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Abstract

A stochastic binary system is a multi-component on-off system subject to
random independent failures on its components. After potential failures, the state
of the subsystem is ruled by a logical function (called structure function) that
determines whether the system is operational or not.

Stochastic binary systems (SBS) serve as a natural generalization of network
reliability analysis, where the goal is to find the probability of correct operation
of the system (in terms of connectivity, network diameter or different measures of
success). A particular subclass of interest is stochastic monotone binary systems
(SMBS), which are characterized by non-decreasing structure.

We explore the combinatorics of SBS, which provide building blocks for
system reliability estimation, looking at minimal non-operational subsystems,
called mincuts. One key concept to understand the underlying combinatorics of
SBS is duality. As methods for exact evaluation take exponential time, we discuss
the use of Monte Carlo algorithms. In particular, we discuss the F-Monte Carlo
method for estimating the reliability polynomial for homogeneous SBS, the
Recursive Variance Reduction (RVR) for SMBS, which builds upon the efficient
determination of mincuts, and three additional methods that combine in different
ways the well–known techniques of Permutation Monte Carlo and Splitting.
These last three methods are based on a stochastic process called Creation
Process, a temporal evolution of the SBS which is static by definition. All the
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methods are compared using different topologies, showing large efficiency gains
over the basic Monte Carlo scheme.

1 Introduction
The goal in reliability analysis is to determine the probability of correct operation of a
system; see Colbourn (1999). Using foundational results on Computational
Complexity, Arnie Rosenthal formally proved the hardness of the network reliability
evaluation; see Cook (1971); Karp (1972) and Rosenthal (1977). Provan and Ball
(1983) proved that even the reliability evaluation of a source-terminal communication
system is a hard problem as well. The computational complexity is inherited in other
more complex models, such as diameter-constrained reliability models; see Canale
et al. (2015c).

While there has been a remarkable advance in the understanding of reliability
analysis in the context of communication networks (see for instance Pérez-Rosés
(2018) for a recent review), including the development of new evaluation algorithms,
metrics and evaluation methods such us the works introduced by Schäfer et al. (2018)
and Kobayashi et al. (2009), the complexity results show that (unless P = NP) exact
evaluation will always take exponential time.

At the same time, the practical applications of network reliability analysis are
steadily growing in frequency and diversity. For instance, in the area of civil
infrastructures we can find many recent papers, we discuss some of them to give an
idea of the issues at stake. The work by Li et al. Li et al. (2016) presents a
comparative study of two important measures, the connectivity reliability and the
topological controllability of infrastructure systems in terms of topology, robustness,
and node importance, taking eight city-level power transmission networks and
thousands of artificial networks as examples, and discussing how these measures can
improve reliability-based design of infrastructure networks increasingly dependent on
information systems. Tien and Kiureghian (2016) discuss how to represent large,
complex infrastructure networks using Bayesian networks to represent efficiently the
reliability behavior of these systems with a compact representation. Guidotti et al.
(2019) discuss another reliability model variant, based on probabilistic flow-based
networks for representing the capacity and demand of critical infrastructure, to
evaluate the probability of reduction or loss of functionality of the infrastructure,
integrating physical infrastructure and social systems to predict the change in demand
after critical events. The proposal is exemplified by model of the potable water
network of Seaside, Oregon considering a seismic event as the damaging event.
Johansson et al. (2013) discuss both reliability and vulnerability analysis of critical
infrastructures, discussing their complementary contributions towards understanding
system behavior both theoretically and in a case study based on the IEEE RTS96
electric power test system. Goldbeck et al. (2019) study urban infrastructure systems
and discuss the limitations of modeling separately different but interdependent
systems, proposing instead an integrated, dynamic modeling and simulation
framework combining network and asset representations of infrastructure systems,
using tree–based scenarios to consider dependencies and proposing a case study based
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on London’s metro and electric power networks and evaluating their resilience to a
local flooding incident. Raad et al. (2009) discuss the design of an urban water
distribution system involving a tradeoff between system cost and reliability objectives.
Another interesting work is Dharmaraja et al. (2016), which studies vehicular ad hoc
networks and their reliability and survivability as a function of reliable hardware and
channel availability, using reliability block diagrams and exploring the survivability of
the network by Markov chains and Markov reward models. Macchi et al. (2012) study
railway track maintenance management, building a reliability model of the railway
system to identify the most critical items which are classified in families having
similar reliability targets. The methods are implemented and tested in practical case
studies arising from the Italian public company Rete Ferroviaria Italiana.
Muriel-Villegas et al. (2016) analyze transportation networks subject to natural
hazards, and in particular study the connectivity reliability and vulnerability of
inter-urban transportation in the case of Colombia, focusing in the connectivity of
remote populations in the case of disasters such as floods, taking as case study the
state of Antioquia, Colombia, based on historical records from the 2010 to 2011 rainy
season. Rath et al. (2016) study how to determine depot location in disaster relief
operations, using a bi-objective model where the accessibility of the road network is
given by a probability distribution. Masri et al. (2019) discuss a network optimization
problem where the nodes can communicate using a predetermined set of connections
characterized by a capacity, a lead time, and a reliability, developing a multiobjective
model to optimize both delays and average reliability. These and other practical
applications motivate the need for flexible modeling mechanisms and for fast
evaluation of these metrics. In consequence, Monte Carlo estimation methods have
been developed as a practical alternative; see Botev et al. (2016); Canale et al. (2014);
Cancela and Khadiri (2003); L’Ecuyer et al. (2011); Murray et al. (2013). Other
efficient Monte Carlo methods in the context of performability and robust network
design can be found in Cancela et al. (2014); Saling and White Jr. (2013). The theory
of stochastic binary systems can be seen as a generalization of network reliability
models; as the system structure function in an SBS can be any arbitrary boolean
function, while in classical network reliability it is usually some variant of a
connectivity function.

In this paper, we look at some theoretical results on SBS and we discuss Monte
Carlo evaluation. Our goal is to extend the success of well–known reliability
estimation methods previously applied to network models to arbitrary SMBS. Some
of our previous works, such as s Canale et al. (2015a, 2014), represent our point of
departure for this work; other papers, such asCancela et al. (2018) and Romero (2016,
2019), can be useful as SBMS methodological background.

The main contributions of this paper are summarized as follows:

• The combinatorics of Stochastic Monotone Binary Systems is revisited.

• We exploit duality and the optimal algorithm to find mincuts in order to apply
the Recursive Variance Reduction (RVR) method for the reliability evaluation of
SMBS.

• We also discuss the F-Monte Carlo (FMC) method for estimating the reliability
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polynomial in the case of homogeneous SBS.

• The interplay between SMBS and some dynamical reliability models, based on
the classical Creation Process by Elperin et al. (1991), is explored.

• Based on the prior item, some Permutational and Splitting–like methods, the last
of which is a novel proposal, are analyzed.

• The performance of these Monte Carlo estimation methods is evaluated by
computational experiments in different scenarios.

The document is organized in the following manner. Section 2 presents the concept
of stochastic binary system, its reliability, and examples. The underlying combinatorics
and complexity of the problem is studied in Section 3 where we also introduce an
optimal algorithm to find mincuts. The generalization to SMBS of FMC, RVR, and
of the three methods derived from the Creation Process,is considered as a pointwise
reliability estimation in Section 4. The performance of all the methods introduced is
illustrated via several tests in Section 5. Finally, Section 6 presents concluding remarks
and trends for future work.

2 Concepts
The following terminology is adapted from Ball (1986).

Definition 1. A stochastic binary system (SBS) is a triad (S, p, ϕ):

• S = {1, . . . ,m} is a ground set of components,

• p = (p1, . . . , pm) ∈ [0, 1]m has their elementary reliabilities, and

• ϕ : {0, 1}m → {0, 1} is the logical rule or structure of the system.

Definition 2 (Reliability/Unreliability). Let S = (S, p, ϕ) be an SBS, and consider a
random vector X = (X1, . . . , Xm) with independent coordinates governed by
Bernoulli random variables such that P (Xi = 1) = pi.
The reliability of S is the probability of correct operation:

rS = P (ϕ(X) = 1) = E(ϕ(X)). (1)

The unreliability of S is qS = 1− rS .

Definition 3 (Pathsets/Cutsets). Let S = (S, p, ϕ) be an SBS. A possible state x ∈
{0, 1}m is a pathset (resp. cutset) if ϕ(x) = 1 (resp., if ϕ(x) = 0).

Pathsets and cutsets are also known as up and down states respectively. The binary
set {0, 1} is equipped with the partial order, defined by 0 ≤ 0, 0 ≤ 1 and 1 ≤ 1. The
set {0, 1}m inherits a natural order in the Cartesian product:

Definition 4 (Canonical Order). If x = (x1, . . . , xm) ∈ {0, 1}m and
y = (y1, . . . , ym) ∈ {0, 1}m, we denote x ≤ y if and only if xi ≤ yi for all
i = 1, . . . ,m.

4



Given two partially ordered sets A and B, a function f : A → B is monotone if
f(a1) ≤ f(a2) whenever a1 ≤ a2. As usual, we denote y < x if y ≤ x and y ̸= x.
Let us denote 0⃗m (resp. 1⃗m) to be the binary word with all bits set to 0 (resp. to 1), and
ei to be the binary word with all bits in 0 but the bit in position i set to 1.

Definition 5 (Stochastic Monotone Binary System). The triad S = (S, p, ϕ) is a
stochastic monotone binary system (SMBS) if ϕ(⃗0m) = 0, ϕ(⃗1m) = 1 and the
structure function ϕ : {0, 1}m → {0, 1} is non-decreasing, where both the domain
and codomain are equipped with the canonical order for binary words.

Definition 6 (Minpaths/Mincuts). Let S = (S, p, ϕ) be an SMBS. A pathset x is a
minpath if ϕ(y) = 0 for all y such that y < x. A cutset y is a mincut if ϕ(x) = 1 for
all x such that y < x.

If we repair the component s from the state x, the result is denoted by x(s = 1).
Analogously, x(s = 0) denotes the setting of the component s to non-operational state.

Definition 7 (Essential/Irrelevant Components). Let S = (S, p, ϕ) be an SBS. A
component s ∈ S is essential if the system is always down when s fails. The
component s is irrelevant if the state of this particular component s does not affect the
global system: ϕ(x(s = 0)) = ϕ(x(s = 1)) for all possible states x ∈ {0, 1}m.

An SBS is homogeneous if the elementary reliabilities are identical (i.e., pi = p for
all i). Given a structure ϕ, we denote x to be the complementary state in bits (i.e., 0’s
are set to 1’s and vice-versa). In particular, ϕ(x) = 1− ϕ(x).

Our later analysis of monotonicity and cutsets promotes the following definition of
duality found in Romero (2016):

Definition 8 (Dual System). The dual of S = (S, p, ϕ) is another SBS with identical
ground set S, elementary reliabilities pdi = 1− pi, and structure ϕd(x) = 1−ϕ(x), for
all possible states x ∈ {0, 1}m. The dual is denoted by Sd = (S, 1− p, ϕd).

The following examples provide an insight of the different applications of
stochastic binary systems. Classical examples include a reference in the field for the
interested reader.

1. K-Terminal Reliability: letG = (V,E) a simple graph, and consider a terminal-
set K ⊆ V . The ground set is E, so the links fail, and the system is up if all the
nodes from K belong to the same connected component in the resulting random
graph; see Ball (1980).

2. All-Terminal Reliability: choose K = V in the first model. The system is up if
the resulting random graph is connected.

3. Source-Terminal Reliability: choose K = {s, t} in the first model.

4. Diameter Constrained Reliability: a diameter constraint d is added to the K-
Terminal Reliability; see Petingi and Rodrı́guez (2001); Canale et al. (2015b,
2013). The system is up if every pair of terminals are connected by paths whose
length is not greater than d.
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5. k-m-Survivability: the system is up if and only if there are at least k components
in operational state out of m equally reliable components. This homogeneous
system is known as k-out-of-m system; see Wang et al. (2018). We will denote
ϕ(k,m) to its structure according to Canale et al. (2015a).

6. k-m-Degraded: the system is down if and only if there are at least k identical
components in failure state out of m. We will denote ψ(k,m) to its structure.
Clearly: ψ(k,m) = ϕ(m−k,m).

7. Circular k-m-balanced Survivability: the system is up if and only if at least k
components are operating and the system is spatially balanced (i.e., the
operational components are uniformly spread); see Endharta et al. (2018).

8. Residual Reliability: the ground set is a node-subset of a simple graph. The
system is up if, after eliminating failed nodes, the operational terminal nodes
belong to the same connected component; see Cancela and Urquhart (2002).

9. Node-Edge Reliability: both links and nodes fail in a random graph. The system
is up if and only if the resulting subgraph is connected; see Dash et al. (2012).

10. Feasibility: consider an arbitrary integer linear program P with binary decision
variables x1, . . . , xm. The elementary reliability pi is the likelihood of the event
xi = 1, or pi = 1/2 if there is no available experimental data, and the structure
is ϕ(x) = 1 if x is feasible for P .

11. Forbidden Pattern: given a binary string w, the system is non-operational, i.e,
ϕw(x) = 0, if and only if w appears in the binary word x.

All the models can be homogeneous if we fix the elementary reliabilities pi = p for
all the components of the system (otherwise, the system is heterogeneous). The reader
is invited to check that the examples 1-6 are SMBS, while the examples 7-11 are non
monotone.

3 Computational Complexity
In this section, the combinatorics of SMBS is reviewed. The interested reader can
consult further details in Cancela et al. (2018) and Romero (2016, 2019).

Let us explore the link between an SBS and propositional logic. In this study
we assume that the structure accepts a polynomial time evaluation for any state x ∈
{0, 1}m. Recall that a theorem-proving procedure is the first NP-Complete decision
problem established by Cook (1971). In other words, the recognition of a tautology is
a hard decision problem from propositional logic.

Theorem 1. The reliability evaluation of an arbitrary SMBS belongs to the class of
NP-Hard problems.

Proof. Rosenthal (1977) formally proved that the reliability evaluation for the
K-terminal reliability model belongs to the class of NP-Hard computational
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problems. Since K-Terminal is a particular SMBS, the result follows by
inclusion.

Corollary 1. The reliability evaluation of an arbitrary SBS belongs to the class of
NP-Hard problems.

Theorem 2. The determination of a cutset in an arbitrary SBS is an NP-Complete
decision problem.

Proof. Consider an arbitrary propositional logic φ with m literals. Build the
corresponding SBS with m elements and φ as the structure. Then, φ is a tautology if
and only if the corresponding SBS has no cutsets.

Let us study the problem for arbitrary SMBS. First, three elementary results:

Lemma 1. The dual of the dual is the original system.

Proof. ϕd
d
(x) = 1− ϕd(x) = 1− (1− ϕ(x)) = ϕ(x).

Lemma 2. The dual of an SMBS is another SMBS.

Proof. Consider arbitrary states x ≤ y and a monotone structure ϕ. Since x ≥ y, we
get that ϕ(y) ≤ ϕ(x). Therefore: ϕd(x) = 1− ϕ(x) ≤ 1− ϕ(y) = ϕd(y).

Since the elementary reliabilities are identical in the dual system, we get the
following result:

Corollary 2. Consider a homogeneous SMBS. Then, a state x is the pathset with
maximum probability if and only if x is a cutset with maximum probability in the dual.

Proof. First, assume that x is a pathset with maximum probability. Then ϕ(x) = 1, and
ϕd(x) = 1−ϕ(x) = 0, so x is a cutset in the dual system. Assume that x has precisely
r elements in operational state. Then P (x) = pr(1−p)m−r. In the dual the elementary
reliability equals 1 − p. Then, in the dual the probability is P (x) = (1 − p)m−rpr,
identical to the probability of state x in the original system. The converse holds by
Lemma 1.

From Corollary 2, we can study pathsets instead of cutsets, and the results under
monotonicity hold. Recall that we want to find the cutset with maximum probability in
SMBS. Instead, we study pathsets:

Proposition 1. The determination of a pathset with maximum probability in arbitrary
SMBS belongs to the class of NP-Hard problems.

Proof. Consider the K-Terminal Reliability model, in the homogeneous case. Since
the model is homogeneous, a pathset with maximum probability is precisely a
minimum cardinality minpath. But in the K-Terminal model, this is the Steiner
Problem in Graphs, which belongs to the NP-Hard class as proved by Karp
(1972).
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Theorem 3. The determination of a cutset with maximum probability in arbitrary
SMBS belongs to the class of NP-Hard problems.

Proof. Combine Proposition 1 with Lemma 2 and Corollary 2.

Theorem 3 is a negative result that has a deep impact on the understanding of
SMBS. In the homogeneous Source-Terminal Reliability model, finding the mincut
with maximum probability is precisely the minimum cardinality s-t cutset. Using the
theory of flows in networks, it is known that the mincut can be determined from the
maximum flow between s and t with unit capacities in the links. Therefore,
Theorem 3 discards any possibility of the existence of a maximum flow theory in
SBS, unless P = NP .

The following result, in contrast with Theorem 2, gives an efficient method for
finding mincuts in SMBS. The algorithim improves from the O(m2) method discussed
in a previous conference paper Canale et al. (2015a). The result will be useful to
develop an efficient Monte Carlo based reliability estimation method (RVR) for SMBS:

Theorem 4. A mincut can be found using m rule-evaluations in an arbitrary SMBS.

Proof. The evidence is Algorithm 1. Clearly, it requires m evaluations, and it returns
a cutset x. We will prove the statement in two steps:

(1) The state x is a mincut.

(2) Algorithm 1 is optimal in terms of rule-evaluations.

For (1), suppose that the output x is not a mincut. Therefore, there exists some j ∈
{1, . . . ,m} such that ϕ(x + ej) = 0. Let us denote x(j) the state for the iteration j
in the for-loop. Observe that x is (possibly) increased in each iteration. Therefore,
x(j) ≤ x ≤ x+ ej . Since ϕ(x+ ej) = 0 and ϕ is monotone, we get that ϕ(x(j)) = 0.
But in this case the j–th bit would have been set to 1, and this bit is set to 0 in the
output. This is impossible, since the bits in x are only increased during the execution
of Algorithm 1.
For (2), observe that in the worst case the null vector x = 0 is a mincut. The only way
to determine that 0 is a mincut is to test ϕ(ei) = 1 for all possible canonical vectors
{ei}i=1,...,m, and this requires m rule-evaluations.

Theorem 4 is constructive. It provides an interplay with propositional logic. In
other words, the linear-time algorithm from Theorem 4 is optimal, and serves to find a
minimal false assignment in the most efficient way.

Let us close this section with three elementary results for the determination of
essential and irrelevant components. The determination of irrelevant components is a
key aspect in network reliability models, so it is expected to play a central role in
understanding the underlying combinatorics of SBS.

Proposition 2. Consider an arbitrary SBS, given by the triad S = (S, p, ϕ), and let
s ∈ S be an arbitrary component. The decision problem that determines whether s is
irrelevant or not belongs to the class of NP-Hard computational problems.
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Algorithm 1 x =Mincut(ϕ, S)

1: m← |S|
2: x← 0⃗m
3: for i = 1 to m do
4: y ← x+ ei
5: if ϕ(y) = 0 then
6: x← y
7: end if
8: end for
9: return x

Figure 1: Pseudocode for Mincut method.

Proof. By its definition, s is not irrelevant if there exists a state x such that ϕ(x(s =
0)) ̸= ϕ(x(s = 1)). This means that either x(s = 0) is a cutset, or x(s = 1) is a cutset.
In both cases, a cutset for the SBS must be found. As a consequence, the recognition
of irrelevant components is at least as hard as the determination of a cutset. The result
follows from Theorem 2.

Another complexity result holds for essential components:

Proposition 3. Consider an SBS, given by the triad S = (S, p, ϕ), and let s ∈ S be an
arbitrary component. The decision problem that determines whether s is essential or
not belongs to the class of co−NP-Hard computational problems.

Proof. From well-known results in complexity theory (see for instance Arora and
Barak (2009)), the general Tautology problem (i.e., finding if an expression in
propositional logic is true independently of the values of the individual terms) is
coNP-complete.

Let ψ be an arbitrary propositional logic expression on terms s1, . . . , sn−1 (taking
1 as the True value, and 0 as the False value). Define a structure function ϕ over
s1, . . . , sn−1, s, where if s = 1 then ϕ is 1, and where if s = 0, then ϕ = 0 if ψ is True,
and ϕ = 1 if ψ is False.

Then if s is an essential component of ϕ, when s is 0 ϕ must be 0 irrespective of
the values of s1, . . . , sn−1, meaning that ψ is a tautology. If we can solve the essential
component problem, we can then solve the Tautology problem with the same
computational effort.

This means that determining an essential component is at least as complex as the
Tautology problem, which is coNP-complete; so that the essential component
determination belongs to the coNP-hard class.

In practice, it is highly desired to determine whether a component of a real system
is essential or not. However, if we do not have further information about the system,
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Proposition 3 tells us that we cannot decide efficiently whether the component is
essential or not, unless NP = coNP (an open question in complexity theory).

The determination of essential components in arbitrary SMBS is straightforward:

Proposition 4. Consider an arbitrary SMBS, given by the triad S = (S, p, ϕ), and let
s ∈ S be an arbitrary component. The decision problem that determines whether s is
essential or not can be performed in a single rule-evaluation.

Proof. If ϕ(⃗1m − es) = 1, by its definition s is not essential. On the other hand, if
ϕ(⃗1m − es) = 0 by monotonicity we have that ϕ(x − es) = 0 for all possible states
x ∈ {0, 1}m, and s is essential.

4 Monte Carlo algorithms
Monte Carlo simulation methods consist in estimating an unknown measure or merit
figure, whose value is the expectation of a given random variable, by generating N
samples of this variable and computing the sample mean, variance, and a confidence
interval for the value of interest; see Fishman (1996). In the case of reliability
estimation, a Monte Carlo estimation works by sampling the state of every component
of the system, and evaluating the operational/failed state of the system as a whole.

In this section, we discuss the basic Monte Carlo method. As this basic method
runs into performance problems in the case of high reliability values (the so-called rare-
event case discussed by Rubino and Tuffin (2009)), two other alternatives designed for
improved efficiency, the RVR and the FMC methods, are also presented.

4.1 Crude Monte Carlo (CMC)
The basic Monte Carlo method (also called Crude Monte Carlo, CMC), consists in
generating N independent samples X1, . . . , XN of a random variable with finite mean
E(X). The Strong Law of Large Numbers implies that the average XN converges
almost surely to E(X), with variance Var(XN ) = Var(X)/N .

For reliability estimation, we consider the random vector of the components’ states,
X = (X1, . . . , Xm), such that P (Xi = 1) = pi is the component reliability for each
i. Then it is necessary to generate N independent samples X1, . . . , XN of X . A point
estimation of the reliability is computed by

rCMC =
1

N

N∑
i=1

ϕ(Xi). (2)

This estimator is unbiased, with variance Var(rCMC ) = rS(1−rS)/N . One important
advantage of CMC is that it does not depend on any particular feature of the system, so
that it can be applied to general SBS. A pseudocode of the CMC implementation for
pointwise reliability estimation is presented in Algorithm 2.

The precision of the estimator rCMC is mainly determined by its variance. See,
for example, that the half width of its Confidence Interval is zα/2 × Var(rCMC )1/2,
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Algorithm 2 rCMC = CMC (ϕ, S, p,N)

1: Sum ← 0
2: for i = 1 to N do
3: Xi ← 0⃗m
4: for j = 1 to m do
5: Uj ∼ U [0, 1]
6: if Uj < pj then
7: Xi ← Xi + ej
8: end if
9: end for

10: Sum ← Sum + ϕ(Xi)
11: end for
12: return rCMC = Sum/N

Figure 2: Pseudocode for CMC method.

where zα/2 is the confidence level. Thus, the interval size is mainly determined by the
estimator variance or, similarly, by its standard deviation. It is also useful to consider
some indicator of relative precision, like, for example, the ratio Var(rCMC )1/2/rCMC ,
that is usually accepted as a relative error. For the unreliability estimation this error
reads Var(qCMC )1/2/qCMC , where Var(qCMC ) = Var(rCMC ).

In the case of highly reliable SBSs (i.e, when failures are rare events), this relative
error is larger and much more significant if we estimate the small (close to 0)
unreliability, rather than the large (close to 1) reliability. This is the reason why in a
comparative setting, in which highly reliable systems are considered, comparisons are
based on the unreliability. See that, when an SBS becomes more reliable, both terms,
Var(qCMC )1/2 and qCMC tend to zero, however qCMC does it faster than the
variance. This is the reason why, as an SBS becomes more reliable, CMC loses
efficiency, the relative error grows boundlessly, and variance reduction methods, like
the ones introduced in the following sections, are necessary to be able to estimate the
unreliability measures with sufficient precision.

4.2 Recursive Variance Reduction (RVR)
The RVR method has originally been proposed to solve network reliability problems,
with good results; see Cancela and El Khadiri (1995); Cancela et al. (2012). It is based
on a recursive decomposition of the state space of a monotone system by conditioning
over the state of the components of a mincut. It can be adapted to the case of an SMBS,
but it is not applicable directly to a non monotone system.

The main idea is to find a mincut of the system at each step. The probability that all
components in the cutset are down is added to the unreliability estimator; the remaining
states are partioned in sub-events, corresponding to the index of the first component
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of the cutset to be operational. Using conditional probabilities, the method randomly
chooses one of these sub-events, and restarts the procedure until a trivial case is met. To
present the method, we need to introduce the following notation, closely following the
one used by Cancela and El Khadiri (1995), adapted to this context of general SMBS.
It is worth to remark that we will identify indistinctly a cutset x ∈ {0, 1}m with the set
Ax = {i : xi = 0}.

1. The random vector X = (X1, . . . , Xm) such that X1, . . . , Xm are independent
Bernoulli variables and P (Xi = 1) = pi is the state vector of the SMBS under
study.

2. C = (a1, . . . , a|C|) is a mincut of the system under study. C can be found
efficiently using Theorem 4.

3. AC denotes the event “all the components in C fail”.

4. qC = P (AC) =
∏|C|

j=1(1− paj
).

5. Ai = {a1, . . . , ai} is the subset of the first i elements belonging to C.

6. Bi is the event “ai is up but aj fails for all j < i”.

7. ϕBi
is the structure function of the system restricted by Bi (i.e, where the ai

component of X is fixed to 1 and the aj components of X are fixed to 0 for all
j < i).

8. P (Bi) = pai

∏
j<i(1− paj ).

9. V is a discrete random variable such that
P (V = i) = P (Bi|ĀC) = P (Bi)/(1 − qC), where ĀC = ∪|C|

i=1Bi is the
complement of AC .

10. Yi = 1 − E(ϕBi
(X)) is the unreliability of the system conditional on the event

Bi.

Let X = 1A denote the Bernoulli variable such that X = 1 if and only if the event
A occurs. Consider now the following random variable:

Z = qC + (1− qC)
|C|∑
i=1

1{V=i}Yi. (3)

The reader can notice that the subsystems with structure function ϕBi
are SMBS as

well, since the restriction of a monotone function is monotone. Applying the total
probability theorem, we can check that Z is an unbiased estimator of qS . What is more,
a mean sample ofZ has smaller variance than CMC, therefore it is more accurate (since
both are unbiased estimators). The proofs from Cancela and El Khadiri (1995) apply
directly, substituting SMBS instead of networks as they do not depend any specificity
of the particular K-terminal structure other than monotonicity. The next step consists
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in observing that the same idea of Expression (3) can be recursively applied to each Yi,
leading to the following recursive operator Q as the unreliability estimator:

Q(X) =


1, if ϕ(X) ≡ 0;

0, if ϕ(X) ≡ 1, or
qCS′ + (1− qCS′ )

∑|CS′ |
i=1 1{V=i}QBi(X).

(4)

where the mincut CS′ is recursively found for each subsystem using Theorem 4 over
the whole component-set S′, and QBi

is the call to the recursive operator Q over the
structure function ϕBi

defined above (i.e, where the ai component of X is fixed to 1
and the aj components of X are fixed to 0 for all j < i). Observe that the recursion
fixes some elements of the cutset (a number of them in down state, and the first element
i that is up as well). In other words, the historical information during the recursion is
recorded in the conditional measure. As the subsystems successively considered have
diminishing numbers of components, the termination is guaranteed. If Q1, . . . , QN is
an independent and identically distributed sample of Q(X), an unbiased estimator for
qS is:

qRVR =
1

N

N∑
i=1

Qi, (5)

The method is presented in pseudocode form in Figure 3.
The block of Lines 1-6 in Algorithm 4 is a halting test that determines if the system

can be evaluated trivially (ϕ is constant, either 0 or 1), or not. Function MinCut is
called in Line 7, and a mincut C is obtained. The probability of the mincut qC is found
in Line 8 as the product of the failure probabilities of its components. If not all the
components of the cutset fail, then there is a first component ai, i ∈ {1, . . . , |C|} that
is up. The probability distribution vector p′ = (p′1, . . . , p

′
|C|) is computed in Line 9,

where p′i = P (V = i) and V is a discrete random variable such that P (V = i) =
P (Bi|ĀC) = P (Bi)/(1− qC). The recursive part of RVR is precisely Line 10, where
Expression (4) is considered. The result is an unbiased reliability estimation of an
SMBS, with lower variance than CMC.

4.3 F -Monte Carlo (FMC) in the homogeneous case
We now concentrate in the particular case of homogeneous SMBS, where all
components have identical probabilities of operation pi = p. Let f(x) be the function
counting the number of bits 0 in the binary word x:

f(x) = m−
m∑
i=1

xi (6)

Consider the following partition of {0, 1}m:

Si = {x ∈ {0, 1}m : f(x) = i, ϕ(x) = 1}, ∀i = 0, . . . ,m.

The collection of sets Si represents the subset of operational binary words with
precisely i bits set to 0. Consider the numbers Fi = |Si|, and let P(S) be the power-set
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Algorithm 3 qRVR = RVRMC (ϕ, S, p,N)

1: Sum ← 0
2: for i = 1 to N do
3: Sum ← Sum + RVR(ϕ,S , p)
4: end for
5: return qRVR = Sum/N

Algorithm 4 Q = RVR(ϕ, S, p)

1: if ϕ(x) = 1∀x then
2: return Q = 0
3: end if
4: if ϕ(x) = 0∀x then
5: return Q = 1
6: end if
7: C ← MinCut(ϕ, S)

8: qC ←
∏|C|

j=1(1− paj
)

9: (V,Bi, Ai, p
′)← SampleCut(C, p)

10: return Q = qC + (1− qC)× RVR(ϕBi
, S −Ai, p

′)

Figure 3: Pseudocode for RVR method.
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Algorithm 5 rFMC (p) = FMC (ϕ, S, p)

1: for i = 0 to m do
2: Sumi ← 0
3: for j = 1 to N do
4: Xj

i ← Choose(m− i, S)
5: Sumi ← Sumi + ϕ(Xj

i )
6: end for
7: F̂i ←

(
m
i

)
Sumi/N

8: end for
9: rFMC (p)←

∑m
i=0 F̂ip

m−i(1− p)i
10: return rFMC

Figure 4: Pseudocode for FMC method.

S. It is possible to express the reliability of the SMBS as a polynomial in the scalar
variable p ∈ [0, 1], with coefficients Fi:

rS(p) =
∑

T∈P(S):ϕ(T )=1

P (X = T )

=

m∑
i=0

∑
T∈Si

P (X = T )

=

m∑
i=0

∑
T∈Si

pm−i(1− p)i

=

m∑
i=0

Fip
m−i(1− p)i.

The function rS(p) is the reliability polynomial of the SMBS S. Then, under identical
failure probabilities the reliability polynomial computation is equivalent to finding the
F -vector F = (F0, F1, . . . , Fm), i.e, solving m+ 1 counting problems.

The key idea of F -Monte Carlo (FMC) is to pick random states x ∈ {0, 1}m such
that f(x) = i. Then, we count the ones that belong to the set Si in order to estimate Fi.
Let us consider independent, identically distributed samples X1

i , . . . , X
N
i with exactly

m− i elements up, and take the mean sample:

ϕ̂i =
1

N

N∑
j=i

ϕ(Xj
i ). (7)

There are
(
m
i

)
states withm−i elements up. Therefore, F̂i =

(
m
i

)
ϕ̂i is an unbiased

estimation for Fi. Finally, an unbiased estimation for the reliability polynomial r(p)
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is:

rFMC (p) =

m∑
i=0

F̂ip
m−i(1− p)i.

This method has been discussed in Canale et al. (2014) applied to the network
reliability context. An obvious limitation is that the method is not applicable when
the SMBS is not homogeneous. The pseudocode of the method is shown in Figure 4.
The algorithm FMC receives the rule ϕ, the ground-set of components S, and returns
a polynomial rFMC in the variable p ∈ [0, 1]. In the block of Lines 1-8, a pointwise
estimation of the coefficients Fi takes place, and we get F̂i. Observe that F̂i is precisely
the proportion of operational states with i bits sets to 0. Therefore, an averaging is
considered in order to find a pointwise estimation of that proportion with a sample
of size N in a for-loop (Lines 3-6). In Line 4, we choose m − i elements from S
using Function Choose, and the result is a binary word with those bits set to 1 in the
respective order. The number Sumi is updated in Line 5, and the averaging takes place
in Line 7. In Line 9, the reliability polynomial rFMC (p) is found using Expression (7),
and it is returned in Line 10.

4.4 Permutational and Splitting–like methods
All the SBS addressed so far are essentially static. However, in order to pursue a
variance reduction in the reliability estimation it is possible to transform them into
dynamic systems modeled by stochastic processes that, under certain conditions, have
the same reliability as the original static SBS. Such transformation gives access to a
wide scope of methods, like Permutation Monte Carlo and Splitting, originally
conceived to operate over dynamic models. An extensive review of the ideas that gave
rise to these methods can be found in Elperin et al. (1991), Glasserman et al. (1996),
Garvels (2000), L’Ecuyer et al. (2007), L’Ecuyer et al. (2009), Amrein and Künsch
(2011) and Gertsbakh et al. (2014a).

The methods to be introduced now are based on an artificial time, along which the
components are repaired, provided that they are failed at time t = 0. This is the guiding
idea of many important research lines, some of which have been also adapted to the case
of multiple states per component, like the work in Gertsbakh et al. (2014a). An original
and efficient approach, one of whose applications can be found in Gertsbakh et al.
(2016), is based on a distribution called D–spectrum, proposed to make a particular
description of the sequences of repairs, for the case of homogeneous systems. For a
complete survey of all of these methods, readers are advised to look over Gertsbakh
and Shpungin (2009) and Gertsbakh et al. (2014b).

The transformation of an SBS into a dynamic system, and the analysis of the
sequences of repairs (permutations), are the basis of three methods discussed in the
following subsections. The first two methods have been used in network reliability
models, even if in this paper we discuss them in the SBS context; but the third one is a
novel proposal in this article, which has not been previously proposed or applied in
any context.
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Figure 5: The Creation Process (CP)

4.4.1 Permutation Monte Carlo (PMC)

In the Creation Process (CP), proposed by Elperin et al. (1991), the SBS is no longer
modeled by the random vector X , instead, it is modeled by the independent
components of the random process X(t) = (X1(t), . . . , Xm(t)), in which:

Xi(t) =

{
0 if t < τi
1 otherwise, i = 1, . . . ,m. (8)

In words, at t = 0 all the components are failed, or simply do not exist, while at
times τi they are repaired or created. Every τi is exponentially distributed with rate
λi = − ln(qi) so that, to observe CP at t = 1 is the same as observing the static SBS,
because P (Xi(1) = 1) = ri and P (Xi(1) = 0) = qi.

See that, if at time t = 1 each component exists with probability pi, i = 1, . . . ,m,
then, at t = 1 the SBS is up (resp. down) with a probability equal to the system
reliability (resp. unreliability).

Figure 5 shows a possible sequence of repairs, each one of which occurs at time
τ(i), i = 1, . . . , c. It is important to distinguish the reference to the order in the
sequence (the index in brackets) and the number of component, because time τ(i) is
the repair time of the j–th component, but not necessarily i = j. The order of repairs,
in terms of the numbers of component, is a permutation of the ground set S.

Time τ(c) is the repair time of some component —called critical component— such
that, from there on the system is up. As a consequence:

ϕ(X(t)) =

{
0 if t < τ(c)
1 otherwise. (9)

Thus, the event ϕ(X) = 0 in the static SBS is the same as event τ(c) ≥ 1 in CP,
what, in the end, means that q = P (τ(c) ≥ 1). Then, given the following indicator
variable:

IP =

{
1 if τ(c) ≥ 1
0 otherwise, (10)

the crude or standard unreliability estimation, q̂CMC , is:

q̂CMC =
1

N

N∑
i=1

I
(i)
P , (11)
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where I(i)P , i = 1, . . . , N , is a set of N independent copies of variable IP .
In order to improve the estimation in (11), it is important to find a mathematical

description of the time τ(c). Considering the times between repairs, as shown in Figure
5, time τ(c) is composed as follows:

τ(c) =

c∑
i=1

∆i (12)

The time ∆1 is the smallest (earliest) out of a set of m exponentially distributed times,
each one of them with rate λi, i = 1, . . . ,m. So, the rate of ∆1 is Λ1 =

∑c
i=1 λi,

whereas the component repaired at time τ(1) can be sampled from a discrete distribution
in which the probability of each component is λi/Λ1, i = 1, . . . ,m. Assuming that
component x is sampled at time τ(1), ∆2 is exponentially distributed with rate Λ2 =
Λ1−λx, and the component repaired at time τ(2) follows a discrete distribution in which
the probability of each component is λi/Λ2 i = 1, . . . ,m, i ̸= x. The mechanism can
be extended to all the components in S, however only the first c ones are of interest.
Let us call NextComp(X) to a function that, given the value of X at certain moment,
returns the number of the next component to be repaired, according to the mechanism
just introduced (it is used in the pseudocode of Figure 6).

The random variables ∆1, . . . ,∆c, and, therefore the variable τ(c) =
∑c

i=1 ∆i,
are determined by the permutation ω ∈ Ω, where Ω is the set (space) of all the possible
permutations. Thus, according to the Total Probability Theorem, the unreliability can
be expressed as follows:

q = P (τ(c) ≥ 1) =
∑
ω

P (τ(c) ≥ 1 | Ω = ω)︸ ︷︷ ︸
γ(ω)

P (Ω = ω) (13)

This expression is the basis of a Conditional Monte Carlo application known as
Permutation Monte Carlo (PMC). The term γ(ω) is the probability that the SBS is up
at t = 1 when the components are repaired according to the permutation ω. Thus, if for
any sampled permutation, the probability γ(ω) can be computed, the following Monte
Carlo estimation is possible:

q̂P =
1

N

N∑
i=1

γ(ω(i)), (14)

where ω(i), i = 1, . . . , N , is a set of N independent replications of the permutation ω.
It is important to notice that, in order to compute γ(ω(i)), it is not necessary to sample
the times ∆1, . . . ,∆c, for every replication, but only the order of repairs (permutation).
Once a permutation, ω, is sampled, γ(ω) can be computed according to the distribution
determined by Balázs (2005), that is:

γ(ω) = P (∆1 + . . .+∆c > x | ω) =

(
c∏

i=1

Λi

)
c∑

j=1

e−Λj x

Λj

c∏
k=1
k ̸=j

(Λk − Λj)

(15)
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Algorithm 6 qP = PMC (ϕ, S, p)

1: Sum ← 0
2: for i = 1 to N do
3: Xi ← 0⃗m
4: ωi ← ∅
5: while ϕ(Xi) = 0 do
6: j ← NextComp(Xi)
7: Xi ← Xi + ej
8: ωi ← ωi ∪ j
9: end while

10: Sum ← Sum + γ(ωi)
11: end for
12: return qP = Sum/N

Figure 6: Pseudocode for Permutation Monte Carlo method.

A pseudocode for the Permutation Monte Carlo algorithm is presented in Figure 6.
It is simple to show that the variance of the estimator q̂P in (14) is smaller than the

variance of the standard estimator q̂CMC in (11):

V (q̂CMC ) = q (1− q)

=
∑
ω

γ(ω)P (Ω = ω)

(
1−

∑
ω

γ(ω)P (Ω = ω)

)

=
∑
ω

γ(ω)P (Ω = ω)−

(∑
ω

γ(ω)P (Ω = ω)

)2

±
∑
ω

γ(ω)2 P (Ω = ω)

= V (q̂P ) + E(γ(ω))− E(γ(ω)2)︸ ︷︷ ︸
≥0

what shows that V (q̂P ) ≤ V (q̂CMC ).

4.4.2 Splitting/CP

Another CP–based method for estimating the unreliability of an SBS is Splitting/CP. In
this method, that has been proposed by Murray et al. (2013), the sequences of repairs
are seen as trajectories that start at t = 0 and progress towards t = 1. The target
value is still the probability of the event τ(c) ≥ 1, which, in the case of highly reliable
systems, is a rare event. Splitting/CP attempts to stimulate the occurrence of this event
by artificially increasing the number of trajectories, cloning or splitting them at certain
points determined by the cross of intermediate thresholds (one or more) placed between
t = 0 and t = 1. Figure 7 shows a small example with only one intermediate threshold
placed at t = 0.5. We will refer to it as h1, and we will call, respectively, h0 and
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h2 to the bounds at the extremes (even when they do not play the same role as the
intermediate threshold, h1).

The Splitting mechanism posits that: every time a threshold is crossed, a set of new
trajectories is launched from the threshold crossed, all of them preserving the state
of the incident trajectory at the crossing point. In the example shown in Figure 7,
every time h1 is crossed, two new trajectories are launched from the crossing point.
This splitting factor (two, in this case) is a parameter that has to be selected in every
Splitting implementation.

The successful trajectories are those for which the critical component appears
beyond t = 1, therefore, the candidates are those which do not contain the critical
component, when a threshold is crossed. On the other hand whenever the critical
component is sampled on some trajectory, it is immediately stopped and no more
components need to be sampled on it. Such is the case of trajectory T1 in Figure 7.

P1 P2

T1

T2

T21

T22

050 1

DD

f
a b c

e

h0 h1 h2

g

d

De

Figure 7: Splitting/CP, small example.

In trajectory T2, the critical component does not appear earlier than h1, that is why
it is cloned as shown, creating trajectories T21 and T21. The state of T2 at the crossing
point is as follows: components a, b and c are already repaired, while the times at
which the remaining components will be repaired are all “running”. This is the initial
state of both, T21 and T21, at t = 0.5.

The first component repaired on T21 is e, which is not forced to be d again,
although it could be. Time ∆e, should be counted from the repair time of component
c, conditioned on the fact that component e must be sampled beyond h1 (remember
that, at t = 0.5, the repair times of all the components not sampled yet, are all
“running”). However, given the lack of memory of the exponential distribution, ∆e

can be counted from h1. Trajectory T21 is discarded immediately after, because the
critical component is sampled earlier than the next threshold, h2.

Trajectory T22 is launched at the same point and with the same initial state as T21.
The only difference is that trajectory T22 reaches the final threshold, h2, because the
critical component is not shown on it (it appears beyond t = 1).

According to the Splitting/CP method, in a setting withNT intermediate thresholds,
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the system unreliability reads as follows:

q =

NT+1∏
i=1

qSi , (16)

where qSi
, i = 1, . . . , NT + 1, is the probability that a trajectory started at threshold

i − 1 reaches threshold i. The final unbiased Splitting/CP estimation, q̂S , results from
replacing each term in (16) with an appropriate estimator, that is:

q̂S =

NT+1∏
i=1

q̂Si . (17)

Each q̂Si , i = 1, . . . , NT + 1, is a crude or standard estimator that can be obtained
simply as the ratio between the number of trajectories that reach threshold hi and the
total number of trajectories started from threshold hi−1 . In the problem shown in
Figure 7, where the unreliability estimation is: q̂S = q̂S1

× q̂S2
, two trajectories are

launched from h0, one of which reach h1, then q̂S1
= 1/2. Similarly, two new

trajectories are launched from h1, but only one of them reaches h2, therefore,
q̂S2 = 1/2, and, q̂S = 1/4.

Let us go back to the general setting with NT intermediate thresholds. Call α0 to
the first Splitting factor, that is, the number of trajectories launched from h0, and αi to
the number of new trajectories started at threshold hi, i = 1, . . . , NT , every time hi
is crossed by a candidate trajectory. Let Ki be the total number of trajectories stared
at threshold hi, i = 0, . . . , NT , and Ri the total number of trajectories that reach
threshold hi, i = 1, . . . , NT + 1. The general form of the Splitting/CP estimator is:

q̂S = q̂S1 q̂S2 · · · q̂SNT +1

=
R1

K0

R2

K1
· · · RNT+1

KNT

=
R1

(α0)

R2

(R1α1)
· · · RNT+1

(RNT
αNT

)

=
1

α0α1 · · ·αNT

RNT+1 (18)

Figure 8 shows a description of the method of Splitting/CP in the form of
pseudocode. There, the vector α = (α0, . . . , αNT

), is the set of Splitting factors.
Think now that the α0 independent trajectories launched from h0 are modeled by

α0 Bernoulli random variables, 1i0 , with parameter pi0 , i0 = 1, 2, · · · , α0. These
variables equal 1 if the corresponding trajectory reaches threshold h1, and 0
otherwise. Thus, the number R1 of trajectories crossing threshold h1 is the number of
these Bernoulli variables assuming a value of 1, that is:

R1 =

α0∑
i0=1

1i0 (19)

When a trajectory modeled by the variable 1i0 crosses threshold h1, α1 new
trajectories are started right at the crossing point. These new α1 trajectories are
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Algorithm 7 qSPL = SPL(ϕ, S, p, α,NT )

1: Sum ← 0
2: for i = 1 to N do
3: Split(ϕ, S, p, α,NT , 0)
4: Sum ← Sum +RNT+1/(α0 α1 . . . αNT

)
5: end for
6: return qSPL = Sum/N

function Split(ϕ, S, p,NT , α,NT , z)

1: for i = 1 to αz do
2: Sample repair times, τ , until τ > hz+1, and update X
3: if ϕ(X) = 0 then
4: Rz+1 ← Rz+1 + 1, and cancel the repair beyond hz+1

5: if z ≤ NT then
6: Split(ϕ, S, p, α,NT , z + 1)
7: end if
8: end if
9: end for

10: return

Figure 8: Pseudocode for Splitting/CP.

modeled by α1 Bernoulli random variables 1i0i1 with parameter pi0i1 ,
i1 = 1, 2, · · · , α1. Consequently:

R2 =

α0∑
i0=1

1i0

(
α1∑

i1=1

1i0i1

)
=

α0∑
i0=1

α1∑
i1=1

1i01i0i1 (20)

Finally, replacing the value of RNT+1 in (18), the Splitting/CP estimator can be
expressed as:

q̂S =
1

α0α1 · · ·αNT

α0∑
i0=1

α1∑
i1=1

· · ·
αNT∑

iNT
=1

1i01i0i1 · · · 1i0i1···iNT
(21)

The Bernoulli random variables are responsible for building the trajectories tree
and also for the counting of trajectories (starting from and reaching thresholds), used
to compute the standard Monte Carlo estimates per stage.

4.4.3 Permutation Monte Carlo over Splitting/CP (PMC/SPL)

Splitting is the basis of a multiplicity of methods adapted, each one of them, to a
specific context. Such is the case of Botev and Kroese (2012), Botev et al. (2018) and
Botev et al. (2016) with Generalized Splitting, Villén-Altamirano and
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Villén-Altamirano (1991) and Villén-Altamirano and Villén-Altamirano (2002) where
the variant RESTART is approached, and Cancela et al. (2019) where a
Splitting–based method, to be used on multi–valued (rather than binary) systems, was
developed. Now, a new Splitting variant that somehow combines the algorithms
introduced in Sections 4.4.1 and 4.4.2, will be introduced.

Even when there is not a close expression for the variance of the estimator q̂S in
(17), it is easy to accept that the more precise the estimators q̂Si , i = 1, . . . , NT + 1,
the more precise the estimator q̂S . We propose to replace the method for obtaining the
estimators q̂Si

, by another with lower variance. Specifically, we propose to use
Permutation Monte Carlo instead of standard Monte Carlo. This variant will be
introduced here, with the aid of Figure 9, which shows in more detail the same
example as the one shown in Figure 7.

In ⟨ 1 ⟩ trajectory T1 is launched. This trajectory does not reach h1. As part of
the standard Splitting mechanism, T1 would deserve no further attention; there is no
crossing point on it, neither new trajectories launched from h1. Thus, at the end of a
standard Splitting application, T1 would contribute with a 0 to the estimation process
of qS1

.
See that the critical component is repaired at a time composed of the sum of four

times, namely ∆1, ∆2, ∆3 and ∆4, which, in turn, are determined by an underlying
permutation that we call ω1. Thus, whenever ω1 is sampled, the critical component
appears beyond h1 with probability p1, and earlier than h1 with probability 1 − p1,
then:

p1 = P (∆1 +∆2 +∆3 +∆4 > D | Ω = ω1). (22)

In trajectory T2, shown in ⟨ 2 ⟩, two repair times were sampled even after threshold
h1 was crossed. This is because we need the critical component to be sampled in
every trajectory (we will see the reason of this immediately). In a standard Splitting
application, T2 would contribute with a 1 to the estimation process of qS1

. Now, making
a similar analysis as the one made for trajectory T1, we can say that, if the permutation
underlying T2 is sampled again, let us call it ω2, the critical component will be beyond
h1 with probability p2, and earlier than h1 with probability 1− p2, then:

p2 = P (∆1 +∆2 +∆3 +∆4 +∆5 > D | Ω = ω2). (23)

Clearly, ∆1, ∆2, ∆3 and ∆4 in ⟨ 2 ⟩, are not necessarily the same random variables as
those in ⟨ 1 ⟩, just because ω1 and ω2 are not necessarily equal. After the computation
of p2, the repair times sampled beyond h1 are deleted from T2 and considered as if they
had never been sampled. They only serve to the purpose of computing of p2 in (23).

Consider now all the possible permutations ω ∈ Ω, and assume that all the
associated trajectories include the critical component. Then, the exact probability that
a trajectory started at t = 0 reaches threshold h1 is qPS1

:

qPS1 = P (∆1 + . . .+∆c > D) =
∑
ω

P (∆1 + . . .+∆c) > D | Ω = ω)︸ ︷︷ ︸
γ1(ω)

P (Ω = ω)

(24)
Let us suppose that in the general case, α0 independent trajectories,

Ti, i = 1, . . . , α0, starting at at t = 0, are sampled. For each one of them there will be
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a sequence of times, ∆1, . . . ,∆c, and an underlying permutation ω(i) ∈ Ω. Then,
once the probabilities γ1(ω(i)) are computed (making use of expression (15)), the
following estimator, which is more accurate than q̂S1

in (17), can be obtained:

q̂PS1
=

1

α0

α0∑
i=1

γ1(ω
(i)). (25)

See that the terms γ1(ω(i)) in this sum are the probabilities pi, i = 1, . . . , α0, the
first two of which (pointed out in Figure 9), are p1 in (22) and p2 in (23).

In ⟨ 3 ⟩ and ⟨ 4 ⟩ we can see trajectories T21 and T22, upon which p21 = P (∆4 +
∆5 > D) and p22 = P (∆4 +∆5 +∆6 > D) can be computed according to the same
guidelines introduced for ⟨ 1 ⟩ and ⟨ 2 ⟩. The only thing to keep in mind is that, in the
computations of both, p21 and p22, there are three components that have already been
sampled in ⟨ 2 ⟩.

With all this in mind, the example in Figure 9 is solved as follows. Once p1 and
p2 have been computed by means of Permutation Monte Carlo, the probability that a
trajectory started at h0 reaches threshold h1, is estimated as:

q̂PS1 =
p1 + p2

2
. (26)

Similarly, after the probabilities p21 and p22 are computed, the probability that a
trajectory started at h1 reaches threshold h2, is estimated as:

q̂PS2
=
p21 + p22

2
. (27)

Finally, the unreliability estimation of the corresponding SBS is:

q̂PS = q̂PS1
× q̂PS2

. (28)

In Splitting/CP the trajectories play a double role, they draw the trajectories tree that
grows from t = 0 towards t = 1 and they set the crossing points, whose count is enough
to make a standard estimation per stage. Now, in this application of Permutation Monte
Carlo over Splitting/CP (PMC/SPL), the trajectories are still responsible for drawing
the tree, but there is not counting process of the crossing points. Instead, there is a
computation of a probability for every new trajectory launched.

The method of Permutation Monte Carlo over Splitting/CP is described in the form
of pseudocode in Figure 10.

Think again that there are α0 independent trajectories launched from h0, each one
modeled by a Bernoulli random variable 1i0 with parameter pi0 , i0 = 1, 2, · · · , α0. The
average of these probabilities (all of them, whether they equal 1 or 0) is the Permutation
Monte Carlo estimator for the first stage, that is:

q̂PS1
=

α0∑
i0=1

pi0

α0
(29)
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These α0 random variables equal 1 if the corresponding trajectory reaches threshold h1,
and 0 otherwise. In terms of these variables, R1 =

∑α0

i0=1 1i0 and, therefore, the total
number of trajectories started from h1 is α1

∑α0

i0=1 1i0 . The sum of the probabilities
associated to all these trajectories is

∑α0

i0=1 1i0
(∑α1

i1=1 pi0i1
)
. Finally, the Permutation

Monte Carlo estimator for the second stage is the average of these probabilities:

q̂PS2
=

α0∑
i0=1

α1∑
i1=1

1i0pi0i1

α1

α0∑
i0=1

1i0

(30)

A similar analysis for the j–th stage, j = 2, . . . , NT + 1, produces the following
estimator:

q̂PSj =

α0∑
i0=1

α1∑
i1=1

· · ·
αj−1∑
ij=1

1i01i0i1 · · · pi0...ij−1

αj−1

α0∑
i0=1

α1∑
i1=1

· · ·
αj−2∑

ij−2=1

1i01i0i1 · · · 1i0i1···ij−2

(31)

Finally, an unbiased unreliability estimator for the SBS is:
q̂PS = q̂PS1 q̂PS2 · · · q̂PSNT +1

.

5 Experimental Analysis
In this section we compare the effectiveness of the different Monte Carlo algorithms
discussed in the previous section.

We carried out experiments over eight main network test configurations (covering
twenty four systems when considering different elementary reliabilities).

Tests 1 and 2 are based on the K-Terminal reliability problem applied to the
Arpanet network, depicted in Figure 11, where the black nodes build the set K.

Tests 3 and 4 are based on the All-Terminal reliability problem applied to the
network depicted in Figure 12; it corresponds to the RAU network (Red Académica
Universitaria/Universitary Academic Network), the Internet network linking all
universities and research centers in Uruguay. All nodes in the RAU network are black,
since all of them are considered as terminals.

Tests 5 and 7 are based on the K-Terminal reliability problem applied to the
Easton–Wong Network (EW), a topology taken from Easton and Wong (1980) and
shown in Figure 13, where the five external black nodes are taken as terminals.

Tests 6 and 8 are based on the Source-Terminal reliability problem applied to the
“ship13” problem (Reduced Graph), a topology found in pag. 189 of the book by Stoer
(1992). This network, called here Ship, is composed of 159 nodes and 328 links. Two
nodes that are sufficiently far from each other, were selected to play the role of s and t
(there is a shortest path of 10 links between them).
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Tests 1, 3, 5 and 7 consider classical reliability cases, whereas Tests 2, 4, 6 and 8
correspond to diameter constrained cases. They will be denoted, respectively, as CLR
and DCR cases.

Finally, Test 9 is an instance of the k-out-of-m problem.
The details of the nine test cases are:

1. K-Terminal CLR, on the Arpanet with pe = 0.9, 0.99 and 0.999 (three different
homogeneous systems).

2. K-Terminal DCR, on the Arpanet, d = 7, with pe = 0.9, 0.99 and 0.999 (three
different homogeneous systems).

3. All-Terminal CLR, on the RAU with pe = 0.9, 0.99 and 0.999 (three different
homogeneous systems).

4. All-Terminal DCR, on the RAU, d = 4, with pe = 0.9, 0.99 and 0.999 (three
different homogeneous systems).

5. K-Terminal CLR, on the EW with pe = 0.9, 0.99 and 0.999 (three different
homogeneous systems).

6. Source-Terminal CLR, on the Ship with pe = 0.9, 0.99 and 0.999 (three different
homogeneous systems).

7. K-Terminal DCR, on the EW with pe = 0.9, 0.99 and 0.999 (three different
homogeneous systems).

8. Source-Terminal DCR, on the Ship with pe = 0.9, 0.99 and 0.999 (three different
homogeneous systems).

9. 3-out-of-29 with pi = 0.1+0.8× (i−1)/28, i = 1..29 (heterogeneous system).

The algorithms were coded in C and C++. The tests were run on an x64 Intel Core
i7 2.6 GHz computer with 32 GB RAM. Source codes are available at http://www2.
um.edu.uy/ieem-papers/sbs.zip.

We apply CMC, FMC, RVR, PMC, Splitting/CP and PMC/SPL to the selected
examples of SMBS. Since FMC estimates the reliability polynomial, it is only suitable
for homogeneous scenarios (i.e., with identical probabilities of operation p in all
components). Finding this polynomial is trivial for k-out-of-m systems; Fi = 0 for all
i > m− k and Fi =

(
m
i

)
for all i ≤ k.

Observe that CMC, FMC, RVR, PMC, Splitting/CP and PMC/SPL return unbiased
reliability estimators. In Monte Carlo methods, increasing the sample size improves
the quality of the estimators at the expense of more computing time. Therefore, a
fair comparison should consider both, the precision of the estimation (measured by
the variance) and the computational effort. Suppose we have two methods A and B
that provide unbiased estimations of the reliability. The relative efficiency of A with
respect to B is the ratio tBV (B)/(tAV (A)), where tA and tB are the respective mean
computational times (in the same units), and V (A) and V (B) the variances (or mean
square errors) of the estimators of the respective methodsA andB; see Fishman (1996).
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The six algorithms are run for the first eight tests. However, as said before, FMC
is not defined for heterogeneous systems, hence the ninth test compares CMC versus
RVR, PMC, Splitting/CP and PMC/SPL.

Let us look more in depth at the ninth test. The number of components under
operation in a k-out-of-m system is a sum of independent Bernoulli variables with
different success probabilities. This is a Poisson-Binomial distribution, and a closed
formula is provided in Fernandez and Williams (2010). If p = (p1, . . . , pm) denotes
the probability of operation for each component and Xi ∼ Ber(pi) represents the
random operation for component i, then p(h) = P (

∑m
i=1Xi = h) is the probability

mass function of the number of components under operation. Consider the cumulative
probability of the tail, Q(x) =

∑m
j=x p(j). The exact reliability of a k-out-of-m

system, according to Fernandez and Williams (2010), is precisely:

r = Q(k) = 1− k

m+ 1
− 1

m+ 1

m∑
i=1

1− e−j2πik/(m+1)

1− e−j2πi/(m+1)
×

m∏
h=1

[
phej2πi/(m+1) + 1− ph

]
,

with j2 = −1.
In Monte Carlo simulation it is impossible to select a unique sample size to make

a fair comparison among different methods if such comparison is based on the
computational time or the variance (one or the other). However, since the relative
efficiency becomes a constant after a significant number of replications, the only
requirement for selecting a proper sample size in a comparative setting, is that it is
large enough to let the product between variance and simulation time become a
constant (in the sense that it does not change if the sample size is increased).

In Tests 1 to 8, the average of 100 independent runs of both CMC and RVR is
computed, using sample sizes N = 106 (for CMC) and N = 104 (for RVR), as well as
the average of 30 independent runs of FMC (using N = 105 as the CMC sample size
for estimating each Fi). In Test 9, both CMC and RVR, run with the same sample size
N = 106. In all the tests the sample size for PMC is N = 106.

In every single replication of a Splitting–like method, a number H of trajectories is
launched at t = 0. Accepting that a number of runs N is performed, each one of them
based on H trajectories initiated, a significant parameter to measure the effort of the
whole simulation is, therefore,N×H (which is the total number of trajectories actually
launched). In all the tests N × H = 105, except for the tests on the Ship network in
whichN×H = 104. The number of intermediate thresholds,NT , was selected, after a
set of pilot runs in every experiment, attempting to reach the least value of the product
between variance and simulation time. The values of NT used ranged between 1 and
26.

The results are presented in Tables 1, 2, 3 and 4. Average unreliabilities, computing
times, sampling variances and the efficiencies relative to CMC, are shown in different
rows.

The first observation is that for relatively low values of p, namely 0.9, the basic
CMC method is one of the best options. Both RVR and FMC have high computational
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times in relation to the CMC algorithm; and for p = 0.9, the variances do not vary
as much, leading to an overall lower relative efficiency for these two methods. In
many of the tests for p = 0.9, Splitting/CP and PMC/SPL are in the order of CMC
(slightly better), because the low reliability settings require an extremely low number
of intermediate thresholds, say 1 or 2, what makes these implementations quite similar
to CMC, with the additional benefit of cloning trajectories. The results for PMC are
also slightly better than CMC for p = 0.9. The fact is that PMC has bounded relative
error and is known to be an extremely efficient method for small networks. One of the
limitations of PMC over large networks is that the structure function has to be evaluated
each time a link is repaired (the larger the network, the higher the number of links to
be repaired). Another limitation of PMC is related to the formula shown in (15), which
has two products that grow exponentially on the number of links. Thus, depending on
the data type selected for the variables involved, some overflow problems may occur.
We have a tool to compute the distribution shown in (15) as a convolution, by means
of a recursive formula, but it is extremely low and consumes high amounts of memory.
Some alternatives that we consider to alleviate this problem are subject of future work.

On the other hand, when p grows, the execution times do not vary much; but the
variance reductions attained are considerable, and the relative efficiency of all the
methods with respect to CMC grows quickly, attaining considerably large values. The
general observation is that, as expected, efficiency grows with p, the highest values
being attained at p = 0.999, in accordance with previous results from the literature;
see Cancela and El Khadiri (1995); Rubino and Tuffin (2009).

A general comparison among all methods is not so clear. Only slight and varied
trends can be observed, except for the case of the largest networks (EW and Ship, CLR)
for which RVR is, by far, the most efficient method. In the case of the Arpanet, K–
Terminal reliability, PMC and the Splitting–like methods appear as the most efficient
for CLR, and RVR for DCR, whereas for the RAU network All-Terminal reliability,
PMC, Slitting/CP and PMC/SPL are the most efficient in both, CLR and DCR.

It should be noted that PMC/SPL, that was proposed in this article as an
improvement of Splitting/CP, outperforms Splitting/CP in almost all tests.

Finally, in Test 9, that corresponds to a non–homogeneous case, the best
performance corresponds to PMC. An accurate PMC estimation should be expected
on this model, because, as said earlier, the computational effort of PMC is determined
by the number of components —that in this case is quite low— and the cost of the
structure function, which in this case is extremely light, as it is only a comparison to
find out whether the number of operational components is less than 3.

6 Conclusions
Several real-world systems can be mathematically modeled by stochastic binary
systems (SBS). Finding cutsets, essential and irrelevant components are hard
computational problems in arbitrary SBS. In the particular case of stochastic
monotone binary systems (SMBS), the task of finding cutsets (or pathsets) can be
produced be means of m rule-evaluations, being m the number of components
involved in the system. This fact serves to generalize the Recursive Variance
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Reduction (RVR) method for the reliability evaluation of SMBS. In the case of
homogeneous SMBS, the FMC method can also be applied.

The computational experiments show that for low reliabilities, Splitting/CP and
PMC/SPL are the better methods. Nevertheless, the standard CMC method is also one
of the most efficient, as it has low computational cost and a precision that is similar to
the more sophisticated methods. Splitting/CP and PMC/SPL performance is slightly
better than that of CMC, because for low reliabilities they only require 1 or 2
intermediate thresholds, what makes their structures quite similar to CMC, but they
still have the benefit of cloning trajectories.

For high reliability values, all the methods implemented are much more efficient
than CMC; offsetting the high computational costs per iteration by achieving higher
precision, but there is no clear trend in favor of any of the methods, except for the
case of larger networks where RVR is, by far, the most efficient method. For the other
network models, the trends are diverse and there is no clear winner.

While it is possible to formally prove that RVR and PMC achieve variance
reductions over CMC, no such proof is still available for the other implementations.
This might be a matter for future work.

Depending on the context, a possibly important limitation of FMC is that it is not
applicable for non–homogeneous systems.

Work in progress includes finding reliability bounds and studying efficient
representations for general SBSs. Other future work should cover the study of
alternative ways to find mincuts that efficiently exploit the structure of the SMBS, and
their impact on the performance of the reliability estimation. Also a more efficient
mechanism for computing the distribution shown in (15) is subject of future work.

An additional observation is that while this work is concentrated on static models,
their reliability can also be seen as the steady-state behavior of a Markovian or semi-
Markovian system (see for instance Perman et al. (1997), Carazas et al. (2011) and Wu
et al. (2020)) where the states of the individual components are not static, but evolve
in time following some probability distributions. Future work could study in detail the
relationship of such dynamic models with the static ones, and see if other Monte Carlo
methods could lead to improved estimations of the measures of interest.
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Figure 9: Permutation Monte Carlo over Splitting/CP

30



Algorithm 8 qPS = PS (ϕ, S, p, α,NT )

1: Prod ← 1
2: for i = 1 to N do
3: Split(ϕ, S, p, α,NT , 0)
4: for j = 1 to NT do
5: Prod ← Prod × (Sumj/Numj)
6: end for
7: end for
8: return qPS = Sum/N

function Split(ϕ, S, p,NT , α,NT , z)

1: for i = 1 to αz do
2: Sample a permutation, ω, up to the critical component, and update X
3: Sumz ← Sumz + γ(ω)
4: Numz ← Numz + 1
5: if ϕ(X) = 0 ∧ z ≤ NT then
6: Cancel all the repairs beyond hz+1

7: Split(ϕ, S, p, α,NT , z + 1)
8: end if
9: end for

10: return

Figure 10: Pseudocode for Permutation Monte Carlo over Splitting/CP.

Figure 11: Arpanet network: tests 1 and 2
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Figure 13: Easton Wong network: tests 5 and 7
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Problem CLR DCR, d=7
Edge reliab. 0.9 0.99 0.999 0.9 0.99 0.999

CMC
Unrel. 1.26E-01 9.41E-04 8.00E-06 4.83E-01 5.03E-02 4.87EE-03

Variance 1.10E-07 9.40E-10 8.00E-12 2.50E-07 4.78E-08 4.84E-09
Time (ms) 5662 6100 5489 9733 13181 13300

RVR
Unrel. 1.25E-01 9.53E-04 9.00E-06 4.82E-01 5.02E-02 5.00E-03

Variance 9.89E-07 7.49E-10 5.18E-13 6.04E-07 2.87E-09 3.31E-12
Time (ms) 4625 5031 5109 8540 10070 10161

Rel.Eff. 0.14 1.52 16.59 0.47 21.80 1913.88
FMC
Unrel. 1.25E-01 9.61E-04 9.10E-06 4.28E-01 5.02E-02 5.00E-03

Variance 1.51E-07 1.90E-10 2.79E-14 3.94E-07 6.01E-08 9.66E-10
Time (ms) 11735 11735 11735 13906 13906 13906

Rel.Eff. 0.35 2.57 134.13 0.44 0.75 4.79
PMC
Unrel. 1.26E-01 9.55E-04 9.04E-06 4.82E-01 5.02E-02 5.01E-03

Variance 2.92E-08 1.93E-11 2.50E-15 1.04E-07 7.50E-09 9.71E-11
Time (ms) 12651 12604 12581 20902 20953 21218

Rel.Eff 1.69 23.60 1296.21 1.12 4.01 31.25
Splitting/CP

Unrel. 1.25E-01 9.57E-04 8.99E-06 4.81E-01 4.98E-02 5.03E-03
Variance 3.25E-07 3.35E-11 4.10E-15 1.52E-06 5.36E-08 1.52E-09

Time (ms) 1040 6990 13130 1295 3743 3614
Rel.Eff 1.84 24.47 815.75 1.23 3.14 11.75

PMC/SPL
Unrel. 1.25E-01 9.51E-04 9.04E-06 4.84E-01 5.04E-02 4.99E-03

Variance 2.19E-07 3.15E-11 4.30E-15 6.49E-07 7.01E-08 1.12E-09
Time (ms) 1937 6845 8776 4096 2771 2153

Rel.Eff 1.47 26.59 1163.7 0.92 3.24 26.79

Table 1: Results for Tests 1 and 2

33



Problem CLR DCR, d=4
Edge reliab. 0.9 0.99 0.999 0.9 0.99 0.999

CMC
Unrel. 3.00E-02 2.15E-04 2.00E-06 4.02E-02 2.21E-04 2.00E-06

Variance 2.91E-08 2.15E-10 2.00E-12 3.84E-08 2.31E-10 2.00E-12
Time (ms) 3056 2732 2609 10107 8233 8193

RVR
Unrel. 3.00E-02 2.12E-04 2.01E-06 4.04E-02 2.18E-04 2.01E-06

Variance 2.65-07 2.73E-10 1.62E-13 5.25E-07 2.35E-10 1.53E-13
Time (ms) 1642 1538 1456 5182 5181 4864

Rel.Eff. 0.20 1.40 22.12 0.14 1.56 22.02
FMC
Unrel. 2.98E-02 2.09E-04 2.01E-06 4.02E-02 2.20E-04 1.99E-06

Variance 1.89E-08 1.65E-11 2.26E-15 4.14E-08 2.04E-11 2.53E-15
Time (ms) 6266 6266 6266 10438 10438 10438

Rel.Eff. 0.75 5.68 368.49 0.90 8.93 620.51
PMC
Unrel. 2.98E-02 2.10E-04 2.01E-06 4.03E-02 2.20E-04 2.02E-06

Variance 6.23E-09 2.20E-12 2.62E-16 6.81E-09 2.20E-12 2.62E-16
Time (ms) 6275 6276 6254 12631 12582 12580

Rel.Eff 2.27 42.58 3184.65 4.51 68.74 4971.73
Splitting/CP

Unrel. 2.97E-02 2.10E-04 2.01E-06 4.02E-02 2.18E-04 2.02E-06
Variance 3.12E-08 2.89E-12 3.98E-16 7.01E-08 2.26E-12 2.69E-16

Time (ms) 1278 3987 5896 3759 31924 45829
Rel.Eff 2.23 50.97 2223.72 1.47 26.38 1329.22

PMC/SPL
Unrel. 3.00E-02 2.10E-04 1.99E-06 4.04E-02 2.19E-04 1.98E-06

Variance 4.93E-08 2.21E-12 2.38E-16 5.98E-08 4.24E-12 5.22E-15
Time (ms) 957 5177 5054 4280 15666 8766

Rel.Eff 1.89 51.33 4338.19 1.53 28.62 358.11

Table 2: Results for Tests 3 and 4
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Problem EW CLR Ship CLR
Edge reliab. 0.9 0.99 0.999 0.9 0.99 0.999

CMC
Unrel. 4.81E-01 4.96E-02 5.04E-03 3.82E-03 2.00E-06 0.00E+00

Variance 2.50E-07 4.72E-08 5.02E-09 3.80E-09 4.00E-12 0.00E+00
Time (ms) 24219 14546 13469 38203 25140 21937

RVR
Unrel. 4.83E-01 4.93E-02 4.99E-03 4.21E-03 1.01E-06 1.00E-09

Variance 1.14E-04 4.68E-08 5.57E-11 1.97E-06 1.15E-16 9.33E-24
Time (ms) 1922 1857 1843 15727 17698 18158

Rel.Eff. 0.028 7.90 658.21 0.0047 49332.79 -
Splitting/CP

Unrel. 4.80E-01 4.89E-02 4.97E-03 3.79E-03 3.02E-06 3.06E-09
Variance 7.34E-07 1.23E-07 6.36E-10 1.17E-08 3.09E-15 1.06E-20

Time (ms) 7868 5545 20418 5963 30473 15474
Rel.Eff 1.05 1.00 5.20 2.09 1067.95 -

EW DCR, d=20 Ship DCR, d=10
Edge reliab. 0.9 0.99 0.999 0.9 0.99 0.999

CMC
Unrel. 8.37E-01 1.03E-01 9.93E-03 1.53E-01 1.28E-03 1.90E-05

Variance 1.37E-07 9.31E-08 9.83E-09 1.30E-07 1.28E-09 1.90E-11
Time (ms) 33266 47578 48187 47297 37281 30875

RVR
Unrel. 8.35E-01 1.05E-01 1.00E-02 1.55E-01 1.24E-03 9.67E-06

Variance 5.38E-05 3.32E-06 5.81E-09 3.41E-04 2.64E-07 1.43E-10
Time (ms) 4568 5125 5065 19648 22997 23480

Rel.Eff. 0.02 0.26 16.10 0.00 0.01 0.17
Splitting/CP

Unrel. 8.35E-01 1.05E-01 1.00E-02 1.53E-01 1.27E-03 1.25E-05
Variance 3.42E-06 8.90E-07 9.80E-09 1.01E-06 3.36E-10 1.14E-13

Time (ms) 1268 4667 12517 13632 22468 25884
Rel.Eff 1.05 1.07 3.86 0.45 6.32 198.80

Table 3: Results for Tests 5, 6, 7 and 8

Metric CMC RVR PMC Splitting/CP PMC/SPL
Unrel. 4.25E-08 3.41E-08 3.21E-08 3.21E-08 3.23E-08

Variance 4.80E-14 2.22E-16 2.72E-22 1.20E-19 1.27E-19
Time (ms) 251 2690 704 8434 14360

Rel. Efficiency 1.00 20.17 6.29E7 11904.20 6606.28

Table 4: Results for Test 9
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