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ABSTRACT 

Roope Korkee: 3D scanning with a Kinect depth sensor 
Bachelor’s Thesis 
Tampere University 
Information Technology 
May 2022 
 

 
Real-life objects can be transferred to the virtual 3D world with 3D scanning techniques. Scan-

ning can be performed either with a stationary camera while rotating the object or by moving the 
camera around the scanned object. This work investigates how a two-dimensional depth image 
of a depth sensor can be transformed into a three-dimensional point cloud and what filtering 
methods can be used to separate an object from its background. Point clouds taken from different 
directions are combined, and the quality of the obtained point clouds is studied. 

Microsoft Kinect V2 depth sensor was used to take depth images. The device calculates the 
distance to the destination by measuring the flight time of the infrared pulse it emits. Color infor-
mation for the image was available, but this work focused only on using distance information. The 
device was used to scan objects from several different viewpoints. Background points were grad-
ually filtered out of each image until only the scanned object point cloud remained. Each image 
taken from a different angle is initially in its own coordinate system. Point clouds are aligned and 
connected to the same global coordinate system. Alignment is performed using an iterative clos-
est point (ICP) algorithm. 

The quality of the resulting point clouds for small objects is not good. The overall shapes of 
the resulting point cloud is correct, but the more accurate surface shapes disappear in the error 
noise. With a larger object, the error noise did not have as much effect on the result as the surface 
area was larger. This results a decent quality point cloud. A good scan result requires special 
features of the object and the environment. For example, reflective surfaces cause incorrect lo-
cations for points. These types of surfaces should be avoided or considered when handling data. 
Important point information may be lost in filtering, and errors may accumulate when points are 
combined using the ICP algorithm. The methods used are well suited for use if the goal is to 
obtain only a rough model of the described object. 
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TIIVISTELMÄ 
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Tosielämän esineitä voidaan siirtää virtuaaliseen 3D-maailmaan 3D-skannaustekniikoilla. 

Skannaus voidaan suorittaa joko paikallaan olevalla kameralla kohdetta pyörittämällä tai 
liikuttamalla kameraa skannattavan kohteen ympärillä. Tässä työssä tutkitaan, kuinka 
syvyyssensorin kaksiulotteinen syvyyskuva voidaan muuntaa kolmiulotteiseksi pistepilveksi ja 
millä suodatusmenetelmillä kohde voidaan erottaa taustastaan. Eri suunnista otettuja pistepilviä 
yhdistetään ja saatujen pistepilvien laatua tutkitaan. 

Microsoft Kinect V2 -syvyysanturia käytettiin syvyyskuvien ottamiseen. Laite laskee 
etäisyyden kohteeseen mittaamalla lähettämänsä infrapunapulssin lentoajan keston. Kuvan 
väritiedot olivat saatavilla, mutta tässä työssä keskityttiin vain etäisyystietojen käyttöön. Laitteen 
avulla esineitä skannattiin useista eri näkökulmista. Taustapisteitä suodatettiin vähitellen pois 
jokaisesta kuvasta, kunnes jäljelle jäi vain skannatun esineen pistepilvi. Jokainen eri kulmasta 
otettu kuva on aluksi omassa koordinaatistossaan. Pistepilvet kohdistetaan ja yhdistetään 
samaan globaaliin koordinaattijärjestelmään. Kohdistus suoritetaan käyttämällä iteratiivista 
lähimmän pisteen algoritmia, ICP:tä (engl. iterative closest point). 

Tuloksena saatujen pistepilvien laatu pienille kohteille ei ole hyvä. Pistepilvien ulkomuodot 
ovat oikeat, mutta tarkemmat pinnanmuodot katoavat virhekohinassa. Suuremmalla kuvattavalla 
kohteella virhekohinalla ei ollut kovin suurta vaikutusta tulokseen, kun kohteen pinta-ala oli 
suurempi. Tämä tuottaa melko hyvänlaatuisen pistepilven. Hyvä skannaustulos vaatii kohteen ja 
ympäristön erityispiirteitä. Esimerkiksi heijastavat pinnat aiheuttavat virheellisiä sijainteja pisteille. 
Tämäntyyppisiä pintoja tulee välttää tai ottaa huomioon datan käsittelyssä. Tärkeät pistetiedot 
voivat kadota suodatuksessa ja virheitä voi kertyä, kun pisteitä yhdistetään ICP-algoritmilla. 
Käytetyt menetelmät sopivat hyvin käyttötarkoitukseen, jos tavoitteena on saada vain karkea malli 
kuvatusta kohteesta. 
 
Avainsanat: 3D-mallinnus, ICP, pistepilvi, syvyyskuva, Kinect 
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1. INTRODUCTION 

3D modeling is a widely studied field. For example, Lai and Su [1] proposed a method to 

map the environment using a depth sensor-equipped mobile robot. The mobile robot 

could localize itself using neural networks. Surroundings can be created for augmented 

reality or virtual reality applications where the user can interact in the virtual environment 

with the 3D objects. Creating a virtual object usually requires direct 3D modeling, for 

example, with 3D-modelling software. With 3D scanning technology, an object or even 

an entire environment can be brought into the virtual world, and realistic-looking virtual 

objects can be created. 

 

Figure 1. 3D scanned sofa and the resulting complete 3D point cloud 

However, 3D scanning as a process is not simple. The process usually requires a cam-

era that gets distance information from the image it takes or a similar method where the 

distance values can be computed. The captured depth image is initially a two-dimen-

sional image, with each pixel containing distance information from the camera to that 

point. This 2D depth image is converted to a 3D world coordinate system. The point 

clouds taken from different directions should already be sufficient to be combined using 

the iterative closest point (ICP) algorithm, but the data acquired is not perfect and in-

cludes errors. ICP is a computationally demanding process when there are many points 

to be aligned. Different filtering methods should be used to remove the extra points from 

the point cloud. Reducing the points improves the efficiency of the used algorithms dra-

matically and helps with the point cloud alignment as outlier points can cause the align-

ment to misalign. 
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This work focuses on the 3D scanning of single objects, a game controller, and a bigger 

object, a sofa, as seen in Figure 1. The focus is on testing the methods on the game 

controllers and seeing how the used methods can be utilized with the large object. 

The overall goal of this work is to get acquainted with 3D modeling using Microsoft Kinect 

V2. For simplicity, only the depth data is used in this work, although RGB color data for 

the image is also available. The motivation is to get acquainted with the 3D modeling 

step by step from the depth information of the picture. The work aims to determine how 

good results are obtained by utilizing only the acquired point clouds and existing code 

libraries. The work examines sources of errors and problems, and seeks possible solu-

tions for the found problems.  

This document is structured as follows. Chapter 2 provides background information on 

the studies on the RGB-D sensor related to 3D modeling using depth data. The methods 

used in this work are discussed in chapter 3. Chapter 4 describes the use of the methods 

in the conducted experiments. Chapter 5 presents the results obtained from the experi-

ments, and chapter 6 provides suggestions for improvement for further research regard-

ing this paper. 
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2. LITERATURE BACKGROUND 

2.1 3D scanning technologies 

Song et al. [2] discussed different methods for building a 3D model on different 3D scan-

ning technologies and used Kinect to create a 3D view of a scene. The 3D model can be 

made with a stereo camera system, a laser scanner, or a time-of-flight sensor (TOF). 

The 2D picture taken with a stereo camera can be converted to 3D when the cameras’ 

positions, viewing directions, and intrinsic parameters are known. By comparing similar-

ities in the images, regions of interest (ROI), such as edges, can be found. The images 

are combined, and geometric methods can determine the corresponding points in the 

three-dimensional coordinate system. Y. Huang and M. Chen [3] used these methods to 

create 3D models of simple geometric objects with a stereo camera. This article provides 

a more detailed geometric overview of how a camera system works and how images are 

combined. Moro et al. [4] used a stereo camera system to create an entirely virtual three-

dimensional environment utilizing ROI and object recognition. The result of this work is 

beneficial as an application for mobile robots that need to localize themselves on a local 

map. Jiajun Zhu et al. [5] developed a prototype 8-camera stereo camera system that 

can capture 360-degree panoramic images and quickly form a 3D view of the environ-

ment based on these images. The paper also compared the features and results of the 

laser scanner in this paper and the manufactured prototype. 

2.2 3D reconstruction with Kinect 

There are different versions of the Kinect depth sensor. The first version of the sensor is 

Kinect v1, released in 2010. Kinect v2 was released in 2014, which improved many fea-

tures compared to the previous version. Both sensors have a color camera, an infrared 

(IR) camera, and an IR projector. The most significant difference between the versions 

is how they measure distances. Using geometric methods, Kinect v1 uses structured 

light to determine how far the target is from the sensor. Kinect v2 uses the time-of-flight 

(TOF) to estimate the distance to the object, resulting in less erroneous depth images 

and more accurate distance information. 

TOF-device emits a light pulse, the flight time of which is measured. The distance can 

be calculated by the flight time and the speed of light. TOF cameras are also relatively 

inexpensive compared to accurate but also more expensive laser scanners. With the 
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release of Kinect, the number of studies related to 3D reconstruction increased mas-

sively. 

Azure Kinect was released after Kinect v2. Kurillo et al. [6] compared Azure Kinect to 

Kinect v2 sensor by examining the imaging of a flat plane from different distances and 

comparing the results. Data taken from the same wall with a laser scanner were used as 

a reference. Lachat et al. [7] compared the versions of Kinect with each other and per-

formed a reconstruction of the 3D model, and analyzed the sources of the error. 

In [8], Yang et al. scanned objects on a rotating platform with Kinect and proposed new 

methods for connecting the point clouds. Combining point clouds is much easier in this 

case because the camera position is known to be stationary. 

2.3 Calibration and error sources 

Camera calibration is also an essential step in reducing the effect of lens distortion on 

the result. The calibration aims to determine the values of the camera’s intrinsic param-

eters. Smisek et al. [9] examined the camera parameters and distortions. Knowing the 

correct calibration values also allows for converting 2D image depth value pixels to 3D 

points without the distortion caused by the camera system. A chessboard pattern is usu-

ally used for calibration. In [10], Hansard et al. explored how this pattern can be detected 

automatically, making the calibration easier. 

Among the features of the camera, the focal length, as well as the focal point, must be 

utilized to make the depth data three-dimensional. In the paper [11], Lachat et al. present 

a formula for converting the depth image coordinates (u, v) to the XYZ coordinate system 

as 

 

{

𝑋 =
𝑢−𝑐𝑥

𝑓𝑥
⋅ 𝑍

𝑌 =
𝑣−𝑐𝑦

𝑓𝑦
⋅ 𝑍

𝑍 = 𝑍

, (1) 

where 𝑢 and 𝑣 are the indices of the image matrix horizontally and vertically. Variables 

𝑐x and 𝑐y are the coordinates of the principal points of the image in the image matrix. 

Variables 𝑓x  and 𝑓𝑦 are the camera’s focal point coordinates. The Z coordinate is ob-

tained from the depth image, the same z coordinate as the Z in the XYZ coordinate 

system. 
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Figure 2. Front (b, c, d) and top (e, f, g) point cloud views of a planar wall. (a) Original 
image. (b, e) Kinect raw depth data. (c, f) Point cloud in XYZ coordinates with lens dis-
tortions. (d, g) Point cloud in XYZ coordinate system without lens distortions 

A three-dimensional point cloud is obtained from the depth image, as in Figure 2, pictures 

c and f visualize the result if only the equation (1) was used. In the picture, the planar 

wall is round instead of flat. The Kinect IR camera’s intrinsic parameters can be used to 

correct radial and tangential distortions from the depth data. Figure 2, pictures d and g 

also show a distortion-corrected version of the same depth data. Kurillo et al. [6] provide 

more detailed information about the correction of the distortions in their paper. The 

Libfreenect21 code library provides a method to convert the raw depth data into a distor-

tion corrected 3D point cloud to convert the point directly, considering the camera pa-

rameters. A 2D depth image is transformed into a 3D point cloud with no noticeable 

distortion using the camera’s default intrinsic parameters. 

 

Figure 3. Kinect coordinate system 

  

Equation (1) centers u and v image coordinates and scales them to the appropriate dis-

tance from the given axis. The Kinect sensor can get distance measurements between 

                                                      
1 https://github.com/OpenKinect/libfreenect2 
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0.5 and 4.5 meters [7]. The distance values are the same as the Z-values in the XYZ 

coordinate system. Therefore, the camera must be located at the origin of each depth 

image. The coordinate axis directions are shown in Figure 3. 

Khoshelham [12] investigated the effect of distance on depth image quality. As the dis-

tance increases, so does the uncertainty of the point location in the point cloud. If the 

Kinect is too close to the object, the transmitted light pulse may arrive earlier than the 

device can receive, resulting in invalid results. The error variation of one pixel is initially 

within a radius of about 5 mm from the correct position. After about 30 minutes of the 

device running, the error variation drops to about 1 mm, significantly improving accuracy. 

2.4 KinectFusion 

The primary motivator for this work is KinectFusion [13], made by Newcombe et al. The 

Kinect camera can be held in the user’s hand and moved freely. At the same time, a 3D 

model is created in real-time based on the captured views. The captured frames are put 

on a global coordinate system, and the camera position is tracked by the needed rotation 

and translation calculated by the ICP algorithm. On the consecutive frames, the move-

ment is minimal, and the alignment is successful as the point clouds are nearly aligned 

already. Only the depth information is used in the paper, so there is no need to consider 

lighting or errors caused by the color data. KinectFusion utilizes the CUDA cores of the 

graphics card to enable parallel computing and real-time operation. 

Many other papers also use KinectFusion in their work. In [14], Yue et al. developed an 

algorithm that is even faster than KinectFusion. In [15], Qin Te et al. corrected errors in 

KinectFusion and improved the efficiency of the ICP algorithm. Doan et al. [16] selected 

an object from the view to be deleted and filled the resulting holes with new points of the 

correct color. 

Teng et al. [17] proposed an interactive method for removing the item from the back-

ground when the user marks which part of the points belong to the scene and which to 

the object. Izadi et al. [18] modified the original KinectFusion to allow the user to interact 

with the created 3D environment where 3D objects that follow the physics can be added 

to the 3D view. User intervention is also a central part of this thesis, as the aim is to 

analyze the content of the various stages in more detail. 
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3. METHODS 

Bernardini and Rushmeier [19] described what should be considered in 3D modeling in 

general. The acquisition of the 3D model is covered only superficially as there was no 

need for texturizing as the color data were not used, and the object surface mesh was 

not constructed in this work. The focus is on capturing only one object at a time, so there 

is no need to include the points in the background. Point filtering is utilized, resulting in 

only a point cloud of the object. Filtered point clouds are combined using the ICP algo-

rithm. 

These filtering methods are unnecessary as the point clouds could be combined straight 

with the ICP algorithm. The problem is that the ICP method slowed down significantly as 

the number of points grew. Also, the ICP is sensitive to the erroneous points that do not 

belong to the object causing incorrect alignment. 

3.1 Depth data acquisition 

Kinect V2 has a resolution of a single depth image horizontally 512 pixels and vertically 

424 pixels. The sensor is capable of a framerate of 30 frames per second. [7] 

The Libfreenect2 code library provides the drivers that allow to connect to a Kinect V2 

device and obtain and use the camera image data directly. This library also provides a 

function to convert the depth image pixel to a point in the XYZ coordinate system with 

minimal distortion.  

The disadvantage of the conversion process is that each pixel in the depth image must 

be individually converted into an XYZ point in a for-loop. The conversation slows down 

the program significantly when taking a picture. Taking a single image took approxi-

mately 350 to 450 milliseconds. The hardware used is relatively old; see section 4.1 for 

more information. The used hardware is approximate as old hardware as the Kinect V2 

is. Newer hardware would perform much better with this task. Still, a much more efficient 

method would suffice, but this was the only method that worked. 

3.2 Filtering 

The filtering methods used in this thesis follow the same techniques used in Santala’s 

[20] thesis. The filtering methods presented can all be found in the PointCloudLibrary2 

                                                      
2 https://github.com/PointCloudLibrary/pcl 
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(PCL). The filtering methods are easy to implement as all the methods can be compiled 

from the same source. The idea of filtering is to obtain only those points in the point cloud 

that belong to the scanned object. Filtering also provides better performance in pro-

cessing point clouds when redundant points are not processed. Also, handling a smaller 

point cloud is easier in the following filtering and ICP-aligning methods. 

 

Figure 4. Point cloud of a game controller on a flat floor 

Figure 4 shows one view of a game controller on a flat empty floor. The number of points 

in the background is massive compared to the points of the game controller. Filtering is 

needed to get rid of redundant background points. 

3.2.1 Distance filter 

Distance filter is a passthrough filter that is given a distance range. The points outside 

that range will get filtered out. The remaining is a point cloud that contains the wanted 

object and the platform on which the scanned object is located. In the experiments, this 

filter reduces the redundant points significantly. 

This filter is unsuitable when the camera is moved, resulting in the required distance 

band to be changed. This filter could be better suited for a stationary camera where the 

distance bands are known. However, this filter could keep the point distance uncertainty 

at certain thresholds as the uncertainty for the point location grows with the distance. 

Alternatively, if the goal is to scan the object with a moving camera, the distance band 

for the filter can be measured. 
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Figure 5. Distance filtered point cloud 

The distance filter is used in Figure 5. The points with a too high or too low Z-value are 

filtered out. The resulting point cloud is a wide band of points where in the middle lies 

the scanned object. 

3.2.2 Downsampling 

Downsampling is a filtering method to reduce the number of points in the point cloud by 

averaging the point locations. The 3D space is filled with 3D cubes, called voxels. De-

pending on the size of the voxel, one voxel in the voxel grid can have multiple points 

inside. The center of mass, the centroid, is calculated from these points within the voxel, 

and only the calculated centroids remain in the point cloud. This method improves effi-

ciency by significantly reducing the number of points. At the same time, this causes in-

accuracies in the locations of the points because the filtered points are only averages of 

the original points. 

This filtering method was used to test what effects this filter has on the resulting point 

cloud after the ICP alignment. The filter was used with the ICP alignment step to limit the 

number of points from growing after each merging. 

 

Figure 6. Downsampled point cloud 

Figure 6 shows the point cloud after distance filtering and downsampling. When compar-

ing Figures 5 and 6, the resulting point cloud is not as dense, and the points are in a grid-

like pattern. 

If the voxel size is too tiny, points will not get filtered as each voxel contains at most 1 

point. Instead, if each voxel contains at least 2 points, the points get filtered. Small and 

detailed shape information will disappear from the point cloud if the selected voxel size 

is too large. 
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Large voxel size can be selected if the object’s physical size is large and does not contain 

small, exact surface details. It depends entirely on the application for which the filtering 

is used and needed. The size of the proposed minimum filter voxel size should be chosen 

as it should filter the points at least half the original amount. When each voxel contains 

an average of 2 points to be averaged, the resulting point cloud keeps a decent quality. 

3.2.3 Planar removal 

Planar filter finds a plane that maximizes the number of points nearby. Either the plane 

or the rest of the points can be removed. In this work, the scanned object was placed on 

a flat floor. The planar filter was used to separate the obstacle from the scanned object. 

As a result, the resulting point cloud contains only the desired object. 

Planar filtering uses the Random Sample Consensus (RANSAC) [21] algorithm to search 

for a plane and its associated points efficiently. The points of the described point cloud 

already deviate from the plane due to measurement errors and remaining lens distor-

tions. So, it is necessary to determine the maximum distance to the found plane included 

in the filtering. These planar points are removed from the point cloud, leaving only some 

groups of points, the clusters, depending on how many objects are in the acquired point 

cloud. 

With this filter, it should be noted that the object’s surface must not have flat surfaces. 

Otherwise, it may be filtered out during the filtering process. For example, if the captured 

view has a table and a large display screen on the table, the screen could be selected 

as the plane to be filtered. The incorrect plane found can also cause some points in the 

table to be deleted as they are within the found plane. For this reason, it would be good 

not to have other objects in the vicinity of the main object, especially objects with a large 

planar surface. 

 

Figure 7. The point cloud after planar removal 

Figure 7 shows the point cloud after removing the planar component from the point cloud. 

The image shows that the floor component is removed. The resulting point cloud has 

some points remaining from the floor caused by the camera lens distortions making the 

floor slightly curve. 
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This filter can cause undesired results. As such, the use of this filter should be carefully 

considered. Instead, the following filtering method, cluster extraction, could be used to 

separate the scanned object from the background. 

3.2.4 Clustering 

In cluster extraction, the separate groups of points at most a certain distance from their 

nearest point neighbor can be found. The Euclidean cluster separation algorithm is uti-

lized in clustering. A k-dimensional tree [22] search is used to group the points. Cluster-

ing was used to extract the game controller point cloud from the remaining background 

points. 

The distance parameter must be chosen carefully because too small a value causes too 

many smaller clusters. If the value is too large, the clusters can join one bigger cluster, 

defeating this filtering method’s purpose. The minimum and maximum sizes of clusters 

can also be selected. If the incoming cluster does not have at least the minimum number 

of points, that cluster is excluded from the output. The maximum cluster size constraint 

is not used because having too small a value would limit the original larger cluster to only 

a smaller portion of the larger cluster, which is not desirable. 

 

Figure 8. Controller cluster extracted 

Clustering is unnecessary if the scanning location is optimal, smooth, and free of other 

objects. The resulting point cloud might already be filtered to include only the desired 

object. However, the filtering removes the erroneous individual points from the remaining 

point cloud that have not yet been filtered. In Figure 8, the point cloud includes only the 

points in the controller cluster from Figure 7. Any other points in the background have 

been discarded, resulting in only the points from the scanned object. 
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When scanning a single object, it can be assumed that the object’s point cloud is the 

largest of all the clusters. If there were more objects in the view, filtering would result in 

all clusters being in their own sets, and the correct ones should be selected for further 

processing, as the output may contain invalid clusters. The selection could use an iden-

tification method to identify the point clouds according to their shape. However, in the 

code, all cluster point clouds are outputted separately. For this reason, the object must 

be the only or at least the largest in the environment. The filtering parameters must be 

carefully selected to acquire the correct object cluster. 

3.2.5 Inverse filtering 

Inverse filtering is a method to select points from the original unfiltered point cloud based 

on another point cloud. This method created a denser object cluster from the original 

point cloud using another less dense point cloud cluster. 

In this filtering method, the goal is to acquire the point locations from the original depth 

data. The denser cluster was created using the filtered cluster as an input cloud. All the 

points in the original point cloud that are a certain distance from the input point cloud are 

included in the outputted point cloud. This method gives a new object cluster that is more 

accurate than the usually filtered cluster. This filtering method also brings previously fil-

tered out erroneous points back. 

 

Figure 9. Inverse filtered controller cluster 

An example of the inverse filter can be seen in Figure 9. The cluster was extracted from 

the original unfiltered point cloud in Figure 4 using a source point cloud from Figure 8. 

The point cloud is a lot denser and has finer surface details. 
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3.3 Iterative closest point 

Bernardini and Rushmeier presented in the paper [19] the working principles of the ICP 

algorithm. Rusinkiewicz and Levoy [23] showed different algorithm variations and com-

pared the performance of the variations of the ICP. The general principle of operation of 

the ICP algorithm is as follows: 

1. Find the nearest point from the target point cloud to each point in the source point 

cloud. 

2. Find the required rotation and translation for the point cloud that minimizes the 

mean square error between the points. 

3. Transform the point cloud to the rotation and translation estimated in the previous 

step. 

4. Return to step 1 and continue the iterations until the resulting mean square error 

is zero or is less than the specific error limit. 

Points can be selected from the source and destination point clouds that should be tar-

geted. External invalid points for which no immediate neighbor can be found are dis-

carded. Other error methods can also be used, such as point-to-level error metrics. [23] 

 

Figure 10. Example of ICP algorithm. Manojkumar and Reddy [24] 

Figure 10 shows a simplified version of the ICP algorithm. The 2 lines can be considered 

the point clouds to be aligned. The source frame will be aligned with the target frame. 

The blue part is the overlapping part of the point clouds, the red and the green parts are 

unique parts of the point clouds. In this example, the rotations and translations are done 

separately, but rotation and translation are done in the same iteration in ICP. In the next 

iteration, the source frame is at a new location to which a new rotation and translation 

are calculated. The point clouds will converge as a new transformation is calculated to 

minimize the error metric. In the case of Figure 10, the blue parts will be aligned. After 
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converging, the point clouds are merged, and the resulting point cloud gets updated with 

new unique points from the source frame. 

This work utilizes the interactive ICP code of PCL, which has been slightly modified to 

obtain better alignment results for point clouds. ICP may not always find the correct target 

location for the point cloud, and a new iteration will not correct this. For this reason, the 

user can move the point cloud itself to align it to the correct location better. The user can 

move the point cloud in the X, Y, and Z directions and rotate the point cloud around the 

X, Y, and Z axes around the centroid of the point cloud. 

A 4x4-sized transformation matrix transforms the points to a new location with rotation 

and translation. The 4x4 matrix is defined as follows 

 𝑀 = [
𝑅3𝑋3 𝑇3𝑋1
0 1

], (2) 

where 𝑅3𝑋3 corresponds to the rotation matrix used to rotate the point cloud, and 𝑇3𝑋1 

corresponds to the translation matrix that moves the points in the direction of the trans-

lation vector. 

Let a point in the point cloud be defined as 𝐩 = (𝑝𝑥 , 𝑝𝑦, 𝑝𝑧 , 1)
𝑇, 𝑅3𝑋3 is an identity matrix 

and 𝐓 = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧, 1)
𝑇. Therefore to translate the point 𝐩 in the direction of 𝐓, the new 

location 𝐩′ is defined as 

 

𝐩′ = 𝑀𝐩 = [

1 0 0 𝑡𝑥
0 1 0 𝑡𝑦
0 0 1 𝑡𝑧
0 0 0 1

] [

𝑝𝑥
𝑝𝑦
𝑝𝑧
1

] = [

𝑝𝑥 + 𝑡𝑥
𝑝𝑦 + 𝑡𝑦
𝑝𝑧 + 𝑡𝑧

1

] = 𝐩 + 𝐓. (3) 

Thus, in translation, it is sufficient to add the position coordinates of the transfer vector 

to the coordinates of the point cloud points. 

In this work, the point cloud is set to rotate around its centroid point in the selected di-

rection of rotation. The rotation matrices in the rotation of the point about the axis are 

 
𝑅𝑥(𝜃) = [

1 0 0
0 cos(𝜃) −sin(𝜃)
0 sin(𝜃) cos(𝜃)

] (4) 

 
𝑅𝑦(𝜃) = [

cos(𝜃) 0 sin(𝜃)
0 1 0

−sin(𝜃) 0 cos(𝜃)
] (5) 

 
𝑅𝑧(𝜃) = [

cos(𝜃) −sin(𝜃) 0
sin(𝜃) cos(𝜃) 0

0 0 1

] (6) 
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where θ corresponds to rotation angle in the positive direction of rotation. [25] Equation 

(4) corresponds to rotation around the x-axis, equation (5) to rotation around the y-axis, 

and equation (6) to rotation around the z-axis. For a point cloud to rotate around its cen-

troid, it must first move to the origin in the negative direction of the centroid location 

vector according to equation (3). Rotate it around the desired axis and then move back 

to the original position in the positive direction of the centroid location vector. 

For example, let us rotate the point 𝐩 around the x-axis with an angle of 𝜃. Let the cen-

troid of the point cloud be 𝐜 = (𝑐𝑥 , 𝑐𝑦, 𝑐𝑧, 1)
𝑇 and 𝑀 = [

𝑅𝑥(𝜃) 0
0 1

]. The new position 𝐩′ of 

the position vector 𝐩 is thus obtained from the equation 

 𝐩′ = 𝑀(𝐩 − 𝐜) + 𝐜. (7) 

The alignment performed by the user does not have to be very precise. The ICP algo-

rithm can proceed with the new point cloud position and improve accuracy as the points 

align better. 
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4. EXPERIMENTS 

The methods were studied by selecting the Steam controller as the main object to be 

scanned. As seen in Figure 11, the controller is sufficiently asymmetric, so the alignment 

of point clouds should be easy to perform correctly. In addition, the size of the object is 

small enough to make point cloud editing fast. A flat surface with no other objects was 

chosen as the scanning location. A total of 8 images were taken of the controller from 

about 1 meter in each direction. No more pictures were taken to make point cloud man-

agement easy and quick. 

 

Figure 11. Steam controller 

Another larger object, a sofa, was also scanned to see how the methods could be gen-

eralized. The texture is not reflective, so the results should be more accurate at the sur-

face level than the game controller. Also, the processing time will be longer as the object 

includes more surface area because there are more points in the point cloud to be han-

dled. The sofa point clouds did not align properly together for the most part, even with a 

manual adjustment. The resulting point cloud was mainly combined by manually control-

ling the target point cloud. 

4.1 Hardware 

The experiments were run on Ubuntu 20.04 operating system. These tests could not be 

performed on Windows due to compatibility issues with various code libraries and drivers 

for the Kinect sensor. Kinect V2 (Kinect for Windows) was used as the depth camera. 

The central processing unit used was an Intel i5 2500, and the graphics card used was 
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Nvidia GeForce GTX 970. The graphics card was needed to visualize the Kinect camera 

view and the point clouds at various stages of the study. 

4.2 Filtering 

The distances at which the described game controller remained in the point cloud were 

tested for depth filtering for each point cloud. The filtering distance limits varied, although 

the scanning distance remained approximately the same. The distance to the controller 

was about 1 m, and the filtering distances were 0.8–1.1 m. It is recommended to deter-

mine the object’s estimated nearest and farthest distance at the scanning time. This data 

gives good, estimated values for the required filter limits. 

Target point cloud filtering was evaluated with voxel boxes of varied sizes in downsam-

pling. Values were assessed between 1 mm and 20 mm. At 1 mm, the points were not 

filtered out. With slightly bigger voxels, the points began to filter out. At about 5 mm, the 

number of points was half the original. A fair value of the voxel size was found to be 10 

mm. The points were filtered to about 1/8 of the original point cloud size, and the point 

cloud shape resembled the original controller shape. 

In planar filtering, the game controller and the floor level were separated. The error dis-

tance can be selected from the found plane in the filter. Because there are still lens 

distortions in the point cloud, the plane is slightly curved, at least at its farthest edges. 

The distance error was evaluated from small distances (1 mm) to larger sizes until a 

good result was obtained by removing most of the floor planar points. The error distance 

should not be considered exceptionally large, as points near the bottom of the game 

controller will also be filtered out. The maximum length at which most of the plane got 

filtered without removing the bottom of the controller was 7 mm. 

After planar filtering, there were still individual points left. A cluster extraction was per-

formed to get rid of the extra points. The optimal distance tested 11–18 mm was so that 

the closest erroneous points were not included in the game controller cluster. At dis-

tances less than 11 mm, many essential points began to be filtered from the cluster. The 

game controller’s point cloud cluster consisted of 370 points. The lower limit for cluster 

size was set at 300 points. The upper limit was not placed because it would be too small 

to reduce the size of the larger cluster and would not benefit from this need for filtering. 

The inverse filtering was also performed to compare the quality of the resulting point 

clouds. With a search distance of 1 mm, the outputted point cloud had less of the points 

than in the input cloud cluster. With a too high search distance, the points on the floor 
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were included in the filtered output. A search distance of 10 mm was used, bringing all 

the original points around the game controller cluster to a new point cloud. 

The sofa point clouds were filtered in almost the same methods as the game controller. 

Downsampling was not used as the goal was to keep the quality as high as possible. 

Inverse filtering was not needed as the quality stayed the same. The largest distance to 

the found plane in planar removing was 80 mm. Changing this parameter also changed 

the found plane. Too high a value and another planar surface were found from the object. 

The cluster extraction was used with a search distance of 60 mm, and a minimum size 

of the cluster was set to 1 000 points to filter the smaller cluster off. 

In general, the filtering parameters do not generalize. The values of the parameters de-

pend highly on the scanned object and the surrounding environment, which makes se-

lecting the filtering parameter values hard. If the scanning process was made automatic, 

the use of the filters should be minimized. 

4.3 Point cloud alignment 

As mentioned in section 3.1, the conversion from a 2D image to the 3D point cloud took 

a lot of time, and the idea of real-time or timed image capturing was discarded. The point 

cloud alignment was used on point clouds where the camera positions are all far from 

each other and with a different viewing angle. The point clouds from different directions 

on the game controller are not aligned. Each point cloud can be thought to be its own 

coordinate system, all of which have an origin corresponding to the camera’s position at 

the scanning time. 

When running the ICP algorithm, it was found that point clouds do not consistently settle 

in the right place. In addition, there is no preliminary information about the location of the 

point cloud in the case of separate point clouds. An approximating preliminary guess 

cannot be made to the desired location so that the ICP iterates to the correct location. 

The needed rotation and translation were too big for the algorithm to converge correctly. 

Two different methods were used for incorrectly aligned point clouds, point cloud inverse 

filtering and allowing the user to move the point cloud to a better location between ICP 

iterations. 

The assumption was that there were so few points that ICP could not detect the correct 

targeting points. Inverse filtering was developed, which takes from the original point cloud 

all the points at a certain distance from the points in the controller cluster. The result is a 

denser point cloud that is more accurate than the filtered. ICP still produced incorrect 

positions in the alignments. 
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The testing also included modifying the PCL interactive ICP code so that the user can 

move the point cloud along the x, y, and z axes. In addition, the point cloud can be rotated 

about the x, y, and z axes in small increments, allowing the user to move the point cloud 

at 6 degrees of freedom. 

Manually correcting a moving point cloud was challenging because there were no coor-

dinate axes in the view that would indicate which direction the rotation or displacement 

would occur. However, after experimenting with the movement commands, the correct 

orientation of the adjustment was found. There was no need to be precise here because 

as the iteration process continued, the algorithm found a better optimum for the point 

cloud and aligned the point clouds better. With the proper alignment, the point clouds 

were merged. 

In this test case for the game controller, the direction of rotation direction z was the best 

to move the point cloud. The camera took pictures around the game controller, almost 

rotating around the z-axis of the camera. 

The merged point cloud was filtered using the downsampling method to mitigate the error 

caused by erroneous and too many points in the merged point cloud. The objective was 

to average the points in the merged point cloud so the successive merging could align 

better. This interactive ICP method was also used to combine the inversely filtered point 

clouds of the controller. The merging of the denser point clouds was done to compare 

the quality of both point clouds. 

It was tedious to align the sofa point clouds. Each point cloud to be aligned contained 

51 000 to 94 000 points of the object. For this large number of points, the ICP algorithm 

was slow. One iteration took approximately 10 seconds at most. After each alignment, 

downsampling was performed with a size of 3 mm. With this size, the original point clouds 

do not get filtered, but the overlapping points after merging got averaged with the filter, 

limiting the size of the resulting point cloud a little. 

Also, the ICP could not align the point cloud, even if the source point cloud was set 

manually on top of the target point cloud. For this behavior of the ICP, most of the sofa 

point clouds were moved in the right direction with 1 iteration and moved manually to the 

correct location. The reason might be for the systematic misalignment that new points in 

the source point cloud are tried to be aligned to the existing target points, causing incor-

rect converging location. 
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5. RESULTS 

The Kinect sensor does not require much for the operating system. The minimum re-

quirements are easily met with current computers. As the Kinect v2 is old technology, 

the related research and software were done some time ago. It was difficult to find work-

ing programs or guides to help when compatibility issues arose. 

The experiment results showed that the object’s surface should not be reflective. The 

surface of the game controller is mainly matte, but it is also slightly glossy. The reflectivity 

caused the points of the controller to be too far from the correct position due to reflection. 

As a result, the shape of the point cloud is slightly distorted. This distortion is most no-

ticeable in the z-direction, in the separate point cloud views of the object. 

It should be noted that Kinect can produce point clouds with varying accuracy. At the 

nearest distance of 0.5 m, the distance between adjacent points is about 1.4 mm, and at 

4.5 m, it is about 12 mm [7]. Because the depth data cannot be acquired closer than 0.5 

m to the object, a more accurate point cloud cannot be obtained from the object’s surface 

shapes. The game controller described is too small for the camera’s field of view, so 

there were extra points left in the background that had to be filtered out. 

There are also errors in the distance data from other sources. The image has lens dis-

tortions, and calibration may not give a complete correction. The distance values of the 

device may vary due to the device’s systematic measurement error. 

As the study found, ICP does not always find the correct location in the target point cloud. 

An initial guess for the estimated transformation would have helped in the general case, 

but such approximating guess was hard to make with this experimenting setup. The ICP 

did not align because too few or too many points were in the point clouds. The wrong 

optimum is too easy to find in a dense point cloud when there are not as many points in 

the movable point cloud. The solution to this could be to keep the number of points in 

the target point cloud unchanged, for example, by downsampling. The accuracy of the 

point cloud shape does not improve, but the points move in better positions on average. 
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Figure 12. Bar chart of the point cloud sizes after each filtering step 

Figure 12 shows how essential filtering functions are to maintain efficiency. The number 

of points in the remaining point cloud is significantly lower than that in the original. Note 

that the points axis is logarithmic, so each filtering method removes a vast portion of the 

points from the previous step. 

 

Figure 13. Line chart of one of the ICP point cloud alignment mean-squared error 

Figure 13 shows the mean square error (MSE) obtained by combining the point clouds 

in each iteration. The point cloud settles at the first optimal location almost immediately 

after the first iteration. The error does not change much in the fifth iteration. However, 

the point cloud settled in the wrong position, so it had to be rotated manually. In the sixth 

iteration, the error increased slightly with correction, but in the following iteration rounds, 

the point cloud settled in place as the MSE error reached a lower level. 
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Figure 14. Low-quality resulting point cloud from the controller. Top view (a), side 
view (b), perspective view (c) 

 
Figure 15. High-quality resulting point cloud from the controller. Top view (a), side 

view (b), perspective view (c) 

The 3D scanned game controllers merged points are shown in Figures 14 and 15, show-

ing the results from different viewpoints. In Figure 14, the standard mentioned filtering 

methods were used. The overall shape of the controllers can be determined but not much 

more. In Figure 15, the original unfiltered point data were combined. The resulting point 

cloud is much denser than in Figure 14. The denser point cloud has a lot of noise which 

scatters the points around the average surface, making the surface coarse and hard to 

distinguish.  

Neither of the point clouds is precise. Precise surface details such as the buttons on the 

controller are lost among the sources of error, leaving the surface inaccurate. The errors 

caused by a reflective surface of the controllers can be seen in Figures 14 and 15, picture 

b, as outlier points near the controller’s handles that do not belong to the average surface 

of the real object. The number of points in Figure 14 is nearly 700, and in Figure 15, 

almost 13 000.  
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Figure 16. Resulting point clouds from the scanned sofa. Top view (a), side view (b), 
perspective view (c) 

The resulting merged point cloud is shown in Figure 16 with different viewpoints. The 

quality is phenomenal compared to the game controller. The object’s overall shape is 

correct, from the surface modalities to the sofa fabric’s wrinkles. As the point clouds were 

aligned and merged by controlling the point cloud, the result has some ghosting edges, 

edges that did not get appropriately aligned and are in multiple distinct places in the point 

cloud. The ghosting cannot be seen in the pictures, as the double edges blend with the 

rest of the points. Another artifact is the distinct outlying points near the edges of the 

object remaining after the filtering. The total number of points in the resulting point cloud 

is about 450 000. Fewer points would have sufficed, but this goal was to keep the quality 

as high as possible, so the filtering was minimal. 

The test result shows that these methods cannot provide an accurate, detailed point 

cloud as an output for smaller objects to be scanned. As with scanning a larger object, 

such as the sofa, the resulting point cloud, the average surface is more detailed. With 

the smaller object, filtering comes with lower quality but faster computing. Also, with the 

larger object, the quality is better with a cost of more computing time. 



24 
 

6. DISCUSSION 

The resulting game controller point clouds do not have decent quality. There is a sub-

stantial variation in the location of the points around the average surface. The shape of 

the point clouds does not closely follow the variations in the form of the game controller 

surface, and the exact details of both point clouds are lost with the error noise. However, 

both point clouds are in the correct shape, so this type of 3D acquisition is better suited 

for larger objects or objects whose appearance needs to be modeled only roughly, and 

the accuracy of the surface does not matter. 

Another 3D scanned object was a sofa. The quality of the resulting point cloud is good 

mainly because each captured view contained a lot of points that were not reduced by 

downsampling. Compared to the game controller, it is uncertain what causes the differ-

ences in the quality and outlier points in the point clouds. One significant factor could be 

the material, as the game controller is a bit reflective, and the sofa is not. Another factor 

might be the object’s surface area. As the game controller surface area is small, the 

errors cumulate more clearly on combining the point clouds. 

Many sources of error should be considered when an object needs to be 3D modeled 

with a depth sensor. If the focus is on modeling only one object, as in this work, the object 

must not have shiny surfaces. Otherwise, the depth sensor may not receive the light 

pulse transmitted at the right time. Figure 2 shows well what happens to the reflective 

surfaces. There is a hole in the point cloud at the point where the mirror should be. The 

points of the mirror itself are much farther away than they should be. It is also essential 

to consider the shape of the object. The object must not be symmetrical. Otherwise, point 

cloud alignment is unreliable when there is no reference to where the point cloud should 

be correctly aligned. 

The object’s distance from the camera is also an important source of error. The farther 

the object is from the camera, the fewer points in the object’s point cloud, so the surface 

shapes are inaccurate. As the distance increases, the uncertainty of the value of the 

point distance also increases. Figure 2 also illustrates the distortion of the camera lens. 

Calibration would reduce the errors in distortion better. The camera was not calibrated 

separately, but the factory settings of the camera’s intrinsic parameters were used. 

Therefore, it is unknown how much the calibration errors affect the results. 

A filtering method was used that at the same time reduces the erroneous data but also 

increases it. The downsample filter calculates the average of a given point cloud and 
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reduces the number of points in the point cloud. Downsampling increases the uncertainty 

of the point location. This filter should be used under consideration. 

The most significant error source is in ICP alignment. Based on the shape of the point 

cloud alone, the alignment accuracy is highly uncertain because the locations of the 

points taken from different angles are not in the same places. 

The alignment of the point clouds would be significantly improved if the point clouds had 

anchor points or an anchor object. These could give the ICP an accurate preliminary 

guess about the target’s location. The suggestion is to modify the program to correctly 

find the direction in which the point cloud should be moved and rotated based on the 

shape of the point cloud object. The tricky thing about this method is aligning a perfectly 

symmetric object with several correct point cloud orientations. Alignment could be im-

proved by using external geometric objects to align the point cloud to the global coordi-

nate system when the alignment object is in the point cloud. On the other hand, if such 

a change were made, ICP alignment would no longer be needed because point clouds 

can be moved and connected directly to the same coordinate system with a few trans-

formations. This method could also model the entire environment as in KinectFusion, but 

with a different approach.  

It was learned how to get from depth data to a 3D model of an object. In addition, the 

importance of filtering was understood. Depth data contains many useless data points 

when modeling only a tiny object. In addition, it was helpful to learn how to move and 

rotate 3D point clouds in the XYZ coordinate system using matrix operations. 

Depth sensors can be found in modern phones that could be utilized in 3D modeling. 

This could be one area of research on what kind of results are obtained with phone depth 

data in 3D modeling. The methods used would be the same as in this work. 

The methods of this work are very user-specific. Further development would be to modify 

the implementation so that no user intervention is required and 3D modeling could be 

performed automatically and even in real-time. Before that, however, it would be essen-

tial to figure out how to get more accurate point clouds by reducing the impact of errors. 
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7. CONCLUSION 

This work investigates the steps of 3D modeling of a Steam controller and a sofa when 

the depth data was collected with a Kinect v2 depth sensor. Point clouds were formed 

from the depth image of the camera, which was filtered to contain only the points of the 

scanned objects. Point clouds taken from different directions were combined using an 

Iterative Closest Point (ICP) algorithm. The ICP program was modified so that the user 

could change the position of the moving point cloud by moving and rotating it. Implemen-

tation prevents the point cloud from getting stuck in the wrong place with user interven-

tion. 

The resulting point clouds did not meet expectations for the scanned game controller as 

the quality of the point clouds was not good. On the contrary, the quality of the scanned 

sofa was excellent, but a lot of time and effort was put into achieving the results to get 

that good quality. The most significant source of error was in the implementation of ICP 

in both scans. Mostly, the point clouds did not align correctly automatically, and even 

with manual correction, the point clouds still aligned occasionally incorrectly. The prob-

lems with the ICP could be corrected by improving point alignment with anchor points, 

or other anchor objects in the point cloud or a better alignment algorithm. 

The code used in this work is available on GitHub3. The code can be modified and used 

freely. This work provides a reasonable basis for possible further developments, such as 

solving the identified problems or enhancing the current implementation. A promising 

idea for further development would be to get rid of user-dependent implementation and 

proceed to automatic and real-time modeling of the object or the entire environment. 

                                                      
3 https://github.com/roopekoo/Kinect3D 
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