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Abstract 

One of the problems in the optimization of the PEM fuel cell performance is the 

operation characteristics prediction for short and long-time behaviours. In this sense, the 

influence of the anode and cathode catalyst morphologies requires more studies and analysis. 

At short time of operation regimes platinum electrodes can be taken as homogeneous and 

smooth films where pseudo 1-D behaviours can be applied. However under some 

circumstances, the current and potential distributions under a single coordinate are not those 

expected by the non-dimensional numbers deduced from numerically solved balance 

equations.   

The employ of exact analytical functions for predicting the distribution of potential and 

current densities in 2D PEM fuel cells, instead of numerical solutions, reduces large 

computational times. Therefore, we envisage an analytical solution of linear momentum and 

mass balance equations under both normal and tangential coordinates to obtain current, 

concentration and overpotential profiles for homogeneous platinum catalysts. The solution of 

the differential equations are found using the initial velocity and its gradient at the surface as 

initial and contour conditions, from which dimensionless numbers are deduced, i.e. Wagner, 

Damkoehler and Graetz. Besides, the complete polarization curve is predicted comparing the 

theoretical results with the proper variations of electrochemical magnitudes in a 

hydrogen/oxygen 200 cm2 PEM fuel cell.  

 

Keywords; dimensionless numbers, polarization curves, fuel cells, current distribution, 

overpotential profile. 

 

1.- Introduction. 

Green and white hydrogen fuel cells (FCs) are taken as the new revolution in energy 

conversion devices with zero emissions but high efficiency powers for static, transport and 

industrial applications [1-3]. However, some technological problems still need to be solved 

such as durability, stability and optimised fuel consumption. Thus, fundamental equations are 

usually solved using numerical procedures to predict the polymer electrolyte fuel cell (PEMFC) 
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performance but do not mimic the functionalities of current and potentials during large 

operation times [4, 5]. 

Kulikovsky [6,7] is one of the authors that has presented analytical exact solutions to 

solve differential equation in mass and charge balances for modelling the current density 

distribution on 2D and pseudo 1D PEMFC along a channel [8, 9] and on the catalyst layer [10, 

11]. Most of the approaches are based on the description of the oxygen mass transport from 

the cathode catalytic layer, charge transfer from the Nafion membrane to the catalytic layer 

and the electrode kinetics of the oxygen reduction itself.  

Maybe the most interesting innovation, with good results, was the employ of a pseudo 

2D domain (or 1D + 1D model) were the equations of those transports in the catalytic layers, 

gas diffusion layers and membrane interfaces were described solely in the direction of the gas 

flux entrances parallel to them.  Those pseudo models were previously used by Maranzana et 

al. [12], Mainka et al. [13] and Chevalier et al. [14] with the advantage of simplifying the 

differential equation resolution´s giving rise to more generalizable and descriptive analytical 

equations. 

In the inspection of the literature we noticed the employment of important 

dimensionless numbers in the engineering of the PEMFC model. However, the new advances 

recently reported are barely comparable to the classic progresses. Gyenge [15] published a 

comprehensive review of all dimensionless numbers, some of them repetitive or redundant, 

but a list of no less than 25 was found. Chevalier [16] made a complete approach covering 

many current density ranges with only 3 dimensionless numbers, Wagner (Wa), Damkoehler 

(Da) and Péclet (Pe) with 4 limiting performances depending on the oxygen diffusion velocity 

and electrochemical reaction rates. Xuan et al. [17] centred their study on the application of 

Da and Graezt (Gz) numbers since they have the advantage to compare between the 

performances of different configuration of PEMFCs regardless the hydrodynamic operating 

conditions (Graetz Problem) or type of materials (better seen in power density curves). 

The Gz number involves the definition of the quality of the laminar flow profile at the 

entrance of the channel, i.e. the time scale diffusion to that of convection: 

DL

dtdm

DL

dtdV
Gz


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         (1) 

              where the numerator refers to the mass flux, dm/dt,  is the apparent density or the 

volumetric flow, dV/dt, D the diffusivity of the gas reactant and L the characteristic length of 

the cell. After operating; 
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where 
h

D  is the hydraulic diameter, Pe = ReSc, Re the Reynolds number and Sc the 

Schmidt number. When its value is above unity the laminar process is considered as a fully 

developed regime, whereas on the opposite it is taken as an entrance controlled region.  

On the other hand, the conversion process is usually characterized by the Damkoehler 

number (Da), being its value lower or larger than 1 a criteria of a kinetically or mass transport 

controlled regime, respectively. It is defined as; 

DC

LkC
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        (3)
 

where k is the specific rate constant of the electrode reaction, Co is the bulk reactant 

concentration and p the reaction order. For p=1 and introducing electrochemical kinetics we 

deduce [10] that Da for an electrochemical reactor is; 


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where jo is the exchange current density of the electrode reaction, which in some cases 

it contains k.Csurf, the latter being the concentration at the surface of the electrode catalyst 

(taken as the mass transfer corrected values), f=F/RT is a constant involving the Faraday 

constant F, the Regnault constant R, E and Ej=0 are the operating and open circuit electrode 

potentials, n is the exchange number of electrons at the considered reaction,  the charge 

transfer coefficient (implicitly taking with the  symmetry factor of a single path) and  the 

hydraulic thickness or diffusion thickness depending on the experimental conditions.  

It is considered that the main advantage of the dimensionless equation is the 

definition of the operating regimes, since based on these values it is possible to fix the limiting 

processes for a range of operating conditions (current density, electrode potentials, air 

volumetric fluxes, oxygen diffusivity, temperature, surface pressure by hydrogen and oxygen, 

etc) under which simplified models can be found [18].  

To complete the analysis on electrochemical systems we need, at least, to introduce 

the Wagner number (Wa). It makes a rationalization on the influence of the electrochemical 

reaction polarization resistance, RP, with respect to the total ohmic resistance of the MEA 

composite, R.
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       (5) 

The polarization resistance RP is the ratio between the Tafel slope b (containing the 

charge transfer coefficient that is, b=RT/ F) and jo. The uniformity of this number gives a 

well-defined secondary current distribution [19, 20]. 
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In this paper we will make a little knowledge on the dimensionless numbers in a 

PEMFC under a 1D and 2D approach, envisaging the overpotential, current density and 

concentration profiles to construct the characteristic polarization curve. 

 

2.- Experimental Section. 

A mono 200 cm2 geometric area PEMFC was prepared at the lab using a membrane 

electrode assembly (MEA) of 10 cm x 20 cm area and 185 microns thickness. The fastening 

pressure applied between the terminals was measured with a spring screw of ca. 7 bars. The 

value was selected to obtain invariance in the polarization curves with oxygen flow changes 

between 1 to 10 cm3s-1.The current collectors were made of 316 stainless steel with serpentine 

gas channels on their surfaces. The geometries of the cross section graphite bipolar plates 

were 25.15 cm length, 0.15 cm depth, 0.25 cm height and 0.20 cm width. Besides, the 

determination of catalyst and gas diffusion layers thicknesses yields 12 and 230 microns, 

respectively. The flow rates of the dry gases were 11 and 8 cm3 s-1 at the anode and cathode, 

respectively. The PEMFC operated at a working temperature varying from 60 to 80oC and kept 

invariant with a water recirculating cooling pump. The humidified oxygen and hydrogen 

streams (up to 99.99 % purity of Linde Group) were thermostatted and humidified before the 

entrance of the FC with a mean operating value at ca. 65 to 68oC. Gases inlets were humidified 

at a temperature 2 or 3oC grades below the cell temperature to avoid water condensations in 

the case of stopping the measurements. 

The platinum catalyst was arranged using distinct loads from 0.4 to 2.1 mg cm-2 on the 

anode and 0.4 to 3.6 mg cm-2 on the cathode catalyst layers, however in most of the 

experiences the highest loads were employed. The preparation of the MEA was achieved as 

detailed elsewhere [21] using a temperature controlled hydraulic press with Nafion 117 from 

Du Pont using the following cleaning method. Therefore, the membranes were firstly boiled 

for 30 min in acidic 3 % hydrogen peroxide with continuous stirring and later with 

concentrated HNO3 (analytical grade from Mallinckrodt) for the same period. To eliminate the 

residues, the ensembles were repeatedly boiled in MilliQ water for 1 hr. at 80oC, followed by 

immersion in 0.10 M HCl (analytical grade from Merck) for 24 hrs. and recurrently rinsed in 

Millipore MilliQ+ water (TOC less than 5 ppb) at ambient temperature. 

The PEMFC was prepared to allow the insertion of a little hydrogen capillary reference 

electrode to measure either the anode or the cathode to measure the polarization curves. The 

curves were obtained using a PGZ Potentiostat-galvanostat-impedance analyser from 

Radiometer Copenhagen (Program Voltalab 32 System). They were recorded using the 

galvanodynamic method, that is, imposing increasing current steps, from 0.1 to 1.0 A 
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(depending on the curve section) for at least 2-3 min to range constant cell potentials between 

the open circuit values (ca. 0.94 to 0.98 V for full hydration) and the lowest possible, i.e. 0.5 V.   

However, a control (before and after 1 month of operation) of the real exposed area 

was conducted using the oxidative desorption of carbon monoxide (99.997 %, < 2ppm CxHy 

from Linde Group). These experiments were conducted ex situ by bubbling carbon monoxide 

gas over and in a glass-cell with 0.50 M sulfuric acid as supporting electrolyte until saturation 

(5 min). The process was achieved inserting the MEA in the glass cell without the presence of 

either the auxiliary (large platinum foil) or reference (capillary hydrogen platinum ensemble) 

electrodes to evade impurities. After that, the adsorption potential was fixed at 0.05 V for 2 

min and the oxidative voltammetric contour was run at 10 mVs-1 stepping the potential to 0.60 

V to avoid interactions with adsorbed hydrogen. The excess of dissolved carbon monoxide was 

removed with continuous argon bubbling (N50 from Air Liquide) and instantaneously switching 

the solution with the supporting electrolyte keeping all the time the potential at 0.05 V. Then, 

the electrode was stripped from the residues (anodic stripping experiments) scanning the 

potential up to 1.60 V and then downwards to 0.02 V. The active surface area of anodic and 

cathodic sides of the MEA were determined from the ratio of the charge involved in the carbon 

monoxide anodic stripping voltammetric profile from 0.60 to 1.60 V (taking saturation for 2 

electrons equal to 420 C cm-2) after the subtraction of the double layer charging contribution 

[22]. (Figure S1 at Supplementary Information shown for the anodic catalyst). 

 

3.- Theoretical Considerations. 

 The following study gives an analysis of stationary regimes in a 2D PEMFC considering a 

thin layer configuration of x and y coordinates (Figure 1). Thus, for the mass transport 

equations we will include the normal and tangential velocity profiles dependent on x and y to 

gain a better sight of current density, overpotential and concentration profiles. Since the rate 

determining step is the oxygen mass transport, the focus is put mostly on it along the channel 

and the diffusion layer together with the charge transport at the catalytic layer caused by the 

cathodic reaction.  
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Figure 1.- Oxygen flow stream along the cathodic channel of a 2D fuel cell. Thin catalytic layer 

of smooth platinum ensembles at a steady state laminar linear semi-infinite flow. The 

nomenclature is defined along the text. 

 

3.2. Electrochemical profiles and dimensionless derivations for fuel cells.  

3.2.1. 1D approach. 

It is considered that the main advantage in the employ of dimensionless equations is 

the definition of a general operating regime, since it is possible to fix the limiting processes for 

a range of operating conditions (current density, electrode potentials, air volumetric fluxes, 

oxygen diffusivity, temperature, surface pressure by hydrogen and oxygen, etc) under which 

simplified models can be found. The results by Iranzo et al. [18] illustrate this methodology of 

work. However, one of the problems arising from this dimensionless treatment is the local 

dependence of the functions on at least 2 variables without the time since we are comparing 

the theoretical predictions with experimental data obtained under a stationary regime.  

The 1D treatment is only posible after considering some approximations on the 

electrochemical functions to avoid the complexity of mathematical equations. According to Eq. 

(4) Da is calculated by the ratio between the operating current density and the maximum 

possible attained (limiting plateau value):  
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where jocorr is the mass transfer corrected exchange current density of the electrode 

reaction containing k.Csurf, being Csurf the reactant concentration at the surface catalyst (taken 

as the mass transfer corrected values) and the rest of the terms previously detailed above.  
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The numerator is developed below explaining a little better each term considering 

firstly a mixed controlled mass-charge transfer current density. Thus, a Tafel equation modified 

by the ratio of the local C(x,y) to the bulk Co concentrations is reflected with the exchange 

current density, jo: 

)/),(exp(
),(

),( byxj
C

yxC
yxj

oo


      (7) 

Besides, the overpotential (x,y) is simply the difference between the electrode 

potential at j, Ej and that at reversible conditions, j=0, Ej=0. Thus, Eq. (6) explains a Da number 

as the ratio between the mass-charge transfer current and the current under limiting 

conditions: 

 lim
j

j
Da

kinmass 


         (8) 

The jmass-kin is strongly dependent on the potential E(x,y) at the operating current j(x,y) 

also related to the overpotential (x,y):  
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      (9) 

Being R the ohmic drop across the catalytic layers between anode and cathode, i.e. an 

addition of the ionic and electronic resistance in the MEA and gas diffusion layer. 

As a first approach we can imagine that the overpotential is only dependent on x, the 

flowing gas stream coordinate, since it is related to the change in the composition during the 

conversion of reactants to products along the reaction advance from the entrance to the end 

of the FC channel. Moreover, the current density can be considered as only dependent on y, 

the coordinate between anode and cathode, since the rate of conversion at a local point is 

majorly dependent on this coordinate. Therefore;  
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Since the local concentration, C(x,y), is regrettably dependent on both coordinates, we 

need to transform Eq. (10) to avoid the concentration gradient under limiting conditions as;
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After introducing the Wa number, we found  
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It is usual to convert the above equations into dimensionless functions and variables. 

On one hand, current density J(Y) and concentration C´(Y) are defined as; 

o
jyjYJ /)()( 

    
o

CyCYC /)()´(        (13a,b) 

on the width variable 

dyY /          (13c) 

and on the other hand, the overpotential N(X); 

bxX /)()(          (13d) 

on the length variable  

LxX /          (13e) 

After those definitions, it follows that: 
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This approach of a single independent variable distribution of current density on the 

normal coordinate, J(Y) and the overpotential on the tangential coordinate, N(X) is reasonable 

since the isospotential lines are perpendicular to those of current intensity on parallel flat 

plate geometries.  

From Eq.(14) we envisage another dimensionless expression “djocorr/ConFD” which has 

the intention to describe the onset starting operation conditions of parallel plates in a PEMFC.  

Thus, we have an exchange current density divided into a hypothetical limiting current 

density. It looks like an onset current in the channel of the cell with respect to the maximum 

thickness along the width of the channel, that is, an initial or onset Damkoehler number, Dai at 

Ej=0 where reversible conditions operates.  

For this new Dai and for a given value of d=0.20 cm, we need experimental magnitudes 

of jo and D since Co, which are taken as constants, for example, 1 M for the latter as the oxygen 

or proton activities. On one hand, the determination of jo is common in Electrochemistry and 

in the case of FC is well described in refs. [24, 25]. However, for the gas diffusivity there are 
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distinct methodologies one more sophisticated than the other. We prefer direct 

measurements in one single channel [26, 27] by electrochemical sensors desgined in our lab.  

Thus, the measurement of the cathodic jo at the beggining of the experiment was 0.5 

Acm-2 similar to those found before [7, 16, 18]. On the other hand, large values of diffusivity 

for oxygen in the diffusion layer were found, that is, 0.02 cm2s-1, at least 2 orders of magnitude 

higher than expected. This obtained diffusivity is lower than those reported before [28], but if 

we take into account Bruggeman´s corrections of porosity (Deff = 3/2D) being  the mean 

porosity factor of the MEA (ca. 1/3) is approximately the half of ours (0.26 cm2s-1). Besides, 

using the proton and oxygen transport 1 D model in the FC of Cairns-Perry-Newman [29], 

Kulikovsky [30] obtained a porosity factor of only 6.3 %. This value yields a similar diffusivity for 

oxygen (0.27 cm2s-1) in a binary oxygen-nitrogen mixture at 60oC taking a pore saturation 

condition. In summary, with those figures, the obtained Dai is 0.013. 

We avoid here to use interdiffusion coefficients based on Stefan-Maxwell equations 

since they are difficult to measure them in situ. However, the values found by other authors 

are higher than expected, that is , 0.35 cm2 s-1 but they were not measured on high roughness 

surfaces [9, 31]. Moreover, in the case of jo there is no much variations as the values obtained 

experimentally in this paper. 

The value of Dai lower than unity clearly shows what it is expected, that the reaction is 

very slow (in fact not occurring) at the beginning of the process and the transport of the 

reactant species is very fast since they are everywhere in the channel.  

This Dai evaluates a limiting condition for jo when it is expanded all through the 

channel width. The hydrodynamic layer extends to all the thin layer since the process is not yet 

starting, that is, a bulk solution infinitely diluted of products. Then, Eq. (14) changes to: 
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To continue the deduction we can transform Eq. (7) into dimensionless functions:
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After substitution of (16) into (15) we have a double variable dependent equation 

which does not apply for a facile characterization: 
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This is also an implicit function of C´(X,Y) and N(X), so when working with ohmic drops 

across the PEMFC, it is not possible to separate both location coordinates. Moreover, for 

C´(X,Y) is not possible to take it as dependent on only one variable and the resolution is 

accomplished merely by iteration or numerical methods.

 

However, we can operate with the ratio between Dai at Ej=0 and Da at Ej since it is 

simply a relationship between 2 distances. The hydrodynamic layer is then, “corrected” only by 

the overpotential since it will be dependent only on x (in the absence of ohmic drop): 
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Moreover, the approach that the overpotential is practically dependent only on x is 

validated here; 
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Substituting (19) into (17) we have: 
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Again the problem of the 2 dependent location variable of C´(X,Y), makes a difficult 

task to solve it easily.  

To solve this problem in Eq. (20) we can employ low current densities or more properly 

negligible ohmic drops to reduce the number of variables in the linked parameters. This is 

likely when the application of hydrodynamic factors, implicitly included in the diffusion-

convective layer, are inferred as dependent on an individual variable. In this sense, if we 

simplify the boundary diffusion layer profile to that of a flat plate we can use the expression 

found by Levich [32] and other authors before: 
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Or  

2/13/1
Re

3
)(

x
Sc

x
x 

        (21b) 



11 
 

Being Rex the local x-dependent Re number (Re=Uolh/) and Sc the Schmidt number (Sc=/D).
 

Uo is the average hydrodynamic velocity and lh the characteristic length (volume over occupied 

surface area). If we consider that the wetting area is identical to the volume of the channel in 

the bipolar plate divided the wetted perimeter, the lh coincides with L (the length of the 

channel). This is why it is convenient to apply the Rex. However, the boundary layer is also 

converted to Re using L; 
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Then; 
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Or substituting into Eq.(20): 
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 It has to be noticed that the width d is related to the hydraulic diameter, Dh, since the 

latter is defined as the ratio between the cross sectional area, Across, and the cross-section 

wetting perimeter, Pwet: 

wet
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          (25) 

Thus, in our case Dh is demarcated for the height of the wetted channel, h, can be defined as: 
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or when it is completed full of fluid as; 
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 Thus, we can clearer d as a function of Dh (26b) and then substituting into (24): 
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We have to modify a little bit the above equation to enrich more the dimensionless 

equation for our practical purpose. The steady-state mass transport controlled electrochemical 
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reactions is also a Graetz Problem. The latter can be divided into two central operation 

systems: the “entrance zone” suggesting the occurrence of a mass transport boundary layer 

and the “fully developed zone” with a bulk exhaustion of the gas reactant [33]. It is useful to 

have the first zone to minimize the reactant depletion, but when channels reach a sufficient 

regime, it changes to “fully developed” and the overall conversion process is larger with no 

control of the reactant rationalization. 

For Gz<1, the convection time scale is shorter than the diffusion time scale and a 

portion of the gas reactant in the channel is not able to “reach” the electrocatalyst surface, 

exiting the bipolar plate in the FC. The result is the appearance of a mass transfer boundary 

layer. On the other hand, for Gz>1, reactants have sufficient time to diffuse to the electrode 

surface and no mass transport boundary layer appears. 

Thus, using Eq. (2) and substituting it into Eq. (28) we obtain:
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Also substituting d by Dh and introducing Gz in Eq. (23) as dimensionless, we can use 

the following Da in the absence of ohmic drop:  
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There is another important parameter to define, i.e. the dimensionless characteristic 

length of the 2D flat corrugated fuel cell (w);  
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Dh

DhL
w

)2( 
         (31) 

Since the channel is supposed to be completely full of fluids applies (26b) and d=0.20 

cm, h=0.25 cm, Dh=0.22 cm and since L =25.15 cm, then w=7.69. 

)(

2/1

6/1
3 XNi

eXw
Gz

ScDa
Da




       (32) 

Here Gz1/2=1.32 and Sc1/6 = 0.89 since Re=402.4 and Sc=0.5.  

It is seen that Sc is very low as a consequence of the large value of D found at the MEA. 

It is common to find these low values in the case of PEMFCs, i.e. larger than in liquid 

electrolytes considering also that both water and protons accompanies the gas diffusion 

process. The large oxygen diffusivity was previous measured [16] and discussed elsewhere [34, 

35]. 
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Eq. (32) shows that Da increases with the cathodic overpotential and the advance of 

the reaction along the channel. However, this expression does not show any reachable limiting 

value above certain overpotential. Moreover, it also changes with the local position along the 

reactor but this tendency is less important. When a typical value of overpotential of -0.10 V is 

developed, a Da = 0.76 was found at x=0.5 and Da = 1.08 at the end x=1.0. Those values are 

near the lowest expected for a decent conversion in the FC, however it can be increased by 

growing the Re number. At this overpotential and near the entrance of the FC channel there is 

a kinetically controlled zone and the other at the edge going to a fully developed zone.  

The increase in the cathodic overpotential showed a distinct tendency, for example 

when it goes to -0.50 V at x=0.5, Da rises exponentially to 4.5 105 and at the edge x=1.0 to Da=  

6.5 105. The tendency found at the beginning is broken from -0.30 V since it the limiting 

(plateau) region disappears and grows more than expected (Figure 2).  

Furthermore, high overpotentials are no possible to be predicted using for the 1D 

model in the FC and a 2D deduction is necessary, at least at steady state regimes. Those high 

values of Da are expected for mass transport limited process, but not larger than 103. 

This is a mass controlled region that can be the entrance or the fully developed flow 

region depending on the value of Gz. Since in this case, Gz = 1.76, it corresponds to the fully 

developed flow stream condition of work.  
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Figure 2.- 1D theoretical prediction (continuous lines) of Da as a function of /N(X)/ 

dimensionless overpotential in the absence of ohmic drop (a) and of Da as a function of /J(Y)/ 

in the presence of ohmic drop (b) with Wa=1.5 and at /N(X)/=0. Blue lines are those Da at 

X=0.04 (x=1) and red lines are those Da at X=0.02 (x=0.5). 

 

We can complete the above treatment after including the ohmic drop in Eq. (23): 

])(exp[)](exp[)(





Ryfjxfx

d

Da

Da
i



     (33)
 

The problem with this expression is that it simultaneously depends on both functions, 

j(y) and (x) and each one on a distinct variable. However, we can study Eq. (33) at the 

beginning of the PEMFC process of zero overpotentials, so after some transformations to 

dimensionless functions we obtain: 

WaYJXNi
eeXw

Gz

ScDa
Da

/)()(

2/1

6/1
3 



      (34) 

Thus, Figure 2 (b) shows the plot of Da vs. J(Y) at /N(X)/=0 varying X. Similar plots were 

found at increasing overpotentials different to zero. The values of Da are much lower than 

those found in Figure 2 (a). We have also analysed the change in the overpotentials and for 

increasing N(X) they rise abruptly similar to those in Figure 2(a) after a certain value. In this 

case of ohmic drop this abrupt exponential increase lies at -0.2 V (not shown) lower than in the 

case of no ohmic drop. 
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The plotting of Da as a function of /N(X)/ and/or J(Y) allows the analysis of the 

controlling rate in the electrochemical reactions since it shows whether it is under a 

“kinetically controlled” or a “mass-controlled” regime. For Da > 1, the reaction rate is faster 

than that of reactant transport to the catalyst layer. The transference velocity reaches a 

maximum at the surface when the concentration at the catalyst surface is zero. Therefore, the 

current density is limited by its transport rate, i.e. limiting current behaviour. This is observed 

for /N(X)/ less than 6. For /N(X)/ higher than 10 the 1D approach does no longer apply. For Da 

< 1, the transfer of reactants is quicker than its intrinsic reaction rate for a given Wa number. 

In this case, the concentration at the electrode is distinct to zero, and the electrode kinetics 

(and overpotentials) fixes the global reaction degree. We are not working under this condition. 

Different examples can be discussed according to the experimental results, but all of 

them are given according to the combination of both Da and Gz under a given Wa (not 

possible to be plotted simultaneously in Figure 2). Thus, we need to complete the analysis 

based on Eq. (34). Wa has been used in Electrochemical Engineering as a magnitude that 

typifies the equivalent effect of an overpotential on the current distribution and viceversa. This 

Wa can be used as a guide to a uniform current distribution in a scale-up design. Thus, the 

Tafel slope contribution in Eq. (34) has to be included that can change during the operation 

time. However, it has to be said that Wa can also affect directly to Da since when Wa is small 

(resulting from a large value of jo or R) there is a large tendency to a kinetically controlled 

process, even when Da>1 since Wa is in the current exponential term. It has to be noted here 

that /N(X)/ was defined with respect to the Tafel slope to avoid problems for large differences 

in Wa. The values of Rwere measured by impedance spectroscopy at the beginning and after 

1 month of continuous operation, being 0.04 and 0.12  cm2. After applying Eq. (5) and using 

the values of R we found Wa = 1.5 and 0.36 at the beginning and after 1 month of operation, 

respectively. It is important to notice that jo increases to 0.7 A cm-2 after 1 month but b 

remains the same, showing that the mechanism of the process is unaltered, but not the 

kinetics. The evaluation of the surface area by the carbon monoxide stripping methodology 

gave additional information about a change in the morphology at distinct times of operations.  

The real surface area for both electrodes (anode and cathode) determined at the 

beginning of the experiments by the carbon monoxide stripping method (Figure S1 in 

Supplementary Material). After integration of the anodic charge from 0.60 to 1.60 V, 

substraction of the double layer and relationships with the full monolayer coverage we obtain 

a surface area of ca. 17000 cm2 for both catalysts. Thus, no corrections were necessary later 

for the polarization curves.  
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In summary the employment of the single 1 D approach for current density and 

overpotential only leads to some equations that partially describes the Da on the overpotential 

along the length of the channel separately of the current density between anode and cathode. 

Thus, we need to envisage a 2 D theory to describe both current and overpotential 

distributions as dependent simultaneously on the two variables for better results. 

 

3.2.2. Two dimensional approach. 

3.2.2.1. Smooth platinum anode and cathode electrocatalysts. 

Current, concentration and overpotential profiles along the 2D thin layer channel at early 

stages of the electrode reactions with asymptotic velocity profiles. 

 To obtain the concentration profile of reactants (or products) we need to solve the 

mass balance equation introducing the tangential and normal velocity profiles. Under those 

conditions we are able to describe better the hydrodynamic conditions instead of using a 

simplified fully developed flow regime and then to obtain the electrochemical operation 

characteristics of PEMFCs. The deduction of both tangential and normal components of the 

velocity using the Navier-Stokes equation solved by the similarity variable change was 

reported elsewhere [10, 32]. The solutions give; 
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The mass transfer balance for the PEMFC without operation is: 
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At the starting point, the electrochemical reactions consume reactants between the 

anode and cathode producing water. Thus, we need to add a gradient of a source term arising 

from water formation or reactant consumptions. The changes are only on x since there is a 

constant current j(x,y) between anode and cathode at a given y. 
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Instead of using the mass corrected Butler-Volmer equation for j(x,y) (with 

overpotential unknown dependence with concentration) it would be better to convert j(x,y) to 

concentration C(x,y) to have a single and unique unknown function. For this purpose we need 

to know that [32-34]: 
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And then, after taking D as constant along the channel length; 
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Since the slowest reaction is the oxygen electroreduction, we are going to study the 

last one as being the rds process; 
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When the amount of water is low, that is, at the beggining of the experiment, or the 

change in the oxygen concentration is not prominent, the equation reduces to: 
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Therefore, using both components of the velocity (35) and (36) into (43);
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 We propose the following similarity variable to solve the equation using the 

dimensionless concentration: 
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Then, after evaluating the first and second derivations we obtain: 
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The solution using the typical initial C(=0)=Co and contour conditions C(=oo)=0 is; 
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The plotting, Figure 3(a), of the normalized function C()/Co shows a permanent 

decreasing tendency with negative concavity along and it dims to zero at the upper  limit. 
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Figure 3.- Normalised (a) concentration, C()/Co, (b) current density, j()/jo, (c) 

overpotential,()/b profiles as a function of the similarity variable .  

The employed parameters are 0.01 cm2 s-1 Uo= 0.16 cm s-1 D=0.02 cm2 s-1 Co= 10-3 mol cm-3. 

(d) PEM fuel cell performance (operation curve) as cell potential vs. current density, using the 

equations find for a macroprofile with velocity contours using asymptotic equations at the 

origin on smooth electrodes. Experimental points were determined as explained in the 

Experimental Section. 
    

Using Eq. (39) we can obtain the current density, which is plotted in Figure 3(b); 

  



20 
 

 












































































































































































































4

34

14
tan

34

1
4

8

1244log
4

exp

4

1

12448

12

248
2

14
4

)(

2/3

1

2/3

2/3

2

2/32/3

2

2/3

2

2/3

2/3

2/3

D

U

D

U

D

U

D

U

D

U

D

U

D

U

D

U

nFU
j

oo

o

oo

oo

o

o

 

(48) 

 

Spending n=4 jo = 0.5 A cm-2 0.01 cm2 s-1 Uo= 0.16 cm s-1 D=0.02 cm2 s-1 Co= 10-3 mol cm-3 

Figure 3(b) shows that there is a certain distance where the current reaches a 

maximum value next to the beginning,  ca. 0.1, at least when using our physicochemical 

parameters. Thus, it will be important to use a simpler solution with equivalent validity at 

. In this sense, j at 0gives an easy analysis into the starting stages of the 

electrochemical process and it is going to be used to calculate the overpotential.  

Thus, using Eq. (7):
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Being jo and Co the magnitudes independent on the variable . 

 The found dimensionless overpotential, , in Eq. (50) using the reduced form of Eq. 

(49) is plotted in Figure 3(c) using b=0.03 V dec-1, n=4 , jo = 0.5 A cm-2, 0.01 cm2 s-1 , Uo= 0.16 

cm s-1 , D=0.02 cm2s-1 , Co= 10-3 mol cm-3. 

According to the figure above it is possible to envisage that there is no change in the 

sign of the overpotential along so the calculations are right. Moreover, the shape tends to 

reach a maximum limiting value at  near the upper limit. 

Therefore, after having and jwe can predict the operation curve of the PEMFC 

but using electrode cell potentials instead of overpotentials. Figure 3(d) follows the tendency 
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of j, especially for values higher than 0.1 A cm-2, that is, the smallest deviations between 

experimental data and theory arose at the ohmic controlled region but not at the early 

beginning of the polarization curve. This is probably because at the entrance of the channel 

the flow stream resembles that of a fully developed stream, but it alters when the gas acquires 

a complete flow at the center and end of the channel. Besides, the results do not mimic the 

situation at large currents (more than 0.35 A cm-2) and this is predictable since the mass 

balance included velocity shape is that asymptotically approaching to zero.  

In Appendix 1 we are presenting the current, concentration and overpotential profiles 

along the 2D channel at early stages of the electrode reactions but under a fully developed 

laminar flow. From those equations, the polarization curve was also constructed showing 

worse matching between experimental data and theoretical predicted figures (Figure A1) 

especially at large currents. Besides the resolution of the mass balance equation for the early 

stages of the PEMFC operation and that when there is a considerable amount of product 

(water) yield similar curves for the concentration profile.  

 

Dimensionless numbers in the thin layer 2D PEMFC with the concentration, current and 

overpotential asymptotic solutions.
 

If we introduce the electrochemical 2D dependent functions obtained above Eqs. (47), 

(48) and (50) into dimensionless equations (32) and (34), we will have a better approach to 

understand the behaviour of the PEMFC as an electrochemical reactor.  

On one hand, for no ohmic drop Eq.(32) changes to a double variable function: 
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After substituting the overpotential found in Eq. (50):  
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considering the values of jo and Co and n=4 with F and introducing the values of D, Uo and .
 

It is important to analyse the evolution of Da along  the channel length, from 0 to an 

arbitrary L, so the plotting is conducted at constant y (Figure 4 black lines).  

On the other hand, in the case of ohmic drop we need Eq. (34): 
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Since the expression of current density is very complex, Eq. (48), we will use the first 3 

terms of the Series Approach at y=0 since we are interested on electrode reactions near the 

surfaces (y=0).  

After doing so and at a constant Wa we found substituting the physicochemical 

parameters:
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(52) 

We can plot it also in Figure 4 (red lines) using L=25.15 cm, w=7.69, Wa=1.5, 

Gz1/2=1.32, Sc1/6=0.89 and Dai=0.013. 
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Figure 4.- Da vs. x with constant y in the case of a smooth surface working in the presence (red 

lines) and in the absence (black lines) of ohmic drops. 

 

In this case the behaviour is the same but Da, after introducing the ohmic drop, 

showed lower comparative values due to the consumption of current as a consequence of the 

component R along the MEA in the PEMFC. 

After combining the above equations we have the dimensionless formula of the 

electrochemical reactor under a steady state 2D approach.  
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Conveniently we also use the local 2D Gzxy number that is defined as: 
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From this number we can optimise the length and width of the channel in the PEMFC 

to reach the desirable laminar regime (“fully developed” or “entrance” regions). It is plotted 

separately against x and y in Figure 5 (a) and (b).  

In Figure 5 (a) the Gzxy exhibits a singularity at x=0.003 after which it increases firstly 

with positive concavity and then attaining a constant value ca. Gz= 0.005. The Gzxy never 

exceed very large numbers, so it never goes to a “fully developed” regime.
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Figure 5.- Local bidimensional Gzxy number under 2 D conditions as a function of x (a, upper 

panel) and y (b, lower panel) for the PEMFC with smooth surfaces. 

 

 

The plotting of Gzxy against y at constant x in Figure 5 (b) depicts another shape. It 

shows almost constant and negligible values, Gzxy = 0.005 up from y=0.5, denoting an 

“entrance transport” laminar region. In fact, this Figure explains that there is a more sensitivity 

with little changes in y than with x. This is expectable since it is the thin location between 

anode and cathode between which reactions occur. The most important changes appeared at 

the beginning however, there are extremely large values not possible for a thin layer FC until y 

ca. 0.005 with Gz approx. 425. Under this condition it is possible to achieve a “fully developed” 

zone (at least theoretically). 

Now it will be important to exhibit the whole dimensionless equation of the FC 

performance (dependent on 2 location coordinates) under stationary state, that is, Eq.(53). 

Therefore, the general behaviour of the FC performance is depicted as  Gzxy,ohm vs. Da 

at constant Wa in Figure 6. On one hand, for constant y, Figure 6 (a), and on the second for 

constant x, Figure 6 (b). The equilateral hyperbolic decay is similar to those published before 

by other authors [17, 18].  
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Figure 6.- Local bidimensional Gzxy number as a function of Da(x), Upper Panel (a), and as a 

function of Da(y), Lower Panel (b) for the PEM fuel cell with smooth surfaces. 

 

 

The upper panel plot, Figure 6 (a), shows a singular behaviour of small Gz values 

between 1>Da>2 since it shows a peaking shape. In fact, this peak is the result of two 

hyperbolic decays for Gzxy,ohm vs. Da(x) linked by a singular point at Da(x)=2.8 resulting from 

the current density decay intrinsically inside Eq. (54). This performance confines the working 

range between those Da values to attain higher Gzxy,ohm below 2.8, however they never reach 

figures larger than 0.02. Moreover, the other quasi-hyperbolic behaviour of the Gzxy,ohm vs. Da 

plot is shown for Da higher than 3 (typical of mass transport controlled regimes) but local Gz 

becomes very small, ca. 10-5. This outcome indicates that it is not convenient to work in this 

zone, that is, the fuel incorporation through the hydrodynamic velocity at the entrance is more 

important than expected. Thus, the engineering of the FC is not adequate and a better design 

and/or configuration of the bipolar plates in width or depth or even new road paths are 

necessary. However, and as we compared with other reports [16, 17], it is the most common 

situation in PEMFCs. It has to be said that when working under pseudo 1D behaviour this 

strange peaking shape profile is not developed and only a single hyperbolic falloff is observed. 

In fact, this scratched zone is not the one of practical applications since such large values of 

Da(x) cannot be achieved. Within this region, there is a linear behaviour between Da(x) and 

Gzxy,ohm
-1/2 with a slope coinciding with the values denoted in Eq. (53). 

On the other hand, a similar plot can be shown for Gzxy,ohm against Da(y) at constant x 

(lower panel (b)) which it is not usual to give for this kind of plots (only variations along L, the 

length of the channel). It evaluates the quality of the flow velocity contour between anode and 
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cathode at a fixed x from 0 to L. In this case a looping behaviour is observed with a “coming 

back” contour to similar values, showing some hysteresis but depicting the typical quasi-

hyperbolic behaviour. As above, the sensitivity upon changes in y is more important since the 

electrochemical reactions occurred along the normal position. In any way, Da(y) much higher 

than 1 are observed denoting a mass transfer controlled process along y. However, the local 

Gzxy,ohm number is at least two orders higher than that obtained at constant y. As a 

consequence it is very important to control the galvanostatic conditions of work since large 

current densities are easily developed with much higher Da than usual.  Only the not lined part 

of the curve is that of practical applications. 

These plots (Figures 6) exhibit the complete trade-off between the current density 

obtained in the FC (at given values of x and y) and the fuel consumption during the operation. 

In the case of working at constant y (and not optimised) low values of Gzxy were detected and 

then, a kinetically controlled region is observed and with a fully developed behaviour. 

According to previous studies [34-36], only 10 % of the fuel is consumed under this operation 

condition. It is necessary a large improve in Gzxy (as those shown here) to obtain a better result 

in Da, and this can be achieved using optimised values of y (between 0 and a very small d, the 

width of the channel). However, this is restricted for a laminar regime to the theoretical Gz=1-

10 upper limits (0.2 to 2 practically speaking). Some authors have obtained a 50 % of fuel 

utilization for Da lower than 5 and Gz less than 0.2. Though, the most common values are less 

than 0.05 and then they have demonstrated fuel employ of 15 % [37, 38]. Thus, micro-fluid 

bipolar plates with new configurations are necessary to achieve good results [33, 37], at least 

reaching the 50 % of fuel utilization on a co-laminar regime [40, 41].  

In this sense, new micro-fluid primers [33, 37] and novel print designs in bipolar plates 

[38, 40] are extremely necessary. Nevertheless, in those systems transport problems [42] will 

appear since there is a lower limit of width to develop a boundary layer. Also, the selection of 

the suitable model able to describe the PEMFC performance for multiple geometries and roads 

at the operation regimes would be complex. For those purposes the dimensionless numbers 

described here will be useful. 

 

4. Summary and Conclusions.  

We derived an electrochemical Da number using the mass transfer corrected current 

density with respect to its limiting value to characterise a 1D and 2D PEMFCs. 

The description of Da was complemented by Gz and Wa to characterise the quality of 

the laminar flow and current distribution of the thin layer FC, respectively.  
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An onset Da number, Dai, was introduced to predict the initial values from which the 

process begin to have practical applications.  

Similarly, a dimensionless characteristic length of the 2D channelled flat FC was 

proposed including the classical hydraulic diameter and characteristic length of the FC.

 

For a 1D modelling, the normal coordinate dependent current densities and tangential 

coordinate dependent overpotentials were adopted with relative success at moderate 

conditions (low overpotentials) to describe the FC. 

In the case of a 2D modelling, the asymptotic velocity profiles (for y=0) for smooth 

platinum catalysts were included in the mass balance equations from which the 

electrochemical properties were calculated with exact analytical equations.  

Overpotential and current density distributions were derived from a mass transport 

corrected Tafel Equation, including the production or consumption by electrode reactions 

contributions. Correspondingly, the polarization curve of the PEMFC was theoretically 

modelled and validated experimentally with a single 200 cm2 hydrogen/oxygen FC.  

A whole dimensionless equation including Wa, Da and a local (x,y) dependent Gzx,y was 

described for the Graetz Problem under ohmic and non-ohmic controlled conditions, finding 

kinetic or mass transport “entrance” or “fully developed” regimes depending on the changes 

of x and y coordinates. 
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