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ABSTRACT

Juha Ylikoski: Dead reckoning with imu sensors
Bachelor’s thesis
Tampere University
Information technology
May 2022

Inertial measurement unit (IMU) odometry’s main purpose is to estimate position from inertia
measuring sensors like accelerometers and gyroscopes. With the decreasing cost of MEMS-
based IMU sensors and the increased amount of devices containing them, IMU-odometry is in
process of becoming a viable alternative to more traditional methods on low-cost and low-power
setups.

The problematic nature of IMU odometry’s double integral from acceleration to position has
made it difficult and inaccurate to apply this form of position estimation to modern smartphones.
This has been mostly caused by their noisy sensors and the use of only classical algorithms.
This thesis compares state-of-the-art methods of dead reckoning which use machine learning to
achieve better positioning accuracy.

The main purpose of IMU odometry is to estimate the position of the actor using acceleration
sensors and gyroscopes. These two sensor inputs can be augmented with for example barome-
ters or magnetometers but the main focus is to accurately estimate the position of an actor with
low-power consumption sensors. This excludes camera and GPS-based approaches due to their
high-power consumption.

In previous work related to this field, this problem has been tried to solve with physics-based
approaches calculating the double integral in algorithms like extended Kalman filter, but due to
the double integral accumulating errors, they produce poor results. The methods compared in this
thesis are both learning-based and try to estimate the first integral from acceleration to velocity
using convolutional neural networks. By replacing the first integral with CNN, we can mitigate
the noise from the acceleration data and get a reasonable velocity approximation which we can
calculate into position.

Keywords: IMU, inertial measurement unit, inertial-odometry, convolutional neural network, pedes-
trian dead reckoning

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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TIIVISTELMÄ

Juha Ylikoski: Reitin seuranta IMU-sensoreilla
Kandidaatintyö
Tampereen yliopisto
Tietotekniikka
Toukokuu 2022

Inertian mittaussensori (IMU)-odometrian päätarkoitus on arvioida kohteen sijainti sensoreilla,
kuten kiihtyvyyssensoreilla ja gyroskooppeilla. MEMS-pohjaisten IMU-sensoreiden laskeneiden
kustannusten sekä niiden yleistymisen myötä IMU-odometriasta on tulossa toimiva vaihtoehto
perinteisille menetelmille matalakustannuksisissa tai matalatehoisissa järjestelmissä.

IMU-odometrian tuplaintegraalin ongelmallisuus kiihtyvyydestä sijaintiin on tehnyt siitä vaikean
ja epätarkan menetelmän moderneille älypuhelimille klassisilla menetelmillä. Tämä työ esittelee
ja vertailee koneoppimista käyttäviä menetelmiä sijainnin seurantaa.

IMU-odometrian päätarkoitus on laskea kohteen sijainti käyttäen suurimmaksi osaksi kiihty-
vyyssensoreita sekä gyroskooppeja. Näitä kahta sensoria voidaan augmentoida barometreillä,
magnetometreillä sekä muilla sensoreilla, mutta tämän menetelmän tarkoitus on laskea kohteen
sijainti matalatehoisilla menetelmillä, mikä poissulkee mahdollisuuden kamera tai GPS pohjaisiin
menetelmiin.

Aiemmin tätä ongelmaa on yritetty ratkaista fysiikkapohjaisella lähestymistavalla laskien tuplain-
tegraalin algoritmeilla kuten extended Kalman filter. Suurimmaksi osaksi nämä menetelmät ovat
tuottaneet huonoja tuloksia tuplaintegraalin nopean virheen kumuloinnin vuoksi. Tässä työssä ver-
taillut menetelmät ovat molemmat oppimispohjaisia ja yrittävät laskea ensimmäisen integraalin
kiihtyvyydestä nopeuteen konvoluutionallisilla neuroverkoilla. Vaihtamalla ensimmäisen integraa-
lin neuroverkkoon voidaan vähentää kohinaa sekä saada tyydyttävän nopeusarvion, jota voimme
käyttää sijainnin laskemiseen.

Avainsanat: IMU, inertianmittaussensori, inertiaalinen odometria, konvoluutinallinen neuroverkko,
jalankulkijan reitin seuranta

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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LIST OF SYMBOLS AND ABBREVIATIONS

T a
k Accelerometer diagonal bias

ωbiased
k Raw gyroscope angular velocity value at the time of k

abiasedk Raw acceleration acceleration value at the time of k

bak Accelerometer linear bias

bwk Gyroscope linear bias

ek Error at the time of k

g Acceleration caused by gravity

pk Position at the time of k

qk Quaternion rotation vector at time of k

tk Time at the moment of k

vk Velocity at the time of k

API Application programming interface

CNN Convolutional neural network

EKF Extended Kalman Filter

GPS Global positioning system

GPU Graphics processing unit

IMU Inertial measurement unit

MSE Mean squared error

NN Neural network

ResNet Residual neural network

SPEED Non-directional velocity

VELOCITY Directional velocity
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1. INTRODUCTION

Localization or localizing position and rotation has become an important part of many

devices and applications like virtual reality headsets and smartphone applications. Ac-

curate localization usually requires either high power consumption sensors like GPS or

some specialized hardware like infrared transmitters and receivers which especially in

mobile devices usually are not viable.

An alternative way to localize the subject is to offload part of the tracking to odometry

which tries to keep track of the position of the device over time. There are many viable

methods to do this, such as visual-inertial odometry [1] but due to high power consump-

tion or additional constraints like the requirement for a camera with an unobstructed field

of view, these methods may not work for all use cases. One means of odometry with

low-power consumption is inertial odometry which uses IMU sensors to track the device’s

position from acceleration and angular velocity. Previously this method has not been vi-

able on low-end hardware due to high noise and phenomena of gravity "bleeding out"

to the measurement. This is caused by not subtracting gravity-caused acceleration cor-

rectly which then gets accumulated fast with the double integral from acceleration to the

position.

Figure 1.1. IMU-sensor of an iPhone SE, it’s coordinate frame and it’s measured axis [2]
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This thesis tries to find good ways to track device’s location using inertial odometry with

low-cost sensors like the ones in most smartphones. Traditionally, this has been done with

algorithms like extended Kalman filter (EKF) which calculated the double integral into a

reasonable estimation of the location and the covariance. This does not work well with

high noise smartphone IMU sensors. These large errors have been previously decreased

using methods like zero velocity updates [3], but these methods do not generalize well,

and in the case of e.g. pedestrian tracking requires the sensors to be mounted to their

legs [4] or require complicated math to detect them from a pocket [3]. Instead, this paper

inspects two different methods of using machine learning to estimate the velocity of the

device which can then be used with traditional algorithms like EKF to estimate position.

The benefits of this method are better prevention of gravity "bleeding" to the measure-

ments and reduction of noise in the velocity.

Chapter 2 explains some related work and which are the current means of calculating

odometry. Chapter 3 goes into detail about the mathematics of inertial odometry and

the two inspected methods. Chapter 4 contains experiments and results. Chapter 5

discusses some problems with these approaches and chapter 6 summarizes the results

of this thesis.
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2. RELATED WORK

Traditionally IMUs have been secondary sensors in odometry systems where they have

been used in algorithms such as EKF to aid in positioning the device [[5], [6] and [7]].

With EKF-based solutions, the system can have multiple different sensors which measure

multiple different variables such as wheel angles, speed, pressure, magnetic field, and

use active systems like infrared and light detection and ranging.

More recent approaches to odometry are e.g. inertial-visual-odometry that has been

proven successful [[8], [9], [1]] and are applied in products such as Google Tango [10].

Inertial-visual-odometry is used as ground truth for many inertial-odometry datasets [[11],

[12], [13]]. These systems have some special requirements such as requiring an unob-

structed view for the camera and have high power consumption due to the visual odome-

try’s processing needs but are creating good results.

Inertial-odometry without high-power consumption sensors or methods has gained popu-

larity due to advancements in convolutional neural networks such as ResNet. This has in-

creased attempts to use learning-based approaches to inertial odometry problems. These

methods try to use neural networks to aid in estimating position data from the noisy ac-

celeration and angular velocities and in some cases mix in other low power sensors such

as barometers or magnetometers.

This paper inspects recent works by Cortés et al. [14] and Herath et al. [12], and tries to

replicate their findings and compare them. These two papers were selected due to their

different approaches where Cortés et al. [14] uses more traditional extended Kalman filter

to calculate the position information and augment it with pseudo speed measurements

coming from a neural network. On the other hand, Herath et al. [12] estimates the velocity

vector for the device which could then be either just cumulatively summed or used in other

algorithms such as EKF to augment the data with other sensors.
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3. THEORY

This chapter is divided into two sections which first of them discusses the mathematics of

inertial odometry which would apply to classical methods like pure EKF. It goes through

how raw acceleration and angular velocities can be used to calculate the change in posi-

tion and pose. The second section inspects two alternative methods which would partially

replace or augment the mathematics to produce better results.

3.1 Physics of inertial odometry

The device containing the IMU sensors usually measures its acceleration and angular

velocity in its device coordinate frame. This means that the device’s coordinate frame is

rotating when compared to the world coordinate frame and adds complexity to calculating

the velocity vectors for the device. This can be negated by transforming the device coor-

dinate frame into a heading-agnostic coordinate frame meaning attaching the coordinate

frame to some known non-rotating coordinate frame e.g. world coordinate frame with a

static rotation and translation. For example, the coordinate frame containing the device’s

position, velocity and heading can be made heading agnostic by settings its heading (qk)

at the start of the scenario to the device’s rotation in comparison to the world coordinate

frame and updating it as in equation (3.1)

⎛⎜⎜⎜⎝
pk

vk

qk

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
pk−1 + vk−1∆tk

vk−1 + [qk(ak + ϵak)q
∗
k − g]∆tk

Ω[(ωk + ϵωk )∆tk]qk−1

⎞⎟⎟⎟⎠ (3.1)

Where pk, vk, qk are device’s position, velocity and heading (quaternion) at the time of

k, ∆tk = tk − tk−1, a is acceleration after removing diagonal (Tk) and linear (bk) sensor

biases (3.2), w is angular velocity after removing sensor linear bias (3.2), g is acceleration

caused by gravity, ϵak is the error, q[·]q∗k is quaternion rotation and Ω denotes quaternion

rotation change matrix [3]

⎧⎨⎩ak = T a
k a

biased
k − bak

ωk = ωbiased
k − bwk

(3.2)
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To make sure that the heading agnostic coordinate frame is aligned with the world coor-

dinate frame the algorithm must know the initial pose of the device. This can be done

by aligning some of the axes with gravity [[12], [15]]. In practice, this can be a hard task

to accomplish but most smartphones already implemented this with their APIs. Some

papers [12] have used random heading agnostic coordinate frames for training the net-

works. This has been accomplished by randomly rotating the ground truth trajectories on

the horizontal plane.

3.2 Convolutional neural network integrator

Both inspected neural networks are approximating the first integral from acceleration to

speed or velocity. One of the neural networks estimates speed which in this thesis means

non-directional velocity and is a single-dimensional scalar value while the other calculates

multi-dimensional directional velocity. After the speed or velocity is calculated it can be

used for classical algorithms like EKF in Cortés et al. [14] or just cumulatively summed to

the position like in Herath et al. [12].

Networks input is a window of acceleration and angular velocities. This creates a problem

where the networks do not get samples from a specific starting point, but as pointed out by

Cortés et al. [14] the convolutional layers at the start of the networks make them invariant

to shifts of the starting positions.

3.2.1 Calculating speed from accelerations

In Cortés et al. [14] a simple CNN was used which calculated the speed of the device

with a neural network. The neural network takes as input the six acceleration values over

two seconds at 100 Hz sampling frequency (a tensor of shape 200x6) and condenses

the window into single output which describes the speed of the device. Because this is a

one-dimensional value it does not have any sense of direction but is just the length of the

velocity vector. The neural network is displayed in Figure 3.1.
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200x6

1x1

IMU

speed

Figure 3.1. Structure of the network used in Cortés et al. [14]

The extended Kalman filter was built to take an input vector of acceleration and angular

velocities to its prediction step and the prediction was updated with the speed value from

the CNN as a pseudo-measurement. This was repeated for every sample in the input data

making the process have a stride of one. The network only produces single-dimensional

scalar value output which is harder to utilize and requires more complicated methods to

calculate position.

3.2.2 Calculating velocity from accelerations

An alternative solution can be found from Herath et al. [12] where they have three different

backbone suggestions of which this thesis inspects the modified ResNet version due to

it being the most consistent according to their tests. The architecture of this network is

described in Figure 3.2.
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Figure 3.2. Structure of the network used in the ResNet version of Herath et al. [12]

In Herath et al. [12] the system also takes in three acceleration values and three different

angular velocities in a window. The system has a sampling frequency of 200 Hz and

a window size of one second which makes the tensor 200x6. The output vector of the

system is instead a vector of velocities (x,y-velocities) instead of speed. This makes it

possible to use a simpler algorithm to calculate the position e.g. cumulative sum. In their

work, they simply calculated a cumulative sum for this output vector and got good results.

Unlike the simpler network introduced in 3.2.1 this network will only create an output value

for every five frames, making it have a stride of five. This makes it possible to have less

frequent updates and less noise in the velocity outputs, smoothing the input of algorithms

like EKF, but with a possibility of losing some high-frequency changes. Having a larger

stride also results in lower computational requirements.

Unfortunately, the implementation presented could only estimate 2-dimensional velocity

output and ignored the gravity-aligned z-axis. Most likely this could be changed to a 3-

dimensional model easily by changing the later layers’ output dimensions. The paper did

not discuss this possibility but their shared code in their Github repository [16] contained a

configuration that could change the network from 2-dimensional output to 3-dimensional

requiring re-training.
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4. EXPERIMENTS AND RESULTS

Both methods contained at least partial reference implementation in Github and were

publicly available and this thesis tried to replicate their results. For Cortés et al. [14] the

repository [17] contained a PyTorch-based neural network model and scripts required to

train it. For ease of use, the model and scripts were ported to python3 and a newer

version of PyTorch from python2. Unfortunately, the repository did not contain reference

implementation about the EKF but after communication with the authors, they gave a ref-

erence to their other research which contained EKF implementation with pseudo-velocity

updates, though it contained also visual odometry [18]. The repository for Herath et al.

[12] contained a complete PyTorch model and code to calculate odometry and its different

error metrics.

4.1 Datasets and training

Both models had their own or closely related datasets. Unfortunately, Herath et al. [12]

dataset was only partially published due to security concerns which most likely will make

training and reproducing their results impossible. On the other hand, they published pre-

trained models of which the ResNet version was used to similar results as in their paper.

ADVIO-dataset [11] used by Cortés et al. [14] was published along with a fully trained

model. For some reason, this trained PyTorch model did not have the same layout as

the model in their published sources (it had a different kernel size). Because of this, the

model was re-trained as the paper described. The model they had was trained using

the ADVIO dataset as in Cortés et al. [14] for 2000 epochs with Adam optimizer. The

optimizer’s learning rate was set to 1e − 6, the loss function was MSE loss and 10-fold

cross-validation was used for the training dataset where the data is split into 90 % training

and 10 % validation datasets. Training loss and validation loss are illustrated in Figures

4.1 and 4.2.
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Figure 4.1. Training loss
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Figure 4.2. Validation loss

With the testing dataset, 0.009 m/s MSE was reached with the trained model, and the

pre-trained model had an MSE of 0.0127m/s which is close to the reference of 0.13m/s.

Most likely the authors have left an old version of the model to their Github. Training the

network took approximately 35 seconds per epoch, making it take approximately 19 hours.

This process could be optimized by fixing the training loop to not be most likely memory

bottlenecked at the data loader and transferring training itself to GPU which without fixing

the other bottlenecks did not help.

4.2 Odometry

This section describes the odometry results for both methods. Firstly, the results of the

ResNet method are discussed and then the results of the EKF-based method.

4.2.1 ResNet velocity calculation

With the Herath et al. [12] CNN output velocities, calculating odometry information suc-

ceeded by multiplying the velocities with their timestamp difference ∆t = tcurrent −
tprevious and cumulatively summing them to calculate 2-dimensional positions for every

output.

This thesis is using error metrics absolute trajectory error (ATE) and relative trajectory

error (RTE) defined by [19] and [12]. In them, they defined ATE as a root mean squared

error between ground truth and predicted trajectory and RTE as an average root mean

squared over a fixed time interval (which in this paper is 1 minute). For the published

datasets, the unseen subject test set got average errors of 5.10 m ATE and 3.39 m RTE,

which is close to what was reported in Herath et al. [12] (5.14 m ATE and 4.37 m RTE).

The scenario with the closest ATE and RTE to mean values is displayed in Figure 4.3
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Figure 4.3. Scenario 0’s estimated trajectory with the closest ATE and RTE to mean over
time.

Distribution of the errors per scenario was on most scenarios less than 5 m (Figure 4.4)

for both ATE and RTE with scenario lengths in time being between 5 minutes 40 seconds

to 15 minutes and 3 seconds averaging to 5 minutes and 29 seconds (Figure 4.5).
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Figure 4.5. length of scenarios

The two worst cases with either largest ATE or largest RTE were scenarios 7 and 12

where scenario 7 had the largest ATE of 14.60 m and RTE of 14.50 m and scenario 12

had the largest RTE of 27.08 m and ATE of 10.26 m. The two scenarios are illustrated in

Figures 4.6 and 4.7.
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From Figures 4.6 and 4.7 can be seen that the overall shape of the estimate is approxi-

mately correct but due to some sort of drift they have some translation and mostly rotation

errors. Translation error can be caused by incorrect bias removal described in 3.1 or just

CNN not having enough training samples. A more dominant feature is visible in both im-

ages as a rotational error. This makes the whole trajectory drift in rotation slowly over

time. This is visible especially in Figure 4.7.

4.2.2 EKF and pseudo-velocity

Unfortunately, even after reaching out and getting a reference implementation [18] for a

similar application from the authors, this paper was not able to reproduce the odometry

results calculated with EKF. In experiments, the EKF position exploded to large numbers

almost immediately after starting the algorithm. This was observed with both the pre-

trained model and the self-trained model (Figure 4.8).

Figure 4.8. Estimated trajectory for EKF based approach

This can be caused by many things like a poor choice of covariances for the EKF. In their

previous papers, they have not well defined the pseudo-speeds covariance and have only

said that it should be large compared to the process noise to make it non-informative com-

pared to the other information sources like EKF control input (acceleration and angular

velocity) and of course, the problem may have been just a programming error.
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5. DISCUSSION

Although using CNN to calculate odometry from IMU sensor data seems to produce good

results there are a couple of drawbacks to this approach. Firstly, the process is highly

dependent on the sampling frequency being the same as when the network was trained.

This makes it not a good approach in cases where there is a variable sampling frequency

or multiple different constant sampling frequencies. Secondly, estimating covariance for

CNN output vector is hard, which makes it harder to use in cases that would require co-

variance like EKF though this can most likely be estimated experimentally. Thirdly, these

approaches are meant to be used with pedestrian dead reckoning problems, and gener-

alizing them to other use cases might not work well, especially without a large enough

dataset.

Other problems might arise with wheeled vehicles which could have velocity over zero for

a long amount of time. These neural networks would not be feasible to learn with any kind

of dataset due to them not remembering anything beyond a couple of seconds.

Lastly, it is not certain how these models would behave if they were trained with data

from one sensor model and tested with other. It might be that using these approaches

won’t work well without some external noise normalization which would be applied to

sensor data before processing. This makes it possibly hard to scale across many different

devices.

Processing requirements to run these systems in real-time are feasible with modern pro-

cessors but it is unknown how well these would run on an average smartphone and espe-

cially, how much battery they would use. Battery usage has been one of the main reasons

why to use IMU odometry over e.g. GPS so testing this would be important to understand

how applicable these approaches are. Due to these problems, these methods may not

be suitable for mobile applications.
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6. CONCLUSION

Both the EKF-based and ResNet-based approaches have their positive and negative

sides. Implementing the ResNet-based neural network is relatively easy but training it

might be harder and more important than training the network which tries to guide EKF

not to drift. The ResNet method seems to have a precision of meters even after multiple

minutes and if augmented with other sensor data most likely would have good precision

although being harder to integrate with other sensors than the EKF method. Unfortu-

nately, reproducing the results of the EKF method was not successful, but most likely if

there was a working example of it reproducing its results and integrating them with other

sensors would be easy. The code used in this thesis is available at Github1.

With current methods, we can reach meter-level accuracy on pedestrian dead reckoning

and track the device over tens of minutes without any position fixes. Integrating new

sensors to have even better accuracy in these systems is possible with algorithms like

EKF.

Using neural networks to calculate odometry may not be the ultimate solution. General-

izing these methods to e.g. wheeled vehicles can be difficult and at least these models

do not apply to them. Using the same models between different devices might not be

possible and the battery usage of these neural networks might cause problems for mobile

applications.

To summarize IMU-odometry has advanced greatly during the last couple of years due

to advancements in neural networks and new non-classical methods. There are still a

lot of open issues. Development of these methods should continue further to find more

accurate and more efficient methods of calculating IMU-odometry.

1https://github.com/juha-ylikoski/imu-dead-reckoning
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