
 
 

 
 

Amirhossein Moshfeghifar 

ACTIVE DISASTER RECOVERY STRAT-
EGY FOR APPLICATIONS DEPLOYED 
ACROSS MULTIPLE KUBERNETES 
CLUSTERS, USING SERVICE MESH 
AND SERVERLESS WORKLOADS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Master Thesis 
Faculty of Information 

Technology and Communication 
Sciences 

Associate Professor 
Davide Taibi 

June 2022 
 

 



i 
 

 

  



ii 

ABSTRACT 

Amirhossein Moshfeghifar: Active Disaster Recovery Strategy for Applications Deployed 

Across Multiple Kubernetes Clusters, Using Service Mesh and Serverless Workloads 

Master of Science Thesis 

Tampere University 

Master’s Degree Program in Information Technology 

June 2022 
 

The popularity of cloud computing has gained significantly throughout the recent years. There 
would be no cloud computing without Virtualization technologies. Virtualization is the foundation 
of cloud computing, and containerization is the next generation. Kubernetes is one of the most 
highly used container orchestration solutions available. It provides clusters with a set of control 
planes and workers to manage the containers' lifecycles. Deploying an application across multiple 
clusters provides features such as high availability, isolation, and scalability to the system. Ku-
bernetes is a great tool for managing a single cluster; however, it has limitations in multi-cluster 
management. One of the fundamental approaches to multi-cluster Kubernetes is utilizing a Ku-
bernetes network service mesh solution. This way, all clusters are meshed across the network. 
However, another big challenge is architecting an application deployment across geographically 
separated clusters. Any failure in one cluster or a running application service can impact other 
clusters causing a disaster in the whole system. In this thesis, we propose and design an active 
disaster recovery strategy for applications that are spread across multiple Kubernetes clusters, 
eliminating the failure points. Meanwhile, part of the application will run on a serverless platform 
hosted on one of the clusters to provide higher performance and optimize resource utilization. 
Such use cases are the clusters running on the edge of the cloud or backup clusters running in 
the same region in case there is a burst of unpredictable incoming traffic to the system. The 
performance and resource utilization of the designed solution was evaluated by running several 
experiments. The experiments simulate several failure scenarios, and the designed architect 
availability was promising and practical to implement. 
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1. INTRODUCTION 

Cloud computing has gained tremendous attention over the past years and has become 

one of the most significant and known evolutions of the computing paradigm [1]. Cloud 

computing technologies provide different types of on-demand services to end-users over 

the network. It has several characteristics such as flexibility, multi-tenant support, re-

source pooling, broad network access, and scalability, due to which most organizations 

use cloud services [1]. Virtualization plays a significant role in cloud computing, providing 

an abstract view of a system. Virtualization creates a virtual software-based instance of 

computing resources such as servers, storage, underlying network, and applications. 

What makes virtualization feasible is the hypervisor. A Hypervisor is software that runs 

above the physical server or host [2]. Hypervisors pool the resources from the physical 

server and allocate them to the virtual environments [2]. Virtual environments or so-called 

Virtual Machines (VMs) are software-based computers that run similar to a physical com-

puter. While a VM has its Kernel and applications layer, it also virtualizes the complete 

operating system (OS). However, containers running on one instance of an operating 

system enable OS-level virtualization. Containers are isolated processes running in the 

same environment [3]. Even though containers share the same OS and kernel, each 

container appears to have its specific operating system. Therefore, containers are much 

faster, more portable, and easier to scale than VMs. Managing a high number of con-

tainers across multiple environments can be very complex and impossible. Therefore, 

there is a demand for a proper container orchestration technology to handle all running 

containers. Kubernetes [4] is the most highly used container orchestration solution. Ku-

bernetes enables automated application deployment, resources management, and scal-

ing. This leads to an increase in the overall operation of containerized applications across 

the infrastructure [5].  

Kubernetes is an excellent tool for managing microservice within a single cluster. How-

ever, it has limitations when it comes to multi-cluster management. Moving from one 

cluster to multiple clusters reduces a single point of failure, provides a higher isolation 

level, and brings more scalability to the system. Therefore, companies are moving to-

wards deploying their application on several Kubernetes clusters to achieve high availa-

bility and scalability. Moving application workloads across multiple Kubernetes clusters 

comes with several challenges, which are not only limited to Kubernetes itself. There are 
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two main factors to consider when designing a multi-cluster architecture, application ar-

chitecture and cluster configuration [6]. While there are many existing solutions to multi-

clustering challenges, there is no single solution to achieve high availability, isolation, 

and cross-cluster scalability out of the box. However, most solutions follow the same 

design principle of having a separate control plane managing the workload across mul-

tiple clusters. 

1.1 Problem Statement 

As discussed in the previous section, there are two main factors to consider before de-

signing any multi-cluster architecture. First is how to deploy an application across multi-

ple clusters, and secondly, how to configure the clusters to work together as part of a 

whole system. There are several patterns to design and architect the application and 

cluster but not all provide high availability, isolation, and both in-cluster and cross-cluster 

scalability.  

This thesis aims to design an automatic cross-cluster disaster recovery strategy for ap-

plications running on multiple Kubernetes clusters. Therefore, we will target scenarios 

where failure or disaster occurs in the system. This including the clusters, application 

services, and the network. A Kubernetes service mesh solution will be used to configure 

the clusters, and sample application services will be split across clusters into different 

regions. Meanwhile, part of the workload will be running as serverless workloads to in-

crease availability and optimize the service resource utilization within a network region. 

Optimizing the resource utilization reduces service costs and leads to elastic and dy-

namic resource provisioning, which is the key to ensuring cloud performance [7]. 

We define four primary requirements for the proposed solution, which act as the pillar of 

the architecture. The cluster configuration and application deployment design should not 

violate any of the defined requirements at any point. 

1.2 Thesis Structure 

The thesis consists of seven chapters. Chapter 2 explains the Kubernetes architecture 

and Serverless platforms focusing on the components used to achieve high availability. 

Chapter 3 describes Kubernetes multi-cluster design patterns, existing challenges, limi-

tations, and the overall benefits. In Chapter 4, we define the Kubernetes multi-cluster 

and serverless workflows requirements to address failure scenarios. Chapter 5 explains 

the designed solution implementation and describes the system behavior during a dis-

aster. Chapter 6 describes the test environment and experiments performed  to simulate 
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real-world failure scenarios evaluating the practicality of the designed solution. Chapter 

7 concludes the dissertation and provides improvements for future work. 
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2. KUBERNETES ARCHITECTURE AND SERVER-

LESS PLATFORMS 

2.1 Container Orchestration 

Moving from monolith to microservices, the rise of microservices caused an increased 

usage of container technologies. The growth of microservice technologies resulted in 

applications that are comprised of several containers. Managing the large number of 

containers across multiple environments using scripts and self-made tools can be com-

plex and impossible [8]. Therefore, there is a demand for a proper container orchestration 

technology for managing all existing containers. Container orchestration is a solution 

consisting of tools and scripts that can help host containers in a production environment 

[8]. 

Typically, a container orchestration solution consists of multiple Docker hosts hosting the 

containers; that way, if one fails, the application is yet accessible to the others. There are 

multiple container orchestration solutions, such as Docker Swarm [9] from Docker, Ku-

bernetes by Google, and Mesos [10] from Apache. While Docker Swarm is very easy to 

use, it lacks some advanced autoscaling features for complex production-grade applica-

tions [11]. While Mesos supports many advanced features, it is not easy to set up and 

start. Kubernetes, arguably the most popular of all, is still more difficult to set up than 

Docker Swarm. However, it provides many options to customize deployments and has 

more support for different vendors. Kubernetes is supported on all public cloud service 

providers such as Google Cloud Platform [12], Microsoft Azure [13], and Amazon AWS 

[14].  

2.2 Kubernetes – K8s 

Kubernetes is an open-source container orchestration framework initially developed by 

Google [4]. Kubernetes on the foundation manages containers, which means that Ku-

bernetes helps manage microservice applications made of several containers in various 

environments [15]. The environments can be physical machines, virtual machines, or 

cloud environments. 

Kubernetes as a container orchestrator guarantees the following features. 

 High availability:  Generally, high availability means that the application does 

not have downtimes and is also accessible by the users. 
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 Scalability: Scalability means that the application managed by Kubernetes has 

high performance. The application should be able to load fast, enabling high re-

sponse rates to the user experience.  

 Disaster recovery: In case of a failure in the infrastructure, there should be a 

mechanism to backup and restore the data, restoring it to the latest state so that 

the running application do not lose data. Upon recovery, the containerized appli-

cation can run in their final state after the recovery.  

The fundamental promise behind Kubernetes is to enforce a “desired state manage-

ment,” meaning that the running component will have a specific configuration, and it will 

be up to the components to run the configuration in the infrastructure.  

Kubernetes provides a variety of components; in the following section, we overview the 

ones applicable to this thesis. 

2.2.1 Kubernetes Components 

This section outlines the components of a working Kubernetes cluster. 

 Namespaces: Kubernetes resources can be grouped by wrapping them to a spe-

cific name, using Namespaces [16]. Resource names must be unique within a 

namespace but not across different namespaces. Namespaces can be consid-

ered as virtual clusters inside a Kubernetes cluster. By creating a cluster, Kuber-

netes provides four default namespaces, i.e., "default" for default resources, 

"Kube-code-lease" that contains the availability of a node, "Kube-system" for Ku-

bernetes components such as system processes, master and managing pro-

cesses, and "Kube-public" for publicly accessible data, including the cluster in-

formation. Meanwhile, each user can create namespaces to deploy objects within 

them [17]. While performing a command against any resource Kubernetes, the 

user should specify the resource's namespace; otherwise, the default 

namespace is chosen. There is no limitation on the number of created 

namespaces within a cluster. Even though created namespaces inside a cluster 

are logically separated, resources can communicate with each other [17]. 

 Pods: Pods [18] are the smallest deployment computing unit that can be created 

and managed in Kubernetes. Each pod contains one or more containers, sharing 

storage and network resources [19], [20]. Kubernetes networking has one im-

portant fundamental concept: every pod has a unique IP address and is reacha-

ble from all other pods in the cluster. One main concern on distributed infrastruc-

ture is allocating ports to services and applications running on servers without 
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conflicts. Kubernetes addresses this issue by abstracting the containers using 

pods where pods can be known as small machines with their IP address. While 

a pod is created, it will have its network namespace and a virtual Ethernet con-

nection to connect it to the underlying infrastructure network. A pod is a host with 

IP addresses and a range of ports that can be allocated to its containers. There-

fore, there is no need for port mapping on the pod's server. The Pod Ip address 

is from the Nodes range IP addresses internal in the cluster. 

 Service: In Kubernetes, Services [21] are an abstract way to expose a running 

application on a set of Pods. Kubernetes Pods are ephemeral, meaning that they 

terminate and die frequently. When a pod restarts, a new IP address will be as-

signed to the new Pod. Therefore, it does not make sense to use pod IP ad-

dresses to expose an application since it changes frequently. Services will have 

a persistent stable IP address that does not change even if the Pod dies. Service 

also provides a load balancing mechanism between the application pods. Ser-

vices are suitable for loose coupling for communication within and outside the 

cluster. There are several types of services in Kubernetes [21]: 

- ClusterIP Service:  This is a default type of service. Each service with 

the type ClusterIP will assign IP addresses to pods only accessible from 

within the cluster. Therefore, no external traffic can directly address the 

ClusterIP service. 

- Headless Service: This service enables clients or an endpoint pod to 

communicate directly with a specific Pod of an application. A use case for 

Headless Services is a stateful application such as databases where the 

Pod replicas are not identical, and each has its state and characteristic. 

- NodePort Service: It is a service accessible on a static port on each 

worker node in the cluster. In contrast to ClusterIP services, NodePort 

services make the external traffic accessible on a static or fixed port on 

each worker node. NodePort services are not secure since, basically 

there is a direct port from outside the cluster with a direct connection to 

the service pods. 

- LoadBalancer Service: The service becomes accessible externally 

through a cloud provider's LoadBalancer functionality. In this case, the 

traffic entry point will be the load balancer and from there, the traffic is 

directed to the NodePort and clusterIP on the worker node. 
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 Deployment: A deployment [22] provides declarative updates for Pods. To de-

ploy a Pod into Kubernetes, deployment resources are needed. The deployment 

acts as a controller to create and manage the application pods. Deployments also 

control the scaling of the pods, rolling out updates and rolling back the pods to 

their earlier state [23]. The deployment controller is responsible for keeping the 

created pods within the deployment in the desired state. It monitors the pod states 

continuously to make sure it stays in the desired state. 

 Secrets: A Secret is an object containing sensitive data such as a password, 

token, or SSH key [24]. The secret might be put in a Pod specification or the 

container image. A Pod can utilize a secret in three different ways, i.e., as a file 

in the container, as a container environment variable, and using Kubelet while 

fetching the image. Using a Secret prevents the need to include confidential data 

inside the application code. 

 Custom Resource Definitions:  Kubernetes APIs are extended by adding addi-

tional Custom Resources (CRs) [25]. The additional CRs are referred to as Ku-

bernetes Custom Resource Definitions (CRDs). Kubernetes flexibility allows us 

to add more abilities by using CRDs to instruct Kubernetes to manage more than 

just containers. CRDs enable users to define additional custom-type objects 

available as Kubernetes resources. A custom resource can be created using the 

custom resources using CRDs then Kubernetes will manage the resources simi-

lar to all other Kubernetes core resources. 

2.2.2 Kubernetes Architecture 

One of the main components of the Kubernetes architecture is the worker nodes [26]. 

Each worker node will have multiple pods with running containers. Kubernetes uses 

three processes to manage and orchestrate the containers. These processes should be 

installed on every node that are used to manage and schedule the pods. These pro-

cesses are Container runtime, Kubelet, and Kubeproxy Container runtime [27]. There-

fore, nodes are the cluster servicers that do the work. That is why they are also referred 

to as worker nodes.  

 Container runtime: The container runtime is the initial process to run on each 

node, i.e., Docker [28] or Containerd [29]. The container runtime should be in-

stalled on all nodes since the application pods have containers running inside 

them.  
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 Kubelet: Kubelet is the process of scheduling the pod and the containers below 

it. Kubelet is a Kubernetes process with interfaces to both the container runtime 

and the node [27]. Kubelet is responsible for getting the configuration, launching 

the pod with the container inside, and then allocating resources to the container 

from the selected node, i.e., CPU, RAM, and storage resources. Kubernetes clus-

ters typically contain several nodes, which also must have container runtime and 

Kubelet services installed. The system can contain other pods and containers, as 

well as multiple nodes running replicas of existing pods. 

 Kube-proxy: The nodes communicate with each other using load balancer ser-

vices, receiving requests and forwarding them to the respective pod. Kube-proxy 

is the Kubernetes process that is responsible for forwarding the requests from 

services to pods [27]. Kube-proxy has intelligent routing logic that ensures that 

communication works efficiently with little overhead. Thus, it can avoid the net-

work overhead of requests sent to other nodes. 

How to interact with the cluster or decide on which node a new application pod or data-

base pod should be scheduled. Alternatively, if a replica pod dies, what process monitors 

it and reschedules and restarts it again. The answer is that these managing processes 

are controlled by a controller node called Master Node. Master nodes have entirely dif-

ferent running processes. The master node container has four processes, controlling the 

cluster and worker nodes' state [27].  

 Kube-apiserver: Whenever a new application is deployed in a Kubernetes clus-

ter, a user can interact with the resources through the API server. API server acts 

as a cluster gateway receiving the initial requests of any updates into the cluster 

or even the queries from the cluster. It also acts as a gatekeeper for authentica-

tion, ensuring only authenticated and authorized requests get through to the clus-

ter. The API Server will validate the requests, and if everything is fine, it will for-

ward the request to other processes to schedule the requested components. This 

provides higher security since there is only one entry point to the cluster. 

 Kube-scheduler: The schedular is responsible for starting an application pod on 

one of the worker nodes. Instead of randomly assigning a pod to any node, the 

scheduler has an intelligent decision-making mechanism to schedule compo-

nents on the nodes. It initially checks the request and sees how much resources 

the application needs. Next, it checks the available resource on each worker node 

to know where to schedule the pod. Note that the schedular is only responsible 
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for making the decision, and the Kubelet does the actual process of starting a 

pod with a container.   

 Kube-controller-manager: Whenever a cluster desired state changes, there 

must be a way to detect the change and recover as soon as possible. The Ku-

bernetes Controller-manager process does this. Upon changes in the cluster 

state, the controller-manager detects the change and requests the schedular to 

reschedule the changes in the cluster.  

 Etcd: The etcd is a key-value store of a cluster state. The etcd is the cluster brain, 

meaning that all changes get saved or updated into the key-value store of etcd. 

The decision-making by schedular and controller checking the available re-

sources and cluster state changes are all done using the data from etcd. On the 

other hand, the actual application data is not stored in etcd. Etcd is a place to 

store cluster state information used for master processes to communicate with 

the work processes. 

Master processes are crucial for the cluster operations, especially the etcd store, which 

contains data that must be reliably stored or replicated. In practice, Kubernetes clusters 

are made of multiple master nodes where each master node runs its processes. The API 

Server is load-balanced, and etcd store forms a distributed storage across all of the mas-

ter nodes. 

 

Figure 2.1, High-level Kubernetes Architecture 
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2.3 Serverless Computing 

According to Cloud Native Computing Foundation, “Serverless computing refers to build-

ing and running applications that do not require server management.” [30] Serverless is 

a deployment model where applications are divided into functions; each function gets 

managed on a hosting platform. It provides a small runtime container to execute lines of 

code without needing infrastructure management [31]. This way, the developers and 

IT/operators teams are no longer responsible for managing, provisioning, and scaling 

running applications. As a result, the developers will focus on writing code or business 

logic, and operators will focus on more business-critical tasks.  

There are two different perspectives on serverless computing: 

 Provider: Responsible for deploying the serverless platform. 

 Developer: Write the code, deploy it on the platform, and benefit from the pro-

vided features. From the developers' point of view, there are no servers, and their 

application is not always running. 

Serverless computing does not mean that no servers are running at all. Even though the 

deployment model is referred to as serverless, servers are always required to run a serv-

erless platform. Since there are still actual servers required, a provider team needs to 

manage the servers. The servers can be physical, virtual machines, or even small run-

ning containers. Whether there is a server load or running idle, a provider is required to 

manage the servers. Therefore, a self-hosted system can generally be called serverless 

while one team acts as a developer and one as a provider [30].  

2.3.1 Serverless Computing Benefits 

Serverless computing delivers several benefits to the developers: 

 Zero Server Ops: Serverless computing greatly changes the model of running 

applications by stopping the added server resource maintenance overhead. 

Serverless significantly eliminated the cost of provisioning, updating, and man-

aging infrastructure servers, virtual machines, and containers. On the other hand, 

running application on a serverless platform provide high flexibility and scalability 

to the system [30]. A product can immediately and strictly scale according to the 

incoming requests. The scaling happens automatically without the developer’s 

intercession. After requests are severed and processes are complete, the serv-

erless platform automatically scales down the compute resources preventing idle 

capacity [30]. 
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 Zero Compute Cost when Idle: When no code is running, the virtual machines 

or containers are idle. Therefore, no compute resource is consumed by the run-

ning application on the serverless platform; in other words, there will be no charge 

when the code is not running. This is an excellent benefit for serverless products 

since the costs are only based on usage and demand [30]. 

Additionally, elastic provisioning is one of the most critical benefits of serverless compu-

ting, along with its ease of use. At the same time, virtual machines need some time to 

scale with the system settings [31]. 

2.3.2 Serverless Computing Use Cases 

Currently, serverless computing is extensively available, and many cloud providers al-

ready offer great support for customers planning to run their applications in a serverless 

fashion. Depending on the application workload types, the serverless approach should 

be considered while: 

 The workload is asynchronous, concurrent, and easy to be divided into separate 

units [32]. 

 There is a chance of infrequent and unpredictable contention in demand. 

 Microservices are stateless and ephemeral, so there is no need to store the state 

of a function. 

There can be trade-offs while considering running an application on serverless platforms. 

Since the functions are not running while there are no incoming requests, the start-up 

after the inactivity might cause performance declines [33]. This is because no ready in-

stance of the function is prepared to serve the incoming requests. Latency is crucial for 

serverless computing and has a key role in broadening its usage. Otherwise, developers 

would merge application functions avoiding the latency penalty, making the application 

less modular and losing its serverless benefits [34]. However, Non-HTTP-centric work-

loads can dramatically benefit from the efficient cost model of a serverless architecture.  

Here we mention some most use cases of serverless: 

 Internet of Things – IoT: Cloud services should be able to respond quickly to 

messages from IoT devices and scale the application in response to a sud-

den load of messages. IoT is an example of various events containing messages 

to be processed by the event handlers [31]. Serverless capabilities allow you to 

manage MQTT messages from IoT devices and flexibly scale  and protect other 

services downstream of your load [30]. 
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 HTTP REST APIs and Web Applications: Web applications are a good candi-

date for serverless, whether a workload is static, or responses are generated 

based on demand. One great benefit of deploying a web application as serverless 

is that individual REST calls can be separated while scaling independently [30]. 

Even if they all use the same backend. 

 Continues Integration Pipeline: CI pipelines include a pool of worker hosts, 

mostly idle and waiting for jobs to be dispatched. While considering serverless 

build, jobs will get triggered whenever a new code is committed to the pipe. The 

function is called, run, tests are performed, and terminated. This lowers the idle 

resource utilization through autoscaling. 

 Edge Computing: Cloud industries are moving infrastructure to the network 

edge, decreasing users' network latency. This requires a highly resource-efficient 

design since edge data centers usually have fewer resources [35]–[38]. 

2.3.3 Serverless Platforms 

One of the most significant drawbacks of moving an application on serverless platforms 

is the lock-in vendor potential. The concern is whether the API interface layer and runtime 

contract can be unified for serverless workloads [39]. The concern of vendor lock-in is 

that Alex Polvi, CEO at CoreOs, refers to it “as one of the worst forms of proprietary lock-

in ever seen in humans’ history” [40]. The primary reason is that many public serverless 

platforms require adopting specific proprietary company-specific technologies for them 

to operate. 

The alternative solution to public serverless platforms is the open-source serverless plat-

forms, also known as installable serverless platforms. These platforms should be able to 

avoid vendor lock-in by offering a standard API interface and compatible runtime con-

tracts. In this section, we will have a brief look at two popular installable serverless plat-

forms. Note that the selected platform support Kubernetes as the container orchestrator.      

 Knative: Knative is an open-source serverless framework initiated by Google 

[41]. Knative extends Kubernetes providing the capability to manage serverless 

workloads on the clusters [41] Knative registers its custom APIs into Kubernetes 

core APIs, enabling users to interact with it using Kubernetes CLI, Kubectl. Some 

benefits of using Knative as the serverless platform is: 

- Run on any Kubernetes cluster: Knative can run serverless applications 

on any Kubernetes cluster, regardless of where and how the cluster is 

hosted [41]. 
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- Support variety of programming languages: The platform is not bound 

to specific programming languages since Knative services require a con-

tainer image to run a function [41]. 

- Kubernetes Pod Autoscaling: Knative scales the pods according to the 

average of incoming requests to the service [41]. This way, the pods are 

scaled according to the incoming load in contrast to Kubernetes Horizon-

tal Pod Autoscaling (HPA), whereas scaling is based on the pod CPU 

usage. HPA makes autoscaling dependent on the fast calculation of re-

spective system components [42]. 

Knative consists of two main components, Serving and Eventing. Each compo-

nent is installed separately according to the need.  

- Serving: The serving component is the core of the Knative API interface. 

It is responsible for hosting the functions, autoscaling, and connecting the 

pods. 

- Eventing: The evening component is the logic of loose coupling micro-

services in serverless. To ensure interoperability, the eventing component 

is consistent with the CloudEvent specification developed by the CNCF 

Serverless workgroup [43]. 

 OpenFaaS: OpenFaas [44] is one of the oldest serverless projects created by 

Alex Ellis. OpenFaas offers a web interface and CLI tool to manage the platform 

and the function repositories. In contrast to Knative, OpenFaaS provides its spe-

cific template store containing various templates supporting different program-

ming languages [45]. OpenFaas also provides an interface called “faas-netes” to 

manage and invoke functions deployed based on unchangeable Docker images. 

OpenFaas supports two ways of autoscaling. First is an OpenFaas autoscaling 

method which is based on the number of incoming requests. An additional com-

ponent monitors the flow and sends Alerts to scale accordingly. Secondly, scaling 

is based on other metrics, which in this case is HPA which scales based on both 

CPU and memory usage [44]. 

2.4 Summary 

This chapter described the main concepts of container orchestrator systems, Kubernetes 

architecture, and its components. Next, we discussed serverless computing and how 
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cloud-native application could benefit from its flexibility, performance, and optimized re-

source utilization. In the next chapter, we will deep dive into Kubernetes multi-clustering 

and how to deploy an application across multiple clusters. 
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3. KUBERNETES MULTI-CLUSTER 

The previous chapter described the concepts of container orchestration systems, espe-

cially Kubernetes. We went through Kubernetes components and how Kubernetes man-

age the cluster and running applications. Next, we discussed serverless computing, its 

benefits, use cases and how we can benefit from running the scalable application on an 

installable serverless platform. This chapter overviews the basic concepts behind Kuber-

netes multi-clustering management with a focused aspect such as high availability, resil-

iency and scalability. Two main approaches for cluster configuration and application ar-

chitecture will be explained. Additionally, we will overview the most CNCF Kubernetes 

multi-cluster projects providing Kubernetes cluster federation solutions as well as their 

advantages and limitations.  

3.1 Multi-Cluster Kubernetes 

Organizations are increasingly deploying more Kubernetes clusters and treating them as 

disposable [46]. The general idea of having disposable clusters is that instances of a 

system should be treated as replicable rather than irreplaceable [47]. For instance, if a 

virtual machine gets corrupted, it should be replaced as soon as possible rather than 

trying to fix the issue and bring it back to health. 

This approach results in many benefits [46], [48]: 

 Improving operational readiness: Operations, troubleshooting, and tools get 

significantly simplified while standardizing cluster creations. 

 Increase availability and performance: Deploying applications across clusters 

improves availability and regional performance. 

 Isolation: Strong cluster isolations simplify the critical operational processes 

such as system upgrades and reduce the clusters outage.  

 Remove vendor lock-in: The workload can be shifted between different Kuber-

netes vendors. 

 Compliance: A single cluster has less chance to comply with every regulation, 

while a multi-cluster strategy decreases each cluster's compliance scope. 
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Multi-cluster generally refers to a strategy for deploying an application on or across mul-

tiple Kubernetes clusters. Meanwhile, such action aims to achieve high availability, scala-

bility, and isolation in the system. 

There are multiple ways to configure Kubernetes multi-cluster, two of which are dis-

cussed in the following sections [46]. 

3.2 Kubernetes-Centric 

Kubernetes-Centric configuration approaches are built around extending the existing 

core Kubernetes primitives enabling a centralized management plane for multiple Kuber-

netes clusters. The main idea is to have a single cluster responsible for federating and 

managing multi-cluster workloads across the connected clusters. The most notable pro-

jects are the Kubernetes Cluster Federation [49] , part of the Multicluster Special Interest 

Group (SIG) [50]. Figure 3.1 shows a simple Kubernetes-centric configuration while clus-

ter host in region-a manages two other Kubernetes clusters running in separate network 

regions. 

3.2.1 Kubernetes Cluster Federation 

Kubernetes Cluster Federation (KubeFed), managed by Kubernetes Multicluster Special 

Interest Group, uses Kubernetes primitives to provide a centralized management plane 

to achieve Kubernetes multi-clustering. It allows for coordination of the configuration of 

multiple Kubernetes clusters from a single set of APIs in a central hosting cluster [49]. 

The goal is to provide different mechanisms to express which cluster should manage by 

the control plane and what should be configuration be [51].  

Figure 3.1, Example of a Kubernetes-Centric cluster configuration 
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KubeFed is a Kubernetes operator leveraging Custom Resource Definitions, providing 

tools for managing applications and services in multiple Kubernetes clusters tracked by 

the Kubernetes Cluster Registry [52]. The users can deploy different workloads to clus-

ters listed in the registry, set DNS information, and adjust the replicas in the target clus-

ters. 

KubeFed is configured with two types of information [52]: 

 Type configuration: Declares which type of the APIs should KubeFed handle 

on the target clusters 

 Cluster configuration: Define the clusters that KubeFed will target 

KubeFed type configuration has three concepts that provide a concise representation of 

a resource to appear in the multiple managed clusters. 

 Templates: Representation of the common base specification of a resource 

across clusters 

 Placement: Handles clusters specification of which the resource will appear in  

 Overrides: Determines the template resource variation per-cluster 

3.2.2 GitOps 

GitOps is a well-established framework for orchestrating CI/CD workflows [53]. 

GitOps is a set of practices for using Git pull requests to both application and infrastruc-

ture configuration. In GitOps, a Git repository is considered the only source of truth con-

taining the entire state of a system. GitOps advocates applied the same git principles, 

such as review, pull, push, tagging, and et, to the application and infrastructure. This 

way, the dev teams benefit from the same assurance as they do for the application 

source code [54]. 

The following principles are what constitutes a GitOps practice: 

 The system definition is described as code 

 All desired system configuration and state is versioned in Git 

 Changes to the current configuration are automatically applied using the Git Pull 

Requests mechanism 

 A controller ensures that no configuration drifts are present  

Facing multi-cluster topologies, GitOps can represent a centralized Kubernetes multi-

cluster control plane. In this case, an application is initially templated with the correct 
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value and pushed to the Git repository. The desired state of the application is then de-

ployed on the target clusters, watching the changes on the control plane. There are two 

main multi-cluster GitOps patterns [55],  

 On-Cluster Resource Reconciler: In this pattern, a controller on a cluster is 

responsible for checking the current state of the cluster resources with the de-

sired state on the Kubernetes desired resources in the Git repository. The con-

troller will raise notifications when a discrepancy is detected and pull the desired 

state to the target clusters. Figure 6 shows how the to reconcile action is per-

formed in this pattern. 

 External Resource Reconciler: In contrast to the on-cluster pattern, the con-

troller is not allocated to the clusters in this pattern. A set of CRDs is defined to 

compare the configuration in the Git repo with the Kubernetes cluster resources 

and take action according to the comparison result. This pattern uses Git Push 

to make changes to all target clusters. 

Figure 3.2 represents GitOps external resource reconciler pattern with the push method 

to sync the cluster states. 

Currently, Kubernetes-centric multi-cluster approaches lack several features. They do 

not provide a dynamic pod placement across the multi-cluster topology [53]. They do not 

support active disaster recovery or cross-cluster bursting technics. In other words, in 

case of a failure in the system, there is not possible to automatically migrate the work-

loads to other clusters. 

Figure 3.2, Example of an external resource reconciler pattern 
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3.3 Network-Centric 

In contrast to Kubernetes-centric, this approach mainly focuses on creating a network of 

clusters. This way, network connectivity is created between clusters so that the deployed 

applications or different components of a system communicate with one another. 

Service-mesh solutions such as Istio [56], Linkerd [57], and Consul [58] support multi-

cluster communication by extending the mesh across multiple Kubernetes clusters. 

Figure 3.3 is an example of a Kubernetes-centric multi-cluster design based on service 

mesh. As seen, clusters are not under a single centralized management plane but 

connected using a Kubernetes service mesh solution. 

3.3.1 Istio 

Istio is a Kubernetes-native service mesh solution initially released by Lyft [59]. It intro-

duces an interface to control how pods communicate and exchange data with each other. 

Istio separates the data and control planes by using a sidecar-loaded proxy which makes 

decisions locally and does not entirely rely on the control plane. Because of the number 

of features, Istio has become a trendy service mesh of choice among companies such 

as Google, IBM, and Microsoft. 

Regarding multi-clustering support, Istio has two main strategies, a shared control plane 

and replicated control plane. As a result, replicated control plane brings higher system 

availability and resiliency, and Istio provides powerful primitives for Kubernetes multi-

cluster communication. However, this comes with higher complexity. Istio has specific 

APIs for exposing multi-cluster capability, which typically needs to be provided per ser-

vice. These APIs are: 

Figure 3.3, Example of Kubernetes-Centric cluster configuration 
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 Virtual Service: Virtual service [60] is set of traffic routing applied rules for an 

addressed host. 

 Destination Rules: Destination rules [61] Defines traffic policies applied to traffic 

intended for service after the traffic routing.   

 Sidecar: Istio sidecar [62] escribed the configuration of the Istio envoy proxy. The 

proxies mediate the inbound and outbound communication to the attached work-

load instance. 

 Ingress: Istio ingress [63]Describes the way to expose a service outside the Istio 

service mesh.  

Each service inside the mesh should have all the listed APIs configured adequately. 

Therefore, application and deployment changes are required to take full advantage of 

the Istio service mesh multi-cluster. Figure 3.4 is an example of the Istio service mesh 

multi-cluster configuration. 

3.3.2 Linkerd 

Linkerd is the next popular service mesh solution on Kubernetes. Buoyant originally built 

Linkerd for native machines using Scala [64] and later on was made open-source [65]. 

Linkerd was later modified using Go [66] and Rust [67] , with Kubernetes still as its target.  

Linkerd has significantly gained popularity as an ultra-light, secure and minimalist service 

mesh solution for Kubernetes [68] . It has an initial focus on simplicity instead of flexibility. 

This fact results in fewer additional APIs on top of Kubernetes primitives, having less 

complexity compared to Istio.  

Figure 3.4, Example of Istio multi-cluster configuration solution 
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Linkerd supports multi-cluster with a focus on separate independent control planes. This 

brings high availability and isolation and separates the failover zone of each cluster. The 

aim is to provide the same level of reliability, observability, and security features for in-

cluster communication and cross-cluster communication. Linkerd introduces two main 

components enabling multi-cluster features to clusters across multiple networks and re-

gions. The Linkerd control plane components are [69]. 

 Service mirror: This component mirrors service information between clusters. 

Since the remote services are represented as Kubernetes services, full features 

provided by Linkerd apply uniformly on both in-cluster and cross-cluster calls. 

 Gateway: Responsible for routing the traffic to the internal service and vice versa. 

Figure 3.5 is an example of a Linkerd service mesh multi-cluster configuration. 

 

 

Of network-centric approaches, all of the approaches discussed require a service mesh 

adaptation. Both Istio and Linkerd service mesh solutions are compelling when it comes 

to Kubernetes multi-cluster communication. Therefore, deciding between the ap-

proaches depends on the system requirements. Linkerd provides a high-speed, re-

source-intensive, and less complex solution, while Istio provides great features backed 

up with big names managing the service mesh [65]. Less complexity, efficient resource 

usage, and low latency are factors to consider in this thesis; therefore, Linkerd is the 

preferred choice [70], [71].  

Figure 3.5, Example of Linkerd multi-cluster configuration solution 
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3.4 Multi-Cluster Application Architecture 

Deploying applications across multiple clusters maximizes the system's availability, 

scale, performance, and fault tolerance [72]. There are two fundamental ways to architect 

multi-cluster applications, full replication, and segmentation. This section will briefly over-

view both architectural designs and discuss each design use case. 

3.4.1 Replication 

A full copy of the application will be deployed and hosted on each cluster in this model. 

The application gets globally scaled across clusters by replicating in multiple availability 

zones and regions. Replicating the application instances across different networks brings 

higher performance and resiliency [73]. Therefore, the latency will decrease while the 

user is closer to the running cluster. Coupled with a global load balancer, this model 

enables failover [46]. In case of a failure or shutdown in one cluster, the traffic can gets 

routed to another cluster serving the incoming requests.  

3.4.2 Split-by-Service 

In comparison to the fully replicated design, in this model, an application is divided into 

independent components, in which each component represents a Kubernetes service. 

The services will be spread across multiple clusters running in different zones and re-

gions. Each Kubernetes service allocation will be according to the operational require-

ments on the clusters [73]. 

This approach provides a higher level of isolation and security between the application 

services. Nevertheless, it comes at a more significant complexity expense [46]. 

A list of Split-by-service pattern use cases are: 

 Ease compliance with regulatory requirements. While compliance services 

can be localized into a single highly isolated cluster, the remaining rest of the 

application can be operated in other scopes. 

 Safety development and delivery: Individual teams can deploy and test multiple 

services in different clusters without affecting other teams.   

The splitting approach to multi-cluster application architecture provides a similar loose 

coupling feature seen in the microservice-oriented architecture. Adding that one of the 

biggest challenges in this approach is to ensure that the application complies with the 

regulatory statutes where it runs [73] 
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3.5 Multi-Cluster Challenges 

Kubernetes is an excellent tool for managing a single cluster, but when it comes to man-

aging multiple clusters, it does not perform well [74] [75]. In this section, we will overview 

some of the most critical challenges while moving from a single cluster to multiple clus-

ters. 

3.5.1 Application Topology 

One of the well-known challenges with multi-clustering is the application design. When 

designing an application, we need to think about how to implement the application. This 

means not just the communication between microservices within a cluster but also how 

to manage them globally while distributed across many clusters.  

Mainly, an application is not designed for more than one cluster or region. What will be 

the approach now that it needs to be deployed on more than one cluster. Which parts of 

the application run on which cluster. A reasonable strategy is to take the application and 

clone it to all other clusters. In other words, full application replication. 

3.5.2 Data Replication 

When an application is moved from one cluster to multiple clusters, the actual application 

data is not anymore in one location. Therefore, the question of sharing the data across 

regions needs to be thought of beforehand. While there are not that many options avail-

able at the CNCF, only public cloud providers such as AWS and Google Cloud offer 

different available options for replicating data between regions and networks [ref]. That 

is why deciding to rely on a cloud provider or depend on CNCF and the available 

toolboxes are crucial. 

3.5.3 Traffic Routing 

Load balancing, or more precisely, routing the traffic to the closest data center, is the 

next issue to be addressed in multi-cluster communication. [ref] We need to decide how 

the traffic should be shared across multiple clusters. How is the traffic coming from a 

user or service in one specific region routed to the other available regions? While public 

cloud providers already offer available solutions such as global load balancers, other 

custom-built load balancers can be created on CoreDNS [ref]. 
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3.5.4 Service Discovery 

Typically, services are discoverable inside a cluster by querying the DNS and receiving 

the cluster IP of the target service. Finding services gets more complicated when the 

application is spread across multiple clusters. Services cannot reach each other without 

a global service register. There should be an intelligent approach to expose services 

outside the cluster and be able to locate them across multiple clusters in a trusted way.   

3.5.5 Security 

The security issues for one cluster are almost similar to ten clusters but going to a higher 

number of clusters, security risks become a significant issue [76]. The solution is not 

exactly straightforward. The integrity of a high number of clusters is not something to be 

trusted easily, and the trust and access to the set of core clusters need to be limited [ref]. 

It is essential to identify what are the most critical and sensitive parts of the application 

and where is the most sensitive data kept. On the other hand, it is important to consider 

what belongs to the core trusted clusters and other semi-trusted clusters. 

3.5.6 Image Distribution 

A centralized cloud-based repository can be a single point of failure in multi-cluster ar-

chitecture. There should be a way to optimize the deployment of all application images 

to follow the path of the data or application. As an application gets propagated out to 

other clusters running on all far corners of the world, there would be a need to propagate 

the images that underlie the containers. Meanwhile, it is important to come up with a 

solution to achieve better scalability out of image deployment and the artifact. 

3.5.7 Latency, Bandwidth and Resiliency 

Having a low latency connection between a device and the serving backend, or end-

points producing a lot of bandwidth is important. A good example is a hospital; If the 

uplink for the hospital goes down, the hospital still needs to operate whereas a restaurant 

is not life and death. Another example is edge computing and IoT. In general, while think-

ing about IoT and edge computing the number of clusters goes beyond 1000 clusters 

running on the edge. Being a resource constrained environment where there are limited 

fond of computer resources available. Unlike public clouds that offer limitless amount of 

resource based on the customer needs. Therefore, the way to scale the application spe-

cially on the edge is a challenge when it comes to multi-clustering. 
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3.5.8 Scalability 

Kubernetes is good at scaling; a service pod running on each cluster can be scaled up 

and down based on different factors. However, what if there is a need to scale out and 

back? If the application is running on several clusters, is there a need to run every mi-

croservice in every location all the time [77]. Is there any way to decide where to forward 

the traffic based on the metrics while a high number of requests are entering the system? 

Is it possible to no longer operate in one dimension, scaling up and down, but to operate 

in two dimensions. How and when to scale is a very important concern to support high 

availability and performance.  

3.5.9 Logging, Monitoring and Tracing 

Having separate logging, tracing, and monitoring stack for a small number of clusters is 

not a huge issue. When the number of clusters rises, each cluster produces its metrics 

and logs. Therefore, it is required to aggregate the metrics and logs and be able to start 

filtering them. Solutions such as Prometheus [78] support federation and have the ability 

to layer Prometheus from each cluster on top of each other. 

Multi-cluster challenges are not only limited to the ones discussed. More challenges can 

be introduced according to application design, security, performance concerns, and re-

source limitations. Keep in mind that the issues differ when moving from one cluster to 

ten compared to a hundred clusters.   

3.6 Summary 

In this chapter, we explain Kubernetes multi-cluster concepts and why companies must 

consider deploying their solutions across multiple Kubernetes clusters. Meanwhile, we 

explained the main Kubernetes cluster configuration and application architecture strate-

gies that maximize the system's availability, scalability, and performance. Lastly, we dis-

cussed several existing challenges while moving from a single cluster to tens and hun-

dreds of clusters. In the next chapter, we will discuss the well-known multi-cluster pat-

terns using service mesh and explain how deploying services as serverless workloads 

can improve the availability and resource utilization across clusters. 
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4. PROPOSED SOLUTION REQUIREMENTS 

This thesis mainly addresses the failover scenarios by designing a highly available and 

reliable multi-cluster service mesh. The previous chapter described several approaches 

to provide Kubernetes multi-cluster federation, including their advantages and limita-

tions. Additionally, it explained the main multi-cluster Kubernetes cluster configuration 

and the application architecture models. This chapter defines the main three multi-cluster 

design patterns explaining how we can achieve higher resiliency. Finally, four main re-

quirements will be defined as the implementation reference. 

4.1 Service Mesh Multi-Cluster Design Patterns 

This section will explain possible multi-cluster design patterns using a network service 

mesh solution. 

4.1.1 Single Network, Single Control Plane 

The most straightforward pattern is a flat network with a single control plane flow. In this 

pattern, the clusters are all running in the same fully shared connected network, whereas 

the cluster IP ranges, and pod IP ranges do not overlap. Meaning that there is direct 

communication between clusters, and the traffic is routed without the need for gateways. 

A single network allows configuring service consumers in a uniform way across clusters 

with the ability to address workload instances directly [79] . Regarding the control plane, 

one of the clusters will be the main cluster and has the entire control plane installed. The 

main cluster is also known as the local cluster, and the rest of the clusters are remote 

clusters.  

There is a need for config sharing between the clusters in this pattern. For example, the 

main cluster needs a secret to have access to the KubeAPI of all remote clusters. The 

reason is that the main cluster needs to know about all the existing services on other 

clusters, and the only way to do that is through the KubeAPI. 

The biggest downside of this pattern is high bandwidth usage to keep the clusters in 

sync. Any minor changes in one cluster, such as IP address or secret changes, will send 

updates to all other clusters, and therefore there will be much traffic going back and forth 

between clusters [79]. Therefore, this pattern is not a good candidate for isolation since 

it is one big cluster rather than multiple clusters. On the other side, it can be a suitable 
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setup for CI/CD environments where the user needs to be able to deploy the same con-

figuration across clusters to ensure similarity. This pattern could also be good in failover 

scenarios where multiple clusters are living closely together or, in other words, having 

low latency between the main and remote clusters. 

4.1.2 Separate Networks, Single Control Plane 

This pattern does not require a flat network meaning that the traffic is not routable from 

one cluster to another; this is the baseline of this pattern [79]. Like the previous pattern, 

the control plane is only installed on one cluster, the main cluster. In contrast, the clusters 

have separate internal IP ranges compared to a flat network.  

All services located in the remote clusters are now associated with an ingress gateway, 

and the gateway represents the cluster. This way, the traffic is routed from the main 

cluster to cluster gateways, and the gateway forwards it inside the cluster.  

The single shared control plane is the characteristic of both patterns, and the main dif-

ference is in the network. Adopting a shared control plane among a small number of 

clusters is appealing. This effectively centralizes the state and eliminates separate com-

ponent management overhead. With higher complexity, this pattern is also suitable for 

failover scenarios with a low latency requirement but still lacking in isolation. 

Figure 4.1, Shared network and share control plane pattern 
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4.1.3 Separate Networks, Separate Control Planes 

This pattern essentially has completely independent clusters. Since the clusters are com-

pletely independent, there is no need for configuration sharing, which is why it is simpler 

to setup. This pattern requires a global DNS lookup since now the services are running 

in other clusters on different networks. In the same way as the previous pattern upon the 

service discovery, traffic will be routed to the destination cluster gateway and forwarded 

accordingly.  

The advantage of this design is that it provides independents to each one of the clusters 

and running applications. A good use case is canary releases when multiple teams are 

working on the same project; one cluster can be controlled by one specific development 

team [79]. This way, it is possible to decide when to expose a particular service to other 

clusters exactly. Another advantage of this scenario is that it naturally scales better since 

each cluster has its control plane. Compared to the other two patterns, in this pattern, 

we are sharding the control plane and federating the communication between them. 

Meanwhile, this pattern also provides a higher level of isolation. The downside is the 

complexity of managing multiple control planes versus one, which brings a higher oper-

ational cost. 

Figure 4.2, Separate networks, shared control plane pattern 
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Figure 4.3, Separate network and separate control plane pattern 

 

4.2 Proposed Solution Requirements 

This section will propose the proof of concept for multi-cluster communication based on 

the three main patterns described in the previous section. In conclusion, we will outline 

the requirements of the multi-cluster and serverless workload combination solution. The 

requirements will be the pillar of the design, and all decisions will be made based on the 

specified requirements. 

4.2.1 Hierarchal Networks 

In a single cluster, every single Pod has its IP address. One of the consequences of 

having a single IP address per Pod is that each cluster becomes its network. Therefore, 

the overlay networks are discoverable and routable inside the same cluster and no other 

clusters [80]. There are possible solutions to architect around this using third-party tools 

for maintaining a flat network. This, however, bring complexity and introduce a point of 

failure in which special maintenance will be required. Therefore, some form of gateway 

or ingress controller is required to handle the cluster’s inbound/outbound traffic, forward-

ing it to the correct backend service.  

4.2.2 Maintain Independent Clusters 

Even though a flat network with a routable network between every pod in all clusters is 

doable and possible, allowing direct communication does not make scenes. More pre-

cisely, for each pod to talk directly to another pod running on any other cluster, it should 
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be able to discover the target pod somehow. This necessitates the use of a global state 

between clusters. 

By requiring global visibility among clusters, any change in any other cluster will directly 

impact all connected clusters [80]. In other words, it is not possible anymore for each 

cluster to scale independently. Meanwhile, the maximum cluster scale will be defined 

according to the size of every cluster in the system. Furthermore, any error in a cluster 

configuration, launching a large number of pods, for example, has the potential to DoS 

in every other cluster. The goal is to prevent such scenarios when it comes to multi-

cluster communication. Therefore, we need a design in which any issue outside a cluster 

is isolated and separate components do not have any impact on one another. 

4.2.3 Maintain Independent Control Planes 

When clusters are in different regions, network connectivity becomes a genuine concern, 

which means that any issue in the connectivity can potentially introduce failures in the 

system. Good examples can be increasing latency all the way to complete connectivity 

failures and packet loss. In this situation, any cluster controlled by the same shared con-

trol plane will be totally broken as the state differs from the local caches. This means 

independent fault zones have been integrated, and when the most vulnerable link in the 

system fails, the whole system will fail. 

Even not concerned about the network failures, as more and more clusters deployed 

further away from the shared control plane, the inter-cluster operations such as discovery 

updates slow down. This is simply because the latency between processes will increase, 

slowing down any operation requiring communication with the central cluster [81]. Sep-

arate control planes bring more flexibility to the system, increase availability, make it 

more versatile and reduce complexity. 

4.2.4 High Availability and Isolation Requirements 

Moving from a flat network and share control plane to independent control planes in 

separate networks, we afford several benefits in multi-cluster communication. 

 Higher availability: In case the control plane goes down, the scope of the outage 

is limited to only the workloads in the same cluster. 

 Isolation: No matter where a cluster is running, it is possible to make changes 

to that cluster without impacting other connected clusters. 

 Service visibility: Services visibility can be restricted to the number of clusters 

since now each cluster has its independent state. 
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In conclusion, we will achieve the highest availability and isolation while having multiple 

clusters in separate regions with a separate control plane on each cluster. 

4.2.5 Serverless Workload Requirements 

When an application is deployed as a microservice, the containers usually live forever. 

The microservices will become long-living processes until the workload is undeployed or 

the node is down. In contrast, serverless functions can process distributed application 

data by quickly provisioning additional compute resources on multiple containers [31]. 

Serverless services have a controller to take care of deploying and running them when-

ever they are needed. Therefore, since the process is running until requests come, it 

becomes very short living. Running a service on demand is what we are looking for in 

failover scenarios and a quick reaction to traffic spikes. We require three essential capa-

bilities of the serverless platform design, 

 Kubernetes-based platform: We need a platform that uses the same Kuber-

netes primitives and Kubernetes native. Managing serverless workloads should 

not add more complexity to the system. We need to keep it close to Kubernetes 

so it can easily take care of the workload exactly how it does with the over de-

ployments. 

 Scale-to-zeo: If there is no request, nothing should be running. Not even a single 

pod. In failover scenarios, the traffic is sent to the backup services when a disas-

ter has occurred. 

 Scale-from-zero: If there is a sudden traffic spike, the system should be able to 

scale everything up automatically to lower the risk of packet loss. 

 On-premises installable: We need to be able to install a serverless platform on 

local clusters and the cloud. When it comes to multi-clustering, not all clusters 

are running on the cloud. The solution should eliminate the vendor lock-in prob-

lem. 

Since the target is to have a highly available model in multi-cluster scenarios, running 

part of the application as serverless functions would increase the availability while saving 

resources. The defined requirements are the minimum requirements we need in failover 

scenarios covered in this thesis. 
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4.3 Summary 

In this chapter, we discussed the proposed solution to achieve an active disaster recov-

ery strategy using service mesh and serverless computing. As the output of the dis-

cussed approaches towards the application and cluster design, we concluded that hav-

ing multiple Kubernetes clusters in separate networks brings high availability and isola-

tion and separates the failure domains of the system. Additionally, we defined require-

ments for part of the application running as serverless workloads to increase resiliency 

inside a network region. As a result, the designed solution should populate all of the 

defined multi-cluster and serverless requirements in this chapter to provide higher avail-

ability and resiliency to the system.  
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5. DESIGN AND IMPLEMENTATION  

The previous chapter described different approaches to achieve high availability and fail-

over in multi-cluster scenarios. Meanwhile, it was discussed how to utilize the node re-

source usage by deploying part of the application as serverless workloads. In this chap-

ter, we design and configure a combination of Kubernetes multi-cluster and serverless 

architecture based on the set of define requirements with the goal of achieving high 

availability and resiliency in the system.    

5.1 Proposed Solution 

As discussed in chapter 3, there are two main multi-cluster strategies, Kubernetes-cen-

tric and Network-centric. Due to valuable benefits of adopting a service mesh to achieve 

Kubernetes multi-cluster, such as unified observability, high security over the entire mesh 

and faster routing decisions, we choose the Network-centric approach over Kubernetes-

centric. Therefore, clusters running in geographically distributed regions, will be mesh 

while one cluster additionally runs part of the test application as serverless workloads 

using Knative serverless framework. 

5.2 Prerequisite 

Before implementing the multi-cluster design, we need a set of prerequisites as a prior 

condition. These are general prerequisites for any multi-cluster design and not specific 

to the architecture design in this thesis. 

5.2.1 Regional Clusters 

Create and configure more than one Kubernetes clusters. Meanwhile, because of the 

number of different components installed, it is recommended to have Kubernetes 1.22 

or newer on each cluster. Clusters should be in different regional networks, meaning that 

the cluster nodes will not have a direct network connection between them. 

5.2.2 Context Configured 

This is not a mandatory requirement but because of ease of use and more clarity, each 

cluster should be configured as contexts. We choose names “fin”, “bel”, “lowa”, and “car” 

for the clusters. Note that the context names are stored in the cluster Kubeconfig file. 
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5.2.3 Ingress Controller with Public IP address 

Since all communication between the clusters are over the public internet, each cluster 

should be accessed through a gateway. Therefore, we need a service of type Load bal-

ancer to be able to expose running services outside the clusters. 

5.3 Implementation 

This section will implement the proposed solution, creating a Kubernetes multi-cluster 

architecture combined with serverless workloads.  

5.3.1 Create and Configure the Clusters 

In this implementation, we will create 4 Kubernetes clusters on 3 different regions. To 

experience same performance, all clusters are comprised of one control node and three 

worker nodes, each having 2 virtual CPUs, 16GiB of memory, 100GB of disk size, and 

moderate network performance. Using Google Kubernetes Engine (GKE), each cluster 

is created separated regions, “europe-north”, “europe-west”, and two in “us-central”. The 

clusters located in Europe are named “fin”, “bel” and other clusters are “lowa” and “car”. 

Identical Kubernetes stable version 1.22 is installed on all four clusters and no additional 

GKE extension or add-on is added to the clusters. 

5.3.2 Create Shared Trust Anchor 

The next step is to create a shared trust anchor to encrypt all traffic between the meshed 

clusters. The trust anchor will be shared in the installation of all clusters communicating 

and authorizing requests reaching the gateway. This way, the clusters are not open to 

the public internet. The service mesh will use the trust anchor to provide mutual TLS 

communication between all endpoints among the meshed clusters, including encryption 

and authorization in each step. 

There are two ways to create the trusted root and the issuer certificates. One is to use 

the default installation creating default certificates based on random certificates. Sec-

ondly, using a certificate manager tool to generate the required certificates. To keep the 

same service mesh configuration on all clusters, we will use the same trust root on all 

clusters as shown in figure 5.1. Meanwhile, separate issuer certificate will be created for 

each cluster to provide higher security to the service mesh. 

Figure 5.1, Generating trust anchor using Step command-line tool 
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The output of the command in figure 5.1 serves as the foundation of trust for all clusters. 

As part of the mutual TLS handshake, each sidecar proxy will receive a copy of the 

certificate to validate other certificates from peers. Now using a shared base of trust, new 

certificates are generated and used to issue certificates to the proxies in each cluster.  

The next step is to generate the issuer credentials with the trust anchor as shown in 

figure 5.2. 

 

5.3.3 Install Service Mesh Using Credentials 

Next, we will install the service mesh choice on all clusters using the created trust anchor 

and the issuer credentials. There are two ways to install the service mesh and control-

plane. Shared control-plane and separate independent control-plane. As discussed in 

chapter 4, the reasonable requirements we set to achieve high-availability and resiliency 

is to separate the control planes. This way we also isolate the clusters and reduce the 

complexity. 

 

Figure 5.4, Install the service mesh using the issuer credentials 

 

Upon the installation (figure 5.4), the following components will appear in a separated 

namespace: 

Figure 5.3, Created trust anchor and the intermediate issuer certificates 

Figure 5.2, Generating issuer credential using the trust anchor 
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 Linkerd-destination 

 Linkerd-identity 

 Linkerd-proxy-injector 

Linkerd provides a full cluster metrics stack, including a command-line tool and dash-

board by installing the Viz extension [82]. The service mesh and its custom resource 

definitions get installed on all target clusters, providing the stack. This is not strictly nec-

essary if there are not enough resources available for the cluster. 

The following components provide the metric stack on the target clusters [83]. 

 Prometheus 

 Grafana [84] 

 Metrics-api 

The next step is to prepare and install the service mesh multi-cluster extension. At this 

stage, we have four clusters in separate network regions, each with a separate and in-

dependent service mesh installed, meaning that the clusters are not yet aware of each 

other's state. 

5.3.4 Prepare Kubernetes Multi-cluster 

Once each cluster has the service mesh installed and configured, it is time to add the 

multi-cluster components to the mesh and start routing traffic between the clusters. 

Therefore, we need to leverage a gateway as a Kubernetes service type loadbalancer. 

The gateway will handle both incoming and outgoing traffic, routing to the correct desti-

nation.  

 

Figure 5.5, Install multi-cluster components 

After the multi-cluster installation (figure 5.5) , we need to double check that the gateways 

are up and running and have both internal and external IP addresses assigned. Adding 

that the service mesh should be injected into the gateway with the “Linkerd-proxy”, which 

will forward the requests to the correct service. This way we introduce the gateway to 

the service mesh to be used as the cluster ingress.  

Added components to the cluster (figure 5.6): 
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 linkerd-gateway: The gateway will be deployed in linkerd-multicluster 

namespace. 

 

Now that each cluster has its own independent service mesh control plane, and a sepa-

rate gateway created, it's time to link the clusters all clusters. 

 

We have the multi-cluster gateway created, where all the multi-cluster traffic will come 

through. The gateway has a valid external IP exposed to the Internet. The linkerd-gate-

way also contains a linkerd-proxy sidecar. As shown in figure 5.7, we are exposing two 

ports, 4143, which is the linkerd-proxy port, and 4191, which exposes the readiness of 

the cluster. Other meshed clusters check the readiness of the cluster before routing any 

traffic.  

The external IP faces the internet, but only traffic from inside the mesh is accepted. This 

means traffic coming from proxies whose identity relies on the trust anchor that all clus-

ters share; if not, traffic will get dined. In addition to that, there is a server authorization 

resource. 

Figure 5.6, Cluster-fin multi-cluster components and the including the gateway 

Figure 5.7, Service LoadBalancer with a public IP address as the cluster gateway 
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Figure 5.8, Multi-cluster server authorization policy 

The proxy will reject anything that does not have a proper identity. This means anything 

that is not listed in the meshTLS identity and networks CIDR specification.  

5.3.5 Linking the Clusters 

Now, we have four clusters, each controlled by an independent control plane. As dis-

cussed, to mirror one service from the source cluster to the target cluster, the target 

cluster must be able to watch the service on the source cluster. To prevent unwanted 

introspect on the target cluster, the source cluster must use credentials to check the 

service on the target and make any changes to the mirrored service accordingly. To do 

such, the credentials must include a service account to authenticate the service mirror, 

ClusterRole, and ClusterRoleBinding. The applying roles simply allows the controller on 

one cluster to retrieve the secrets and watch over any links that get created.  

It’s time to link all clusters together using the same trust root created in the section 5.3.2. 

The trust root is extracted from linkerd-identity trust root ConfigMap. Linking the clusters 

will create a credentials secret, a Link resource, and a service-mirror controller. The cre-

dentials secret contains a Kubeconfig, used to access the target cluster's Kubernetes 

API. 

Figure 5.9, Multi-cluster gateways listed from cluster-fin 

The create link contains a secret with a Kubeconfig. It is a regular Kubeconfig file that 

allows us to connect to the cluster. This is what cluster-fin service mirror controller will 

use to connect to the other three clusters. Adding that the ClusterCredentialSecret allows 

us to connect to cluster-fin. More precisely, the gateway's IP is exposed on the other 3 

clusters. The next step is to deploy the application on all clusters.  
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5.3.6 Install Test Application 

At this point we have all cluster and service mesh related installations ready. As dis-

cussed in chapter 3, section 3, there are two ways to implement the application across 

multiple clusters, full replication, and split-by-service. In this thesis, we will use a mix of 

both designs to cover failover scenarios. All clusters will be running the same version of 

the application.  

Now it is time to run the microservice application on all clusters. Note that, we will skip 

this step on cluster-car since the deployment is slightly different than other clusters. The 

application includes three services (figure 5.10): 

 web-svc: frontend (HTTP) 

 search-svc: search and list stored objects (gRPS) 

 pers-svc: Stores the objects (gRPS) 

To be able to spread the application across the clusters, the sample application contains 

multiple services. The “web-svc” is a simple web service serving http requests. It relies 

on “search-svc”, which return a list of available objects, and “pers-svc” that persists the 

incoming requests. Meanwhile, a “traffic-generator” pod is created in the cluster-fin act-

ing as the only source of incoming requests. The traffic generator pod consists of a single 

ubuntu container running a Vegeta [85], a load generator tool.  

Same version of the application will be deployed on the clusters in namespace, “load”. 

All services are written in Go. It is important to have an application with low process time, 

preventing additional overhead to overall the latency.    

 

 

The next step is to inject the service mesh into the services. A sidecar will add to all the 

service pods. It is also possible to inject the service mesh on the whole namespace but 

not recommended. 

Figure 5.10, Microservice application architecture 
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Before proceeding further, we need to check the send/receive requests between two 

services inside one cluster after the injection. To verify the application is working cor-

rectly, it is enough to spectate the logs on the “pers-svc” and check if requests are re-

ceived from the load-generator pod. This way, it is ensured that the pods are up and 

running and the service is working as expected. 

 

Figure 5.11, Install and inject the microservice application 

 

Figure 5.12 shows how the application will look like on each cluster. Adding that since 

the application will be installed as serverless on cluster-car, the installation will be done 

a separate step later. 

 

5.3.7 Exporting the Target Services 

The last step is to mirror the services from the clusters, lowa and bel to the target cluster-

fin. This is possible by mirroring the whole namespace in which the service is deployed 

or by exporting each service one by one. Exporting the services is a better alternative 

since it guarantees that sensitive data will not be accidentally mirrored to unwanted clus-

ters. Also, we will not impact the performance of target clusters by adding or removing 

additional services. 

Figure 5.12, Application installed on each cluster 
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As shown in figure 5.13, the "web-svc" is the only service to be exported and mirrored to 

the target cluster. This is done by adding a label selector to the service. The service 

mirror controller will inspect the services with the selector mirror label and export them 

to the target cluster. 

The exported service gets mirrored to the target cluster, and the source clusters name 

will be added as a postfix to the service name in the target cluster. At this stage, the 

controller manages the mirror service endpoints and points them all to the gateway on 

the source clusters, which means lowa and bel. 

 

To verify this, we need to check the endpoints on cluster-fin and hit the "web-svc" service 

on cluster-lowa and cluster-bel from the cluster-fin. Note that any other client sending 

the requests should also be meshed, in this case, the "load-generator" pod. 

Figure 5.13, list of mirrored services from cluster-fin 

Figure 5.14, High level view of the designed multi-cluster implementation 
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5.3.8 Verify Connection and Mirrored Services 

We recheck the gateways (figure 5.15) to check the connection and the number of de-

tected mirrored services.  

As shown in figure 5.15, each cluster has one service exported and its latency distribution 

measured. Linkerd is using Prometheus under the hood, and it exposes specific metrics 

regarding the availability of "bel" and "lowa" gateways. 

As shown in figure 5.16, each listed endpoint has an IP address assigned, which is the 

actual external IP address of the cluster gateway in which the web-svc is running in other 

clusters. 

As reminder, we will not have any service from cluster-car yet since the application is not 

deployed and mirrored yet. 

5.3.9 Deploy Application as Serverless Workload on Cluster-car 

So far, the installation has been identical among all services. But our goal is to provide 

a solution that additional to high-availability and resiliency, it will be able to be deployed 

on the edge. This way we cover the scenarios which the cluster is low in resource or 

there is a need for computation on the edge of the network. Meanwhile, the traffic will 

only get forwarded to other clusters in a failover scenario. This means that the rest of the 

time the web-svc is idle, and no requests are served by the application backup services.  

One way to reduce the unnecessary resource usage and only acting upon incoming re-

quests is to run the application in a serverless fashion. To do so, we install the Knative, 

an installable serverless framework to manage serverless applications on cluster-car.  

The challenging part here is that, since the control planes in other clusters verify the 

health of a mirrored service based on the readiness of the service pods, we cannot scale 

the web-svc to zero. This is not an actual issue, but we cannot call our design serverless 

Figure 5.15, List of connected gateways and number of mirrored services "NUM_SVC" 

Figure 5.16, Endpoints pointing to the target cluster gateways 
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when we are not fully terminating pods and releasing the resource. Therefore, we split 

the application again into two parts.  

We let Kubernetes to manage the web-svc pods, but we change the implementation of 

the search-svc and pers-svc and deploy them as serverless services. This way the web-

svc will run with the least resource usage, while the other two service will completely 

terminate and die if no request is coming to the application.  

Now we add the application to the cluster-car and export web-svc to get mirrored to 

cluster-fin. Search-svc and pers-svc will spin up but scale to zero again (figure 5.17) after 

not receiving any requests for over 60 seconds.  

5.3.10 Failover Traffic Splitting 

The final step is to architecture the failover case. The traffic-generator pod runs on clus-

ter-fin sending requests to the web service. To prevent a single point of failure, we need 

to have a failover plan to split traffic between the meshed clusters. The failover should 

be done automatically and as slow as possible to prevent overloading the mirrored ser-

vices on other clusters. 

This will be done by using the trafficsplit resource on Kubernetes. The created traffic-

split resource monitors the readiness of the service pods listed as the secondary backup 

services. The listed mirrored services are deployed as services without a selector, mean-

ing that they are just a proxy to the actual services running on other clusters. Therefore, 

the trafficsplit is actually monitoring the web-svc on other cluster through the mirrored 

services and the target cluster KubeAPI.  

We have two ways to define the traffic splitting, static vs. dynamic. In static splitting, we 

define a share of traffic percentage for each service. This way, the incoming requests 

Figure 5.17, Application deployed as Serverless on cluster-car 
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will get forwarded to all defined services accordingly. In the example shown in figure 

5.18, 50% of the traffic will be forwarded to web-svc while the rest is split between the 

mirrored services equally. 

 

The dynamic approach a weight is defined for each service. The web-svc in the cluster-

fin will be the primary service receiving the traffic. The service is supported by three 

backends, web-svc-lowa, web-svc-bel and web-svc-car, acting as secondary services. 

This way, we specify where Kubernetes should route the web-svc incoming traffic in case 

of a service failure. The advantage of this approach (figure 5.19) is that the traffic will 

automatically be forwarded to the secondary services and the load will get spread across 

all specified services.  

 

Splitting the traffic using percentages is not a good approach for failover. The reason is 

that, first of all, the admin should specify the number before implementing the resource. 

Secondly, the traffic is always sent to the specified services, and lastly, the traffic will not 

split again if one of the services fails. Therefore, we will choose the weight splitting since 

the mesh will automatically do the failover. The traffic will get loaded evenly across all 

other secondary services specified in the backend list.  

Figure 5.19, Dynamic and active traffic splitting example 

Figure 5.18, Static traffic splitting example 
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5.4 Failure Zones 

Since part of the application runs as serverless workloads on cluster-car it is also possi-

ble to provide higher availability and better performance inside a zone and not just be-

tween network regions. In this case (figure 5.20), we mirror web-svc from cluster-car to 

cluster-lowa, which runs in the same network region. In case of failure or incoming burst 

of traffic, cluster-lowa can route part of the traffic to cluster-car. Since both clusters are 

in the same network region, it provides resiliency inside the region. Both static and dy-

namic traffic splitting can be used in this scenario. 

  

5.5 Summary 

This chapter we described the designed active disaster recovery strategy using service 

mesh multi-cluster communication and serverless workflows. Figure 5.21 shows the ge-

neric architecture for the implemented solution. The solution provides high-availability, 

resiliency, and higher performance by creating meshed isolated and independent clus-

ters combined with serverless workloads. 

Figure 5.20, Failover design inside a network region 
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Figure 5.21, Full high-available multi-cluster designed solution 
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6. EVALUATION 

The previous described the proposed multi-cluster active disaster recovery solution and 

implemented the designed solution on four clusters. This chapter evaluates the designed 

solution. The evaluation chapter is divided into three main parts, performance, resource 

utilization and security.  

6.1 Performance and Scalability 

The performance tests are performed in different scenarios. The experiments analyse 

the latency distribution, high availability, and resiliency of the implemented solution. The 

latency distribution of each experiment is measured separately. 

6.1.1 Experiment Setup 

In the previous chapter, we created and configured four Kubernetes clusters on three 

separate network regions. The latest stable release of Linkerd service mesh v2.11.2 was 

installed on all clusters, and we installed Knative Serverless framework v1.4 on cluster-

car in us-region-central. Both projects are installed and configured with their default and 

minimal configuration to have the most negligible impact on the output results. Adding 

that, Linkerd and Knative are part of the Cloud Native Computing Foundation (CNCF), 

the open-source, vendor-neutral hub of cloud-native computing.  

The first step is to create a test environment to mimic a real-life scenario both at the 

installation and testing phases. This is quite challenging since many different environ-

ments vary in latency and performance. We will keep all clusters on the same platform 

to keep the testing environment consistent. 

We will evaluate the implemented multi-cluster design with a sustainable load of 10RPS 

and 100RPS over 600 seconds. Only cluster-fin will generate requests to all other clus-

ters running the web-svc service, serving the requests. Vegeta, a versatile HTTP load 

generator tool, is installed on a pod with a single ubuntu container [85].  

The latency will be measured from the client-side (In this case, the pod sending re-

quests), which includes the cluster’s network, global internet network, application, and 

proxies process times. 

 The latency is recorded as percentiles of the distribution, e.g., P50, P90, P99, 

and so on. 
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 The CPU usage and memory consumption on all clusters before, during, and 

after the load. 

Note that the reported outputs are a function of the whole system, including the envi-

ronment, network, service mesh, and serverless platform. 

6.1.2 Test Features 

Even though the service mesh, ingress controllers, and the serverless platform provide 

many additional features, only the default and necessary sets of features will be used to 

mimic real scenarios. 

 For security matters the service mesh has mutual-TLS enabled so that all traffic 

is encrypted and validated between the pods running on different clusters. 

 Multi-cluster communication feature is enabled on the service mesh.  

 Metrics are tracked by the service mesh.  

 Knative Pod Autoscaling (KPA) is taken into use for incoming traffic to the ser-

vices running serverless. 

6.1.3 Gateway Latency 

Starting from the established connections, the latency of each cluster gateway from the 

source cluster is as below. There is a higher latency distribution between regions with a 

lower geographical distance than longer distanced ones shown in figure 6.1. 

Prometheus gathers this data regarding the availability of the gateways or the internet-

facing load balancers. 

 

6.1.4 Test Approaches 

The main idea is to measure the latency while requests are sent to other clusters in a 

failover scenario. However, we first need to measure the actual latency in a non-failure 

scenario to resemble the latency difference. The test is done once without any failover 

Figure 6.1, Cluster gateways latency 
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and next by manually breaking the system. Lastly, the latency of the traffic forwarded to 

the serverless services will be compared to fully managed ones. 

In all scenarios, the requests are sent over of duration of 600sec from cluster-fin to other 

meshed clusters running the web-svc service.  

The experiments are listed as below: 

 Service mesh overhead 

 Direct single request, on-cluster, and cross-cluster 

 Direct 10 RPS over 600 seconds 

 100 RPS with sudden system failure over 600s 

 100 RPS with system failure using serverless workflows 

 

Experiment 1. Service mesh overhead 

The first step is to check the injected service mesh overhead. The created sidecar will 

add an overhead slightly to the served requests. Since the linkerd-proxy needs to update 

and manage the incoming traffic, it will impact the latency of the first incoming requests. 

After that, the serving time drops. Therefore, to get a more accurate result, all pods were 

deleted first, making calls to newly started pods through the proxies. The test is done in 

both injected and uninjected service mesh, and the results show the added overhead of 

the service mesh to the total time of the call. 
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Experiment 2. Direct single request on-cluster and cross-cluster 

In the next experiment, one request is sent directly to the web-svc services from the load-

generator pod using curl. Even though this is a direct call to web-svc running on other 

clusters, it is sent through the local mirrored services, which act as a proxy pointing to 

the destination gateway. To have a direct call to web-svc in cluster-bel we specify the 

mirrored service host “web-svc-bel.load.svc.cluster.local” in the call. 

 

Figure 6.3, Direct request latency to one of the mirrored services 

As seen in the chart below, the latency to the web-svc located in a region far away from 

the source cluster is higher than clusters closer to the source. Note that the requests to 

“web-svc-car” have significantly higher latency due to the cold start of the pod. 

Experiment 3. Direct 10RPS latency over 600s 

The next step is to generate a load with a relatively calm level of 10 requests per second. 

This time, we forward traffic to all mirrored services. Note that we do not have a sudden 
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failure in the system in this experiment. Meaning that the primary web service is manually 

scaled to zero, and the traffic-split controller already knows where to forward traffic be-

fore any request has arrived. 

As a result, the load-generator could send a total number of 6000 requests over 600sec-

onds. Since the service mesh is already aware of the state of each endpoint on other 

clusters, it forwards the traffic to the destinations without any error. 

In this scenario, we do not measure the latency of each mirrored service separately. This 

is due to being more realistic with the failover scenarios, where all traffic should not be 

loaded at once on one single backup service. The measured latency is the latency of the 

whole system no matter where are served. 

 

Experiment 4. 100 RPS with sudden system failure over 600s 

We will generate a particular load from the source cluster similar to the previous experi-

ment. The difference is the number of requests per second with an unexpected web 

service failure while the service receives the requests. This scenario mimics the case 

that one or more services suddenly crash. The multi-cluster mesh should be able to au-

tomatically perform the failover without the need for any changes by the admin, not in 

the network or the configuration. 
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Experiment 5. 100 RPS with system failure using serverless workflows 

Finally, as the last experimental scenario, we will failover the traffic to all clusters, includ-

ing cluster-car running the application as a serverless workload. This way, we evaluate 

the whole designed solution, which not all services are required to be up and running. 

The services running as a serverless workload will handle part of the sudden incoming 

load and scale down to zero. The allocated CPU and memory resources will be released 

after all requests are served, and the gateway detects no new incoming requests.  
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6.1.5 Failover Performance Conclusion 

The performance evaluation scenarios are designed to mimic the actual behaviour of an 

application running across numerous regional clusters. There are many use cases for 

running the application across multiple clusters. However, this thesis focuses on the fail-

over factor enabling high availability and reliability on the entire running system.  

Running a portion of the system on serverless platforms will bring benefits such as better 

scalability but at a higher latency cost. To realize this better, we ran the same multi-

cluster failover scenario over two clusters in the same region. As shown in figure 6.8, the 

latency of the first requests waiting for at least one pod to become ready is noticeable, 

This will not be an issue for services which can tolerate down time for couple of seconds. 

In contrast, the added overhead may be unsuitable for applications or services requing 

low-latency responses. The latency can be decreased significantly by running at least 

one single pod for the application and scale up based on the incoming load. But we 

cannot consider this as serverless since resources will be allocated to the single running 

pod. Even though the application is running on serverless platform.  

As seen in figure 6.9, even though the web service has an unexpected and unpredictable 

downtime, the service mesh has handled the failover exceptionally. Comparing the la-

tency of 100RPS latency with a predictable failover to an unpredictable scenario, we see 

that the outputs are remarkably close. 
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Figure 6.9, Increase in latency during failover 

 

6.2 Resource Utilization 

Next is to measure the service resource usage. We measure the CPU usage based on 

the number of used cores and memory based on the size and reserved time during the 

process. The comparison will be between the serverless workload on cluster-car and the 

fully managed service by Kubernetes on cluster-lowa. 

Note that both clusters run the same application version with the exact specification and 

configuration. The resource CPU and memory usage are almost identical across 10RPS 

vs. 100RPS. Therefore, we will only focus on the scenario with the highest load of 

100RPS over ~600sec of a constant load level.  

We see the difference in the core allocation over time, starting with the CPU usage com-

parison. As shown in figure 6.10, the pods running on cluster-lowa have an average CPU 

usage of 0.11m over time. Pod CPU allocation drops slightly in both clusters after receiv-

ing no new requests. The CPU is released faster in cluster-car since the scaling is ac-

cording to the average of incoming requests. In contrast, cluster-lowa has Horizontal Pod 

Autoscaling (HPA) which is based on CPU usage. This is why it has a slightly higher 

delay in releasing the CPU. Keeping the CPU reserved afterward prevents sudden shock 

to the system. 
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In comparison, the serverless workload has different behavior. The service will scale its 

pods based on the average of incoming requests at a time. Many small pods will be 

created, serving part of the request, and terminating. In this experiment, ten pods were 

created, serving the requests for a short time and altogether terminating. This is why the 

CPU consumption drops much faster because another small pod is taking care of the 

rest of the requests. As seen in figure 6.11, The average CPU consumption is also 

around 0.025m of CPU. 

 

Figure 6.10, Pod CPU usage 

Figure 6.11, Serverless workflow CPU usage 
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Next is to compare the memory usage pattern on each cluster. Staring with cluster-lowa, 

as seen, even though the load stops after approximately 600 seconds, the memory allo-

cation will never drop. No matter if the pod is consuming any requests are not, Kuber-

netes will not release the memory at all (figure 6.12). Meanwhile, if a new load is received 

after a time, the memory will increase again until it reaches its specified limit. 

On the other hand, the memory is never kept by the serverless workload simply because 

all pods get terminated and scaled to zero (figure 6.13). And this is one of biggest ad-

vantage of Serverless while scaling based on the number of incoming requests. 

 

6.3 Security 

Next is to check how secure is the designed multi-cluster solution. Since the traffic be-

tween clusters is going over the public internet, and the gateways are exposed, security 

Figure 6.12, Pod memory consumption 

Figure 6.13, Serverless workflow memory consumption 
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should be considered extremely carefully. This experiment will perform a short DoS at-

tack hitting all clusters. We will create a client outside the mesh, sending the same type 

of request to web-svc. 

 

As seen in figure 6.15, no matter how many times a user outside the mesh sends re-

quests to any component inside the mesh, they all get blocked. This is because of the 

created shared trust anchor between the clusters validation and verifying all inbound and 

outbound traffic. 

 

6.4 Summary 

In this chapter, the implemented multi-cluster design was evaluated over failover scenar-

ios, monitoring the system's behavior. Firstly, the overhead and latency were evaluated 

in a stable environment without any failure in the system. Second, a real failure scenario 

was mimicked to evaluate the reliability and high availability of the system. Next, the 

serverless workload providing higher reliability and lower resource consumption was 

evaluated. Lastly, the system was put under attack to measure the level of security of 

the multi-cluster service mesh design. As a result, the designed Kubernetes multi-cluster 

architecture could detect the endpoint failures and automatically failover the load through 

the mirrored services to other meshed clusters running in separate network regions. 

Since each cluster had a separate and independent control plane, changes in one cluster 

did not affect other running clusters in the mesh. Therefore, forwarding the traffic to the 

destination was done independently by the destination cluster ingress. Meanwhile, by 

routing part of the load to serverless workloads on the backup clusters, we were able to 

Figure 6.14, Attack over 30s to web-svc service 

Figure 6.15, All requests coming outside the mesh are refused by the gateway 
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increase the resiliency inside a region. Even though Serverless workload increase the 

latency, because of the cold starts, increase the performance and reduce resource utili-

zation in overall. All in-cluster and cross-clusters were encrypted to prevent attacks from 

outside the mesh. 
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7. CONCLUSION AND FUTURE WORK 

This chapter concludes the thesis by providing a brief overview of the thesis work. In 

addition, this chapter lists the potential future work to improve the overall proposed solu-

tion. 

7.1 Conclusion and limitations 

Kubernetes multi-cluster architectures provide a mechanism for deploying and managing 

applications across multiple clusters. One of the most crucial use cases of deploying 

applications on multiple clusters is to achieve high availability and resiliency in the sys-

tem. In other words, to optimize the Kubernetes clusters configuration to be tolerant to 

system failures by removing any single point of failures. The designed solutions should 

be able to detect system failures automatically and react as quickly as possible to prevent 

data loss and decrease latency.  

A simple solution that comes to mind is simply detecting a single point of failure and 

providing backups by replicating or increasing the available resources. Adding more rep-

licas or increasing resources does not necessarily guarantee resiliency since adding 

more components increases the complexity, affecting the system's performance, mainly 

when we have limited resources.  

This thesis introduced a high available and active disaster recovery multi-cluster strategy 

based on service mesh and serverless workloads. The proposed solution passed all 

high-availability and reliability tests presented in the evaluation chater.  

A brief overview on the proposed solution, 

 Control planes: Deploying separate control planes for each cluster provided en-

tirely independent and isolated clusters. 

 Separate network regions: Clusters were spread across regions to support hi-

erarchal network scenarios. 

 Automatic failover: We managed to increase the availability of the system by 

splitting the traffic across multiple clusters and without overloading backup ser-

vices. 
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 Service discovery: Service mirroring was taken into account rather than global 

service and endpoint discovery to decrease the used bandwidth regarding the 

communication between cluster KubeAPIs. 

 Serverless services: We implemented part of the application as serverless to 

increase availability in a region and optimize the resource utilization. 

 Monitoring and tracing: By adopting service mesh, we were able to have a uni-

fied view of the application behavior across all clusters. 

 Security: Public and private keys were used to encrypt the whole traffic inside 

and between clusters. 

 No changes in the application code level: Detecting and routing the traffic was 

entirely done by the service mesh and the created Kubernetes resources. There-

fore, the application code and service configuration did not require any changes. 

Neither while implementing the application nor during failover. 

According to the results, the solution can be used in practice for containerized applica-

tions managed by the Kubernetes orchestration system. However, a few limitations still 

need improvement, discussed below.  

 Fully automated traffic splitting: Even though in the implementation, the traffic 

splitting resource is watching the endpoints actively and failing over the traffic 

automatically, the admin should configure the resource beforehand. The admin 

needs to specify the target services and make decisions based on the entire ar-

chitecture, selecting the secondary backup services. 

 Serverless cold start latency: As shown in chapter 6, we decreased the CPU 

and memory usage time by running part of the application on the Knative server-

less platform. However, the pod cold-start latency is noticeable, and the solution 

would not benefit services sensitive to latency.  

 Endpoint readiness: At the moment, the only available factor for the controller 

to know if a target service is ready to receive requests or not is to check the 

readiness of the pod. This can be an issue if the service is serverless and has 

scaled to zero.  
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7.2 Future Work 

This section discusses future work to improve the designed solution. The first idea in-

vestigates how to manage headless services such as StatefulSets. This way, we can 

mirror database notes by mirroring the headless services. Although this looks possible, 

orchestrating a database across multiple Kubernetes clusters is challenging.  

Second, the pod readiness is the failover criteria from primary service to a list of second-

ary services. There are other ways to improve this; for instance, Kubernetes provides 

topology of awareness hints where it is possible to declare in endpoint slices whether we 

want to keep connections inside the same zone or not. Another possible way is that 

instead of waiting for the pods to fail before complete failover, we could watch its latency 

and do the failover when it starts becoming slow.  

Third, while installing a control plane on a small number of clusters is not a big deal, 

configuring tens and hundreds of clusters becomes challenging. A minor misconfigura-

tion in the service mesh control plane can cause cluster availability and performance 

issues. A good solution is to combine centralized management solutions such as GitOps 

with the service mesh. While the service mesh takes care of the clusters and the traffic 

between them, GitOps approaches take care of the service mesh installation on all clus-

ters. 
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