice. These APIs are:

Figure 3.3, Example of Kubernetes-Centric cluster configuration

20

 Virtual Service: Virtual service [60] is set of traffic routing applied rules for an

addressed host.

 Destination Rules: Destination rules [61] Defines traffic policies applied to traffic

intended for service after the traffic routing.

 Sidecar: Istio sidecar [62] escribed the configuration of the Istio envoy proxy. The

proxies mediate the inbound and outbound communication to the attached work-

load instance.

 Ingress: Istio ingress [63]Describes the way to expose a service outside the Istio

service mesh.

Each service inside the mesh should have all the listed APIs configured adequately.

Therefore, application and deployment changes are required to take full advantage of

the Istio service mesh multi-cluster. Figure 3.4 is an example of the Istio service mesh

multi-cluster configuration.

3.3.2 Linkerd

Linkerd is the next popular service mesh solution on Kubernetes. Buoyant originally built

Linkerd for native machines using Scala [64] and later on was made open-source [65].

Linkerd was later modified using Go [66] and Rust [67] , with Kubernetes still as its target.

Linkerd has significantly gained popularity as an ultra-light, secure and minimalist service

mesh solution for Kubernetes [68] . It has an initial focus on simplicity instead of flexibility.

This fact results in fewer additional APIs on top of Kubernetes primitives, having less

complexity compared to Istio.

Figure 3.4, Example of Istio multi-cluster configuration solution

21

Linkerd supports multi-cluster with a focus on separate independent control planes. This

brings high availability and isolation and separates the failover zone of each cluster. The

aim is to provide the same level of reliability, observability, and security features for in-

cluster communication and cross-cluster communication. Linkerd introduces two main

components enabling multi-cluster features to clusters across multiple networks and re-

gions. The Linkerd control plane components are [69].

 Service mirror: This component mirrors service information between clusters.

Since the remote services are represented as Kubernetes services, full features

provided by Linkerd apply uniformly on both in-cluster and cross-cluster calls.

 Gateway: Responsible for routing the traffic to the internal service and vice versa.

Figure 3.5 is an example of a Linkerd service mesh multi-cluster configuration.

Of network-centric approaches, all of the approaches discussed require a service mesh

adaptation. Both Istio and Linkerd service mesh solutions are compelling when it comes

to Kubernetes multi-cluster communication. Therefore, deciding between the ap-

proaches depends on the system requirements. Linkerd provides a high-speed, re-

source-intensive, and less complex solution, while Istio provides great features backed

up with big names managing the service mesh [65]. Less complexity, efficient resource

usage, and low latency are factors to consider in this thesis; therefore, Linkerd is the

preferred choice [70], [71].

Figure 3.5, Example of Linkerd multi-cluster configuration solution

22

3.4 Multi-Cluster Application Architecture

Deploying applications across multiple clusters maximizes the system's availability,

scale, performance, and fault tolerance [72]. There are two fundamental ways to architect

multi-cluster applications, full replication, and segmentation. This section will briefly over-

view both architectural designs and discuss each design use case.

3.4.1 Replication

A full copy of the application will be deployed and hosted on each cluster in this model.

The application gets globally scaled across clusters by replicating in multiple availability

zones and regions. Replicating the application instances across different networks brings

higher performance and resiliency [73]. Therefore, the latency will decrease while the

user is closer to the running cluster. Coupled with a global load balancer, this model

enables failover [46]. In case of a failure or shutdown in one cluster, the traffic can gets

routed to another cluster serving the incoming requests.

3.4.2 Split-by-Service

In comparison to the fully replicated design, in this model, an application is divided into

independent components, in which each component represents a Kubernetes service.

The services will be spread across multiple clusters running in different zones and re-

gions. Each Kubernetes service allocation will be according to the operational require-

ments on the clusters [73].

This approach provides a higher level of isolation and security between the application

services. Nevertheless, it comes at a more significant complexity expense [46].

A list of Split-by-service pattern use cases are:

 Ease compliance with regulatory requirements. While compliance services

can be localized into a single highly isolated cluster, the remaining rest of the

application can be operated in other scopes.

 Safety development and delivery: Individual teams can deploy and test multiple

services in different clusters without affecting other teams.

The splitting approach to multi-cluster application architecture provides a similar loose

coupling feature seen in the microservice-oriented architecture. Adding that one of the

biggest challenges in this approach is to ensure that the application complies with the

regulatory statutes where it runs [73]

23

3.5 Multi-Cluster Challenges

Kubernetes is an excellent tool for managing a single cluster, but when it comes to man-

aging multiple clusters, it does not perform well [74] [75]. In this section, we will overview

some of the most critical challenges while moving from a single cluster to multiple clus-

ters.

3.5.1 Application Topology

One of the well-known challenges with multi-clustering is the application design. When

designing an application, we need to think about how to implement the application. This

means not just the communication between microservices within a cluster but also how

to manage them globally while distributed across many clusters.

Mainly, an application is not designed for more than one cluster or region. What will be

the approach now that it needs to be deployed on more than one cluster. Which parts of

the application run on which cluster. A reasonable strategy is to take the application and

clone it to all other clusters. In other words, full application replication.

3.5.2 Data Replication

When an application is moved from one cluster to multiple clusters, the actual application

data is not anymore in one location. Therefore, the question of sharing the data across

regions needs to be thought of beforehand. While there are not that many options avail-

able at the CNCF, only public cloud providers such as AWS and Google Cloud offer

different available options for replicating data between regions and networks [ref]. That

is why deciding to rely on a cloud provider or depend on CNCF and the available

toolboxes are crucial.

3.5.3 Traffic Routing

Load balancing, or more precisely, routing the traffic to the closest data center, is the

next issue to be addressed in multi-cluster communication. [ref] We need to decide how

the traffic should be shared across multiple clusters. How is the traffic coming from a

user or service in one specific region routed to the other available regions? While public

cloud providers already offer available solutions such as global load balancers, other

custom-built load balancers can be created on CoreDNS [ref].

24

3.5.4 Service Discovery

Typically, services are discoverable inside a cluster by querying the DNS and receiving

the cluster IP of the target service. Finding services gets more complicated when the

application is spread across multiple clusters. Services cannot reach each other without

a global service register. There should be an intelligent approach to expose services

outside the cluster and be able to locate them across multiple clusters in a trusted way.

3.5.5 Security

The security issues for one cluster are almost similar to ten clusters but going to a higher

number of clusters, security risks become a significant issue [76]. The solution is not

exactly straightforward. The integrity of a high number of clusters is not something to be

trusted easily, and the trust and access to the set of core clusters need to be limited [ref].

It is essential to identify what are the most critical and sensitive parts of the application

and where is the most sensitive data kept. On the other hand, it is important to consider

what belongs to the core trusted clusters and other semi-trusted clusters.

3.5.6 Image Distribution

A centralized cloud-based repository can be a single point of failure in multi-cluster ar-

chitecture. There should be a way to optimize the deployment of all application images

to follow the path of the data or application. As an application gets propagated out to

other clusters running on all far corners of the world, there would be a need to propagate

the images that underlie the containers. Meanwhile, it is important to come up with a

solution to achieve better scalability out of image deployment and the artifact.

3.5.7 Latency, Bandwidth and Resiliency

Having a low latency connection between a device and the serving backend, or end-

points producing a lot of bandwidth is important. A good example is a hospital; If the

uplink for the hospital goes down, the hospital still needs to operate whereas a restaurant

is not life and death. Another example is edge computing and IoT. In general, while think-

ing about IoT and edge computing the number of clusters goes beyond 1000 clusters

running on the edge. Being a resource constrained environment where there are limited

fond of computer resources available. Unlike public clouds that offer limitless amount of

resource based on the customer needs. Therefore, the way to scale the application spe-

cially on the edge is a challenge when it comes to multi-clustering.

25

3.5.8 Scalability

Kubernetes is good at scaling; a service pod running on each cluster can be scaled up

and down based on different factors. However, what if there is a need to scale out and

back? If the application is running on several clusters, is there a need to run every mi-

croservice in every location all the time [77]. Is there any way to decide where to forward

the traffic based on the metrics while a high number of requests are entering the system?

Is it possible to no longer operate in one dimension, scaling up and down, but to operate

in two dimensions. How and when to scale is a very important concern to support high

availability and performance.

3.5.9 Logging, Monitoring and Tracing

Having separate logging, tracing, and monitoring stack for a small number of clusters is

not a huge issue. When the number of clusters rises, each cluster produces its metrics

and logs. Therefore, it is required to aggregate the metrics and logs and be able to start

filtering them. Solutions such as Prometheus [78] support federation and have the ability

to layer Prometheus from each cluster on top of each other.

Multi-cluster challenges are not only limited to the ones discussed. More challenges can

be introduced according to application design, security, performance concerns, and re-

source limitations. Keep in mind that the issues differ when moving from one cluster to

ten compared to a hundred clusters.

3.6 Summary

In this chapter, we explain Kubernetes multi-cluster concepts and why companies must

consider deploying their solutions across multiple Kubernetes clusters. Meanwhile, we

explained the main Kubernetes cluster configuration and application architecture strate-

gies that maximize the system's availability, scalability, and performance. Lastly, we dis-

cussed several existing challenges while moving from a single cluster to tens and hun-

dreds of clusters. In the next chapter, we will discuss the well-known multi-cluster pat-

terns using service mesh and explain how deploying services as serverless workloads

can improve the availability and resource utilization across clusters.

26

4. PROPOSED SOLUTION REQUIREMENTS

This thesis mainly addresses the failover scenarios by designing a highly available and

reliable multi-cluster service mesh. The previous chapter described several approaches

to provide Kubernetes multi-cluster federation, including their advantages and limita-

tions. Additionally, it explained the main multi-cluster Kubernetes cluster configuration

and the application architecture models. This chapter defines the main three multi-cluster

design patterns explaining how we can achieve higher resiliency. Finally, four main re-

quirements will be defined as the implementation reference.

4.1 Service Mesh Multi-Cluster Design Patterns

This section will explain possible multi-cluster design patterns using a network service

mesh solution.

4.1.1 Single Network, Single Control Plane

The most straightforward pattern is a flat network with a single control plane flow. In this

pattern, the clusters are all running in the same fully shared connected network, whereas

the cluster IP ranges, and pod IP ranges do not overlap. Meaning that there is direct

communication between clusters, and the traffic is routed without the need for gateways.

A single network allows configuring service consumers in a uniform way across clusters

with the ability to address workload instances directly [79] . Regarding the control plane,

one of the clusters will be the main cluster and has the entire control plane installed. The

main cluster is also known as the local cluster, and the rest of the clusters are remote

clusters.

There is a need for config sharing between the clusters in this pattern. For example, the

main cluster needs a secret to have access to the KubeAPI of all remote clusters. The

reason is that the main cluster needs to know about all the existing services on other

clusters, and the only way to do that is through the KubeAPI.

The biggest downside of this pattern is high bandwidth usage to keep the clusters in

sync. Any minor changes in one cluster, such as IP address or secret changes, will send

updates to all other clusters, and therefore there will be much traffic going back and forth

between clusters [79]. Therefore, this pattern is not a good candidate for isolation since

it is one big cluster rather than multiple clusters. On the other side, it can be a suitable

27

setup for CI/CD environments where the user needs to be able to deploy the same con-

figuration across clusters to ensure similarity. This pattern could also be good in failover

scenarios where multiple clusters are living closely together or, in other words, having

low latency between the main and remote clusters.

4.1.2 Separate Networks, Single Control Plane

This pattern does not require a flat network meaning that the traffic is not routable from

one cluster to another; this is the baseline of this pattern [79]. Like the previous pattern,

the control plane is only installed on one cluster, the main cluster. In contrast, the clusters

have separate internal IP ranges compared to a flat network.

All services located in the remote clusters are now associated with an ingress gateway,

and the gateway represents the cluster. This way, the traffic is routed from the main

cluster to cluster gateways, and the gateway forwards it inside the cluster.

The single shared control plane is the characteristic of both patterns, and the main dif-

ference is in the network. Adopting a shared control plane among a small number of

clusters is appealing. This effectively centralizes the state and eliminates separate com-

ponent management overhead. With higher complexity, this pattern is also suitable for

failover scenarios with a low latency requirement but still lacking in isolation.

Figure 4.1, Shared network and share control plane pattern

28

4.1.3 Separate Networks, Separate Control Planes

This pattern essentially has completely independent clusters. Since the clusters are com-

pletely independent, there is no need for configuration sharing, which is why it is simpler

to setup. This pattern requires a global DNS lookup since now the services are running

in other clusters on different networks. In the same way as the previous pattern upon the

service discovery, traffic will be routed to the destination cluster gateway and forwarded

accordingly.

The advantage of this design is that it provides independents to each one of the clusters

and running applications. A good use case is canary releases when multiple teams are

working on the same project; one cluster can be controlled by one specific development

team [79]. This way, it is possible to decide when to expose a particular service to other

clusters exactly. Another advantage of this scenario is that it naturally scales better since

each cluster has its control plane. Compared to the other two patterns, in this pattern,

we are sharding the control plane and federating the communication between them.

Meanwhile, this pattern also provides a higher level of isolation. The downside is the

complexity of managing multiple control planes versus one, which brings a higher oper-

ational cost.

Figure 4.2, Separate networks, shared control plane pattern

29

Figure 4.3, Separate network and separate control plane pattern

4.2 Proposed Solution Requirements

This section will propose the proof of concept for multi-cluster communication based on

the three main patterns described in the previous section. In conclusion, we will outline

the requirements of the multi-cluster and serverless workload combination solution. The

requirements will be the pillar of the design, and all decisions will be made based on the

specified requirements.

4.2.1 Hierarchal Networks

In a single cluster, every single Pod has its IP address. One of the consequences of

having a single IP address per Pod is that each cluster becomes its network. Therefore,

the overlay networks are discoverable and routable inside the same cluster and no other

clusters [80]. There are possible solutions to architect around this using third-party tools

for maintaining a flat network. This, however, bring complexity and introduce a point of

failure in which special maintenance will be required. Therefore, some form of gateway

or ingress controller is required to handle the cluster’s inbound/outbound traffic, forward-

ing it to the correct backend service.

4.2.2 Maintain Independent Clusters

Even though a flat network with a routable network between every pod in all clusters is

doable and possible, allowing direct communication does not make scenes. More pre-

cisely, for each pod to talk directly to another pod running on any other cluster, it should

30

be able to discover the target pod somehow. This necessitates the use of a global state

between clusters.

By requiring global visibility among clusters, any change in any other cluster will directly

impact all connected clusters [80]. In other words, it is not possible anymore for each

cluster to scale independently. Meanwhile, the maximum cluster scale will be defined

according to the size of every cluster in the system. Furthermore, any error in a cluster

configuration, launching a large number of pods, for example, has the potential to DoS

in every other cluster. The goal is to prevent such scenarios when it comes to multi-

cluster communication. Therefore, we need a design in which any issue outside a cluster

is isolated and separate components do not have any impact on one another.

4.2.3 Maintain Independent Control Planes

When clusters are in different regions, network connectivity becomes a genuine concern,

which means that any issue in the connectivity can potentially introduce failures in the

system. Good examples can be increasing latency all the way to complete connectivity

failures and packet loss. In this situation, any cluster controlled by the same shared con-

trol plane will be totally broken as the state differs from the local caches. This means

independent fault zones have been integrated, and when the most vulnerable link in the

system fails, the whole system will fail.

Even not concerned about the network failures, as more and more clusters deployed

further away from the shared control plane, the inter-cluster operations such as discovery

updates slow down. This is simply because the latency between processes will increase,

slowing down any operation requiring communication with the central cluster [81]. Sep-

arate control planes bring more flexibility to the system, increase availability, make it

more versatile and reduce complexity.

4.2.4 High Availability and Isolation Requirements

Moving from a flat network and share control plane to independent control planes in

separate networks, we afford several benefits in multi-cluster communication.

 Higher availability: In case the control plane goes down, the scope of the outage

is limited to only the workloads in the same cluster.

 Isolation: No matter where a cluster is running, it is possible to make changes

to that cluster without impacting other connected clusters.

 Service visibility: Services visibility can be restricted to the number of clusters

since now each cluster has its independent state.

31

In conclusion, we will achieve the highest availability and isolation while having multiple

clusters in separate regions with a separate control plane on each cluster.

4.2.5 Serverless Workload Requirements

When an application is deployed as a microservice, the containers usually live forever.

The microservices will become long-living processes until the workload is undeployed or

the node is down. In contrast, serverless functions can process distributed application

data by quickly provisioning additional compute resources on multiple containers [31].

Serverless services have a controller to take care of deploying and running them when-

ever they are needed. Therefore, since the process is running until requests come, it

becomes very short living. Running a service on demand is what we are looking for in

failover scenarios and a quick reaction to traffic spikes. We require three essential capa-

bilities of the serverless platform design,

 Kubernetes-based platform: We need a platform that uses the same Kuber-

netes primitives and Kubernetes native. Managing serverless workloads should

not add more complexity to the system. We need to keep it close to Kubernetes

so it can easily take care of the workload exactly how it does with the over de-

ployments.

 Scale-to-zeo: If there is no request, nothing should be running. Not even a single

pod. In failover scenarios, the traffic is sent to the backup services when a disas-

ter has occurred.

 Scale-from-zero: If there is a sudden traffic spike, the system should be able to

scale everything up automatically to lower the risk of packet loss.

 On-premises installable: We need to be able to install a serverless platform on

local clusters and the cloud. When it comes to multi-clustering, not all clusters

are running on the cloud. The solution should eliminate the vendor lock-in prob-

lem.

Since the target is to have a highly available model in multi-cluster scenarios, running

part of the application as serverless functions would increase the availability while saving

resources. The defined requirements are the minimum requirements we need in failover

scenarios covered in this thesis.

32

4.3 Summary

In this chapter, we discussed the proposed solution to achieve an active disaster recov-

ery strategy using service mesh and serverless computing. As the output of the dis-

cussed approaches towards the application and cluster design, we concluded that hav-

ing multiple Kubernetes clusters in separate networks brings high availability and isola-

tion and separates the failure domains of the system. Additionally, we defined require-

ments for part of the application running as serverless workloads to increase resiliency

inside a network region. As a result, the designed solution should populate all of the

defined multi-cluster and serverless requirements in this chapter to provide higher avail-

ability and resiliency to the system.

33

5. DESIGN AND IMPLEMENTATION

The previous chapter described different approaches to achieve high availability and fail-

over in multi-cluster scenarios. Meanwhile, it was discussed how to utilize the node re-

source usage by deploying part of the application as serverless workloads. In this chap-

ter, we design and configure a combination of Kubernetes multi-cluster and serverless

architecture based on the set of define requirements with the goal of achieving high

availability and resiliency in the system.

5.1 Proposed Solution

As discussed in chapter 3, there are two main multi-cluster strategies, Kubernetes-cen-

tric and Network-centric. Due to valuable benefits of adopting a service mesh to achieve

Kubernetes multi-cluster, such as unified observability, high security over the entire mesh

and faster routing decisions, we choose the Network-centric approach over Kubernetes-

centric. Therefore, clusters running in geographically distributed regions, will be mesh

while one cluster additionally runs part of the test application as serverless workloads

using Knative serverless framework.

5.2 Prerequisite

Before implementing the multi-cluster design, we need a set of prerequisites as a prior

condition. These are general prerequisites for any multi-cluster design and not specific

to the architecture design in this thesis.

5.2.1 Regional Clusters

Create and configure more than one Kubernetes clusters. Meanwhile, because of the

number of different components installed, it is recommended to have Kubernetes 1.22

or newer on each cluster. Clusters should be in different regional networks, meaning that

the cluster nodes will not have a direct network connection between them.

5.2.2 Context Configured

This is not a mandatory requirement but because of ease of use and more clarity, each

cluster should be configured as contexts. We choose names “fin”, “bel”, “lowa”, and “car”

for the clusters. Note that the context names are stored in the cluster Kubeconfig file.

34

5.2.3 Ingress Controller with Public IP address

Since all communication between the clusters are over the public internet, each cluster

should be accessed through a gateway. Therefore, we need a service of type Load bal-

ancer to be able to expose running services outside the clusters.

5.3 Implementation

This section will implement the proposed solution, creating a Kubernetes multi-cluster

architecture combined with serverless workloads.

5.3.1 Create and Configure the Clusters

In this implementation, we will create 4 Kubernetes clusters on 3 different regions. To

experience same performance, all clusters are comprised of one control node and three

worker nodes, each having 2 virtual CPUs, 16GiB of memory, 100GB of disk size, and

moderate network performance. Using Google Kubernetes Engine (GKE), each cluster

is created separated regions, “europe-north”, “europe-west”, and two in “us-central”. The

clusters located in Europe are named “fin”, “bel” and other clusters are “lowa” and “car”.

Identical Kubernetes stable version 1.22 is installed on all four clusters and no additional

GKE extension or add-on is added to the clusters.

5.3.2 Create Shared Trust Anchor

The next step is to create a shared trust anchor to encrypt all traffic between the meshed

clusters. The trust anchor will be shared in the installation of all clusters communicating

and authorizing requests reaching the gateway. This way, the clusters are not open to

the public internet. The service mesh will use the trust anchor to provide mutual TLS

communication between all endpoints among the meshed clusters, including encryption

and authorization in each step.

There are two ways to create the trusted root and the issuer certificates. One is to use

the default installation creating default certificates based on random certificates. Sec-

ondly, using a certificate manager tool to generate the required certificates. To keep the

same service mesh configuration on all clusters, we will use the same trust root on all

clusters as shown in figure 5.1. Meanwhile, separate issuer certificate will be created for

each cluster to provide higher security to the service mesh.

Figure 5.1, Generating trust anchor using Step command-line tool

35

The output of the command in figure 5.1 serves as the foundation of trust for all clusters.

As part of the mutual TLS handshake, each sidecar proxy will receive a copy of the

certificate to validate other certificates from peers. Now using a shared base of trust, new

certificates are generated and used to issue certificates to the proxies in each cluster.

The next step is to generate the issuer credentials with the trust anchor as shown in

figure 5.2.

5.3.3 Install Service Mesh Using Credentials

Next, we will install the service mesh choice on all clusters using the created trust anchor

and the issuer credentials. There are two ways to install the service mesh and control-

plane. Shared control-plane and separate independent control-plane. As discussed in

chapter 4, the reasonable requirements we set to achieve high-availability and resiliency

is to separate the control planes. This way we also isolate the clusters and reduce the

complexity.

Figure 5.4, Install the service mesh using the issuer credentials

Upon the installation (figure 5.4), the following components will appear in a separated

namespace:

Figure 5.3, Created trust anchor and the intermediate issuer certificates

Figure 5.2, Generating issuer credential using the trust anchor

36

 Linkerd-destination

 Linkerd-identity

 Linkerd-proxy-injector

Linkerd provides a full cluster metrics stack, including a command-line tool and dash-

board by installing the Viz extension [82]. The service mesh and its custom resource

definitions get installed on all target clusters, providing the stack. This is not strictly nec-

essary if there are not enough resources available for the cluster.

The following components provide the metric stack on the target clusters [83].

 Prometheus

 Grafana [84]

 Metrics-api

The next step is to prepare and install the service mesh multi-cluster extension. At this

stage, we have four clusters in separate network regions, each with a separate and in-

dependent service mesh installed, meaning that the clusters are not yet aware of each

other's state.

5.3.4 Prepare Kubernetes Multi-cluster

Once each cluster has the service mesh installed and configured, it is time to add the

multi-cluster components to the mesh and start routing traffic between the clusters.

Therefore, we need to leverage a gateway as a Kubernetes service type loadbalancer.

The gateway will handle both incoming and outgoing traffic, routing to the correct desti-

nation.

Figure 5.5, Install multi-cluster components

After the multi-cluster installation (figure 5.5) , we need to double check that the gateways

are up and running and have both internal and external IP addresses assigned. Adding

that the service mesh should be injected into the gateway with the “Linkerd-proxy”, which

will forward the requests to the correct service. This way we introduce the gateway to

the service mesh to be used as the cluster ingress.

Added components to the cluster (figure 5.6):

37

 linkerd-gateway: The gateway will be deployed in linkerd-multicluster

namespace.

Now that each cluster has its own independent service mesh control plane, and a sepa-

rate gateway created, it's time to link the clusters all clusters.

We have the multi-cluster gateway created, where all the multi-cluster traffic will come

through. The gateway has a valid external IP exposed to the Internet. The linkerd-gate-

way also contains a linkerd-proxy sidecar. As shown in figure 5.7, we are exposing two

ports, 4143, which is the linkerd-proxy port, and 4191, which exposes the readiness of

the cluster. Other meshed clusters check the readiness of the cluster before routing any

traffic.

The external IP faces the internet, but only traffic from inside the mesh is accepted. This

means traffic coming from proxies whose identity relies on the trust anchor that all clus-

ters share; if not, traffic will get dined. In addition to that, there is a server authorization

resource.

Figure 5.6, Cluster-fin multi-cluster components and the including the gateway

Figure 5.7, Service LoadBalancer with a public IP address as the cluster gateway

38

Figure 5.8, Multi-cluster server authorization policy

The proxy will reject anything that does not have a proper identity. This means anything

that is not listed in the meshTLS identity and networks CIDR specification.

5.3.5 Linking the Clusters

Now, we have four clusters, each controlled by an independent control plane. As dis-

cussed, to mirror one service from the source cluster to the target cluster, the target

cluster must be able to watch the service on the source cluster. To prevent unwanted

introspect on the target cluster, the source cluster must use credentials to check the

service on the target and make any changes to the mirrored service accordingly. To do

such, the credentials must include a service account to authenticate the service mirror,

ClusterRole, and ClusterRoleBinding. The applying roles simply allows the controller on

one cluster to retrieve the secrets and watch over any links that get created.

It’s time to link all clusters together using the same trust root created in the section 5.3.2.

The trust root is extracted from linkerd-identity trust root ConfigMap. Linking the clusters

will create a credentials secret, a Link resource, and a service-mirror controller. The cre-

dentials secret contains a Kubeconfig, used to access the target cluster's Kubernetes

API.

Figure 5.9, Multi-cluster gateways listed from cluster-fin

The create link contains a secret with a Kubeconfig. It is a regular Kubeconfig file that

allows us to connect to the cluster. This is what cluster-fin service mirror controller will

use to connect to the other three clusters. Adding that the ClusterCredentialSecret allows

us to connect to cluster-fin. More precisely, the gateway's IP is exposed on the other 3

clusters. The next step is to deploy the application on all clusters.

39

5.3.6 Install Test Application

At this point we have all cluster and service mesh related installations ready. As dis-

cussed in chapter 3, section 3, there are two ways to implement the application across

multiple clusters, full replication, and split-by-service. In this thesis, we will use a mix of

both designs to cover failover scenarios. All clusters will be running the same version of

the application.

Now it is time to run the microservice application on all clusters. Note that, we will skip

this step on cluster-car since the deployment is slightly different than other clusters. The

application includes three services (figure 5.10):

 web-svc: frontend (HTTP)

 search-svc: search and list stored objects (gRPS)

 pers-svc: Stores the objects (gRPS)

To be able to spread the application across the clusters, the sample application contains

multiple services. The “web-svc” is a simple web service serving http requests. It relies

on “search-svc”, which return a list of available objects, and “pers-svc” that persists the

incoming requests. Meanwhile, a “traffic-generator” pod is created in the cluster-fin act-

ing as the only source of incoming requests. The traffic generator pod consists of a single

ubuntu container running a Vegeta [85], a load generator tool.

Same version of the application will be deployed on the clusters in namespace, “load”.

All services are written in Go. It is important to have an application with low process time,

preventing additional overhead to overall the latency.

The next step is to inject the service mesh into the services. A sidecar will add to all the

service pods. It is also possible to inject the service mesh on the whole namespace but

not recommended.

Figure 5.10, Microservice application architecture

40

Before proceeding further, we need to check the send/receive requests between two

services inside one cluster after the injection. To verify the application is working cor-

rectly, it is enough to spectate the logs on the “pers-svc” and check if requests are re-

ceived from the load-generator pod. This way, it is ensured that the pods are up and

running and the service is working as expected.

Figure 5.11, Install and inject the microservice application

Figure 5.12 shows how the application will look like on each cluster. Adding that since

the application will be installed as serverless on cluster-car, the installation will be done

a separate step later.

5.3.7 Exporting the Target Services

The last step is to mirror the services from the clusters, lowa and bel to the target cluster-

fin. This is possible by mirroring the whole namespace in which the service is deployed

or by exporting each service one by one. Exporting the services is a better alternative

since it guarantees that sensitive data will not be accidentally mirrored to unwanted clus-

ters. Also, we will not impact the performance of target clusters by adding or removing

additional services.

Figure 5.12, Application installed on each cluster

41

As shown in figure 5.13, the "web-svc" is the only service to be exported and mirrored to

the target cluster. This is done by adding a label selector to the service. The service

mirror controller will inspect the services with the selector mirror label and export them

to the target cluster.

The exported service gets mirrored to the target cluster, and the source clusters name

will be added as a postfix to the service name in the target cluster. At this stage, the

controller manages the mirror service endpoints and points them all to the gateway on

the source clusters, which means lowa and bel.

To verify this, we need to check the endpoints on cluster-fin and hit the "web-svc" service

on cluster-lowa and cluster-bel from the cluster-fin. Note that any other client sending

the requests should also be meshed, in this case, the "load-generator" pod.

Figure 5.13, list of mirrored services from cluster-fin

Figure 5.14, High level view of the designed multi-cluster implementation

42

5.3.8 Verify Connection and Mirrored Services

We recheck the gateways (figure 5.15) to check the connection and the number of de-

tected mirrored services.

As shown in figure 5.15, each cluster has one service exported and its latency distribution

measured. Linkerd is using Prometheus under the hood, and it exposes specific metrics

regarding the availability of "bel" and "lowa" gateways.

As shown in figure 5.16, each listed endpoint has an IP address assigned, which is the

actual external IP address of the cluster gateway in which the web-svc is running in other

clusters.

As reminder, we will not have any service from cluster-car yet since the application is not

deployed and mirrored yet.

5.3.9 Deploy Application as Serverless Workload on Cluster-car

So far, the installation has been identical among all services. But our goal is to provide

a solution that additional to high-availability and resiliency, it will be able to be deployed

on the edge. This way we cover the scenarios which the cluster is low in resource or

there is a need for computation on the edge of the network. Meanwhile, the traffic will

only get forwarded to other clusters in a failover scenario. This means that the rest of the

time the web-svc is idle, and no requests are served by the application backup services.

One way to reduce the unnecessary resource usage and only acting upon incoming re-

quests is to run the application in a serverless fashion. To do so, we install the Knative,

an installable serverless framework to manage serverless applications on cluster-car.

The challenging part here is that, since the control planes in other clusters verify the

health of a mirrored service based on the readiness of the service pods, we cannot scale

the web-svc to zero. This is not an actual issue, but we cannot call our design serverless

Figure 5.15, List of connected gateways and number of mirrored services "NUM_SVC"

Figure 5.16, Endpoints pointing to the target cluster gateways

43

when we are not fully terminating pods and releasing the resource. Therefore, we split

the application again into two parts.

We let Kubernetes to manage the web-svc pods, but we change the implementation of

the search-svc and pers-svc and deploy them as serverless services. This way the web-

svc will run with the least resource usage, while the other two service will completely

terminate and die if no request is coming to the application.

Now we add the application to the cluster-car and export web-svc to get mirrored to

cluster-fin. Search-svc and pers-svc will spin up but scale to zero again (figure 5.17) after

not receiving any requests for over 60 seconds.

5.3.10 Failover Traffic Splitting

The final step is to architecture the failover case. The traffic-generator pod runs on clus-

ter-fin sending requests to the web service. To prevent a single point of failure, we need

to have a failover plan to split traffic between the meshed clusters. The failover should

be done automatically and as slow as possible to prevent overloading the mirrored ser-

vices on other clusters.

This will be done by using the trafficsplit resource on Kubernetes. The created traffic-

split resource monitors the readiness of the service pods listed as the secondary backup

services. The listed mirrored services are deployed as services without a selector, mean-

ing that they are just a proxy to the actual services running on other clusters. Therefore,

the trafficsplit is actually monitoring the web-svc on other cluster through the mirrored

services and the target cluster KubeAPI.

We have two ways to define the traffic splitting, static vs. dynamic. In static splitting, we

define a share of traffic percentage for each service. This way, the incoming requests

Figure 5.17, Application deployed as Serverless on cluster-car

44

will get forwarded to all defined services accordingly. In the example shown in figure

5.18, 50% of the traffic will be forwarded to web-svc while the rest is split between the

mirrored services equally.

The dynamic approach a weight is defined for each service. The web-svc in the cluster-

fin will be the primary service receiving the traffic. The service is supported by three

backends, web-svc-lowa, web-svc-bel and web-svc-car, acting as secondary services.

This way, we specify where Kubernetes should route the web-svc incoming traffic in case

of a service failure. The advantage of this approach (figure 5.19) is that the traffic will

automatically be forwarded to the secondary services and the load will get spread across

all specified services.

Splitting the traffic using percentages is not a good approach for failover. The reason is

that, first of all, the admin should specify the number before implementing the resource.

Secondly, the traffic is always sent to the specified services, and lastly, the traffic will not

split again if one of the services fails. Therefore, we will choose the weight splitting since

the mesh will automatically do the failover. The traffic will get loaded evenly across all

other secondary services specified in the backend list.

Figure 5.19, Dynamic and active traffic splitting example

Figure 5.18, Static traffic splitting example

45

5.4 Failure Zones

Since part of the application runs as serverless workloads on cluster-car it is also possi-

ble to provide higher availability and better performance inside a zone and not just be-

tween network regions. In this case (figure 5.20), we mirror web-svc from cluster-car to

cluster-lowa, which runs in the same network region. In case of failure or incoming burst

of traffic, cluster-lowa can route part of the traffic to cluster-car. Since both clusters are

in the same network region, it provides resiliency inside the region. Both static and dy-

namic traffic splitting can be used in this scenario.

5.5 Summary

This chapter we described the designed active disaster recovery strategy using service

mesh multi-cluster communication and serverless workflows. Figure 5.21 shows the ge-

neric architecture for the implemented solution. The solution provides high-availability,

resiliency, and higher performance by creating meshed isolated and independent clus-

ters combined with serverless workloads.

Figure 5.20, Failover design inside a network region

46

Figure 5.21, Full high-available multi-cluster designed solution

47

6. EVALUATION

The previous described the proposed multi-cluster active disaster recovery solution and

implemented the designed solution on four clusters. This chapter evaluates the designed

solution. The evaluation chapter is divided into three main parts, performance, resource

utilization and security.

6.1 Performance and Scalability

The performance tests are performed in different scenarios. The experiments analyse

the latency distribution, high availability, and resiliency of the implemented solution. The

latency distribution of each experiment is measured separately.

6.1.1 Experiment Setup

In the previous chapter, we created and configured four Kubernetes clusters on three

separate network regions. The latest stable release of Linkerd service mesh v2.11.2 was

installed on all clusters, and we installed Knative Serverless framework v1.4 on cluster-

car in us-region-central. Both projects are installed and configured with their default and

minimal configuration to have the most negligible impact on the output results. Adding

that, Linkerd and Knative are part of the Cloud Native Computing Foundation (CNCF),

the open-source, vendor-neutral hub of cloud-native computing.

The first step is to create a test environment to mimic a real-life scenario both at the

installation and testing phases. This is quite challenging since many different environ-

ments vary in latency and performance. We will keep all clusters on the same platform

to keep the testing environment consistent.

We will evaluate the implemented multi-cluster design with a sustainable load of 10RPS

and 100RPS over 600 seconds. Only cluster-fin will generate requests to all other clus-

ters running the web-svc service, serving the requests. Vegeta, a versatile HTTP load

generator tool, is installed on a pod with a single ubuntu container [85].

The latency will be measured from the client-side (In this case, the pod sending re-

quests), which includes the cluster’s network, global internet network, application, and

proxies process times.

 The latency is recorded as percentiles of the distribution, e.g., P50, P90, P99,

and so on.

48

 The CPU usage and memory consumption on all clusters before, during, and

after the load.

Note that the reported outputs are a function of the whole system, including the envi-

ronment, network, service mesh, and serverless platform.

6.1.2 Test Features

Even though the service mesh, ingress controllers, and the serverless platform provide

many additional features, only the default and necessary sets of features will be used to

mimic real scenarios.

 For security matters the service mesh has mutual-TLS enabled so that all traffic

is encrypted and validated between the pods running on different clusters.

 Multi-cluster communication feature is enabled on the service mesh.

 Metrics are tracked by the service mesh.

 Knative Pod Autoscaling (KPA) is taken into use for incoming traffic to the ser-

vices running serverless.

6.1.3 Gateway Latency

Starting from the established connections, the latency of each cluster gateway from the

source cluster is as below. There is a higher latency distribution between regions with a

lower geographical distance than longer distanced ones shown in figure 6.1.

Prometheus gathers this data regarding the availability of the gateways or the internet-

facing load balancers.

6.1.4 Test Approaches

The main idea is to measure the latency while requests are sent to other clusters in a

failover scenario. However, we first need to measure the actual latency in a non-failure

scenario to resemble the latency difference. The test is done once without any failover

Figure 6.1, Cluster gateways latency

49

and next by manually breaking the system. Lastly, the latency of the traffic forwarded to

the serverless services will be compared to fully managed ones.

In all scenarios, the requests are sent over of duration of 600sec from cluster-fin to other

meshed clusters running the web-svc service.

The experiments are listed as below:

 Service mesh overhead

 Direct single request, on-cluster, and cross-cluster

 Direct 10 RPS over 600 seconds

 100 RPS with sudden system failure over 600s

 100 RPS with system failure using serverless workflows

Experiment 1. Service mesh overhead

The first step is to check the injected service mesh overhead. The created sidecar will

add an overhead slightly to the served requests. Since the linkerd-proxy needs to update

and manage the incoming traffic, it will impact the latency of the first incoming requests.

After that, the serving time drops. Therefore, to get a more accurate result, all pods were

deleted first, making calls to newly started pods through the proxies. The test is done in

both injected and uninjected service mesh, and the results show the added overhead of

the service mesh to the total time of the call.

0.45

0.09

0.04

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Injected - other region Injected Uninjected

La
te

n
cy

 (
s)

Injected vs Uninjected Latency

Figure 6.2, Service mesh added overhead

50

Experiment 2. Direct single request on-cluster and cross-cluster

In the next experiment, one request is sent directly to the web-svc services from the load-

generator pod using curl. Even though this is a direct call to web-svc running on other

clusters, it is sent through the local mirrored services, which act as a proxy pointing to

the destination gateway. To have a direct call to web-svc in cluster-bel we specify the

mirrored service host “web-svc-bel.load.svc.cluster.local” in the call.

Figure 6.3, Direct request latency to one of the mirrored services

As seen in the chart below, the latency to the web-svc located in a region far away from

the source cluster is higher than clusters closer to the source. Note that the requests to

“web-svc-car” have significantly higher latency due to the cold start of the pod.

Experiment 3. Direct 10RPS latency over 600s

The next step is to generate a load with a relatively calm level of 10 requests per second.

This time, we forward traffic to all mirrored services. Note that we do not have a sudden

0.052 0.170
0.449

3.888

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

web-svc web-svc-bel web-svc-lowa web-svc-car
(Serverless)

La
te

n
cy

 (
s)

Mirror service

Single Request Latency

Figure 6.4, Latency of the mirrored services

51

failure in the system in this experiment. Meaning that the primary web service is manually

scaled to zero, and the traffic-split controller already knows where to forward traffic be-

fore any request has arrived.

As a result, the load-generator could send a total number of 6000 requests over 600sec-

onds. Since the service mesh is already aware of the state of each endpoint on other

clusters, it forwards the traffic to the destinations without any error.

In this scenario, we do not measure the latency of each mirrored service separately. This

is due to being more realistic with the failover scenarios, where all traffic should not be

loaded at once on one single backup service. The measured latency is the latency of the

whole system no matter where are served.

Experiment 4. 100 RPS with sudden system failure over 600s

We will generate a particular load from the source cluster similar to the previous experi-

ment. The difference is the number of requests per second with an unexpected web

service failure while the service receives the requests. This scenario mimics the case

that one or more services suddenly crash. The multi-cluster mesh should be able to au-

tomatically perform the failover without the need for any changes by the admin, not in

the network or the configuration.

0.088

0.128 0.134 0.136

0.355

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

mean P50 P95 P99 Max

La
te

n
cy

Secondary Mirrored Services

10 RPS Latency

Figure 6.5, 10RPS latency distribution

52

Experiment 5. 100 RPS with system failure using serverless workflows

Finally, as the last experimental scenario, we will failover the traffic to all clusters, includ-

ing cluster-car running the application as a serverless workload. This way, we evaluate

the whole designed solution, which not all services are required to be up and running.

The services running as a serverless workload will handle part of the sudden incoming

load and scale down to zero. The allocated CPU and memory resources will be released

after all requests are served, and the gateway detects no new incoming requests.

0.070
0.039

0.133 0.135

0.447

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

mean P50 P95 P99 Max

La
te

n
cy

 (
s)

Secondary Mirrored Services

100RPS - Failover Scenario

Figure 6.7, 100RPS load latency distribution with a failure after 120sec

0.218 0.134 0.140

3.990

8.313

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

mean P50 P95 P99 Max

La
te

n
cy

 (
s)

Secondary Mirrored Services

100 RPS - Failover - Serverless

Figure 6.6, 100RPS load latency distribution with a sudden failure after 120sec with

no serverless backups

53

6.1.5 Failover Performance Conclusion

The performance evaluation scenarios are designed to mimic the actual behaviour of an

application running across numerous regional clusters. There are many use cases for

running the application across multiple clusters. However, this thesis focuses on the fail-

over factor enabling high availability and reliability on the entire running system.

Running a portion of the system on serverless platforms will bring benefits such as better

scalability but at a higher latency cost. To realize this better, we ran the same multi-

cluster failover scenario over two clusters in the same region. As shown in figure 6.8, the

latency of the first requests waiting for at least one pod to become ready is noticeable,

This will not be an issue for services which can tolerate down time for couple of seconds.

In contrast, the added overhead may be unsuitable for applications or services requing

low-latency responses. The latency can be decreased significantly by running at least

one single pod for the application and scale up based on the incoming load. But we

cannot consider this as serverless since resources will be allocated to the single running

pod. Even though the application is running on serverless platform.

As seen in figure 6.9, even though the web service has an unexpected and unpredictable

downtime, the service mesh has handled the failover exceptionally. Comparing the la-

tency of 100RPS latency with a predictable failover to an unpredictable scenario, we see

that the outputs are remarkably close.

0
.4

3
7

0
.4

3
7

0
.4

3
5

3
.8

8
8

L A T E N C Y C A R C O L D S T A R T

LA
TE

N
C

Y
(S

)

COLD VS WARM

COLD START LATENCY

lowa car (serverless)

Figure 6.8, Serverless cold start latency

54

Figure 6.9, Increase in latency during failover

6.2 Resource Utilization

Next is to measure the service resource usage. We measure the CPU usage based on

the number of used cores and memory based on the size and reserved time during the

process. The comparison will be between the serverless workload on cluster-car and the

fully managed service by Kubernetes on cluster-lowa.

Note that both clusters run the same application version with the exact specification and

configuration. The resource CPU and memory usage are almost identical across 10RPS

vs. 100RPS. Therefore, we will only focus on the scenario with the highest load of

100RPS over ~600sec of a constant load level.

We see the difference in the core allocation over time, starting with the CPU usage com-

parison. As shown in figure 6.10, the pods running on cluster-lowa have an average CPU

usage of 0.11m over time. Pod CPU allocation drops slightly in both clusters after receiv-

ing no new requests. The CPU is released faster in cluster-car since the scaling is ac-

cording to the average of incoming requests. In contrast, cluster-lowa has Horizontal Pod

Autoscaling (HPA) which is based on CPU usage. This is why it has a slightly higher

delay in releasing the CPU. Keeping the CPU reserved afterward prevents sudden shock

to the system.

55

In comparison, the serverless workload has different behavior. The service will scale its

pods based on the average of incoming requests at a time. Many small pods will be

created, serving part of the request, and terminating. In this experiment, ten pods were

created, serving the requests for a short time and altogether terminating. This is why the

CPU consumption drops much faster because another small pod is taking care of the

rest of the requests. As seen in figure 6.11, The average CPU consumption is also

around 0.025m of CPU.

Figure 6.10, Pod CPU usage

Figure 6.11, Serverless workflow CPU usage

56

Next is to compare the memory usage pattern on each cluster. Staring with cluster-lowa,

as seen, even though the load stops after approximately 600 seconds, the memory allo-

cation will never drop. No matter if the pod is consuming any requests are not, Kuber-

netes will not release the memory at all (figure 6.12). Meanwhile, if a new load is received

after a time, the memory will increase again until it reaches its specified limit.

On the other hand, the memory is never kept by the serverless workload simply because

all pods get terminated and scaled to zero (figure 6.13). And this is one of biggest ad-

vantage of Serverless while scaling based on the number of incoming requests.

6.3 Security

Next is to check how secure is the designed multi-cluster solution. Since the traffic be-

tween clusters is going over the public internet, and the gateways are exposed, security

Figure 6.12, Pod memory consumption

Figure 6.13, Serverless workflow memory consumption

57

should be considered extremely carefully. This experiment will perform a short DoS at-

tack hitting all clusters. We will create a client outside the mesh, sending the same type

of request to web-svc.

As seen in figure 6.15, no matter how many times a user outside the mesh sends re-

quests to any component inside the mesh, they all get blocked. This is because of the

created shared trust anchor between the clusters validation and verifying all inbound and

outbound traffic.

6.4 Summary

In this chapter, the implemented multi-cluster design was evaluated over failover scenar-

ios, monitoring the system's behavior. Firstly, the overhead and latency were evaluated

in a stable environment without any failure in the system. Second, a real failure scenario

was mimicked to evaluate the reliability and high availability of the system. Next, the

serverless workload providing higher reliability and lower resource consumption was

evaluated. Lastly, the system was put under attack to measure the level of security of

the multi-cluster service mesh design. As a result, the designed Kubernetes multi-cluster

architecture could detect the endpoint failures and automatically failover the load through

the mirrored services to other meshed clusters running in separate network regions.

Since each cluster had a separate and independent control plane, changes in one cluster

did not affect other running clusters in the mesh. Therefore, forwarding the traffic to the

destination was done independently by the destination cluster ingress. Meanwhile, by

routing part of the load to serverless workloads on the backup clusters, we were able to

Figure 6.14, Attack over 30s to web-svc service

Figure 6.15, All requests coming outside the mesh are refused by the gateway

58

increase the resiliency inside a region. Even though Serverless workload increase the

latency, because of the cold starts, increase the performance and reduce resource utili-

zation in overall. All in-cluster and cross-clusters were encrypted to prevent attacks from

outside the mesh.

59

7. CONCLUSION AND FUTURE WORK

This chapter concludes the thesis by providing a brief overview of the thesis work. In

addition, this chapter lists the potential future work to improve the overall proposed solu-

tion.

7.1 Conclusion and limitations

Kubernetes multi-cluster architectures provide a mechanism for deploying and managing

applications across multiple clusters. One of the most crucial use cases of deploying

applications on multiple clusters is to achieve high availability and resiliency in the sys-

tem. In other words, to optimize the Kubernetes clusters configuration to be tolerant to

system failures by removing any single point of failures. The designed solutions should

be able to detect system failures automatically and react as quickly as possible to prevent

data loss and decrease latency.

A simple solution that comes to mind is simply detecting a single point of failure and

providing backups by replicating or increasing the available resources. Adding more rep-

licas or increasing resources does not necessarily guarantee resiliency since adding

more components increases the complexity, affecting the system's performance, mainly

when we have limited resources.

This thesis introduced a high available and active disaster recovery multi-cluster strategy

based on service mesh and serverless workloads. The proposed solution passed all

high-availability and reliability tests presented in the evaluation chater.

A brief overview on the proposed solution,

 Control planes: Deploying separate control planes for each cluster provided en-

tirely independent and isolated clusters.

 Separate network regions: Clusters were spread across regions to support hi-

erarchal network scenarios.

 Automatic failover: We managed to increase the availability of the system by

splitting the traffic across multiple clusters and without overloading backup ser-

vices.

60

 Service discovery: Service mirroring was taken into account rather than global

service and endpoint discovery to decrease the used bandwidth regarding the

communication between cluster KubeAPIs.

 Serverless services: We implemented part of the application as serverless to

increase availability in a region and optimize the resource utilization.

 Monitoring and tracing: By adopting service mesh, we were able to have a uni-

fied view of the application behavior across all clusters.

 Security: Public and private keys were used to encrypt the whole traffic inside

and between clusters.

 No changes in the application code level: Detecting and routing the traffic was

entirely done by the service mesh and the created Kubernetes resources. There-

fore, the application code and service configuration did not require any changes.

Neither while implementing the application nor during failover.

According to the results, the solution can be used in practice for containerized applica-

tions managed by the Kubernetes orchestration system. However, a few limitations still

need improvement, discussed below.

 Fully automated traffic splitting: Even though in the implementation, the traffic

splitting resource is watching the endpoints actively and failing over the traffic

automatically, the admin should configure the resource beforehand. The admin

needs to specify the target services and make decisions based on the entire ar-

chitecture, selecting the secondary backup services.

 Serverless cold start latency: As shown in chapter 6, we decreased the CPU

and memory usage time by running part of the application on the Knative server-

less platform. However, the pod cold-start latency is noticeable, and the solution

would not benefit services sensitive to latency.

 Endpoint readiness: At the moment, the only available factor for the controller

to know if a target service is ready to receive requests or not is to check the

readiness of the pod. This can be an issue if the service is serverless and has

scaled to zero.

61

7.2 Future Work

This section discusses future work to improve the designed solution. The first idea in-

vestigates how to manage headless services such as StatefulSets. This way, we can

mirror database notes by mirroring the headless services. Although this looks possible,

orchestrating a database across multiple Kubernetes clusters is challenging.

Second, the pod readiness is the failover criteria from primary service to a list of second-

ary services. There are other ways to improve this; for instance, Kubernetes provides

topology of awareness hints where it is possible to declare in endpoint slices whether we

want to keep connections inside the same zone or not. Another possible way is that

instead of waiting for the pods to fail before complete failover, we could watch its latency

and do the failover when it starts becoming slow.

Third, while installing a control plane on a small number of clusters is not a big deal,

configuring tens and hundreds of clusters becomes challenging. A minor misconfigura-

tion in the service mesh control plane can cause cluster availability and performance

issues. A good solution is to combine centralized management solutions such as GitOps

with the service mesh. While the service mesh takes care of the clusters and the traffic

between them, GitOps approaches take care of the service mesh installation on all clus-

ters.

62

REFERENCES

[1] “Evolution of Emerging Computing paradigm Cloud to Fog: Applications, Limita-
tions and Research Challenges | IEEE Conference Publication | IEEE Xplore.”
https://ieeexplore.ieee.org/abstract/document/9377050 (accessed Jun. 15, 2022).

[2] “What is a Hypervisor? | VMware Glossary.” https://www.vmware.com/topics/glos-
sary/content/hypervisor.html (accessed Jun. 15, 2022).

[3] “What is a Container? - Docker.” https://www.docker.com/resources/what-con-
tainer/ (accessed Jun. 15, 2022).

[4] “Kubernetes.” https://kubernetes.io/ (accessed Jun. 15, 2022).
[5] A. Pereira Ferreira and R. Sinnott, “A Performance Evaluation of Containers Run-

ning on Managed Kubernetes Services,” in 2019 IEEE International Conference
on Cloud Computing Technology and Science (CloudCom), 2019, pp. 199–208.
doi: 10.1109/CloudCom.2019.00038.

[6] “Understanding Multi-Cluster Kubernetes | Ambassador Labs.” https://www.get-
ambassador.io/learn/multi-cluster-kubernetes/ (accessed Jun. 15, 2022).

[7] K. Hwang, Y. Shi, and X. Bai, “Scale-Out vs. Scale-Up Techniques for Cloud Per-
formance and Productivity,” in 2014 IEEE 6th International Conference on Cloud
Computing Technology and Science, 2014, pp. 763–768. doi: 10.1109/Cloud-
Com.2014.66.

[8] V. Struhár, S. S. Craciunas, M. Ashjaei, M. Behnam, and A. v Papadopoulos,
“REACT: Enabling Real-Time Container Orchestration,” in 2021 26th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA
), 2021, pp. 1–8. doi: 10.1109/ETFA45728.2021.9613685.

[9] “Swarm mode overview | Docker Documentation.” https://docs.docker.com/en-
gine/swarm/ (accessed Jun. 15, 2022).

[10] “Apache Mesos.” https://mesos.apache.org/ (accessed Jun. 15, 2022).
[11] “Kubernetes Concepts Explained!” https://kodekloud.com/blog/kubernetes-con-

cepts-explained/ (accessed Jun. 15, 2022).
[12] “Cloud Computing Services | Google Cloud.” https://cloud.google.com/ (ac-

cessed Jun. 15, 2022).
[13] “Cloud Computing Services | Microsoft Azure.” https://azure.microsoft.com/en-us/

(accessed Jun. 15, 2022).
[14] “Cloud Computing Services - Amazon Web Services (AWS).” https://aws.ama-

zon.com/ (accessed Jun. 15, 2022).
[15] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A Kubernetes controller

for managing the availability of elastic microservice based stateful applications,”
Journal of Systems and Software, vol. 175, p. 110924, 2021, doi:
https://doi.org/10.1016/j.jss.2021.110924.

[16] “Namespaces | Kubernetes.” https://kubernetes.io/docs/concepts/overview/work-
ing-with-objects/namespaces/ (accessed Jun. 15, 2022).

[17] “What is a Kubernetes Namespace? | VMware Glossary.”
https://www.vmware.com/topics/glossary/content/kubernetes-namespace.html
(accessed Jun. 15, 2022).

[18] “Pods | Kubernetes.” https://kubernetes.io/docs/concepts/workloads/pods/ (ac-
cessed Jun. 15, 2022).

[19] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “Microservice
Based Architecture: Towards High-Availability for Stateful Applications with Ku-
bernetes,” in 2019 IEEE 19th International Conference on Software Quality, Reli-
ability and Security (QRS), 2019, pp. 176–185. doi: 10.1109/QRS.2019.00034.

[20] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and O. F. Rana,
“Characterising resource management performance in Kubernetes,” Computers

63

& Electrical Engineering, vol. 68, pp. 286–297, 2018, doi:
https://doi.org/10.1016/j.compeleceng.2018.03.041.

[21] “Service | Kubernetes.” https://kubernetes.io/docs/concepts/services-network-
ing/service/ (accessed Jun. 15, 2022).

[22] “Deployments | Kubernetes.” https://kubernetes.io/docs/concepts/workloads/con-
trollers/deployment/ (accessed Jun. 15, 2022).

[23] “What is a Kubernetes Deployment? | VMware Glossary.”
https://www.vmware.com/topics/glossary/content/kubernetes-deployment.html
(accessed Jun. 15, 2022).

[24] “Secrets | Kubernetes.” https://kubernetes.io/docs/concepts/configuration/secret/
(accessed Jun. 15, 2022).

[25] “Custom Resources | Kubernetes.” https://kubernetes.io/docs/concepts/extend-
kubernetes/api-extension/custom-resources/ (accessed Jun. 15, 2022).

[26] “Kubernetes Documentation | Kubernetes.” https://kubernetes.io/docs/home/ (ac-
cessed Jun. 15, 2022).

[27] “Kubernetes Components | Kubernetes.” https://kubernetes.io/docs/con-
cepts/overview/components/ (accessed Jun. 15, 2022).

[28] “Home - Docker.” https://www.docker.com/ (accessed Jun. 15, 2022).
[29] “containerd – An industry-standard container runtime with an emphasis on sim-

plicity, robustness and portability.” https://containerd.io/ (accessed Jun. 15, 2022).
[30] “wg-serverless/whitepapers/serverless-overview at master · cncf/wg-serverless ·

GitHub.” https://github.com/cncf/wg-serverless/tree/master/whitepapers/server-
less-overview (accessed Jun. 15, 2022).

[31] H. Lee, K. Satyam, and G. Fox, “Evaluation of Production Serverless Computing
Environments,” IEEE International Conference on Cloud Computing, CLOUD, vol.
2018-July, pp. 442–450, Sep. 2018, doi: 10.1109/CLOUD.2018.00062.

[32] “Towards Serverless as Commodity | Proceedings of the 5th International Work-
shop on Serverless Computing.”
https://dl.acm.org/doi/abs/10.1145/3366623.3368135?casa_token=1ysckimnti-
wAAAAA:UrH_1gKgIWHkOQ7Lq5KahvN6L54xgRzim7Ph4R9-
OEUHKR2ozQ4xlgTC7SCjIXjK1cluTdq2oBEBaQ (accessed Jun. 15, 2022).

[33] G. A. S. Cassel, V. F. Rodrigues, R. da Rosa Righi, M. R. Bez, A. C. Nepomuceno,
and C. André da Costa, “Serverless computing for Internet of Things: A systematic
literature review,” Future Generation Computer Systems, vol. 128, pp. 299–316,
Mar. 2022, doi: 10.1016/J.FUTURE.2021.10.020.

[34] E. A. Istemi et al., “SAND: Towards High-Performance Serverless Computing,”
Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Con-
ference, p. 386, 2006, Accessed: Jun. 15, 2022. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3277355.3277444

[35] “The Promise of Edge Computing | IEEE Journals & Magazine | IEEE Xplore.”
https://ieeexplore.ieee.org/abstract/document/7469991 (accessed Jun. 15, 2022).

[36] “The Emergence of Edge Computing | IEEE Journals & Magazine | IEEE Xplore.”
https://ieeexplore.ieee.org/document/7807196 (accessed Jun. 15, 2022).

[37] “Edge Computing| CDN, Global Serverless Code, Distribution | AWS
Lambda@Edge.” https://aws.amazon.com/lambda/edge/ (accessed Jun. 15,
2022).

[38] “Why Edge Computing Market Will Grow 30 Percent by 2022.”
https://www.eweek.com/networking/why-edge-computing-market-will-grow-30-
percent-by-2022/ (accessed Jun. 15, 2022).

[39] N. Kaviani, D. Kalinin, and M. Maximilien, “Towards Serverless as Commodity: A
Case of Knative,” in Proceedings of the 5th International Workshop on Serverless
Computing, 2019, pp. 13–18. doi: 10.1145/3366623.3368135.

[40] “‘Lambda and serverless is one of the worst forms of proprietary lock-in we’ve ever
seen in the history of humanity’ • The Register.” https://www.theregis-
ter.com/2017/11/06/coreos_kubernetes_v_world/ (accessed Jun. 15, 2022).

64

[41] “Home - Knative.” https://knative.dev/docs/ (accessed Jun. 15, 2022).
[42] L. Schuler, S. Jamil, and N. Kuhl, “AI-based resource allocation: Reinforcement

learning for adaptive auto-scaling in serverless environments,” Proceedings - 21st
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing,
CCGrid 2021, pp. 804–811, May 2021, doi: 10.1109/CCGRID51090.2021.00098.

[43] “GitHub - cloudevents/spec: CloudEvents Specification.”
https://github.com/cloudevents/spec (accessed Jun. 15, 2022).

[44] “Home | OpenFaaS - Serverless Functions Made Simple.”
https://www.openfaas.com/ (accessed Jun. 15, 2022).

[45] “Introducing the Template Store for OpenFaaS | OpenFaaS - Serverless Func-
tions Made Simple.” https://www.openfaas.com/blog/template-store/ (accessed
Jun. 15, 2022).

[46] “Understanding Multi-Cluster Kubernetes | Ambassador Labs.” https://www.get-
ambassador.io/learn/multi-cluster-kubernetes/ (accessed Jun. 15, 2022).

[47] “KubeCon NA 2019: Top Ten Takeaways (Part 1) | by Daniel Bryant | Ambassador
Labs.” https://blog.getambassador.io/kubecon-na-2019-top-ten-takeaways-part-
1-3853173c2aa2#4186 (accessed Jun. 15, 2022).

[48] “Is Just One Kubernetes Cluster Enough? - Interconnections - The Equinix Blog.”
https://blog.equinix.com/blog/2020/05/26/is-just-one-kubernetes-cluster-enough/
(accessed Jun. 15, 2022).

[49] “GitHub - kubernetes-sigs/kubefed: Kubernetes Cluster Federation.”
https://github.com/kubernetes-sigs/kubefed (accessed Jun. 15, 2022).

[50] “Kubernetes SIGs · GitHub.” https://github.com/kubernetes-sigs (accessed Jun.
15, 2022).

[51] J. Huang, C. Xiao, and W. Wu, “RLSK: A Job Scheduler for Federated Kubernetes
Clusters based on Reinforcement Learning,” in 2020 IEEE International Confer-
ence on Cloud Engineering (IC2E), 2020, pp. 116–123. doi:
10.1109/IC2E48712.2020.00019.

[52] “Kubernetes Federation V2 on OpenShift 3.11.” https://cloud.redhat.com/blog/ku-
bernetes-federation-v2-on-openshift-3-11 (accessed Jun. 15, 2022).

[53] “Simplifying multi-clusters in Kubernetes | Cloud Native Computing Foundation.”
https://www.cncf.io/blog/2021/04/12/simplifying-multi-clusters-in-kubernetes/ (ac-
cessed Jun. 15, 2022).

[54] “Introduction to GitOps with OpenShift.” https://cloud.redhat.com/blog/introduc-
tion-to-gitops-with-openshift (accessed Jun. 15, 2022).

[55] “Configuration as Data, GitOps, and Controllers: it’s not simple for multi-cluster -
Solo.” https://www.solo.io/blog/configuration-as-data-gitops-and-controllers-its-
not-simple-for-multi-cluster/ (accessed Jun. 15, 2022).

[56] “Istio / Documentation.” https://istio.io/latest/docs/ (accessed Jun. 15, 2022).
[57] “Overview | Linkerd.” https://linkerd.io/2.11/overview/ (accessed Jun. 15, 2022).
[58] “Documentation | Consul by HashiCorp.” https://www.consul.io/docs (accessed

Jun. 15, 2022).
[59] “Istio / Introducing Istio.” https://istio.io/latest/news/releases/0.x/announcing-0.1/

(accessed Jun. 15, 2022).
[60] “Istio / Virtual Service.” https://istio.io/latest/docs/reference/config/networking/vir-

tual-service/ (accessed Jun. 15, 2022).
[61] “Istio / Destination Rule.” https://istio.io/latest/docs/reference/config/network-

ing/destination-rule/ (accessed Jun. 15, 2022).
[62] “Istio / Sidecar.” https://istio.io/latest/docs/reference/config/networking/sidecar/

(accessed Jun. 15, 2022).
[63] “Istio / Ingress.” https://istio.io/latest/docs/tasks/traffic-management/ingress/ (ac-

cessed Jun. 15, 2022).
[64] “The Scala Programming Language.” https://www.scala-lang.org/ (accessed Jun.

15, 2022).

65

[65] “K8s Service Mesh: Linkerd or Istio | by Ohad Senior | CloudZone | Medium.”
https://medium.com/cloudzone/k8s-service-mesh-linkerd-or-istio-4bb650d51bc6
(accessed Jun. 15, 2022).

[66] “The Go Programming Language.” https://go.dev/ (accessed Jun. 15, 2022).
[67] “Rust Programming Language.” https://www.rust-lang.org/ (accessed Jun. 15,

2022).
[68] “Linkerd surpasses Istio adoption in Europe and North America with 118% growth

in 2021 | Linkerd.” https://linkerd.io/2022/02/16/linkerd-istio-adoption/ (accessed
Jun. 15, 2022).

[69] “Multi-cluster communication | Linkerd.” https://linkerd.io/2.11/features/multiclus-
ter/ (accessed Jun. 15, 2022).

[70] “Benchmarking Linkerd and Istio: 2021 Redux | Linkerd.” https://link-
erd.io/2021/11/29/linkerd-vs-istio-benchmarks-2021/ (accessed Jun. 15, 2022).

[71] “Linkerd vs Istio.” https://buoyant.io/linkerd-vs-istio (accessed Jun. 15, 2022).
[72] M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An orchestration

platform for geo-distributed multi-cluster environments,” in 2021 International Con-
ference on Computer Communications and Networks (ICCCN), 2021, pp. 1–10.
doi: 10.1109/ICCCN52240.2021.9522318.

[73] “3 questions to answer when considering a multi-cluster Kubernetes architecture
| Enable Architect.” https://www.redhat.com/architect/multi-cluster-kubernetes-ar-
chitecture (accessed Jun. 15, 2022).

[74] F. Faticanti, D. Santoro, S. Cretti, and D. Siracusa, “An Application of Kubernetes
Cluster Federation in Fog Computing,” in 2021 24th Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), 2021, pp. 89–91. doi:
10.1109/ICIN51074.2021.9385548.

[75] J. Ruuskanen, H. Peng, A. Åkesson, L. Larsson, and M. Kihl, “FedApp: a Re-
search Sandbox for Application Orchestration in Federated Clouds using Open-
Stack,” arXiv preprint arXiv:2109.01480, 2021.

[76] “Kubernetes Multi-Cluster Part 3: Authentication and Access Control.”
https://loft.sh/blog/kubernetes-multi-cluster-part-3-authentication-and-access-
control/ (accessed Jun. 15, 2022).

[77] “The Top 5 Challenges for Kubernetes Users and Their Solutions - Middleware.”
https://middleware.io/blog/kubernetes-challenges-and-solutions/ (accessed Jun.
15, 2022).

[78] “Overview | Prometheus.” https://prometheus.io/docs/introduction/overview/ (ac-
cessed Jun. 15, 2022).

[79] “Istio / Deployment Models.” https://istio.io/latest/docs/ops/deployment/deploy-
ment-models/#network-models (accessed Jun. 15, 2022).

[80] “Multi-cluster communication | Linkerd.” https://linkerd.io/2.11/features/multiclus-
ter/ (accessed Jun. 15, 2022).

[81] “Architecting for Multicluster Kubernetes | Linkerd.” https://link-
erd.io/2020/02/17/architecting-for-multicluster-kubernetes/ (accessed Jun. 15,
2022).

[82] “viz | Linkerd.” https://linkerd.io/2.11/reference/cli/viz/ (accessed Jun. 15, 2022).
[83] “Exporting Metrics | Linkerd.” https://linkerd.io/2.11/tasks/exporting-metrics/ (ac-

cessed Jun. 15, 2022).
[84] “Grafana: The open observability platform | Grafana Labs.” https://grafana.com/

(accessed Jun. 15, 2022).
[85] “GitHub - tsenart/vegeta: HTTP load testing tool and library. It’s over 9000!”

https://github.com/tsenart/vegeta (accessed Jun. 15, 2022).

	1. Introduction
	1.1 Problem Statement
	1.2 Thesis Structure

	2. Kubernetes architecture and Serverless platforms
	2.1 Container Orchestration
	2.2 Kubernetes – K8s
	2.2.1 Kubernetes Components
	2.2.2 Kubernetes Architecture

	2.3 Serverless Computing
	2.3.1 Serverless Computing Benefits
	2.3.2 Serverless Computing Use Cases
	2.3.3 Serverless Platforms

	2.4 Summary

	3. Kubernetes multi-cluster
	3.1 Multi-Cluster Kubernetes
	3.2 Kubernetes-Centric
	3.2.1 Kubernetes Cluster Federation
	3.2.2 GitOps

	3.3 Network-Centric
	3.3.1 Istio
	3.3.2 Linkerd

	3.4 Multi-Cluster Application Architecture
	3.4.1 Replication
	3.4.2 Split-by-Service

	3.5 Multi-Cluster Challenges
	3.5.1 Application Topology
	3.5.2 Data Replication
	3.5.3 Traffic Routing
	3.5.4 Service Discovery
	3.5.5 Security
	3.5.6 Image Distribution
	3.5.7 Latency, Bandwidth and Resiliency
	3.5.8 Scalability
	3.5.9 Logging, Monitoring and Tracing

	3.6 Summary

	4. Proposed Solution REQUIREMENTS
	4.1 Service Mesh Multi-Cluster Design Patterns
	4.1.1 Single Network, Single Control Plane
	4.1.2 Separate Networks, Single Control Plane
	4.1.3 Separate Networks, Separate Control Planes

	4.2 Proposed Solution Requirements
	4.2.1 Hierarchal Networks
	4.2.2 Maintain Independent Clusters
	4.2.3 Maintain Independent Control Planes
	4.2.4 High Availability and Isolation Requirements
	4.2.5 Serverless Workload Requirements

	4.3 Summary

	5. Design and Implementation
	5.1 Proposed Solution
	5.2 Prerequisite
	5.2.1 Regional Clusters
	5.2.2 Context Configured
	5.2.3 Ingress Controller with Public IP address

	5.3 Implementation
	5.3.1 Create and Configure the Clusters
	5.3.2 Create Shared Trust Anchor
	5.3.3 Install Service Mesh Using Credentials
	5.3.4 Prepare Kubernetes Multi-cluster
	5.3.5 Linking the Clusters
	5.3.6 Install Test Application
	5.3.7 Exporting the Target Services
	5.3.8 Verify Connection and Mirrored Services
	5.3.9 Deploy Application as Serverless Workload on Cluster-car
	5.3.10 Failover Traffic Splitting

	5.4 Failure Zones
	5.5 Summary

	6. Evaluation
	6.1 Performance and Scalability
	6.1.1 Experiment Setup
	6.1.2 Test Features
	6.1.3 Gateway Latency
	6.1.4 Test Approaches
	6.1.5 Failover Performance Conclusion

	6.2 Resource Utilization
	6.3 Security
	6.4 Summary

	7. Conclusion and Future Work
	7.1 Conclusion and limitations
	7.2 Future Work

	REFERENCES

