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ABSTRACT: 

 
Geospatial data acquisition of terrains produces huge, noisy and scattered point clouds. An efficient use of the acquired data requires 
structured and compact data representations. Working directly in a point cloud is often not appealing. To face this challenge, 
approximation with tensor product B-spline surfaces is attractive. It reduces the point cloud description to relatively few coefficients 
compared to the volume of the original point cloud. However, this representation lacks the ability to adapt the resolution of the shape 
to local variations in the point cloud. The result is frequently that noise is approximated and that surfaces have unwanted oscillations. 
Locally Refined (LR) B-spline surfaces were introduced to face this challenge and provide a tool for approximating Geographic 
Information System point clouds. In our LR B-spline based approximation algorithm, iterative least-squares approximation is combined 
with a Multilevel B-spline Approximation to reduce memory consumption. We apply the approach to data sets from coastal regions in 
Norway and the Netherlands, and compare the obtained approximation with a raster method. We further highlight the potential of LR 
B-spline volumes for spatio-temporal visualisation of deformation patterns. 
 
 

1. INTRODUCTION 

Parametric spline surface approximation is an important step in 
reverse engineering to convert real object data to a computer-
aided design model (Raja and Fernandes, 2008), or to perform 
statistical testing for deformation based on the estimated 
parameters (Kermarrec et al., 2020). The surface fitting begins by 
recording a point cloud of an object or scene with, e.g., a 
contactless sensor such as the Terrestrial Laser Scanner (TLS). 
Surface approximation techniques of point clouds from 
Geographic Information System (GIS) data sets can be divided 
into (i) non-adaptive methods, for which the optimal surface is 
globally adapted in the approximation process, and (ii) locally 
adaptive methods. For the latter, each new iteration depends on 
the result of the previous approximation iteration (Wang 2009). 
Such procedures save computation time as the number of 
parameters to estimate is less high than for (i). The widely used 
adaptive surface fitting strategies using B-splines belongs to (ii), 
but is limited by the tensor product formulation of the non-
uniform rational B-splines (NURBS): it does not allow for local 
refinement and leads potentially to overfitting where no further 
refinement would have been necessary. There are three main 
approaches for extending spline surfaces to support local 
refinement, see Dokken et al. (2019): 

    •  Hierarchical B-splines (HB-splines) were 
introduced in Forsey and Bartels (19888). Here tensor product B-
splines on the coarser level are removed and B-splines at the finer 
level added in such a way that linear independence is guaranteed.  

    •  T-splines are described, e.g., in Sederberg et al. 
(2003). They denote a class of locally refined splines. The 
starting point for T-spline refinement is a tensor product B-spline 
surface with control points and meshlines (initial T-mesh) with 
assigned knot values. The refinement is performed by 
successively adding new control points in-between two adjacent 
control points in the T-mesh. They were used in a geodetic 
context by Kermarrec et al. (2020) to approximate a bridge. 

    • LR B-splines were developed by Dokken et al. 
(2009). The refinement is performed successively by inserting 
axis parallel meshlines in the mesh of knotlines. Each meshline 
inserted has to split the support of at at least one tensor product 
B-spline. In this contribution, we will focus on this 
approximation strategy which was shown to be flexible for 
approximating various point clouds (Skytt and Dokken, 2021). A 
toolbox called Gotools (Dokken et al., 2013) is freely available 
under https://github.com/SINTEF-Geometry/GoTools/wiki/ 
Module-LRSplines2D. Interoperability with existing GIS-
technology is essential for the deployment of LR B-spline within 
GIS: LR B-spline surfaces can be converted to standard formats 
used in GIS-systems. They are, thus, particularly attractive within 
a GIS context where huge, noisy and scattered point clouds are 
common. Furthermore, LR B-spline volume is a promising tool 
for visualising and analysing spatio-temporal deformations, 
without having to manipulate large point clouds. 
The starting point of iterative surface approximation with LR B-
spline is a tensor product B-spline surface. In the LR B-spline 
surface, extra degrees of freedom are inserted locally, where 
needed. The desired smoothness is maintained, and the growth in 
data volume is kept under control. The least square (LS) norm 
between the parametrised point cloud and the parametric surface 
is to be minimised. For gridded data, this approach is called 
surface skinning (Woodward, 1988). The LS method may reach 
its limits when the number of refinement iterations increases. In 
that case, it is convenient to use the Multilevel B-spline 
Approximation (MBA) developed by Lee et al. (1997) after a few 
initial step with the LS approximation. The MBA is based on a 
local approximation for which no equation system needs to be 
solved. The residuals of the data points obtained from the last 
fitted surface are recursively approximated using finer meshes. 
This procedure saves storage and was shown to be advantageous 
in case of scattered and/or non-gridded containing data gaps or 
outliers occur (Zhang et al. 1998; Skytt et al. 2015). 
In this contribution, we propose to introduce the LR B-spline and 
the MBA. To relate LR B-spline to surface representations 
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already in use in GIS, we will compare our approximation results 
with raster representations and show the potential of LR B-spline 
volume for spatio-temporal deformation analysis of GIS dataset. 
We focus on point clouds from a bathymetry data set in Norway 
and a coastal region in the Netherlands, which are rather smooth 
and without edges. 

 
2. MATHEMATICAL BACKGROUND 

In this section, we propose to explain shortly what LR B-spline 
surfaces are starting from the concept of tensor product B-spline 
surfaces. The iterative approximation and principle of local 
refinement are shortly adressed. We finally focus on describing 
the combination between LS and MBA for iterative surface 
approximation. 
 
2.1 Surface approximation using LR B-spline  

2.1.1 LR B-spline surfaces 

Given a non-decreasing sequence ( )0 1 1, , ..., pu u u
+

=u  we 

define a B-spline [ ] :B →u    of degree 0p ≥  recursively 
as follows:  
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We have [ ] 0B ≡u  if 1 0pu u
+
= ; terms with zero denominator 

are defined to be zero. 
A univariate spline space can be defined by a polynomial degree 
p  and a knot vector, where the knots satisfy: 1i iu u

+
≥ , 

0, , 1i N p= … + − , and 1i p iu u
+ +

> , 0, , 1i N= … − , i.e, a 

knot value can be repeated 1p +  times. The number of times a 
knot value is repeated is called the multiplicity m  of the knot 
value. The continuity across a knot value of multiplicity m  is 

p mC − . 
A basis for the univariate spline space above can be defined in 
many ways. However, the approach most often used is the 
univariate minimal support B-spline basis. In that case, the B-
splines are defined by selecting 2p +  consecutive knots from 
u , starting from the first knot. So 

 ( ) [ ]( ), 1: , ,i p i i pB u B u u u
+ +

= …  is defined by the knots 

1, ,i i pu u
+ +

… , 0, , 1i N= … −  .  

Given two non-decreasing knot sequences

{ }
1 10 1, , , N pu u u += …u  and { }

2 20 1, , , N pv v v += …v  where 

1 0p ≥  and 2 0p ≥ , we define a bivariate tensor product B-

spline 
1 2

2

, , , :i j p pB →   from the two univariate B-splines 

( )
1,i pB u  and ( )

2,j pB v  by: 

( ) ( ) ( )
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The support of B  is given by the cartesian product  

( ) ] [
1 2 1 2, , , 1 1supp : , , .i j p p i i p j j pB u u v v

+ + + +
= ×    

A bivariate tensor product spline space is made by the tensor 
product of two univariate spline spaces. Assuming that both 
univariate spline spaces have a minimal support B-spline basis, 
the minimal support basis for the tensor product B-spline space 
is constructed by making all tensor product combinations of the 
B-splines of the two bases. The minimal support basis for this 
spline space contains the tensor product B-splines 

( )
1 2, , , ,i j p pB u v , 10, , 1i N= … − , 20, , 1j N= … − .  

As in the univariate case, the basis has useful properties such as 
non-negativity and partition of unity. Figure 1 illustrates how a 
tensor product B-spline with the knot vector { }0,1, 2, 3  in both 
parameter directions looks like. 
Spline surfaces are frequently represented using a bivariate 
minimal support tensor product B-spline basis.  

( ) ( )

( ) ] [

1 2

1 2

1 1 2 2

1 1

, , , ,

0 0

, ‍ ‍ , ...

, , .,

N N

i j i j p p

i j

p N p N

F u v c B u v

u u v vu v

− −

= =

=

∈ ×  

∑∑
                            (3) 

 Here ,
d

i jc R∈ , 10, , 1i N= … − , 20, , 1j N= … −  are the 

surface coefficients and d  is the dimension of the geometry 
space.  

 
 

Figure 1: Example of a bi-quadratic tensor product B-spline 
basis functions.  

 
2.1.2 Local refinement 
 
NURBS surfaces can be refined by an axis parallel meshline that 
crosses the complete parameter domain. LR B-spline can be 
considered as extension of NURBS, through insertion of shorter 
meshlines to refine the mesh locally. LR B-spline provides a 
richer set of refinements than HB-splines and T-splines according 
to Dokken et al. (2015). When we insert a meshline, at least one 
local B-spline should be split into two parts. The meshline must 
start and stop on meshlines in the other direction. 
In a first step, all tensor product B-splines completely traversed 
by that meshline are identified. Then these B-splines are split into 
two B-splines. Duplicates are merged to clean the data structure. 
In the volumetric case, meshlines are replaced by mesh 
rectangles. 
Figure 2 shows the mesh of an LR B-spline surface. The support 
of one of the B-splines is illustrated by a yellow box. In a) the 
meshline goes from the boundary and across the yellow support, 
and continues on the other side. The support of more than one B-
spline is traversed, implying that several B-splines will be split. 
In b) the support of exactly one B-spline is split. In c) the 
meshline transvers the edge of the yellow support and will not 
result in refinement of this tensor product B-spline. However, 
other tensor product B-splines are affected since the meshline is 
on top of an existing meshline: the continuity of the surface 
crossing the line is decreased. The meshline in d) is too short to 
trigger refinements. 
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If after this insertion, some tensor product B-spline still do not 
have minimal support, the refinement process will continue until 
all the tensor product B-splines have minimal support.  
 

Line traversing the 
interior of B (a) 

Line traversing 
the interior of B 
(b) 

Line traversing 
the edge of B  
(c) 

Meshline too 
short  
(d) 

Figure 2: Refinement process by inserting a new meshline. 
 

2.1.3 Iterative surface approximation using LS and MBA 
 
The LR B-spline surface is iteratively refined using the principle 
of 2.1.2. 
Starting point: The starting point of the iterative surface 
approximation is a tensor product B-spline surface defined over 
a coarse mesh. A refinement is performed iteratively in the mesh 
cells, where one observation is associated with an error term 
higher than a given threshold TH . With a large threshold, few 
cells are refined whereas with a low threshold TH , the result 
will be a global refinement corresponding to the NURBS. The 
choice of TH  depends on the level of accuracy needed, balanced 
by the computation time and number of surface coefficients A 
low threshold may lead to a noise fitting and should be avoided. 
It could result in ripples on the surface that are not the 
consequence of real pattern.  

Let F be the LR B-spline surface ( ) ( )
1

, ,
n

i ii
F x y PB x y

=
= ∑  

Here iP  are the surface coefficients and iB  are tensor product 
B-spline scaled to form a partition of unity. 
LS approximation: LS approximation is a global method where 
the following expression is minimized with respect to the surface 
coefficients iP  over the entire surface domain:  

( )( ) ( )( )2
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K

i k k k
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J F x y F x y zα α
=

+ −
 
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∑ . 

Here ( ), , ,  1, ,k k kx y z k K= =x   are the data points. The 
expression is differentiated and turned into a linear, sparse 
equation system in the number of surface coefficients to estimate. 
A LS approximation method will result in a singular equation 
system if there exists B-splines with no data points in its support. 
As an LR B-spline surface is defined on a rectangular domain and 
a typical point cloud has a non-rectangular outline and may 
contain holes, parts of the surface domain will frequently lie 
outside the domain of the point cloud. To face that challenge, we 
add ( )( ),J F x y , which is a smoothness term that enables a 
non-singular equation system even if this situation occurs. In our 
case, the smoothness term is an approximation to the 
minimization of curvature and variation of curvature in the 
surface. These originally intrinsic measures are made parameter 
dependent to give rise to a linear equation system after 
differentiation. A more detailed description can be found in 
Mehlum and Skytt (1997). The weight on the smoothness term is 
kept low to emphasize the approximation accuracy. In the 

examples of the next sections we took 9

1 1.10α −=  and  

2 11α α= − . 

MBA: The multilevel B-spline approximation was introduced in 
Lee et al. (1997) for data interpolation and extended by Zhang et 
al. (1998) for approximating scattered data with HB splines. We 

assume that all observations are of the form ( )( ), , ,x y z x y , 

and that we have an initial surface approximation via the LS 
method. A mesh refinement is performed, and the coefficients of 
the new surface approximation are calculated individually using 
the residuals of the preceding approximation 1jF −  (see Fig.3). 

For each B-spline iB , we call ( )1 ,c j c c cr F x y z
−

= −  the 

residuals at points ( ), ,  1, ,c cx y c C=  , situated in the support 

of this B-spline. The corresponding coefficient iQ  of the 
approximated residual surface is determined as 

( )
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                                                (4) 

The factor ,i cϕ  is computed individually for each point 

( ),c cx y . The corresponding value cr  is described as a linear 

combination of B-splines and a value ,h cϕ  for each B-spline, 

, ,  1, ,hB h H=   having ( ),c cx y  in its support. ,h cϕ  can be 

computed as the solution of an undetermined equation system. 
( )

( )( )
, 2

1

,

,
h c c c
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B x y r

B x y
ϕ

=
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. 

This gives different factors for each data point and each B-spline 
having these points in their support, and the final value ,i cϕ  to 

be used in (4) is found by minimizing the error 

( ) ( ) ( ) 2

,1
( , , )

C

i i i c c i c i c cc
e Q Q B x y B x yϕ

=
= −∑  with respect 

to iQ . If all the data points in the support of iB ,  are closer to 

the surface than a given threshold TH, iQ  is set to zero. 
The new LR B-spline surface is computed as the sum of the initial 
surface and the surface obtained from the residuals’ 

approximation, ( ) ( ) ( )1 1
, , ,

n

j j i ii
F x y F x y Q B x y

− =
= +∑ . 

This step is performed until the maximum number of iterations 
or the threshold is reached. The MBA algorithm can also be 

applied for volume approximation. The points ( )( ), , ,x y z x y  

can be replaced by ( )( ), , ,  , ,x y z h x y z , and the method is 

directly applicable in the case of LR B-spline volumes. 
The procedure is summarised in a flow chart in Figure 3. The stop 
criterion is that the maximum error (locally) is within the 
threshold. A geospatial point cloud may represent a very rough 
terrain and contain noise and possible outliers. Thus, it is not 
necessarily beneficial to continue the iterations until all points are 
closer to the surface than TH. Typically, the process is stopped 
by the number of iterations. The accuracy improvement tends to 
drastically slow down when most points have a distance to the 
surface less than the threshold (Skytt and Dokken, 2021). 
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Figure 3: Combination of MBA and LS for adaptive surface 

approximation with LR B-spline 
 
2.2 Goodness of fit 

The definition of an optimal surface ia a controversial topic and 
should contain both heuristical (e.g. without “ripples”, “smooth”) 
and statistical components. Average and maximum distances are 
the standard way of measuring the error of a model. They are 
defined in the z-direction as 𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ |𝑧̂𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖| 𝑛𝑛⁄𝑛𝑛

𝑖𝑖=1 , and 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = max|𝑧̂𝑧 − 𝑧𝑧|, respectively where n  is the number of 

data values, iz  are the given values and ˆiz  are the corresponding 

estimated values. The number of points outside the threshold is 
defined as the number of points for which the error term exceeds 
TH for a given iteration level. The degree of freedom or number 
of coefficients to be estimated for a given iteration k of the 
refinement is also an important quantity. For the computation 
time, we used a 64-bit operating system with 8 GB RAM and an 
Intel(R) Core(TM) i5-63000U CPU @ 2.40 Ghz, 5.8 GHz.  
 
2.3 Raster representation 

The raster representation is the most frequently used data format 
in GIS (Li et al., 2005). To make a raster representation of a point 
cloud, spatial interpolation is used to define values, for instance 
elevation or precipitation, in a regular grid. The Digital Elevation 
Model (DEM) is a raster representation and the most commonly 
used format for processed terrain data. It is a compact, highly 
structured and efficient representation. The accuracy depends on 
the resolution of the raster and the selected interpolation method. 
If the resolution is low compared to the variation of the data then 
the result will be inaccurate. If it is high, the data volume grows 
more than necessary. If there are large differences in the local 
variation of the data in different areas, then a trade-off between 
accuracy and data volume must be made. A raster represented 
surface is not completely defined by the sample points. Given a 
raster, values that are between the sample values have to be 

estimated. Several approaches are available. A simple method is 
bivariate evaluation where the estimated value is computed from 
a bivariate surface interpolating the four surrounding sample 
values. Inverse distance weighting (Maleika, 2020) can be used 
also in this context.  
 

3. REAL DATA APPROXIMATION 

3.1 Bathymetry data set Norway 

 

    
(a) (b) (c) 

Figure 4: (a) Subsampled point cloud, shown in CloudCompare 
(b) LR B-spline surface approximating the point cloud, (c) the 

element structure of the surface (LR-mesh) 
 
We will illustrate the LR B-spline approximation by applying the 
algorithm to a selected data set. The bathymetry data set Figure 
4(a) covers an area of slightly less than one square kilometer 
close to the Norwegian coast. It consists of about 11 millions 
points with a quite uniform density. The area is shallow, the depth 
varies from -27.94 m to -0.55 m. The point cloud contains 
outliers, the most significant one is two points with the same x- 
and y-values and 2.38 m. difference in z. In Figure 4(b) the LR 
B-spline surface approximating the point cloud is trimmed to fit 
the point cloud domain.  
The surface has a rectangular domain in x and y. Since the point 
cloud has a boundary with large bends and contains holes, the 
surface will extrapolate the known information in some areas. To 
face that challenge, a 2-step procedure is applied:  

• Restricting the values of the coefficients to an interval 
In general, both the LS and MBA methods make smooth 
transitions between existing point groups. Unfortunately, a 
combination of holes and data with a steep trend can lead to 
exaggerated heights, in particular with LS. The positivity of the 
basis functions combined with the partition of unity property 
implies that B-spline curves are bounded by their coefficients. In 
non-degenerate cases, this applies also to LR B-spline surfaces. 
Thus, we ensure well behaved surfaces in areas with missing 
points by restricting the values of the coefficients to an interval 
depending on the height range of the data points.  

• Trimming  
We do not know the shape of the terrain in areas without points 
and use trimming to restrict the surface domain to the point cloud 
domain. To that aim, we bound the points by curves in the 𝑥𝑥𝑥𝑥-
plane. The curves are arranged in one loop for the outer boundary 
and one curve for each hole and associated to the parameter 
domain (xy-plane for points parameterized by their x- and y- 
values) of the surface. The outer loop is counter clockwise 
oriented, while eventual inner loops are clockwise oriented. By 
convention only the areas of the surface situated to the left of such 
trimming loops are considered valid. 
The sea floor covered by the data set contains both smooth areas 
and areas with significant variation. This can be recognized by 
the element structure of the surface shown in Figure 4(c). We can 
see that the surface is less refined in areas where there are no 
points and in areas with little variation in the sea bed. 
We approximate the point cloud with a LR B-spline surface using 
an increasing number of iterations. The threshold is set to 0.5 m 
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and an initial tensor-product surface of ten by ten coefficients 
approximating the points is given. In this contribution, we select 
an approxition approach that has stable good results with respect 
to execution time and number of coefficients (Skytt & Dokken,  
2021). The results of the approximation are presented in Table 1 
and more details are given in Table 2.  
We compare the approximation accuracy of the LR B-spline 
surfaces with rasters of varying resolution. The raster surfaces are 
interpolated using inverse distance weighing with a valid distance 
of 10, i.e., each grid point is determined on the basis of 
approximately 8300 data points. The rasters are evaluated by 
linear interpolation between grid points. The results are presented 
in Table 1 and 2. The computation time excludes time for reading 
and writing. 
 

Table 1. Results of the approximation with LR B-spline and 
raster representation. R, is for Raster of a given accuracy in m, 

LRB is for LR B-spline surface, the number is the iteration step. 

 
The maximum and average distances between the surface and the 
points are reported in Table 1 along with the number of LR B-
spline coefficients or raster size. The number of points with a 
distance to the surface larger than the threshold and the file sizes 
are given. Execution time is reported for LR B-spline 
approximation, but not for computation of the raster surface. This 
implementation is less refined and the numbers would be 
misleading. 
 

Table 2. Point distribution with respect to the distance to the 
approximated surface (number of points for each range of 

distance in m). 
 -∞,-2.5 -2.5,-1.5 -1.5,-0.5 -0.5,0.5 0.5,1.5 1.5, ∞ 
LRB 7 5 299 20 656 11 717 745 11 384 21 
LRB 9 0 153 16 271 11 126 895 6 786 5 
LRB 16 0 0 479 11 149 270 361 0 
LRB 20 0 0 258 11 149 617 235 0 
R 2 m 1 500 14 507 153 068 10 829 348 151 051 636 
R 1.5 m 538 8 785 114 103 10 926 583 99 828 273 
R 1 m 106 3 557 77 767 11 013 860 54 641 179 
R 0.5 m 21 951 42 971 11 084 158 21 948 61 

 
The accuracy of the LR B-spline surface is increased with an 
increasing number of iterations and surface coefficients, but the 
gain is drastically decreased from the 16th to the 20th iteration. 
The raster surfaces have systematically poorer accuracy than the 
LR B-spline surfaces, see Table 2. A raster is a very uniform 
representation while the LR B-spline surfaces are able to adapt to 
the variation in the data sets.  
We further note that the LR B-spline surface after 7 iterations and 
the raster with resolution 1 m have similar file sizes. The raster 
surface is stored as GeoTiff, a binary format while the LR B-
spline is stored in an ascii format. A compressed version of the 
LR B-spline file after 20th iteration has size 744KB. 
 

 
Figure 5. (a) The distance field corresponding to the raster 

representation (1 m). (b) The distance field corresponding to the 
LR B-spline surface after 7 iterations. The same scaling was 

used for both representation 

Figure 5 shows the distance fields between the point cloud and 
the raster surface with resolution 1 m (a) and the LR B-spline 
surface after 7 iterations (b). In both cases the majority of the 
points lies within a short distance to the surface. The largest 
distances can be found in steep and ragged areas. Much less 
points have a large distance to the approximated surface even 
with few iterations to compute the LR B-spline surface, 
compared to the raster representation. This finding confirms the 
results presented in Table 1 and highlights the goodness of fit that 
can be reached with the LR B-spline surfaces. 
 
3.2 Coastal data set Netherlands 

3.2.1 LR B-spline volume for spatio-temporal analysis 
 
In order to further demonstrate the potential of the LR B-spline 
to approximate GIS dataset from coastal region method, we made 
use of a dataset freely available at  
https://doi.pangaea.de/10.1594/PANGAEA.934058. 
 The dataset was acquired for the CoastScan project (Vos and 
Kuschnerus, 2017) along the coast of Kijkduin in the 

Netherlands. The Terrestrial Laser Scanner Riegl VZ2000 laser 
scanner was used mounted on the roof of a hotel and programmed 
to perform a scan of the nearby dune and beach area every hour. 
More information about the pre-processing of the point clouds 
can be found in the dedicated publication. We selected the same 
rectangular area of 110 by 140 m from the point clouds for daily 
acquisitions and removed obvious outliers. The elevation range 
is [1.56, 7.73]. Within this area the pattern of the point clouds 
differs between the days as illustrated in Figure 6. 
 

Type Max d 
(m) 

Av d 
(m) 

No. of 
coefs 

No. out Storage 
(MB) 

CT 
(m,s) 

LRB 7 2.82  0.065 47 687 32 365 3.3 MB 1m29s 
LRB 9 2.49 0.06 124 498 23 215 9.4 MB  2m10s 
LRB 16 1.19 0.055 467 811 840 38 MB 15m10s 
LRB 20 1.19 0.055 481 411 493 39 MB 17m50s 
R 2 m 4 0.12 443 x 492 320 762 852 KB  
R 1.5 m 3.66 0.1 590 x 656 223 527 1.5 MB  

R 1 m 3.23 0.084 885 x 984 136 250 3.4 MB  
R 0.5 m 2.98 0.066 1769 x 

1967 
65 952 14 MB  

 
Figure 6. Selected point clouds for January 1 (top) and 
January 11 (bottom) visualized in CloudCompare. The 

domains have the same coordinates and are highlighted by 
the red box. 
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Figure 7. Development of elevation from January the 1st to 31th 
 
To get an overview of the elevation throughout the period, we 
add the time as a coordinate in addition to the x- and y-values of 
the points and interpret the elevation as an associated scalar. A 
point cloud assembled from all epochs is approximated by a LR 
B-spline volume. We apply a threshold of 0.2 m and 8 iteration 
steps. This is sufficient to get a very good approximation of the 
smooth component (see also Tab.3). The maximum distance 
between the points and the volume is 2.05 m and the average 
distance is 0.02 m. 1583 points out of 2.4 million have a larger 
distance than the threshold (0.066 %) and the average distance in 
these points is 0.41 m. 
Figure 7 shows the corresponding result. The elevation is 
visualized as colours: blue close to the seaside represents the 
minimum height. The elevation is increased as we move further 
from the sea and is relatively constant during time with the 
exception of the area marked with A in the figure. Here the 
elevation is increased for a period of a couple of days. At the 
position marked with B, there are two spots where the elevation  
is significantly higher than in the surroundings. 

Figure 8. Details of the sand dune changes. Top: a closer view 
of the sand piles. Middle: a vertical cut of the volume in Figure 
7 through one of the sand piles. Bottom: a horizontal cut in the 

period 5th to 6th of January. 

We made some cuts in the volumetric approximation of the 
elevation during time to reveal information in the inner, see 
Figure 8. The direction from sea to land is now left to right while 
the time direction is vertical. 
• We can recognize sand mounds at B. From Figure 8 (top), 

one is present during the entire period (B1) while the other 
appears mid-way (B2).  

• A height difference at A is identified together with a second 
less pronounced difference towards the end of the month at 
C.  

• Some objects seem to have appeared on the surface in a 
shorter period for later to be removed, e.g., at D, not visible 
in Figure 8 (top) but in Figure 8 (bottom).  

 
3.2.2 Surface approximation to study deformation pattern 
 
To reveal even more detail, we turn to the individual point clouds 
and approximate them with LR B-spline. In 16 cases the 
approximation converges totally with all points within the 
threshold. The approximation accuracy is reported in Table 3 for 
some data sets. In addition, the range of the reported numbers is 
presented. Distances are given in m. Their small values highlight 
the high confidence that can be put on the approximation. The 
number of coefficients varies with the data density as illustrated 
in Figure 6. The average distance is below 0.025 m. We note that 
the maximum distance is slightly higher for days 170105 and 
170106. Fortunately, the average distance is similar to the other 
days: we link this discrepancy with a worthier approximation in 
a very specific domain. Indeed, we were able to identify local 
height variations related to some items on the surface. Figure 9 
shows the positions of these items at January 6th. The point cloud 
of this day is compared to the surface approximating the points 
of January 8th when the items have been removed. Figure 9 shows 

the corresponding residuals. 
 
Table 3. Results of the surface approximation. The number of 
points, the maximum and average distance in m to the surface, 
the number of unresolved points and the number of surface 
coefficients are given. 
 No pts Max d 

(m) 
Av d  
(m) 

No out 
tolerance 

No coefs 

Highest 84 041 0.983 0.028 122 3000 
Lowest 57 041 0.179 0.014 0 186 
170105 83 850 0.796 0.014 57 2605 
170106 84 041 0.983 0.016 122 3000 
170107 81 787 0.784 0.016 10 686 
170108 83 838 0.196 0.02 0 267 
170111 66 010 0.2 0.022 2 336 
170113 63 180 0.339 0.023 5 903 
170116 83 504 0.198 0.017 0 299 
170117 83 698 0.198 0.017 0 517 
170123 83 006 0.275 0.022 1 414 
170130 82 365 0.198 0.025 0 337 

 
 

 
Figure 9. Prominent differences when point cloud 

170106 is compared to the surface corresponding to 
170108. 
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To go further into details, we investigate specifically the 
aforementioned domains A, B, and C (Fig.8) with the aim to 
analyse the deformation and find out the “story” beyond.  

 
Figure 10. Difference in [m] between point cloud 170111 and 

the surface corresponding to 170113. 

From Figure 7 and 8 we know that there was a temporary increase 
in elevation in a part of the domain (indicated with the flag A). 
This happens between point cloud 170110_210054 and 
170113_230038 as illustrated in Figure 10, which shows the 
distance fields between the point cloud from 170111 and the 
surface approximating day 170113. A surface to surface 
approximation comparison is shown in Figure 12 but not for other 
examples: it could indicate misleading differences in areas with 
missing information, i.e., with sparse and varying coverage. 
 
Kuschnerus et al. (2021) stated that on a small area of the beach 
at the bottom of a footpath, sand accumulated after a storm. 
Afterwards, the beach was cleared, and the superfluous sand 
forms a pile. This domain is indicated by B2 in Figure  8 and 
further analysed in Figure 11 where the points from 
170117_030135 are compared with the surface approximating 
the cloud from 170116_010114. The pile marked B1 has been 
there during the entire period but has increased (see Fig.12). The 
pile B2 is new from 170117_030135. 

  
Figure 11. Comparison between point cloud 170117 and the 

surface corresponding to 170116 

A surface-to-surface comparison for the same two point clouds is 
shown in Figure 12 for the sake of completeness. The point 
clouds are approximated by LR B-spline functional surfaces, 
𝐹𝐹17016 and 𝐹𝐹17017.   The difference between them can be 
represented as a new surface, 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦)  =  𝐹𝐹170117(𝑥𝑥,𝑦𝑦) −
𝐹𝐹170116(𝑥𝑥,𝑦𝑦). In Figure 12, this surface is shown together with 
contour lines at intervals of 0.2 m. reaching from 0.0 m. to 1.6 m. 
In most of the area, the height of 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is less than 0.2 m. The 
zero level is show in black, the remaining contours are red. The 
elevation is higher at the 17th, with some exceptions. The major 
differences are at the sand piles: B2 is new while B1 is extended.  
Dealing with holes and ragged boundaries 
The coverage of the selected point clouds varies, and several of 
the clouds have holes and/or ragged boundaries. The structures 
of the clouds related to the two surfaces 𝐹𝐹17016 and 𝐹𝐹17017 are 

relatively similar although 170117_030135 has one more hole 
than 170116_010114, and the size of the other hole is larger. To 
avoid comparing surface information without corresponding 
point cloud information, 𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 is trimmed with respect to 
170117_030135.  
  

 
Figure 12. The distance between the surfaces approximating the 

data at 170116  and 170117 with contour lines. 

Finally, we investigate the feature marked with C in Figure 8. 
Figure 13 highlights that the difference is linked with a local 
alteration in sand height.  

 
Figure 13. Difference between the point cloud and surface. At 

the top points from 170130 are compared to the surface 
representing 170123 and at the bottom points from 170123 are 

compared to the surface corresponding to 170130. 

4. CONCLUSION 

The LR B-spline surface allows adaptive surface refinement, and 
is a promising alternative to more standard NURBS 
representation for approximating GIS point clouds. In this 
contribution, we have set up the mathematical background to 
understand how local refinement is performed by means of B-
splines splitting and insertion of new meshlines in the LR-mesh. 
We have presented an effective method called MBA that allows 
to face the drawbacks associated with the LS method for 
approximating large point clouds. The LR B-spline 
representation has some advantages over the effective regularity 
of the raster format. We have highlighted how an effective 
surface approximation after only seven iterations could be 
performed with a much lower storage size. With respect to the 
raster approximation, the maximum distance was improved by 1 
dm compared with the raster representation of resolution 0.5 m 

B1 A 
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for our case study. Particularly in steep and ragged areas, the LR 
B-spline approximation performed better than the raster one. We 
have shown that increasing the number of iterations was not 
linked with an improved surface fitting.  
We have further shown that LR B-spline surfaces can be used to 
identify patterns of change in point clouds from TLS recorded at 
different days. A sand dune was taken as an example. We could 
reconstruct the spatio-temporal story of the dune before and after 
a sturm and highlighted specific height variations due to objects 
that were removed. We have shown that the proposed 
approximation method combining LS and MBA with LR B-
spline could be used to approximate point clouds even in 
challenging domains with a variable data density and holes. LR 
B-spline surfaces are smooth and can, due to adaptivity, represent 
local details without a drastic increase in data size. Being a novel 
format, it is not supported in GIS systems. Fortunately, the 
surfaces can be exported as rasters in various resolutions as well 
as collections of tensor product spline surfaces. 
Outliers may obstruct the surface computation. Single points do 
not influence the surface significantly, but collection of outliers 
points and outliers in areas with sparse data points will drag the 
surface in their direction. The outlier problem is an important 
topic for further work using robust estimation method.  
Ongoing research focuses on the approximation threshold and a 
stop criterion for the number of iterations in the approximation 
algorithm using statistical quantity such as information criterion. 
The validation of the obtained surface is also an impotant topic 
with the intent to find a balance between the accuracy of the 
approximation and the number of coefficients representing the 
surface. 
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