

Roope Korkee

3D SCANNING WITH A KINECT DEPTH
SENSOR

Bachelor’s thesis
Faculty of Information Technology and Communication Sciences

Examiner: Prof. Joni Kämäräinen
May 2022

i

ABSTRACT

Roope Korkee: 3D scanning with a Kinect depth sensor
Bachelor’s Thesis
Tampere University
Information Technology
May 2022

Real-life objects can be transferred to the virtual 3D world with 3D scanning techniques. Scan-

ning can be performed either with a stationary camera while rotating the object or by moving the
camera around the scanned object. This work investigates how a two-dimensional depth image
of a depth sensor can be transformed into a three-dimensional point cloud and what filtering
methods can be used to separate an object from its background. Point clouds taken from different
directions are combined, and the quality of the obtained point clouds is studied.

Microsoft Kinect V2 depth sensor was used to take depth images. The device calculates the
distance to the destination by measuring the flight time of the infrared pulse it emits. Color infor-
mation for the image was available, but this work focused only on using distance information. The
device was used to scan objects from several different viewpoints. Background points were grad-
ually filtered out of each image until only the scanned object point cloud remained. Each image
taken from a different angle is initially in its own coordinate system. Point clouds are aligned and
connected to the same global coordinate system. Alignment is performed using an iterative clos-
est point (ICP) algorithm.

The quality of the resulting point clouds for small objects is not good. The overall shapes of
the resulting point cloud is correct, but the more accurate surface shapes disappear in the error
noise. With a larger object, the error noise did not have as much effect on the result as the surface
area was larger. This results a decent quality point cloud. A good scan result requires special
features of the object and the environment. For example, reflective surfaces cause incorrect lo-
cations for points. These types of surfaces should be avoided or considered when handling data.
Important point information may be lost in filtering, and errors may accumulate when points are
combined using the ICP algorithm. The methods used are well suited for use if the goal is to
obtain only a rough model of the described object.

Keywords: 3D modeling, ICP, point cloud, depth image, Kinect

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Roope Korkee: 3D-skannaus Kinect-syvyyssensorilla
Kandidaatintyö
Tampereen yliopisto
Tietotekniikka
Toukokuu 2022

Tosielämän esineitä voidaan siirtää virtuaaliseen 3D-maailmaan 3D-skannaustekniikoilla.

Skannaus voidaan suorittaa joko paikallaan olevalla kameralla kohdetta pyörittämällä tai
liikuttamalla kameraa skannattavan kohteen ympärillä. Tässä työssä tutkitaan, kuinka
syvyyssensorin kaksiulotteinen syvyyskuva voidaan muuntaa kolmiulotteiseksi pistepilveksi ja
millä suodatusmenetelmillä kohde voidaan erottaa taustastaan. Eri suunnista otettuja pistepilviä
yhdistetään ja saatujen pistepilvien laatua tutkitaan.

Microsoft Kinect V2 -syvyysanturia käytettiin syvyyskuvien ottamiseen. Laite laskee
etäisyyden kohteeseen mittaamalla lähettämänsä infrapunapulssin lentoajan keston. Kuvan
väritiedot olivat saatavilla, mutta tässä työssä keskityttiin vain etäisyystietojen käyttöön. Laitteen
avulla esineitä skannattiin useista eri näkökulmista. Taustapisteitä suodatettiin vähitellen pois
jokaisesta kuvasta, kunnes jäljelle jäi vain skannatun esineen pistepilvi. Jokainen eri kulmasta
otettu kuva on aluksi omassa koordinaatistossaan. Pistepilvet kohdistetaan ja yhdistetään
samaan globaaliin koordinaattijärjestelmään. Kohdistus suoritetaan käyttämällä iteratiivista
lähimmän pisteen algoritmia, ICP:tä (engl. iterative closest point).

Tuloksena saatujen pistepilvien laatu pienille kohteille ei ole hyvä. Pistepilvien ulkomuodot
ovat oikeat, mutta tarkemmat pinnanmuodot katoavat virhekohinassa. Suuremmalla kuvattavalla
kohteella virhekohinalla ei ollut kovin suurta vaikutusta tulokseen, kun kohteen pinta-ala oli
suurempi. Tämä tuottaa melko hyvänlaatuisen pistepilven. Hyvä skannaustulos vaatii kohteen ja
ympäristön erityispiirteitä. Esimerkiksi heijastavat pinnat aiheuttavat virheellisiä sijainteja pisteille.
Tämäntyyppisiä pintoja tulee välttää tai ottaa huomioon datan käsittelyssä. Tärkeät pistetiedot
voivat kadota suodatuksessa ja virheitä voi kertyä, kun pisteitä yhdistetään ICP-algoritmilla.
Käytetyt menetelmät sopivat hyvin käyttötarkoitukseen, jos tavoitteena on saada vain karkea malli
kuvatusta kohteesta.

Avainsanat: 3D-mallinnus, ICP, pistepilvi, syvyyskuva, Kinect

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This thesis concludes 3 years of bachelor’s studies in information technology at the Uni-

versity of Tampere. The motivation began with an interest in the Kinect sensor that I had

never been able to try. This topic created an excellent opportunity to gain experience in

how Kinect and 3D scanning work. A significant amount of information has been

achieved on the subject with this work.

I want to thank the Department of Signal Processing at the University of Tampere for

lending me a Microsoft Kinect sensor. This study has provided an excellent opportunity

to study the matter in practice and learn more about it. Nowadays, it would be difficult to

get a Kinect sensor, as Microsoft’s support for this device has long since ceased to exist,

and such devices are no longer being manufactured. I would also like to thank my family

members who have helped with the work by proofreading this document and suggesting

improvements. I would also like to thank my supervisor, Professor Joni Kämäräinen, for

providing a good research topic and support as the work progressed.

Tampere, May 16, 2022

Roope Korkee

iv

CONTENTS

1. INTRODUCTION .. 1

2. LITERATURE BACKGROUND ... 3

2.1 3D scanning technologies .. 3

2.2 3D reconstruction with Kinect ... 3

2.3 Calibration and error sources ... 4

2.4 KinectFusion .. 6

3. METHODS .. 7

3.1 Depth data acquisition .. 7

3.2 Filtering .. 7

3.2.1 Distance filter .. 8
3.2.2 Downsampling .. 9
3.2.3 Planar removal .. 10
3.2.4 Clustering ... 11
3.2.5 Inverse filtering ... 12

3.3 Iterative closest point ... 13

4. EXPERIMENTS .. 16

4.1 Hardware ... 16

4.2 Filtering .. 17

4.3 Point cloud alignment ... 18

5. RESULTS ... 20

6. DISCUSSION.. 24

7. CONCLUSION .. 26

REFERENCES... 27

v

LIST OF FIGURES

Figure 1. 3D scanned sofa and the resulting complete 3D point cloud 1
Figure 2. Front (b, c, d) and top (e, f, g) point cloud views of a planar wall. (a)

Original image. (b, e) Kinect raw depth data. (c, f) Point cloud in
XYZ coordinates with lens distortions. (d, g) Point cloud in XYZ
coordinate system without lens distortions ... 5

Figure 3. Kinect coordinate system ... 5
Figure 4. Point cloud of a game controller on a flat floor ... 8
Figure 5. Distance filtered point cloud ... 9
Figure 6. Downsampled point cloud .. 9
Figure 7. The point cloud after planar removal .. 10
Figure 8. Controller cluster extracted .. 11
Figure 9. Inverse filtered controller cluster .. 12
Figure 10. Example of ICP algorithm. Manojkumar and Reddy [24] 13
Figure 11. Steam controller ... 16
Figure 12. Bar chart of the point cloud sizes after each filtering step 21
Figure 13. Line chart of one of the ICP point cloud alignment mean-squared error 21
Figure 14. Low-quality resulting point cloud from the controller. Top view (a), side

view (b), perspective view (c) ... 22
Figure 15. High-quality resulting point cloud from the controller. Top view (a), side

view (b), perspective view (c) ... 22
Figure 16. Resulting point clouds from the scanned sofa. Top view (a), side view

(b), perspective view (c) ... 23

vi

LIST OF SYMBOLS AND ABBREVIATIONS

3D Three dimensional
ICP Iterative Closest Point
IR Infrared
PCL Point Cloud Library; Open-source code library for modifying point

clouds
RANSAC Random Sample Consensus
RGB-D Red, Green, Blue, and Depth; color image with pixel depth values
ROI Region Of Interest
TOF Time Of Flight

1

1. INTRODUCTION

3D modeling is a widely studied field. For example, Lai and Su [1] proposed a method to

map the environment using a depth sensor-equipped mobile robot. The mobile robot

could localize itself using neural networks. Surroundings can be created for augmented

reality or virtual reality applications where the user can interact in the virtual environment

with the 3D objects. Creating a virtual object usually requires direct 3D modeling, for

example, with 3D-modelling software. With 3D scanning technology, an object or even

an entire environment can be brought into the virtual world, and realistic-looking virtual

objects can be created.

Figure 1. 3D scanned sofa and the resulting complete 3D point cloud

However, 3D scanning as a process is not simple. The process usually requires a cam-

era that gets distance information from the image it takes or a similar method where the

distance values can be computed. The captured depth image is initially a two-dimen-

sional image, with each pixel containing distance information from the camera to that

point. This 2D depth image is converted to a 3D world coordinate system. The point

clouds taken from different directions should already be sufficient to be combined using

the iterative closest point (ICP) algorithm, but the data acquired is not perfect and in-

cludes errors. ICP is a computationally demanding process when there are many points

to be aligned. Different filtering methods should be used to remove the extra points from

the point cloud. Reducing the points improves the efficiency of the used algorithms dra-

matically and helps with the point cloud alignment as outlier points can cause the align-

ment to misalign.

2

This work focuses on the 3D scanning of single objects, a game controller, and a bigger

object, a sofa, as seen in Figure 1. The focus is on testing the methods on the game

controllers and seeing how the used methods can be utilized with the large object.

The overall goal of this work is to get acquainted with 3D modeling using Microsoft Kinect

V2. For simplicity, only the depth data is used in this work, although RGB color data for

the image is also available. The motivation is to get acquainted with the 3D modeling

step by step from the depth information of the picture. The work aims to determine how

good results are obtained by utilizing only the acquired point clouds and existing code

libraries. The work examines sources of errors and problems, and seeks possible solu-

tions for the found problems.

This document is structured as follows. Chapter 2 provides background information on

the studies on the RGB-D sensor related to 3D modeling using depth data. The methods

used in this work are discussed in chapter 3. Chapter 4 describes the use of the methods

in the conducted experiments. Chapter 5 presents the results obtained from the experi-

ments, and chapter 6 provides suggestions for improvement for further research regard-

ing this paper.

3

2. LITERATURE BACKGROUND

2.1 3D scanning technologies

Song et al. [2] discussed different methods for building a 3D model on different 3D scan-

ning technologies and used Kinect to create a 3D view of a scene. The 3D model can be

made with a stereo camera system, a laser scanner, or a time-of-flight sensor (TOF).

The 2D picture taken with a stereo camera can be converted to 3D when the cameras’

positions, viewing directions, and intrinsic parameters are known. By comparing similar-

ities in the images, regions of interest (ROI), such as edges, can be found. The images

are combined, and geometric methods can determine the corresponding points in the

three-dimensional coordinate system. Y. Huang and M. Chen [3] used these methods to

create 3D models of simple geometric objects with a stereo camera. This article provides

a more detailed geometric overview of how a camera system works and how images are

combined. Moro et al. [4] used a stereo camera system to create an entirely virtual three-

dimensional environment utilizing ROI and object recognition. The result of this work is

beneficial as an application for mobile robots that need to localize themselves on a local

map. Jiajun Zhu et al. [5] developed a prototype 8-camera stereo camera system that

can capture 360-degree panoramic images and quickly form a 3D view of the environ-

ment based on these images. The paper also compared the features and results of the

laser scanner in this paper and the manufactured prototype.

2.2 3D reconstruction with Kinect

There are different versions of the Kinect depth sensor. The first version of the sensor is

Kinect v1, released in 2010. Kinect v2 was released in 2014, which improved many fea-

tures compared to the previous version. Both sensors have a color camera, an infrared

(IR) camera, and an IR projector. The most significant difference between the versions

is how they measure distances. Using geometric methods, Kinect v1 uses structured

light to determine how far the target is from the sensor. Kinect v2 uses the time-of-flight

(TOF) to estimate the distance to the object, resulting in less erroneous depth images

and more accurate distance information.

TOF-device emits a light pulse, the flight time of which is measured. The distance can

be calculated by the flight time and the speed of light. TOF cameras are also relatively

inexpensive compared to accurate but also more expensive laser scanners. With the

4

release of Kinect, the number of studies related to 3D reconstruction increased mas-

sively.

Azure Kinect was released after Kinect v2. Kurillo et al. [6] compared Azure Kinect to

Kinect v2 sensor by examining the imaging of a flat plane from different distances and

comparing the results. Data taken from the same wall with a laser scanner were used as

a reference. Lachat et al. [7] compared the versions of Kinect with each other and per-

formed a reconstruction of the 3D model, and analyzed the sources of the error.

In [8], Yang et al. scanned objects on a rotating platform with Kinect and proposed new

methods for connecting the point clouds. Combining point clouds is much easier in this

case because the camera position is known to be stationary.

2.3 Calibration and error sources

Camera calibration is also an essential step in reducing the effect of lens distortion on

the result. The calibration aims to determine the values of the camera’s intrinsic param-

eters. Smisek et al. [9] examined the camera parameters and distortions. Knowing the

correct calibration values also allows for converting 2D image depth value pixels to 3D

points without the distortion caused by the camera system. A chessboard pattern is usu-

ally used for calibration. In [10], Hansard et al. explored how this pattern can be detected

automatically, making the calibration easier.

Among the features of the camera, the focal length, as well as the focal point, must be

utilized to make the depth data three-dimensional. In the paper [11], Lachat et al. present

a formula for converting the depth image coordinates (u, v) to the XYZ coordinate system

as

{

𝑋 =
𝑢−𝑐𝑥

𝑓𝑥
⋅ 𝑍

𝑌 =
𝑣−𝑐𝑦

𝑓𝑦
⋅ 𝑍

𝑍 = 𝑍

, (1)

where 𝑢 and 𝑣 are the indices of the image matrix horizontally and vertically. Variables

𝑐x and 𝑐y are the coordinates of the principal points of the image in the image matrix.

Variables 𝑓x and 𝑓𝑦 are the camera’s focal point coordinates. The Z coordinate is ob-

tained from the depth image, the same z coordinate as the Z in the XYZ coordinate

system.

5

Figure 2. Front (b, c, d) and top (e, f, g) point cloud views of a planar wall. (a) Original
image. (b, e) Kinect raw depth data. (c, f) Point cloud in XYZ coordinates with lens dis-
tortions. (d, g) Point cloud in XYZ coordinate system without lens distortions

A three-dimensional point cloud is obtained from the depth image, as in Figure 2, pictures

c and f visualize the result if only the equation (1) was used. In the picture, the planar

wall is round instead of flat. The Kinect IR camera’s intrinsic parameters can be used to

correct radial and tangential distortions from the depth data. Figure 2, pictures d and g

also show a distortion-corrected version of the same depth data. Kurillo et al. [6] provide

more detailed information about the correction of the distortions in their paper. The

Libfreenect21 code library provides a method to convert the raw depth data into a distor-

tion corrected 3D point cloud to convert the point directly, considering the camera pa-

rameters. A 2D depth image is transformed into a 3D point cloud with no noticeable

distortion using the camera’s default intrinsic parameters.

Figure 3. Kinect coordinate system

Equation (1) centers u and v image coordinates and scales them to the appropriate dis-

tance from the given axis. The Kinect sensor can get distance measurements between

1 https://github.com/OpenKinect/libfreenect2

6

0.5 and 4.5 meters [7]. The distance values are the same as the Z-values in the XYZ

coordinate system. Therefore, the camera must be located at the origin of each depth

image. The coordinate axis directions are shown in Figure 3.

Khoshelham [12] investigated the effect of distance on depth image quality. As the dis-

tance increases, so does the uncertainty of the point location in the point cloud. If the

Kinect is too close to the object, the transmitted light pulse may arrive earlier than the

device can receive, resulting in invalid results. The error variation of one pixel is initially

within a radius of about 5 mm from the correct position. After about 30 minutes of the

device running, the error variation drops to about 1 mm, significantly improving accuracy.

2.4 KinectFusion

The primary motivator for this work is KinectFusion [13], made by Newcombe et al. The

Kinect camera can be held in the user’s hand and moved freely. At the same time, a 3D

model is created in real-time based on the captured views. The captured frames are put

on a global coordinate system, and the camera position is tracked by the needed rotation

and translation calculated by the ICP algorithm. On the consecutive frames, the move-

ment is minimal, and the alignment is successful as the point clouds are nearly aligned

already. Only the depth information is used in the paper, so there is no need to consider

lighting or errors caused by the color data. KinectFusion utilizes the CUDA cores of the

graphics card to enable parallel computing and real-time operation.

Many other papers also use KinectFusion in their work. In [14], Yue et al. developed an

algorithm that is even faster than KinectFusion. In [15], Qin Te et al. corrected errors in

KinectFusion and improved the efficiency of the ICP algorithm. Doan et al. [16] selected

an object from the view to be deleted and filled the resulting holes with new points of the

correct color.

Teng et al. [17] proposed an interactive method for removing the item from the back-

ground when the user marks which part of the points belong to the scene and which to

the object. Izadi et al. [18] modified the original KinectFusion to allow the user to interact

with the created 3D environment where 3D objects that follow the physics can be added

to the 3D view. User intervention is also a central part of this thesis, as the aim is to

analyze the content of the various stages in more detail.

7

3. METHODS

Bernardini and Rushmeier [19] described what should be considered in 3D modeling in

general. The acquisition of the 3D model is covered only superficially as there was no

need for texturizing as the color data were not used, and the object surface mesh was

not constructed in this work. The focus is on capturing only one object at a time, so there

is no need to include the points in the background. Point filtering is utilized, resulting in

only a point cloud of the object. Filtered point clouds are combined using the ICP algo-

rithm.

These filtering methods are unnecessary as the point clouds could be combined straight

with the ICP algorithm. The problem is that the ICP method slowed down significantly as

the number of points grew. Also, the ICP is sensitive to the erroneous points that do not

belong to the object causing incorrect alignment.

3.1 Depth data acquisition

Kinect V2 has a resolution of a single depth image horizontally 512 pixels and vertically

424 pixels. The sensor is capable of a framerate of 30 frames per second. [7]

The Libfreenect2 code library provides the drivers that allow to connect to a Kinect V2

device and obtain and use the camera image data directly. This library also provides a

function to convert the depth image pixel to a point in the XYZ coordinate system with

minimal distortion.

The disadvantage of the conversion process is that each pixel in the depth image must

be individually converted into an XYZ point in a for-loop. The conversation slows down

the program significantly when taking a picture. Taking a single image took approxi-

mately 350 to 450 milliseconds. The hardware used is relatively old; see section 4.1 for

more information. The used hardware is approximate as old hardware as the Kinect V2

is. Newer hardware would perform much better with this task. Still, a much more efficient

method would suffice, but this was the only method that worked.

3.2 Filtering

The filtering methods used in this thesis follow the same techniques used in Santala’s

[20] thesis. The filtering methods presented can all be found in the PointCloudLibrary2

2 https://github.com/PointCloudLibrary/pcl

8

(PCL). The filtering methods are easy to implement as all the methods can be compiled

from the same source. The idea of filtering is to obtain only those points in the point cloud

that belong to the scanned object. Filtering also provides better performance in pro-

cessing point clouds when redundant points are not processed. Also, handling a smaller

point cloud is easier in the following filtering and ICP-aligning methods.

Figure 4. Point cloud of a game controller on a flat floor

Figure 4 shows one view of a game controller on a flat empty floor. The number of points

in the background is massive compared to the points of the game controller. Filtering is

needed to get rid of redundant background points.

3.2.1 Distance filter

Distance filter is a passthrough filter that is given a distance range. The points outside

that range will get filtered out. The remaining is a point cloud that contains the wanted

object and the platform on which the scanned object is located. In the experiments, this

filter reduces the redundant points significantly.

This filter is unsuitable when the camera is moved, resulting in the required distance

band to be changed. This filter could be better suited for a stationary camera where the

distance bands are known. However, this filter could keep the point distance uncertainty

at certain thresholds as the uncertainty for the point location grows with the distance.

Alternatively, if the goal is to scan the object with a moving camera, the distance band

for the filter can be measured.

9

Figure 5. Distance filtered point cloud

The distance filter is used in Figure 5. The points with a too high or too low Z-value are

filtered out. The resulting point cloud is a wide band of points where in the middle lies

the scanned object.

3.2.2 Downsampling

Downsampling is a filtering method to reduce the number of points in the point cloud by

averaging the point locations. The 3D space is filled with 3D cubes, called voxels. De-

pending on the size of the voxel, one voxel in the voxel grid can have multiple points

inside. The center of mass, the centroid, is calculated from these points within the voxel,

and only the calculated centroids remain in the point cloud. This method improves effi-

ciency by significantly reducing the number of points. At the same time, this causes in-

accuracies in the locations of the points because the filtered points are only averages of

the original points.

This filtering method was used to test what effects this filter has on the resulting point

cloud after the ICP alignment. The filter was used with the ICP alignment step to limit the

number of points from growing after each merging.

Figure 6. Downsampled point cloud

Figure 6 shows the point cloud after distance filtering and downsampling. When compar-

ing Figures 5 and 6, the resulting point cloud is not as dense, and the points are in a grid-

like pattern.

If the voxel size is too tiny, points will not get filtered as each voxel contains at most 1

point. Instead, if each voxel contains at least 2 points, the points get filtered. Small and

detailed shape information will disappear from the point cloud if the selected voxel size

is too large.

10

Large voxel size can be selected if the object’s physical size is large and does not contain

small, exact surface details. It depends entirely on the application for which the filtering

is used and needed. The size of the proposed minimum filter voxel size should be chosen

as it should filter the points at least half the original amount. When each voxel contains

an average of 2 points to be averaged, the resulting point cloud keeps a decent quality.

3.2.3 Planar removal

Planar filter finds a plane that maximizes the number of points nearby. Either the plane

or the rest of the points can be removed. In this work, the scanned object was placed on

a flat floor. The planar filter was used to separate the obstacle from the scanned object.

As a result, the resulting point cloud contains only the desired object.

Planar filtering uses the Random Sample Consensus (RANSAC) [21] algorithm to search

for a plane and its associated points efficiently. The points of the described point cloud

already deviate from the plane due to measurement errors and remaining lens distor-

tions. So, it is necessary to determine the maximum distance to the found plane included

in the filtering. These planar points are removed from the point cloud, leaving only some

groups of points, the clusters, depending on how many objects are in the acquired point

cloud.

With this filter, it should be noted that the object’s surface must not have flat surfaces.

Otherwise, it may be filtered out during the filtering process. For example, if the captured

view has a table and a large display screen on the table, the screen could be selected

as the plane to be filtered. The incorrect plane found can also cause some points in the

table to be deleted as they are within the found plane. For this reason, it would be good

not to have other objects in the vicinity of the main object, especially objects with a large

planar surface.

Figure 7. The point cloud after planar removal

Figure 7 shows the point cloud after removing the planar component from the point cloud.

The image shows that the floor component is removed. The resulting point cloud has

some points remaining from the floor caused by the camera lens distortions making the

floor slightly curve.

11

This filter can cause undesired results. As such, the use of this filter should be carefully

considered. Instead, the following filtering method, cluster extraction, could be used to

separate the scanned object from the background.

3.2.4 Clustering

In cluster extraction, the separate groups of points at most a certain distance from their

nearest point neighbor can be found. The Euclidean cluster separation algorithm is uti-

lized in clustering. A k-dimensional tree [22] search is used to group the points. Cluster-

ing was used to extract the game controller point cloud from the remaining background

points.

The distance parameter must be chosen carefully because too small a value causes too

many smaller clusters. If the value is too large, the clusters can join one bigger cluster,

defeating this filtering method’s purpose. The minimum and maximum sizes of clusters

can also be selected. If the incoming cluster does not have at least the minimum number

of points, that cluster is excluded from the output. The maximum cluster size constraint

is not used because having too small a value would limit the original larger cluster to only

a smaller portion of the larger cluster, which is not desirable.

Figure 8. Controller cluster extracted

Clustering is unnecessary if the scanning location is optimal, smooth, and free of other

objects. The resulting point cloud might already be filtered to include only the desired

object. However, the filtering removes the erroneous individual points from the remaining

point cloud that have not yet been filtered. In Figure 8, the point cloud includes only the

points in the controller cluster from Figure 7. Any other points in the background have

been discarded, resulting in only the points from the scanned object.

12

When scanning a single object, it can be assumed that the object’s point cloud is the

largest of all the clusters. If there were more objects in the view, filtering would result in

all clusters being in their own sets, and the correct ones should be selected for further

processing, as the output may contain invalid clusters. The selection could use an iden-

tification method to identify the point clouds according to their shape. However, in the

code, all cluster point clouds are outputted separately. For this reason, the object must

be the only or at least the largest in the environment. The filtering parameters must be

carefully selected to acquire the correct object cluster.

3.2.5 Inverse filtering

Inverse filtering is a method to select points from the original unfiltered point cloud based

on another point cloud. This method created a denser object cluster from the original

point cloud using another less dense point cloud cluster.

In this filtering method, the goal is to acquire the point locations from the original depth

data. The denser cluster was created using the filtered cluster as an input cloud. All the

points in the original point cloud that are a certain distance from the input point cloud are

included in the outputted point cloud. This method gives a new object cluster that is more

accurate than the usually filtered cluster. This filtering method also brings previously fil-

tered out erroneous points back.

Figure 9. Inverse filtered controller cluster

An example of the inverse filter can be seen in Figure 9. The cluster was extracted from

the original unfiltered point cloud in Figure 4 using a source point cloud from Figure 8.

The point cloud is a lot denser and has finer surface details.

13

3.3 Iterative closest point

Bernardini and Rushmeier presented in the paper [19] the working principles of the ICP

algorithm. Rusinkiewicz and Levoy [23] showed different algorithm variations and com-

pared the performance of the variations of the ICP. The general principle of operation of

the ICP algorithm is as follows:

1. Find the nearest point from the target point cloud to each point in the source point

cloud.

2. Find the required rotation and translation for the point cloud that minimizes the

mean square error between the points.

3. Transform the point cloud to the rotation and translation estimated in the previous

step.

4. Return to step 1 and continue the iterations until the resulting mean square error

is zero or is less than the specific error limit.

Points can be selected from the source and destination point clouds that should be tar-

geted. External invalid points for which no immediate neighbor can be found are dis-

carded. Other error methods can also be used, such as point-to-level error metrics. [23]

Figure 10. Example of ICP algorithm. Manojkumar and Reddy [24]

Figure 10 shows a simplified version of the ICP algorithm. The 2 lines can be considered

the point clouds to be aligned. The source frame will be aligned with the target frame.

The blue part is the overlapping part of the point clouds, the red and the green parts are

unique parts of the point clouds. In this example, the rotations and translations are done

separately, but rotation and translation are done in the same iteration in ICP. In the next

iteration, the source frame is at a new location to which a new rotation and translation

are calculated. The point clouds will converge as a new transformation is calculated to

minimize the error metric. In the case of Figure 10, the blue parts will be aligned. After

14

converging, the point clouds are merged, and the resulting point cloud gets updated with

new unique points from the source frame.

This work utilizes the interactive ICP code of PCL, which has been slightly modified to

obtain better alignment results for point clouds. ICP may not always find the correct target

location for the point cloud, and a new iteration will not correct this. For this reason, the

user can move the point cloud itself to align it to the correct location better. The user can

move the point cloud in the X, Y, and Z directions and rotate the point cloud around the

X, Y, and Z axes around the centroid of the point cloud.

A 4x4-sized transformation matrix transforms the points to a new location with rotation

and translation. The 4x4 matrix is defined as follows

 𝑀 = [
𝑅3𝑋3 𝑇3𝑋1
0 1

], (2)

where 𝑅3𝑋3 corresponds to the rotation matrix used to rotate the point cloud, and 𝑇3𝑋1

corresponds to the translation matrix that moves the points in the direction of the trans-

lation vector.

Let a point in the point cloud be defined as 𝐩 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 , 1)
𝑇, 𝑅3𝑋3 is an identity matrix

and 𝐓 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧, 1)
𝑇. Therefore to translate the point 𝐩 in the direction of 𝐓, the new

location 𝐩′ is defined as

𝐩′ = 𝑀𝐩 = [

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

] [

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

] = [

𝑝𝑥 + 𝑡𝑥
𝑝𝑦 + 𝑡𝑦
𝑝𝑧 + 𝑡𝑧

1

] = 𝐩 + 𝐓. (3)

Thus, in translation, it is sufficient to add the position coordinates of the transfer vector

to the coordinates of the point cloud points.

In this work, the point cloud is set to rotate around its centroid point in the selected di-

rection of rotation. The rotation matrices in the rotation of the point about the axis are

𝑅𝑥(𝜃) = [

1 0 0
0 cos(𝜃) −sin(𝜃)
0 sin(𝜃) cos(𝜃)

] (4)

𝑅𝑦(𝜃) = [

cos(𝜃) 0 sin(𝜃)
0 1 0

−sin(𝜃) 0 cos(𝜃)
] (5)

𝑅𝑧(𝜃) = [

cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

] (6)

15

where θ corresponds to rotation angle in the positive direction of rotation. [25] Equation

(4) corresponds to rotation around the x-axis, equation (5) to rotation around the y-axis,

and equation (6) to rotation around the z-axis. For a point cloud to rotate around its cen-

troid, it must first move to the origin in the negative direction of the centroid location

vector according to equation (3). Rotate it around the desired axis and then move back

to the original position in the positive direction of the centroid location vector.

For example, let us rotate the point 𝐩 around the x-axis with an angle of 𝜃. Let the cen-

troid of the point cloud be 𝐜 = (𝑐𝑥 , 𝑐𝑦, 𝑐𝑧, 1)
𝑇 and 𝑀 = [

𝑅𝑥(𝜃) 0
0 1

]. The new position 𝐩′ of

the position vector 𝐩 is thus obtained from the equation

 𝐩′ = 𝑀(𝐩 − 𝐜) + 𝐜. (7)

The alignment performed by the user does not have to be very precise. The ICP algo-

rithm can proceed with the new point cloud position and improve accuracy as the points

align better.

16

4. EXPERIMENTS

The methods were studied by selecting the Steam controller as the main object to be

scanned. As seen in Figure 11, the controller is sufficiently asymmetric, so the alignment

of point clouds should be easy to perform correctly. In addition, the size of the object is

small enough to make point cloud editing fast. A flat surface with no other objects was

chosen as the scanning location. A total of 8 images were taken of the controller from

about 1 meter in each direction. No more pictures were taken to make point cloud man-

agement easy and quick.

Figure 11. Steam controller

Another larger object, a sofa, was also scanned to see how the methods could be gen-

eralized. The texture is not reflective, so the results should be more accurate at the sur-

face level than the game controller. Also, the processing time will be longer as the object

includes more surface area because there are more points in the point cloud to be han-

dled. The sofa point clouds did not align properly together for the most part, even with a

manual adjustment. The resulting point cloud was mainly combined by manually control-

ling the target point cloud.

4.1 Hardware

The experiments were run on Ubuntu 20.04 operating system. These tests could not be

performed on Windows due to compatibility issues with various code libraries and drivers

for the Kinect sensor. Kinect V2 (Kinect for Windows) was used as the depth camera.

The central processing unit used was an Intel i5 2500, and the graphics card used was

17

Nvidia GeForce GTX 970. The graphics card was needed to visualize the Kinect camera

view and the point clouds at various stages of the study.

4.2 Filtering

The distances at which the described game controller remained in the point cloud were

tested for depth filtering for each point cloud. The filtering distance limits varied, although

the scanning distance remained approximately the same. The distance to the controller

was about 1 m, and the filtering distances were 0.8–1.1 m. It is recommended to deter-

mine the object’s estimated nearest and farthest distance at the scanning time. This data

gives good, estimated values for the required filter limits.

Target point cloud filtering was evaluated with voxel boxes of varied sizes in downsam-

pling. Values were assessed between 1 mm and 20 mm. At 1 mm, the points were not

filtered out. With slightly bigger voxels, the points began to filter out. At about 5 mm, the

number of points was half the original. A fair value of the voxel size was found to be 10

mm. The points were filtered to about 1/8 of the original point cloud size, and the point

cloud shape resembled the original controller shape.

In planar filtering, the game controller and the floor level were separated. The error dis-

tance can be selected from the found plane in the filter. Because there are still lens

distortions in the point cloud, the plane is slightly curved, at least at its farthest edges.

The distance error was evaluated from small distances (1 mm) to larger sizes until a

good result was obtained by removing most of the floor planar points. The error distance

should not be considered exceptionally large, as points near the bottom of the game

controller will also be filtered out. The maximum length at which most of the plane got

filtered without removing the bottom of the controller was 7 mm.

After planar filtering, there were still individual points left. A cluster extraction was per-

formed to get rid of the extra points. The optimal distance tested 11–18 mm was so that

the closest erroneous points were not included in the game controller cluster. At dis-

tances less than 11 mm, many essential points began to be filtered from the cluster. The

game controller’s point cloud cluster consisted of 370 points. The lower limit for cluster

size was set at 300 points. The upper limit was not placed because it would be too small

to reduce the size of the larger cluster and would not benefit from this need for filtering.

The inverse filtering was also performed to compare the quality of the resulting point

clouds. With a search distance of 1 mm, the outputted point cloud had less of the points

than in the input cloud cluster. With a too high search distance, the points on the floor

18

were included in the filtered output. A search distance of 10 mm was used, bringing all

the original points around the game controller cluster to a new point cloud.

The sofa point clouds were filtered in almost the same methods as the game controller.

Downsampling was not used as the goal was to keep the quality as high as possible.

Inverse filtering was not needed as the quality stayed the same. The largest distance to

the found plane in planar removing was 80 mm. Changing this parameter also changed

the found plane. Too high a value and another planar surface were found from the object.

The cluster extraction was used with a search distance of 60 mm, and a minimum size

of the cluster was set to 1 000 points to filter the smaller cluster off.

In general, the filtering parameters do not generalize. The values of the parameters de-

pend highly on the scanned object and the surrounding environment, which makes se-

lecting the filtering parameter values hard. If the scanning process was made automatic,

the use of the filters should be minimized.

4.3 Point cloud alignment

As mentioned in section 3.1, the conversion from a 2D image to the 3D point cloud took

a lot of time, and the idea of real-time or timed image capturing was discarded. The point

cloud alignment was used on point clouds where the camera positions are all far from

each other and with a different viewing angle. The point clouds from different directions

on the game controller are not aligned. Each point cloud can be thought to be its own

coordinate system, all of which have an origin corresponding to the camera’s position at

the scanning time.

When running the ICP algorithm, it was found that point clouds do not consistently settle

in the right place. In addition, there is no preliminary information about the location of the

point cloud in the case of separate point clouds. An approximating preliminary guess

cannot be made to the desired location so that the ICP iterates to the correct location.

The needed rotation and translation were too big for the algorithm to converge correctly.

Two different methods were used for incorrectly aligned point clouds, point cloud inverse

filtering and allowing the user to move the point cloud to a better location between ICP

iterations.

The assumption was that there were so few points that ICP could not detect the correct

targeting points. Inverse filtering was developed, which takes from the original point cloud

all the points at a certain distance from the points in the controller cluster. The result is a

denser point cloud that is more accurate than the filtered. ICP still produced incorrect

positions in the alignments.

19

The testing also included modifying the PCL interactive ICP code so that the user can

move the point cloud along the x, y, and z axes. In addition, the point cloud can be rotated

about the x, y, and z axes in small increments, allowing the user to move the point cloud

at 6 degrees of freedom.

Manually correcting a moving point cloud was challenging because there were no coor-

dinate axes in the view that would indicate which direction the rotation or displacement

would occur. However, after experimenting with the movement commands, the correct

orientation of the adjustment was found. There was no need to be precise here because

as the iteration process continued, the algorithm found a better optimum for the point

cloud and aligned the point clouds better. With the proper alignment, the point clouds

were merged.

In this test case for the game controller, the direction of rotation direction z was the best

to move the point cloud. The camera took pictures around the game controller, almost

rotating around the z-axis of the camera.

The merged point cloud was filtered using the downsampling method to mitigate the error

caused by erroneous and too many points in the merged point cloud. The objective was

to average the points in the merged point cloud so the successive merging could align

better. This interactive ICP method was also used to combine the inversely filtered point

clouds of the controller. The merging of the denser point clouds was done to compare

the quality of both point clouds.

It was tedious to align the sofa point clouds. Each point cloud to be aligned contained

51 000 to 94 000 points of the object. For this large number of points, the ICP algorithm

was slow. One iteration took approximately 10 seconds at most. After each alignment,

downsampling was performed with a size of 3 mm. With this size, the original point clouds

do not get filtered, but the overlapping points after merging got averaged with the filter,

limiting the size of the resulting point cloud a little.

Also, the ICP could not align the point cloud, even if the source point cloud was set

manually on top of the target point cloud. For this behavior of the ICP, most of the sofa

point clouds were moved in the right direction with 1 iteration and moved manually to the

correct location. The reason might be for the systematic misalignment that new points in

the source point cloud are tried to be aligned to the existing target points, causing incor-

rect converging location.

20

5. RESULTS

The Kinect sensor does not require much for the operating system. The minimum re-

quirements are easily met with current computers. As the Kinect v2 is old technology,

the related research and software were done some time ago. It was difficult to find work-

ing programs or guides to help when compatibility issues arose.

The experiment results showed that the object’s surface should not be reflective. The

surface of the game controller is mainly matte, but it is also slightly glossy. The reflectivity

caused the points of the controller to be too far from the correct position due to reflection.

As a result, the shape of the point cloud is slightly distorted. This distortion is most no-

ticeable in the z-direction, in the separate point cloud views of the object.

It should be noted that Kinect can produce point clouds with varying accuracy. At the

nearest distance of 0.5 m, the distance between adjacent points is about 1.4 mm, and at

4.5 m, it is about 12 mm [7]. Because the depth data cannot be acquired closer than 0.5

m to the object, a more accurate point cloud cannot be obtained from the object’s surface

shapes. The game controller described is too small for the camera’s field of view, so

there were extra points left in the background that had to be filtered out.

There are also errors in the distance data from other sources. The image has lens dis-

tortions, and calibration may not give a complete correction. The distance values of the

device may vary due to the device’s systematic measurement error.

As the study found, ICP does not always find the correct location in the target point cloud.

An initial guess for the estimated transformation would have helped in the general case,

but such approximating guess was hard to make with this experimenting setup. The ICP

did not align because too few or too many points were in the point clouds. The wrong

optimum is too easy to find in a dense point cloud when there are not as many points in

the movable point cloud. The solution to this could be to keep the number of points in

the target point cloud unchanged, for example, by downsampling. The accuracy of the

point cloud shape does not improve, but the points move in better positions on average.

21

Figure 12. Bar chart of the point cloud sizes after each filtering step

Figure 12 shows how essential filtering functions are to maintain efficiency. The number

of points in the remaining point cloud is significantly lower than that in the original. Note

that the points axis is logarithmic, so each filtering method removes a vast portion of the

points from the previous step.

Figure 13. Line chart of one of the ICP point cloud alignment mean-squared error

Figure 13 shows the mean square error (MSE) obtained by combining the point clouds

in each iteration. The point cloud settles at the first optimal location almost immediately

after the first iteration. The error does not change much in the fifth iteration. However,

the point cloud settled in the wrong position, so it had to be rotated manually. In the sixth

iteration, the error increased slightly with correction, but in the following iteration rounds,

the point cloud settled in place as the MSE error reached a lower level.

211,050

47,713

5,384

445 349

1

10

100

1,000

10,000

100,000

1,000,000

raw Depth filter Down sample Planar filter Cluster extraction

P
o

in
ts

9.913E-04

2.451E-04

2.449E-04

2.434E-04

2.432E-04

6.745E-04

6.893E-05

6.714E-05

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

1 2 3 4 5 6 7 8

M
SE

Iterations

22

Figure 14. Low-quality resulting point cloud from the controller. Top view (a), side
view (b), perspective view (c)

Figure 15. High-quality resulting point cloud from the controller. Top view (a), side

view (b), perspective view (c)

The 3D scanned game controllers merged points are shown in Figures 14 and 15, show-

ing the results from different viewpoints. In Figure 14, the standard mentioned filtering

methods were used. The overall shape of the controllers can be determined but not much

more. In Figure 15, the original unfiltered point data were combined. The resulting point

cloud is much denser than in Figure 14. The denser point cloud has a lot of noise which

scatters the points around the average surface, making the surface coarse and hard to

distinguish.

Neither of the point clouds is precise. Precise surface details such as the buttons on the

controller are lost among the sources of error, leaving the surface inaccurate. The errors

caused by a reflective surface of the controllers can be seen in Figures 14 and 15, picture

b, as outlier points near the controller’s handles that do not belong to the average surface

of the real object. The number of points in Figure 14 is nearly 700, and in Figure 15,

almost 13 000.

23

Figure 16. Resulting point clouds from the scanned sofa. Top view (a), side view (b),
perspective view (c)

The resulting merged point cloud is shown in Figure 16 with different viewpoints. The

quality is phenomenal compared to the game controller. The object’s overall shape is

correct, from the surface modalities to the sofa fabric’s wrinkles. As the point clouds were

aligned and merged by controlling the point cloud, the result has some ghosting edges,

edges that did not get appropriately aligned and are in multiple distinct places in the point

cloud. The ghosting cannot be seen in the pictures, as the double edges blend with the

rest of the points. Another artifact is the distinct outlying points near the edges of the

object remaining after the filtering. The total number of points in the resulting point cloud

is about 450 000. Fewer points would have sufficed, but this goal was to keep the quality

as high as possible, so the filtering was minimal.

The test result shows that these methods cannot provide an accurate, detailed point

cloud as an output for smaller objects to be scanned. As with scanning a larger object,

such as the sofa, the resulting point cloud, the average surface is more detailed. With

the smaller object, filtering comes with lower quality but faster computing. Also, with the

larger object, the quality is better with a cost of more computing time.

24

6. DISCUSSION

The resulting game controller point clouds do not have decent quality. There is a sub-

stantial variation in the location of the points around the average surface. The shape of

the point clouds does not closely follow the variations in the form of the game controller

surface, and the exact details of both point clouds are lost with the error noise. However,

both point clouds are in the correct shape, so this type of 3D acquisition is better suited

for larger objects or objects whose appearance needs to be modeled only roughly, and

the accuracy of the surface does not matter.

Another 3D scanned object was a sofa. The quality of the resulting point cloud is good

mainly because each captured view contained a lot of points that were not reduced by

downsampling. Compared to the game controller, it is uncertain what causes the differ-

ences in the quality and outlier points in the point clouds. One significant factor could be

the material, as the game controller is a bit reflective, and the sofa is not. Another factor

might be the object’s surface area. As the game controller surface area is small, the

errors cumulate more clearly on combining the point clouds.

Many sources of error should be considered when an object needs to be 3D modeled

with a depth sensor. If the focus is on modeling only one object, as in this work, the object

must not have shiny surfaces. Otherwise, the depth sensor may not receive the light

pulse transmitted at the right time. Figure 2 shows well what happens to the reflective

surfaces. There is a hole in the point cloud at the point where the mirror should be. The

points of the mirror itself are much farther away than they should be. It is also essential

to consider the shape of the object. The object must not be symmetrical. Otherwise, point

cloud alignment is unreliable when there is no reference to where the point cloud should

be correctly aligned.

The object’s distance from the camera is also an important source of error. The farther

the object is from the camera, the fewer points in the object’s point cloud, so the surface

shapes are inaccurate. As the distance increases, the uncertainty of the value of the

point distance also increases. Figure 2 also illustrates the distortion of the camera lens.

Calibration would reduce the errors in distortion better. The camera was not calibrated

separately, but the factory settings of the camera’s intrinsic parameters were used.

Therefore, it is unknown how much the calibration errors affect the results.

A filtering method was used that at the same time reduces the erroneous data but also

increases it. The downsample filter calculates the average of a given point cloud and

25

reduces the number of points in the point cloud. Downsampling increases the uncertainty

of the point location. This filter should be used under consideration.

The most significant error source is in ICP alignment. Based on the shape of the point

cloud alone, the alignment accuracy is highly uncertain because the locations of the

points taken from different angles are not in the same places.

The alignment of the point clouds would be significantly improved if the point clouds had

anchor points or an anchor object. These could give the ICP an accurate preliminary

guess about the target’s location. The suggestion is to modify the program to correctly

find the direction in which the point cloud should be moved and rotated based on the

shape of the point cloud object. The tricky thing about this method is aligning a perfectly

symmetric object with several correct point cloud orientations. Alignment could be im-

proved by using external geometric objects to align the point cloud to the global coordi-

nate system when the alignment object is in the point cloud. On the other hand, if such

a change were made, ICP alignment would no longer be needed because point clouds

can be moved and connected directly to the same coordinate system with a few trans-

formations. This method could also model the entire environment as in KinectFusion, but

with a different approach.

It was learned how to get from depth data to a 3D model of an object. In addition, the

importance of filtering was understood. Depth data contains many useless data points

when modeling only a tiny object. In addition, it was helpful to learn how to move and

rotate 3D point clouds in the XYZ coordinate system using matrix operations.

Depth sensors can be found in modern phones that could be utilized in 3D modeling.

This could be one area of research on what kind of results are obtained with phone depth

data in 3D modeling. The methods used would be the same as in this work.

The methods of this work are very user-specific. Further development would be to modify

the implementation so that no user intervention is required and 3D modeling could be

performed automatically and even in real-time. Before that, however, it would be essen-

tial to figure out how to get more accurate point clouds by reducing the impact of errors.

26

7. CONCLUSION

This work investigates the steps of 3D modeling of a Steam controller and a sofa when

the depth data was collected with a Kinect v2 depth sensor. Point clouds were formed

from the depth image of the camera, which was filtered to contain only the points of the

scanned objects. Point clouds taken from different directions were combined using an

Iterative Closest Point (ICP) algorithm. The ICP program was modified so that the user

could change the position of the moving point cloud by moving and rotating it. Implemen-

tation prevents the point cloud from getting stuck in the wrong place with user interven-

tion.

The resulting point clouds did not meet expectations for the scanned game controller as

the quality of the point clouds was not good. On the contrary, the quality of the scanned

sofa was excellent, but a lot of time and effort was put into achieving the results to get

that good quality. The most significant source of error was in the implementation of ICP

in both scans. Mostly, the point clouds did not align correctly automatically, and even

with manual correction, the point clouds still aligned occasionally incorrectly. The prob-

lems with the ICP could be corrected by improving point alignment with anchor points,

or other anchor objects in the point cloud or a better alignment algorithm.

The code used in this work is available on GitHub3. The code can be modified and used

freely. This work provides a reasonable basis for possible further developments, such as

solving the identified problems or enhancing the current implementation. A promising

idea for further development would be to get rid of user-dependent implementation and

proceed to automatic and real-time modeling of the object or the entire environment.

3 https://github.com/roopekoo/Kinect3D

27

REFERENCES

[1] C. C. Lai and K. L. Su, “Development of an intelligent mobile robot localization sys-
tem using Kinect RGB-D mapping and neural network,” Comput. Electr. Eng., vol.
67, pp. 620–628, 2018, doi: 10.1016/j.compeleceng.2016.04.018.

[2] T. Song, L. Zhou, X. Ding, and W. Yi, “3D Surface Reconstruction Based on Kinect
Sensor,” Int. J. Comput. Theory Eng., pp. 567–573, 2013, doi:
10.7763/IJCTE.2013.V5.751.

[3] Ying-Yuan Huang and Mei-Yung Chen, “3D object model recovery from 2D images
utilizing corner detection,” 2011, pp. 76–81. doi: 10.1109/ICSSE.2011.5961877.

[4] A. Moro, E. Mumolo, and M. Nolich, “Building virtual worlds by 3d object mapping,”
2010, pp. 31–36. doi: 10.1145/1878083.1878092.

[5] Jiajun Zhu, G. Humphreys, D. Koller, S. Steuart, and Rui Wang, “Fast Omnidirec-
tional 3D Scene Acquisition with an Array of Stereo Cameras,” 2007, pp. 217–224.
doi: 10.1109/3DIM.2007.25.

[6] G. Kurillo, E. Hemingway, M.-L. Cheng, and L. Cheng, “Evaluating the Accuracy of
the Azure Kinect and Kinect v2,” Sensors, vol. 22, no. 7, Art. no. 7, Jan. 2022, doi:
10.3390/s22072469.

[7] E. Lachat, H. Macher, T. Landes, and P. Grussenmeyer, “Assessment and Calibra-
tion of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-
Range 3D Modeling,” Remote Sens. Basel Switz., vol. 7, no. 10, pp. 13070–13097,
2015, doi: 10.3390/rs71013070.

[8] F. Yang, J. Chen, L. Zhang, J. Ge, and J. Ding, “A Triangular Texture Mapping for
3D Modeling with Kinect,” 2018, pp. 55–60. doi: 10.1145/3232829.3232838.

[9] J. Smisek, M. Jancosek, and T. Pajdla, “3D with Kinect,” 2011, pp. 1154–1160. doi:
10.1109/ICCVW.2011.6130380.

[10] M. Hansard, R. Horaud, M. Amat, and G. Evangelidis, “Automatic detection of cali-
bration grids in time-of-flight images,” Comput. Vis. Image Underst., vol. 121, pp.
108–118, 2014, doi: 10.1016/j.cviu.2014.01.007.

[11] E. Lachat, H. Macher, M.-A. Mittet, T. Landes, and P. Grussenmeyer, “FIRST EX-
PERIENCES WITH KINECT V2 SENSOR FOR CLOSE RANGE 3D MODELLING,”
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-5/W4, no. 5, pp. 93–
100, 2015, doi: 10.5194/isprsarchives-XL-5-W4-93-2015.

[12] K. Khoshelham, “ACCURACY ANALYSIS OF KINECT DEPTH DATA,” Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVIII-5/W12, pp. 133–138, 2012,
doi: 10.5194/isprsarchives-XXXVIII-5-W12-133-2011.

[13] R. A. Newcombe et al., “KinectFusion: Real-time dense surface mapping and track-
ing,” 2011, pp. 127–136. doi: 10.1109/ISMAR.2011.6092378.

[14] H. Yue, W. Chen, X. Wu, and J. Liu, “Fast 3D modeling in complex environments
using a single Kinect sensor,” Opt. Lasers Eng., vol. 53, pp. 104–111, 2014, doi:
10.1016/j.optlaseng.2013.08.009.

[15] Qin Ye, Yahui Yao, Popo Gui, and Yi Lin, “An improved ICP algorithm for kinect point
cloud registration,” 2016, pp. 2109–2114. doi: 10.1109/FSKD.2016.7603507.

[16] N. Doan, D. Pham, T. Dinh, and T. Dinh, “Restoring surfaces after removing objects
in indoor 3D point clouds,” 2013, pp. 189–197. doi: 10.1145/2542050.2542088.

[17] C.-H. Teng, K.-Y. Chuo, and C.-Y. Hsieh, “Reconstructing three-dimensional models
of objects using a Kinect sensor,” Vis. Comput., vol. 34, no. 11, pp. 1507–1523, 2017,
doi: 10.1007/s00371-017-1425-2.

[18] S. Izadi et al., “KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera,” 2011, pp. 559–568. doi: 10.1145/2047196.2047270.

[19] F. Bernardini and H. Rushmeier, “The 3D Model Acquisition Pipeline,” Comput.
Graph. Forum, vol. 21, no. 2, pp. 149–172, 2002, doi: 10.1111/1467-8659.00574.

28

[20] M. Santala, “3D Content Capturing and Reconstruction Using Microsoft Kinect Depth
Camera,” 2012. http://www.theseus.fi/handle/10024/41621 (accessed Apr. 06,
2022).

[21] M. Fischler and R. Bolles, “Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography,” Commun. ACM,
vol. 24, no. 6, pp. 381–395, 1981, doi: 10.1145/358669.358692.

[22] J. Bentley, “Multidimensional binary search trees used for associative searching,”
Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975, doi: 10.1145/361002.361007.

[23] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,” 2001, pp.
145–152. doi: 10.1109/IM.2001.924423.

[24] P. Manojkumar and G. R. M. Reddy, “Parallel implementation of 3D modelling of
indoor environment using Microsoft Kinect sensor,” 2013, pp. 1–6. doi:
10.1109/ICCCNT.2013.6726784.

[25] P. R. Evans, “Rotations and rotation matrices,” Acta Crystallogr. D Biol. Crystallogr.,
vol. 57, no. 10, pp. 1355–1359, 2001, doi: 10.1107/S0907444901012410.

	1. Introduction
	2. Literature background
	2.1 3D scanning technologies
	2.2 3D reconstruction with Kinect
	2.3 Calibration and error sources
	2.4 KinectFusion

	3. Methods
	3.1 Depth data acquisition
	3.2 Filtering
	3.2.1 Distance filter
	3.2.2 Downsampling
	3.2.3 Planar removal
	3.2.4 Clustering
	3.2.5 Inverse filtering

	3.3 Iterative closest point

	4. Experiments
	4.1 Hardware
	4.2 Filtering
	4.3 Point cloud alignment

	5. results
	6. Discussion
	7. Conclusion
	References

