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Universal Reliability Bounds for Sparse Networks
Pablo Romero

Abstract—Consider a graph with perfect nodes and edges
subject to independent random failures with identical probability.
The all-terminal reliability (ATR) is the probability that the result-
ing subgraph is connected. First, we fully characterize uniformly
least reliable graphs (ULRG) whose co-rank is not greater than
four. Universal reliability bounds are here introduced for those
graphs. It is formally proved that ULRG are invariant under
bridge-contractions, and maximize the number of bridges among
all connected simple graphs with a prescribed number of nodes
and edges. A closed-form for the maximum number of bridges
is also given, which has an intrinsic interest from a graph-
theoretic point of view. Finally, the cost-reliability trade-off is
discussed, comparing the number of edges required to reduce
the reliability gaps between the least and most reliable graphs.
A remarkable conclusion is that the network design is critical
under rare event failures, where the reliability-gap between least
and most-reliable networks is monotonically increasing with the
number of terminals.

Index Terms—All-Terminal Reliability, Reliability Bounds,
Uniformly Most Reliable Graphs, Uniformly Least Reliable
Graphs.

ACRONYMS1

ULRG Uniformly Least Reliable Graph
UMRG Uniformly Most Reliable Graph
ATR All-Terminal Reliability
RVR Recursive Variance Reduction
IS Importance Sampling

NOTATIONS

G A connected graph representing the network
RG All-terminal Reliability of G
UG Unreliability of G
n Number of nodes in G
e Number of edges in G
Ω(n, e) Collection of connected, simple undirected graphs

with n nodes and e edges
i = e− n+ 1 co-rank of G ∈ Ω(n, e)
ρ Failure probability of the edges
fk(G) Number of k-operational subgraphs of G
mk(G) Number of k-cuts for a given graph G
λ(G) Edge-Connectivity of a graph G
τ(G) Number of Spanning-trees, or tree-number of G
b(n, e) Maximum number of bridges of a graph

G ∈ Ω(n, e)
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I. INTRODUCTION

SEVERAL metrics for network reliability analysis have
been proposed, when the system can be represented by

some graph G = (V,E) subject to random failures on its
components (i.e., nodes and edges). The reader is invited to
consult an excellent monograph on the combinatorics of net-
work reliability authored by Colbourn [1]. Given its paramount
importance, the all-terminal reliability (ATR) has a large body
of related work. This metric is the connectedness probability
of a random graph, subject to independent edge failures with
identical probability. Provan and Ball formally proved that the
ATR evaluation belongs to the class ofNP-Hard problems [2].
Furthermore, it is not known whether this problem belongs
to the NP class or not, an enigmatic question that attracts
theoretical computer scientists as well [3].

Given the hardness of the exact reliability evaluation, ap-
proximative methods were developed, as well as reliability
bounds. Several non-exact methods are based on Monte-Carlo
simulation, whose most basic setting considers an averaging
of independent identically-distributed random networks. The
classical book authored by Fishman [4] contains applications
to network reliability analysis as well as other fields. An
outstanding method from this class is Recursive Variance
Reduction (RVR), which successively reduces the network
size using iterative conditional measures [5]–[7]. Importance
Sampling (IS) is based on Radon-Nikodym change of mea-
sure [8]. A sequence of approximate zero variance IS for
the network reliability estimation of highly-reliable systems
is given in [9]. Dagger Sampling [10] and Cross-Entropy [11]
were also proposed; the interested reader can find a good point
of departure for approximative methods in the previous works
and references therein. A thorough treatment of Rare Event
simulation is covered in the book [12] for the analysis of
highly reliable systems, where the unreliability represents a
rare event.

Exact methods are also available, with exponential-time
complexity for general instances. An exhaustive probability-
sum among all the operational configurations is valid, but it
does not take into account possible factorizations. An alter-
native is to consider sums of disjoint products (SDP), where
the goal is to group terms of a logical function that represents
operational states (the atom xe in this logical function is the
states of the edge e, and f({xe}e∈E) = 1 iff the resulting
graph is connected). Another approach is to observe that an
operational state always includes a minimally operational state.
Therefore, we can list all the minimally operational states and
adopt the Inclusion-Exclusion principle for the union among
all the minimally operational states, called minpaths in general,
or trees in the special ATR setting.
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The previous exact approaches have clear shortcomings, and
they work only for special networks due to computational
feasibility [13]. A factorization theory is already mature. For
instance, series-parallel graphs accept a linear-time reliability
evaluation [14]. The main tool is to condition over the state of
a single link, and apply deletion-contraction formula [15]. This
concept is available from the final half of the previous century.
However, the best selection of this pivotal edge is a pioneer
work from Satyanarayana et al. [16]. In [14], it is formally
proved that all series-parallel graphs accept a linear-time K-
terminal reliability evaluation, using the concept of polygon-
to-chain reductions. However, most real-life networks are not
series-parallel. It is worth while to remark that the applicability
of exact methods is limited, and valid for small or medium-
sized networks, series-parallel networks, or recursively defined
networks with special symmetry [17].

The literature also offers reliability bounds, which are based
on dropping terms in the exact methods [18], or counting tech-
niques [19]. However, the effort is devoted to finding reliability
bounds for specific graphs, and not universal reliability bounds
for all the graphs with a prescribed number of nodes and edges.

Throughout the document we will consider, without loss of
generality, connected graphs, since the ATR of a disconnected
graph is zero. Denote RG(ρ) the ATR for the graph G, whose
edges are subject to random failures with identical probability
ρ. Let Ω(n, e) be the collection of connected simple graphs
with n nodes and e edges. A lower reliability bound l(ρ)
is universal for the collection Ω(n, e) if l(ρ) ≤ RG(ρ), for
all G ∈ Ω(n, e) and all ρ ∈ [0, 1]. Analogously, an upper
reliability bound u(ρ) is universal for Ω(n, e) if RG(ρ) ≤ u(ρ)
for all G ∈ Ω(n, e) and all ρ ∈ [0, 1]:

Definition 1. A pair of functions [l(ρ), u(ρ)] is a universal
bound for Ω(n, e) if l(ρ) ≤ RG(ρ) ≤ u(ρ) for all G ∈ Ω(n, e)
and all ρ ∈ [0, 1].

Definition 2. The best universal bounds [lb(ρ), ub(ρ)] meet
the inequalities l(ρ) ≤ lb(ρ) and ub(ρ) ≤ u(ρ), for any given
universal bound [l(ρ), u(ρ)].

Here we also consider uniformly least-reliable graphs
(ULRG), whose reliability is the least among a graph-set with
a prescribed number of nodes and edges.

The contributions of this work can be summarized by the
following items:

1) It is formally proved that ULRG maximize the number
of bridges b(n, e) in Ω(n, e). A closed-form for b(n, e) is
given, which has intrinsic interest from a graph-theoretic
viewpoint.

2) It is formally proved that ULRG are invariant under
bridge-contractions. This invariance property is in con-
sonance with a conjecture posed in 1990 by Boesch et
al. on the characterization of ULRG [20]. A stronger
conjecture is here proposed, which implies the former.

3) The infinite sequence of ULRG for all the pairs (n, e)
such that e ≤ n+3 is fully characterized. The exact ATR
evaluation is given for those infinite families of graphs.

4) The best universal bounds for all the networks such that
e ≤ n+ 3 are introduced.

5) Finally, the cost-reliability trade-off is discussed. A
remarkable conclusion is that a smart network design
is essential when failures represent a rare event. This
effect is quantified both analytically and numerically.

As far as the author knows, this is the first time where
closed-forms for the reliability evaluation of both ULRG and
UMRG are given, for all (n, e) such that e ≤ n + 3. New
evidence is also given to build a full set of ULRG candidates,
for all the pairs (n, e).

This document is organized as follows. Section II presents
general concepts from graph theory, as well as the list of
uniformly most reliable graphs (UMRG) such that e ≤ n+ 3.
These graphs will be useful to build universal upper-bounds.
A new set of uniformly least reliable graphs (ULRG) is intro-
duced in Section III. An extended graph-set {Gn,e : e ≥ n−1}
is conjectured to be ULRG, with new evidence that this
conjecture is true. An exact reliability evaluation for all the
previous graphs is performed in Section IV, together with
a summary of the best universal bounds. A discussion of
the cost-reliability trade-off is provided in Section V. Finally,
Section VI presents concluding remarks and trends for future
work.

II. UNIFORMLY MOST RELIABLE GRAPHS

In this section, first we revisit general concepts from graph
theory. Then, a list of UMRG such that e ≤ n+3 is presented.

A. Concepts

The graph-theoretic terminology that will be used through-
out this document is here presented. The reader can consult
the book authored by Harary for further details [21].

A graph is connected if every pair of nodes are mutually
reachable. A graph is simple if it has no loops nor multiple
edges. A graph is undirected if the edges have no direction.
Given a graph G = (V,E) and an edge e ∈ E, the graph
G− {e} has the same node-set V but edge-set E − {e}. The
graph G − {v} for some node v ∈ V has node-set V − {v}
and edge-set E′ = E − {(u, v) : u ∈ V }.

A bridge is an edge e ∈ E such that G−{e} is disconnected.
A cut-point is a node v ∈ V such that G−{v} is disconnected.
A graph is biconnected if it has no cut-points. A block of a
graph is a maximally biconnected subgraph.

The neighbors of v is N (v) = {w ∈ V : (v, w) ∈ E}; the
degree of a node v is d(v) = |N (v)|. A chain is a sequence
of adjacent nodes (v0, v1), (v1, v2), . . . , (vr−1, vr) such that
d(vi) = 2 for all i ∈ {1, . . . , r−1}, and d(v0) > 2, d(vr) > 2.
A chain is trivial if it consists of a single edge. If we replace
every chain by a trivial chain, we obtain a new graph that
is called the distillation D(G) of a graph G. An elementary
subdivision of the edge e is the replacement of e = (u, v)
by two edges: e1 = (u, x) and e2 = (x, v), where x is a
new node, x /∈ V . An edge-contraction, denoted G ∗ e, is the
resulting graph after the identification of the nodes u and v
where e = (u, v), and the neighboring-nodes of the new node
z = u = v is N (z) = N (u) ∪ N (v)− {z}. Observe that the
contraction G ∗ e could produce repeated edges, but G ∗ e is



IEEE TRANSACTIONS ON RELIABILITY 3

u v

z2 z3 zt

y2 y3 ys

x2 x3 xr

Fig. 1. θ-graph with lengths r, s and t, here denoted θr,s,t

a simple graph when e is a bridge. Here we contract bridges
only, so we are concerned with simple graphs.

The k-cuts are the edge-sets E′ ⊆ E such that |E′| = k
and the resulting graph G−E′ is disconnected. The number of
k-cuts in a graph G is denoted as mk(G), or just mk if there
is no risk of confusion. Observe that m1(G) is the number
of bridges. The least number λ such that mλ(G) > 0 is the
edge-connectivity, or connectivity of a graph. In a complete
graph Kn, all the nodes are mutually adjacent. An elementary
cycle Cn is a graph where all the nodes are configured in a
cycle v1, v2, . . . , vn, v1. A θ-graph is a graph which consists
of three chains with identical end-points. Fig. 1 presents a θ-
graph composed by three chains whose lengths are r, s and t,
denoted as θr,s,t. A generalized θ-graph θl1,l2,...,lr has r chains
with identical endpoints, whose lengths are precisely l1, . . . , lr
for some r ≥ 3. A star K1,n−1 is a graph where a central node
is connected to all the others, and it has no additional edges. A
tree is a connected graph whose edges are all bridges. Given
a graph G, the tree-number, τ(G), is the number of spanning-
trees. Note that τ(G) =

(
e

e−n+1

)
−me−n+1, being n = |V (G)|

and e = |E(G)| its respective number of nodes and edges. A
connected graph G with n nodes and e edges has co-rank
i(G) = e− n+ 1. An open-ear is the addition of an external
path Pu,v that connects distinct nodes u and v in a graph G.
A matching is a set of non-adjacent edges. A perfect matching
is a matching that meets all the nodes of a graph.

B. UMRG such that e ≤ n+ 3

Our universe Ω(n, e) is the set of connected, undirected sim-
ple graphs with n nodes and e edges. If G ∈ Ω(n, e), the relia-
bility, RG(ρ), is the probability that G is connected, where the
edges fail independently, with probability ρ. For convenience,
we sometimes deal with the unreliability UG(ρ) = 1−RG(ρ).
The unreliability can be immediately obtained using sum-rule:

UG(ρ) =

e∑
k=0

mk(G)ρk(1− ρ)e−k, (1)

being mk(G) the number of k-cuts. Therefore, the unreliability
evaluation is directly related with counting.

The concept of uniformly optimally-reliable graphs was
introduced by Boesch, motivated by the design of highly-
reliable networks [22]. Years later, Myrvold et al. replaced
the previous term by uniformly most-reliable graphs (UMRG)
to avoid a tongue-twister [23]:
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Fig. 2. Graph En for n = 11, after 7 node-insertions. The pattern of node-
insertions is periodic, with period 6.
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Fig. 3. Graph Gn for n = 16, after 10 node-insertions. The pattern of
node-insertions is periodic, with period 9.

Definition 3. G ∈ Ω(n, e) is uniformly most-reliable graph
(UMRG), if RG(ρ) ≥ RH(ρ) for all ρ ∈ [0, 1] and all H ∈
Ω(n, e).

If mk(G) ≤ mk(H) for all k and all H ∈ Ω(n, e), then G
is a UMRG. The converse is still an enignatic conjecture [22].
From Definition 3, it is clear the trees and elementary cycles
are UMRG, for the respective cases e = n − 1 and e = n.
The first non-trivial UMRG were provided in [24]. There, the
authors show that if we insert nodes in θ2,2,2 as equal as
possible, we obtain a sequence of UMRG for e = n + 1,
called balanced θ-graphs. This sequence is denoted {θn}n≥6,
and it is unique up to isomorphism. Further, the authors also
studied the case e = n+2, for all n ≥ 6. If we insert nodes in
the respective edges of the complete graph K4 picking disjoint
perfect matchings in order, the sequence {En}n≥6 of UMRG
is obtained for n ≥ 6. The authors conjectured that a similar
node-insertion starting from the complete bipartite graph K3,3

works to obtain the full list of UMRG when e = n+ 3. Wang
formally proved in a foundational work that the conjecture
is true [25]. Wang sequence is here denoted as {Gn}n≥6.
Fig. 2 and 3 illustrate the resulting sequences of UMRG. The
sequences θn, En and Gn are unique up to isomorphism.
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III. UNIFORMLY LEAST RELIABLE GRAPHS

Petingi et al. studied the antipodal problem: find the
uniformly least reliable graphs (ULRG), which are defined
analogously to UMRG [26]. The authors considered
a reliability-increasing transformation independently
discovered by Kelmans [27] and Satyanarayana et
al. [28], known as swing surgery. This transformation
when used in reverse results in a threshold graphs [29]. As
a consequence, a particular sub-family of ULRG such that
e ≥ (n− 1)(n− 2)/2 + 1 is obtained. Specifically, the ULRG
when e = (n − 1)(n − 2)/2 + r for some r : 1 ≤ r < n is
the complete graph on n− 1 nodes, Kn−1, and an additional
node v connected to precisely r nodes belonging to Kn−1.
This sub-family of threshold graphs is called balloon graphs,
denoted Bn,e. The ATR evaluation of balloon graphs accepts a
polynomial-time evaluation, and it serves as a universal lower
bound for dense graphs [30]. Boesch et al. [20] conjectured
that an extended set of graphs, here called generalized balloon
graphs, are ULRG for all the pairs (n, e). There is some
evidence that supports this conjecture. Petingi et al. [26]
showed that generalized balloon graphs have the least number
of spanning trees, which is a necessary condition for a graph
to become ULRG. Satyanarayana et al. formally showed that
this family has the least H-vector [28].

Here, additional evidence that supports the conjecture
posed by [20] is given. In particular, ULRG must contain
the maximum number of bridges (Proposition 1), and
generalized balloon graphs consistently maximize this
number (Proposition 2). Additionally, ULRG are invariant
under bridge-contractions (Proposition 3). Conjecture 2 is
proposed which, if affirmative, implies Boesch conjecture. A
proof for particular cases is included, and justifies the interest
for the stronger conjecture. Additionally, in Section IV it is
formally proved that generalized balloon graphs Gn,e are
ULRG when e ≤ n + 3; see Theorem 2. Therefore, the
extremal cases of sparse and dense graphs are already covered.

Denote for short [n] = {1, . . . , n}, where n is an arbitrary
positive integer, and E = {(a, b) : a, b ∈ [n], a < b}. Consider
the following strictly-ordered relation ≺ in E:

(a, b) ≺ (a′, b′)↔ (b < b′) ∨ (b = b′ ∧ a < a′) (2)

The reader can appreciate that ≺ defines a strictly-ordered
relation, with a single chain C = {(1, 2) ≺ (1, 3) ≺ (2, 3) ≺
(1, 4) ≺ (2, 4) ≺ (3, 4) ≺ . . . ≺ (n − 2, n) ≺ (n − 1, n)},
and the set E is precisely the edges of a complete graphs Kn.
Then, the relation ≺ is just an order of the edges in a complete
graph.

Definition 4. Given a pair of positive integers n and e ≥ n−1,
the generalized balloon graph Gn,e is inductively defined as
the smallest set that satisfies the following clauses:

• If e = n− 1, Gn,e consists of a star-graph K1,n−1 with
node-set [n] and central node 1 ∈ [n].

• Otherwise, pick the first element ec ∈ C : ec /∈ Gn,e, and
Gn,e+1 = Gn,e ∪ {ec}.
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Fig. 4. Generalized Balloon Graph Gn,e with n = 9 nodes, e = 12 edges
and i = 12 − 9 + 1 = 4 edge-insertions of the star-graph K1,8. The edge-
insertions are respectively (2, 3), (2, 4), (3, 4) and (2, 5).

An illustrative example is sketched in Fig. 4.

Conjecture 1 (Boesch et al. [20]). Generalized balloon graphs
Gn,e are ULRG.

Recall that the edge-contraction can produce a multigraph;
however, the contraction of a bridge is always a simple graph.
From Equation (1), if mk(G) ≥ mk(H) for all k and all H ,
then G is ULRG. It is not known if this sufficient criterion is
necessary. However, this novel criterion is necessary:

Proposition 1. If a graph G ∈ Ω(n, e) is ULRG, it must
contain the maximum number of bridges.

Proof. Observe that m1(G) = b(G) is the number of bridges.
Consider an arbitrary H ∈ Ω(n, e) with b(H) bridges, and
assume for a moment that b(H) > b(G). Since both G and
H are connected, m0(G) = m0(H) = 0, and by Equation (1)
we get that:

lim
ρ→0+

UG(ρ)− UH(ρ)

ρ
= b(G)− b(H) < 0. (3)

In particular, this means that UG(ρ) < UH(ρ) in some
neighborhood of 0, which is a contradiction.

Proposition 2. The graphs Gn,e have the maximum number
of bridges b(n, e) among all graphs G in the set Ω(n, e).

Proof. By induction on the number e ≥ n − 1. The base-
step holds, since K1,n−1 is a tree, and b(n, n − 1) = n − 1.
Clearly, b(n, e) ≤ n− 1 is an upper-bound, and the sequence
bh = {b(n, h)}h≥n−1 is non-increasing. Assume that the result
holds for Gn,h such that h ≥ n − 1, and consider Gn,h+1 =
Gn,h ∪ {ec}. There are two possibilities:
• The main block from Gn,h is not a clique: in this case
bh+1 = bh, and by inductive hypothesis this is the
maximum value, since bh+1 ≤ bh for all h, and bh is
maximum.

• The largest block from Gn,h is a clique. By the inductive
hypothesis, this is the maximum value for bh, and the
graph is critical, in the sense that the number of bridges
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is reduced under any possible addition. The best case is
bh+1 = bh + 1, which is achieved by the graph Gn,h+1.

To find b(n, e), consider the co-rank e′ = e − n + 1 ≥ 0.
It is clear that b(n, n − 1) = n − 1 and b(n, n) = n − 3
(since a triangle is obtained), so we consider e′ ≥ 2. The
main block of Gn,e is periodically a clique, after a number of
additions that follow an arithmetic progression. Let k be the
first positive integer such that

∑k
i=1 i = k(k+ 1)/2 ≥ e′ + 2.

The maximum number of bridges is b(n, e) = n− k − 1. An
algebraic manipulation of the previous quadratic polynomial
in k yields b(n, e) = n − 1 − d

√
2(e− n+ 3) − 1

2e, when
e > n− 1, and b(n, n− 1) = n− 1 otherwise.

Lemma 1. A generalized balloon graph can be trans-
formed into a balloon graph after a finite number of bridge-
contractions.

Proof. This result follows from the inductive definition of
generalized balloon graphs. Observe that the block of the
generalized balloon graph is precisely a balloon, except when
the block is a clique (in which case it suffices to preserve one
bridge and contract all the others).

Corollary 1. The only candidates of ULRG are generalized
balloon graphs, or bridges added to a balloon graph, if exist.

Proof. By Proposition 2, these graphs have the maximum
number of bridges, which is a necessary criterion. By
Lemma 1, the corresponding bridge-contractions uniquely
determine a balloon graph, which is ULRG. If we consider
another candidate G ∈ Ω(n, e), it must have b(n, e) bridges.
After repeated bridge-contractions, its reliability is greater than
a balloon graph, since balloons are ULRG.

Proposition 3. If G ∈ Ω(n+ 1, e+ 1) has a bridge b and G
is ULRG, then G ∗ b ∈ Ω(n, e) is ULRG.

Proof. We know that

UG(ρ) ≥ UG′(ρ), ∀G′ ∈ Ω(n+ 1, e+ 1). (4)

Since G − b is disconnected UG−b(ρ) = 1. Conditioning on
the two possible states for b yields:

UG(ρ) = ρ+ (1− ρ)UG∗b(ρ). (5)

Consider an arbitrary graph H ∈ Ω(n, e), and add a node
hanging by some bridge b′. The resulting graph is H ′ belongs
to the set Ω(n + 1, e + 1). Conditioning on the states for b′

yields:
UH′(ρ) = ρ+ (1− ρ)UH(ρ) (6)

Replacing (5) and (6) into (4), and choosing G′ = H ′, we get
that UG∗b(ρ) ≥ UH(ρ), as desired.

Conjecture 2. If G ∈ Ω(n + 1, e + 1) has a bridge b. Then,
G is ULRG if and only if G ∗ b is ULRG.

The direct is already proved in Proposition 3. Particular
cases for the converse are proved in the Appendix.

Theorem 1. Conjecture 2 implies Boesch conjecture.

Proof. Consider a generalized balloon graph. If it is a balloon,
it is already ULRG. If not, by Lemma 1, it can be obtained by

iterative additions of bridges. The result follows after repeated
application of Conjecture 2, and generalized balloon graphs
are ULRG.

Brown et al. formally proved that the reliability of balloon
graphs accepts a polynomial-time evaluation [30]. We have the
following:

Corollary 2. Generalized balloon graphs accept a
polynomial-time reliability evaluation.

Proof. Consider an arbitrary generalized balloon graph Gn,e,
and its corresponding balloon graph Bn−b(n,e),e−b(n,e), that is
obtained after b(n, e) bridge-contractions. By Proposition 2,
we know this number b(n, e). By Lemma 1:

RGn,e
(ρ) = RBn−b(n,e),e−b(n,e)

(ρ)× (1− ρ)b(n,e). (7)

By Corollary 1, the universal lower bound l
(n,e)
b (ρ) for

the reliability in Ω(n, e) is given by Expression (7). In the
following, we study the optimality of these universal lower-
bounds, showing that generalized balloon graphs are in fact
ULRG whenever e ≤ n+ 3.

IV. UNIVERSAL RELIABILITY BOUNDS

Here we cover the cases of ULRG for e ≤ n + 3. The
respective UMRG are known (see Section II). Then, we find
closed forms for the best universal bounds l(n,e)b and u(n,e)b .

A. Universal Lower Bounds

Here we prove that generalized balloon graphs are ULRG
whenever e ≤ n+ 3. The approach is based on counting cuts.
Alternatively, we will count the complement in some cases,
called the k-operational subgraphs fk(G) =

(
e
k

)
−mk(G).

Lemma 2. Let Ωi be the set of all simple graphs with fixed
co-rank i. If G ∈ Ωi minimizes fk(G) for some k ≥ 2, it must
minimize the length of all its chains as well.

Proof. Consider a graph G ∈ Ωi that minimizes fk(G) for
some k ≥ 2. Let C be a chain belonging to G such that |C| ≥ 2,
and e ∈ C. By sum-rule, the number of k-operational graphs
meet the following equality:

fk(G) = fk−1(G− e) + fk(G ∗ e), (8)

which means that the edge e is either included or not in an
arbitrary k-operational set. Since |C| ≥ 2 and k ≥ 2, we can
pick a different edge e′ ∈ C such that (G− e)− e′ is discon-
nected, since all the graphs are disconnected if we remove two
edges from the same chain. Therefore, fk−1(G− e) > 0, and
from Equation (8), fk(G) is strictly greater than fk(G ∗ e).
Finally, observe that G and G ∗ e have identical co-rank. If
G ∗ e is a simple graph, then a contradiction is met, since by
hypothesis fk(G) is minimum. Therefore, G must minimize
the length of all its chains among simple graphs with identical
co-rank, and the result follows.

A subtlety related to Lemma 2 is in order. Consider a θ-
graph θ2,2,1. It has two endpoints joined by three chains whose
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Fig. 5. Three distinguished cases: (I) connect endpoints u and v, (II) connect
an endpoint u and an internal node (x3 in the example) and (III) connect two
internal nodes (y3 and z3 in the example).

lengths are respectively 2, 2 and 1 (see Figure 1 for a sketch
of θ-graphs). Apparently, in the proof of Lemma 2 we can
contract an edge of some chain C whenever |C| ≥ 2. However,
we cannot contract edges belonging to θ2,2,1, since it leads to
a multigraph, and Ωi contains simple graphs only.

A celebrated work pioneered by Whitney states that every
biconnected graph can be constructed by iterative additions
of open ears, starting from an elementary cycle [31]. The
following technical lemmas will be useful:

Lemma 3. If G ∈ Ω(n, n+ 2) is biconnected, then f2(G) ≥
15, with equality if and only if G = K4.

Proof. By [31], we know that G consists of the addition of
two open-ears to some elementary cycle. After the addition
of a single open-ear to an elementary cycle, a θ-graph is
always obtained. Therefore, G consists of an open-ear added
to θl1,l2,l3 , for some lengths l1, l2 and l3. The open-ear can
either connect the two endpoints, one of them, or none. The
resulting graphs have correspondingly four, five or six chains,
and by Lemma 2, we must choose the shortest lengths in order
to minimize f2. Let us discuss the three cases separately (see
Figure 5 for an illustration of the different cases):
• If the open-ear connects both endpoints, a generalized
θ-graph θl1,l2,l3,l4 , is obtained. The shortest lengths that
determine a simple graph are l1 = l2 = l3 = 2, and
l4 = 1 (since we deal with simple graphs only). Then,
f2(G) ≥ f2(θ2,2,2,1) = 3× (2× 2 + 2× 1) = 18.

• If the open-ear connects only one degree-3 node, five
chains are obtained (two configured in parallel). The
shortest chains that determine a simple graph have lengths
2, 2, 1, 1, 1, and f2(G) ≥ 2× 2 + 6× 2× 1 + 3× 1 = 19.

• If the open-ear connects internal nodes, the resulting
graph has six chains. The smallest value for f2 is achieved
choosing all trivial chains, and the result is K4, so
f2(G) ≥

(
6
2

)
= 15.

It can be concluded that f2(G) ≥ 15, and the minimum is
obtained if and only if G = K4.

Lemma 4. If G ∈ Ω(n, n+3) is biconnected, then f2(G) ≥ 27
and f3(G) = 48, with equalities if and only if G consists of
K5 minus two adjacent edges.

Proof. Combining the chain minimalities from Lemma 2 and

u v

z

Fig. 6. Addition of two open-ears to some θ-graph with extremes u and v,
to obtain a simple graph with minimum values for f2 and f3. All the chains
are trivial (i.e., single edges), except for the chain C = {(u, z), (z, v)}, that
is required to avoid parallel edges.

an analogous discussion with two ears added to some θ-graph,
the minimum values for f2 and f3 are found when one open-
ear connects the endpoints and the other open-ear connects
internal nodes; see Fig. 6. Observe that some chains have
length equal to two, since the resulting graph must be simple.
The result is precisely K5 minus two adjacent edges.

Theorem 2. Generalized balloon graphs are ULRG whenever
e ≤ n+ 3.

Proof. We will prove a stronger result: mk(Gn,e) ≥ mk(G),
for all k ∈ {0, . . . , e} and all G ∈ Ω(n, e), if e ≤ n+ 3. We
denote for convenience Ωi = Ω(n, n−1+ i). Let us cover the
cases i ∈ {0, . . . , 4}. Observe in general that the k-cuts from
the members belonging to Ωi meet the following relations:
• m0 = 0 in all the cases (since the graphs are connected).
• m1 = b(n, n−1+i), the number of bridges, is maximized

in the generalized balloon graphs.
• mi =

(
n−1+i

i

)
− τ , being τ the tree-number. Since

the tree-number is minimized in the generalized balloon
graphs, mi is maximized in these graphs.

• mj =
(
e
j

)
for j > i, in all the graphs (since connected

graphs must have at least n− 1 edges).
By the previous relations, we can see that Gn,e maximizes all
the k-cuts when i ∈ {0, 1, 2}. In particular, these graphs are
ULRG in Ωi for i ∈ {0, 1, 2}. It suffices to prove that Gn,e is
max-mk for i ∈ {3, 4}. Let us study separately both cases.

If i = 3, from the previous relations, it suffices to see that
f2(Gn,e) ≤ f2(G) for all G ∈ Ω3. Since f2 is invariant under
bridge-contractions, we can compare their non-trivial blocks:
K4 versus G′ ∈ Ω(n, n + 2), obtained from G after bridge-
contractions. The result follows from Lemma 3.

Finally, if i = 4 we need to study f2 and f3. The main block
from Gn,e is K5 minus two adjacent edges. A straight counting
leads to determine that f2(Gn,e) = 27 and f3(Gn,e) = 48.
Consider an arbitrary G ∈ Ω4. If we contract all its bridges,
we get a bridgeless graph G′ ∈ Ω(n, n+ 3). If G′ has several
blocks, there are two cases:

1) G′ includes some block G1 ∈ Ω(n, n+ 3). In this case,
the remaining blocks must be elementary cycles, and
the coefficients f2 and f3 are strictly greater than an
individual block, in which G = G1.
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2) G′ includes a couple of blocks G1 ∈ Ω(n, n + 1) and
G2 ∈ Ω(n, n+ 2). Based on Lemma 3, the graphs with
smallest coefficients fi for both cases are G1 = θ2,2,1
and G2 = K4. The coefficients f2 and f3 from G are
large compared with Gn,e, since:

f2(G) ≥ f2(G1 ∪G2)

= f1(K4)f1(θ2,2,1) + f2(K4) + f2(θ2,2,1)

= 6× 5 + 15 + 8 = 53 > 27 = f2(Gn,e);

f3(G) ≥ f3(G1 ∪G2)

= f1(K4)f2(θ2,2,1) + f2(K4)f1(θ2,2,1) + f3(K4)

= 6× 8 + 15× 5 + 16 = 139 > 48 = f3(Gn,e).

Finally, if G′ consists of a single block, G′ is biconnected,
and the result follows from Lemma 4.

Supported by Theorem 2 and Expression (7), we get the best
universal lower-bounds lib(ρ) for each Ωi = Ω(n, n− 1 + i):

l0b (ρ) = (1− ρ)n−1; (9)

l1b (ρ) = (1− ρ)n−3((1− ρ)3 + 3ρ(1− ρ)2); (10)

l2b (ρ) = (1− ρ)n−4((1− ρ)5 + 5ρ(1− ρ)4 + 8ρ2(1− ρ)3);
(11)

l3b (ρ) = (1− ρ)n−4((1− ρ)6 + 6ρ(1− ρ)5

+ 15ρ2(1− ρ)4 + 16ρ3(1− ρ)3); (12)

l4b (ρ) = (1− ρ)n−5((1− ρ)8 + 8ρ(1− ρ)7

+ 27ρ2(1− ρ)6 + 48ρ3(1− ρ)5) + 40ρ4(1− ρ)4 (13)

Observe that l0b and l1b stand for the reliabilities of a tree and
a triangle with bridges, while lib are the reliabilities of bridges
together with K4−{e}, K4 and K5 minus two adjacent edges,
for the respective cases i ∈ {2, 3, 4}.

B. Universal Upper Bounds

Trees and elementary cycles are UMRG in the sets Ω0 and
Ω1, with a straight reliability calculation:

u0b(ρ) = (1− ρ)n−1; (14)

u1b(ρ) = (1− ρ)n−1((1− ρ) + nρ). (15)

The graph-sequences θn, En and Gn are respectively UMRG
in the sets Ωi for i ∈ {2, 3, 4}. The three sequences are
obtained by an iterative node-insertion process, in different
edges. First, note that all the graphs are biconnected, and
m0 = m1 = 0.

In order to count mk for k ≥ 2, the key is to observe
that k-cuts are obtained when we pick at least two edges
from the same chain, or k edges from different chains that
disconnect the original graph with if subdivisions were applied
(respectively, θ2,2,2, K4 or K3,3). A unified expression for
mk will be here introduced. First, consider the following
terminology:

• Denote On,i the optimal (UMRG) sequence in the set
Ωi = Ω(n, n−1+i). In particular, On,2 = θn, On,3 = En
and On,4 = Gn.

• The distillation of On,i is denoted by D(On,i). Clearly,
D(On,2) = θ1,1,1, D(On,3) = K4 and D(On,4) = K3,3.

• Denote ri the number of chains in the graphs On,i: r2 =
3, r3 = 6 and r4 = 9.

• Order the chains l1, . . . , lri according to the insertion-
order in the first round of the corresponding UMRG (see
Subsection II-B for details).

• Define the naturals k1, . . . , kri that represent the number
of edges to be removed from the corresponding chain
l1, . . . , lri .

• If ~k = (k1, . . . , kri) is a binary word (~k ∈ {0, 1}ri ),
the graph D(On,i)

~k is the distillation D(On,i), after the
remotion of the simple edges li (the trivial chains) such
that ki = 1.

• The indicator function 1x equals 1 if and only if x is
true; 0 otherwise.

Observe that if we pick at least two edges from the same
chain, the resulting graph is disconnected. Alternatively, if we
pick either zero or one edge from each chain according to the
vector ~k, the resulting graph is disconnected if and only if the
distillation D(On,i)

~k is disconnected. As a consequence:

mk(On,i) =
∑

k1+...+kri=k:∃j:kj≥2

ri∏
i=1

(
li
ki

)
+

∑
~k∈{0,1}ri :k1+...+kri=k

∏
i:ki=1

li1{D(On,i)
~kdisconnected}.

(16)

Expression (16) provides a unified framework to count the k-
cuts for all the sequences under study, after the replacement
into the unreliability from Equation (1):

UOn,i
(ρ) =

n−1+i∑
k=2

mk(On,i)ρ
k(1− ρ)n−1+i−k

=
i∑

k=2

mk(On,i)ρ
k(1− ρ)n−1+i−k

+

n−1+i∑
k=i+1

(
n− 1 + i

k

)
, (17)

where the last equality uses the fact that graphs are discon-
nected if they have less than n−1 edges. Finally, ROn,i

(ρ) =
1 − UOn,i

(ρ), and since On,i are UMRG, we get universal
upper-bounds for i ∈ {2, 3, 4} as well:

uib = 1− UOn,i(ρ), ∀i ∈ {2, 3, 4}. (18)

Since ri ∈ {3, 6, 9} respectively for i ∈ {2, 3, 4} and
the maximum non-trivial mk is met when k = kmax = 4,
the summations from Expression (16) can be computed
efficiently for every member of each infinite sequence of the
considered UMRG, no matter how large is the number of
nodes n. In fact, the maximum number of terms involved
as a whole in both summations occur when ri = 9 and
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k = 4. This is precisely the number of elements in the set
{(k1, . . . , k9) ∈ N9 :

∑9
i=1 ki = 4}, which is

(
12
4

)
= 495.

As an example, for θn it suffices to count m2(θn) and insert
the value in Expression (17); note that the other coefficients
mk are all known beforehand. If we remove two edges from
different chains, the subgraph remains connected, and the last
summation from (16) is null. If the lengths of the three chains
are l1, l2 and l3, we get that

m2(θl1,l2,l3) =

(
l1
2

)
+

(
l2
2

)
+

(
l3
2

)
. (19)

The number m2(θn) is the particular evaluation of
m2(θl1,l2,l3), where l1 ≥ l2 ≥ l3 are selected in such a way
that l1 + l2 + l3 = n+ 1. Similar replacements for En or Gn
provide the best universal upper-bounds for the ATR.

The best universal reliability-bounds [lib(ρ), uib(ρ)] are ob-
tained for the respective sets Ωi = Ω(n, n − 1 + i), and any
i ∈ {0, . . . , 4}, combining Expressions (9)-(13) with (14)-(15)
and (18).

V. COST-RELIABILITY TRADE-OFF

In practice, the cost is related to the number of edges (or
the distance in a physical deployment of FTTH for example).
Naturally, if we are given n nodes, the least number of edges
to meet connectivity is e = n− 1, and resulting networks are
trees. If we consider e = n − 1 + i edges instead for some
positive integer i, the marginal cost is precisely the number
of additional edges i.

A connectivity-driven approach is to consider the benefit
as λ(G), the network connectivity, given its importance in
communication systems. The utility function is then u(G) =
λ(G) − i, being i is the marginal cost using e = n − 1 + i
edges (or the co-rank of a graph). A celebrated work authored
by Harary constructs graphs with the maximum connectivity,
given a prescribed number of nodes and edges [32]. There-
fore, Harary graphs have the largest connectivity; however,
they have several edges (i.e., cost). Curiously enough, the
only graphs with the greatest utility are precisely trees and
elementary cycles [33]. This connectivity-driven approach is
pessimistic, and it confirms that the only way to increase
both the number of edges and connectivity is when an edge
connects the endpoint of a path, obtaining an elementary cycle
(this is the exceptional case where the connectivity is increased
using a single edge).

Our approach is reliability-driven. We want to analyze two
effects:
• Determine how relevant is to choose a smart topology.

This is considered in terms of the gap between ULRG
and UMRG.

• Understand the sensibility of the reliability with respect
to edge-additions.

The following merit functions will be considered for our
purposes.

Definition 5. The gap-function in Ωi = Ω(n, n − 1 + i) is
δi(ρ) = uib(ρ)− lib(ρ).

The best universal bounds uib and lib were derived in
Section IV, for each i ∈ {0, . . . , 4}.

Definition 6. The maximum gap is the infinite-norm of the
gap-function: δ(i)max = maxx∈[0,1]{δi(ρ)} = ‖δi‖[0,1]∞ , and
the critical point is the probability ρic such that δi(ρic) = δimax.

The critical point is the failure probability where the gap
between the ULRG and UMRG is maximum. If a practical
network is working on the critical point, the network designer
should adequately select the links for the underlying infrastruc-
ture of the system, since the discrepancy between the worst
and the best network is considerable (i.e., the maximum gap).

Let us find analytically the critical point and maximum
gap for particular cases. The case where i = 0 is straight,
since trees are both ULRG and UMRG, and the gap is
null. The gap-function δ1(ρ) is the difference between Equa-
tions (10) and (14):

δ1(ρ) = (n− 3)ρ(1− ρ)n−1, ∀n ≥ 3. (20)

Solving (δ1)
′
(ρ) = 0 we can find the critical point ρ1c = 1

n ,
for all n ≥ 3. Therefore, the critical point occurs under
highly-reliable components. This interesting result highlights
that highly-reliably systems have a critical design, specially
where the failure probability of the individual components
represents a rare event in networks with a massive number
of terminals. Let us find the maximum gap:

δimax(n) = δ1(ρ1c) =
n− 3

n

(
1− 1

n

)n−1
(21)

The maximum gap is non-vanishing with the network size.
In effect:

lim
n→∞

δimax(n) = lim
n→∞

n− 3

n− 1

(
1− 1

n

)n
=

1

e
> 0; (22)

this means that an incorrect network design is even worse
when the number of terminals is increased. Similarly, the gap-
function when i = 2 is:

δ2(ρ) = (1−ρ)n−1[(1−ρ)ρ(n−4)+ρ2(f2(θn)−8)], ∀n ≥ 5.
(23)

The critical point is obtained analogously, solving the
quadratic equation (δ2)

′
(ρ) = 0. If we consider the asymp-

totic behaviour where f2(θn) ∼ n2

3 , the maximum gap is
monotonically increasing with the number of terminals, with
limit (1 + 2k/3)e−k being k = (

√
13− 1)/2, and the critical

point is asymptotically inverse with the number of terminals:
ρ2c = k/n.

A numerical analysis confirms that this pattern is preserved
for i ∈ {3, 4}. Fig. 7-8 illustrate the gap functions δi(ρ) for the
respective cases i ∈ {3, 4} and particular values of terminals n.
The reader can appreciate that the gap-function assumes large
values when the edge-failure probability ρ is close to zero.
These results suggest that an incorrect network design has
a catastrophic effect, specially under highly-reliable systems,
where a large difference between ULRG and UMRG is found.

Another attractive element for the network designer is to
determine the sensibility in the system reliability under edge
additions:
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Fig. 7. Gap Function δ3(ρ). The mass of the function concentrates in ρ = 0
when the number of terminals n is increased.
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Fig. 8. Gap Function δ4(ρ). The mass of the function concentrates in ρ = 0
when the number of terminals n is increased.

Definition 7. The sensibility function is:

si,i+1(ρ) = ui+1
b (ρ)− uib(ρ).

Observe that the sensibility function is not associated with
network augmentation, since UMRG are not produced using
iterative additions [34]. However, it makes sense if we can
choose the number of links for any fixed number of terminals.

The following parameters are associated to edge-additions:

Definition 8. The maximum sensibility is the number si,i+1
max =

maxx∈[0,1]{si,i+1(ρ)}, and the best point for an edge-addition
is the probability ρi,i+1

s such that si,i+1(ρi,i+1
s ) = si,i+1

max .

Let us determine the sensibility function and its main

parameters for particular cases:

s0,1(ρ) = RCn(ρ)−RPn(ρ)

= [(1− ρ)n + nρ(1− ρ)n−1]− [(1− ρ)n−1]

= (n− 1)ρ(1− ρ)n−1.

It is straight to see that the best point for an edge-addition is
ρ0,1s = 1

n . Interestingly, the best point for an edge-addition is
precisely the critical point. If we substitute using ρ = 1/n,
the maximum sensibility is obtained:

s0,1(1/n) =

(
1− 1

n

)n
,

which converges again to 1/e. An analogous reasoning lead
us to determine

s1,2(ρ) = Rθn(ρ)−RCn
(ρ) = ρ2(1− ρ)n−1(f2(θn)− n).

Immediately we get ρ0,1s = 2
n+1 , and the maximum sensibility

converges to 4/3e−2.

0 0.2 0.4 0.6 0.8 1
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n = 40

Fig. 9. Sensibility Function s2,3(ρ). The mass of the function concentrates
in ρ = 0 when the number of terminals n is increased.
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Fig. 10. Sensibility Function s3,4(ρ). The mass of the function concentrates
in ρ = 0 when the number of terminals n is increased.

A concentration-phenomenon towards the rare-event is no-
torious, in terms of criticality and sensibility as well.
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This pattern is also verified numerically for i ∈ {3, 4},
as Fig. 9-10 respectively show. As a synthesis, it can be
concluded that a smart network design is essential for highly-
reliable systems, where the elementary link failures represent a
rare event. This situation is specially relevant when the number
of terminals under communication is large enough.

VI. CONCLUSION

The hardness of the all-terminal reliability (ATR) evaluation
promotes the development of estimation techniques and relia-
bility bounds. The literature offers several bounds for any fixed
graph, mostly based on dropping terms from exact methods.
As far as the author knows, this is the first work where the
best universal reliability bounds are given for sparse graphs
with n nodes and e ≤ n+ 3 edges. To achieve this goal, it is
formally proved that generalized balloon graphs are uniformly
least-reliable graphs (ULRG) when e ≤ n + 3; the antipodal
uniformly most reliable graphs (UMRG) are already available
in the literature for those specific cases. Furthermore, Gross
and Saccoman conjectured that these universal upper-bounds
hold even under the extended set of multigraphs [35]. This
conjecture is true, and a formal proof is recently provided in
an article to appear [36].

The ATR is intrinsically related to counting, at least, when
the edge-failures are independent and identical. Therefore, a
cut-based representation is offered to speed-up the counting,
and find efficiently the ATR.

It is worth to remark that this cut-based representation
has limitations. It is suitable for infinite sequences of
homeomorphic graphs, or for graphs with bounded co-rank.
The reader can appreciate that all the graph-sequences here
considered are homeomorphic to the first graph from the
sequence. This is a key element for the success of the current
technique.

Finally, the cost-reliability trade-off is here studied in terms
of edge-additions. Highly-reliable systems show to be the most
critical in terms of network design, where the gap between
ULRG and UMRG is maximum. Further studies should be
performed for dense, or mesh-networks.

Several problems deserve future work. If Conjecture 2 is
correct, Boesch conjecture is true, and generalized balloon
graphs are ULRG. Only partial cases were covered here. In
particular, generalized balloon graphs have the maximum
number of bridges b(n, e) among all the connected simple
graphs with n nodes and e edges; this is a necessary condition
for a graph to be ULRG (a closed-form for b(n, e) is here
introduced). Remarkably, the set of ULRG is also closed
under bridge-contractions. The literature offers ULRG and
UMRG for the pairs (n, e) with extremely low (sparse) or
high (almost-complete) densities. The theory of UMRG is
extremely useful for network synthesis, but it is still not
mature yet. An outstanding progress in the construction of
reliability-increasing transformations was the introduction of
Swing Surgery, and its applicability in reverse [37]. Finding
new reliability-increasing transformations is also challenging.

APPENDIX
CONVERSE OF CONJECTURE 2

If Conjecture 2 is true, the study of ULRG is fully covered,
and generalized balloon graphs are ULRG, as well as balloon
graphs with additional bridges arbitrarily connected to the
main block.

The direct of Conjecture 2 is true; see Proposition 3. Two
special cases for the converse are here proved. Denote Gb ∈
Ω(n+1, e+1) the graph obtained by the addition of a hanging
node, and its corresponding bridge b, to G ∈ Ω(n, e). We can
rephrase the converse of Conjecture 2 as follows:

Conjecture 3. If G is ULRG, then Gb is ULRG.

Consider G ∈ Ω(n, e) such that G is ULRG. The reader can
appreciate that the following statement is a particular case:

Proposition 4. If H ∈ Ω(n + 1, e + 1) has some bridge bh,
Gb is uniformly least-reliable than H .

Proof.

UGb(ρ) = ρ+ (1− ρ)U(Gb)∗b(ρ)

= ρ+ (1− ρ)UG(ρ)

≥ ρ+ (1− ρ)UH∗bh(ρ) = UH(ρ);

where the inequality uses the fact that H ∗ bn ∈ Ω(n, e) and
G is ULRG.

Proposition 4 can be strengthened:

Proposition 5. If H ∈ Ω(n+ 1, e+ 1) has some edge w such
that H ∗ w is simple, Gb is uniformly least-reliable than H .

Proof. The same reasoning from Proposition 4 holds, since
H ∗ w is simple and hence can be compared with G.

The reader can appreciate that the remaining case where
H ∗w is a multigraph for all the possible edges w ∈ E(H) is
not covered yet. It is interesting to explore the applicability of
swing surgery in reverse or similar transformations, in order to
weaken H in such cases, either finding a least-reliable graph
H ′ with a bridge, or with some edge w such that H ′ ∗w is a
simple graph. This is a challenging research topic for future
work.
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de Máxima Confiabilidad and MATHAMSUD 19-MATH-03
Raredep, Rare events analysis in multi-component systems with
dependent components. This research is carried-out during
my second Ph.D. in Mathematics developed at Universidad
de Buenos Aires, advised by Professors Martı́n Safe and
Guillermo Durán. I also wish to extend my most sincere
gratitude to my Academic Mentor, Professor Pablo Groismann,
for his support.



IEEE TRANSACTIONS ON RELIABILITY 11

REFERENCES

[1] C. J. Colbourn, The Combinatorics of Network Reliability. USA:
Oxford University Press, Inc., 1987.

[2] J. S. Provan and M. O. Ball, “The complexity of counting cuts and of
computing the probability that a graph is connected,” SIAM Journal on
Computing, vol. 12, no. 4, pp. 777–788, 1983.

[3] M. O. Ball, “Computational complexity of network reliability analysis:
An overview,” IEEE Transactions on Reliability, vol. 35, no. 3, pp. 230–
239, 1986.

[4] G. Fishman, Monte Carlo: Concepts, Algorithms, and Applications,
ser. Springer Series in Operations Research and Financial Engineering.
Springer, 1996.

[5] H. Cancela and M. El Khadiri, “The recursive variance-reduction simu-
lation algorithm for network reliability evaluation,” IEEE Transactions
on Reliability, vol. 52, no. 2, pp. 207–212, 2003.

[6] ——, “A recursive variance-reduction algorithm for estimating
communication-network reliability,” IEEE Transactions on Reliability,
vol. 44, no. 4, pp. 595–602, 1995.

[7] H. Cancela, M. Khadiri, and G. Rubino, “A new simulation method
based on the RVR principle for the rare event network reliability
problem,” Annals of Operations Research, vol. 196, no. 1, pp. 111–136,
July 2012.

[8] P. L’Ecuyer, G. Rubino, S. Saggadi, and B. Tuffin, “Approximate zero-
variance importance sampling for static network reliability estimation,”
IEEE Transactions on Reliability, vol. 60, no. 3, pp. 590–604, Sept.
2011.

[9] B. Tuffin, S. Saggadi, and P. L’Ecuyer, “An adaptive zero-variance
importance sampling approximation for static network dependability
evaluation,” Comput. Oper. Res., vol. 45, pp. 51–59, 2014.

[10] H. Kumamoto, K. Tanaka, K. Inoue, and E. J. Henley, “Dagger-sampling
monte carlo for system unavailability evaluation,” IEEE Transactions on
Reliability, vol. R-29, no. 2, pp. 122–125, 1980.

[11] D. P. Kroese, K. Hui, and S. Nariai, “Network reliability optimization
via the cross-entropy method,” IEEE Transactions on Reliability, vol. 56,
no. 2, pp. 275–287, June 2007.

[12] G. Rubino and B. Tuffin, Rare Event Simulation Using Monte Carlo
Methods. Wiley Publishing, 2009.

[13] S. Rai, M. Veeraraghavan, and K. S. Trivedi, “A survey of efficient
reliability computation using disjoint products approach,” Networks,
vol. 25, no. 3, pp. 147–163, 1995.

[14] A. Satyanarayana and R. K. Wood, “A linear-time algorithm for com-
puting k-terminal reliability in series-parallel networks,” SIAM Journal
on Computing, vol. 14, no. 4, pp. 818–832, 1985.

[15] F. Moskowitz, “The analysis of redundancy networks,” Transactions of
the American Institute of Electrical Engineers, Part I: Communication
and Electronics, vol. 77, no. 5, pp. 627–632, 1958.

[16] A. Satyanarayana and M. K. Chang, “Network reliability and the
factoring theorem,” Networks, vol. 13, no. 1, pp. 107–120, 1983.

[17] H. Yi, L. Cui, and H. Gao, “Reliabilities of some multistate consecutive-
k systems,” IEEE Transactions on Reliability, vol. 69, no. 2, pp. 414–
429, 2020.

[18] A. R. Sharafat and O. R. Ma’rouzi, “All-terminal network reliability
using recursive truncation algorithm,” IEEE Transactions on Reliability,
vol. 58, no. 2, pp. 338–347, 2009.

[19] M. O. Ball and J. S. Provan, “Calculating bounds on reachability and
connectedness in stochastic networks,” Networks, vol. 13, no. 2, pp.
253–278, 1983.

[20] F. T. Boesch, A. Satyanarayana, and C. L. Suffel, “Least reliable
networks and the reliability domination,” IEEE Transactions on Com-
munications, vol. 38, no. 11, pp. 2004–2009, 1990.

[21] F. Harary, Graph theory. Addison-Wesley, 1991.
[22] F. T. Boesch, “On unreliability polynomials and graph connectivity in

reliable network synthesis,” Journal of Graph Theory, vol. 10, no. 3, pp.
339–352, 1986.

[23] W. Myrvold, K. H. Cheung, L. B. Page, and J. E. Perry, “Uniformly-
most reliable networks do not always exist,” Networks, vol. 21, no. 4,
pp. 417–419, 1991.

[24] F. T. Boesch, X. Li, and C. Suffel, “On the existence of uniformly
optimally reliable networks,” Networks, vol. 21, no. 2, pp. 181–194,
1991.

[25] G. Wang, “A proof of Boesch’s conjecture,” Networks, vol. 24, no. 5,
pp. 277–284, 1994.

[26] L. Petingi, J. T. Saccoman, and L. Schoppmann, “Uniformly least
reliable graphs,” Networks, vol. 27, no. 2, pp. 125–131, 1996.

[27] A. Kelmans, “On graphs with randomly deleted edges,” Acta Mathemat-
ica Hungarica, vol. 37, no. 1-3, pp. 77 – 88, 2005.

[28] A. Satyanarayana, L. Schoppmann, and C. L. Suffel, “A reliability-
improving graph transformation with applications to network reliability,”
Networks, vol. 22, no. 2, pp. 209–216, 1992.

[29] N. Mahadev and U. Peled, Threshold Graphs and Related Topics, ser.
ISSN. Elsevier Science, 1995.

[30] J. I. Brown, C. J. Colbourn, and J. S. Devitt, “Network transformations
and bounding network reliability,” Networks, vol. 23, no. 1, pp. 1–17,
1993.

[31] H. Whitney, “Non-separable and planar graphs,” Proceedings of the
National Academy of Sciences., vol. 17, no. 2, pp. 125–127, February
1931.

[32] F. Harary, “The maximum connectivity of a graph,” Proceedings of the
National Academy of Sciences, vol. 48, no. 7, pp. 1142–1146, 1962.

[33] E. Canale, P. Romero, G. Rubino, and X. Warnes, “Network utility
problem and easy reliability polynomials,” in Proceedings of the 8th
International Workshop on Resilient Networks Design and Modeling
(RNDM), 2016, pp. 79–84.

[34] P. Romero, “Building uniformly most-reliable networks by iterative
augmentation,” in Proceedings of the 9th International Workshop on
Resilient Networks Design and Modeling (RNDM), 2017, pp. 1–7.

[35] D. Gross and J. T. Saccoman, “Uniformly optimally reliable graphs,”
Networks, vol. 31, no. 4, pp. 217–225, 1998.

[36] P. Romero, “The gross–saccoman conjecture is true,” Networks.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.
22006

[37] D. Gross, N. Kahl, and J. Saccoman, “Graphs with the maximum or
minimum number of 1-factors,” Discrete Mathematics, vol. 310, no. 4,
pp. 687–691, 2010.

https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22006
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.22006

	Introduction
	Uniformly Most Reliable Graphs
	Concepts
	UMRG such that en+3

	Uniformly Least Reliable Graphs
	Universal Reliability Bounds
	Universal Lower Bounds
	Universal Upper Bounds

	Cost-Reliability Trade-off
	Conclusion
	Appendix: Converse of Conjecture 2
	References

