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Vibeke Skytt a,*, Gaël Kermarrec b, Tor Dokken a 

a SINTEF, P.O. Box 124 Blindern, 0314 Oslo, Norway 
b Institute for Meteorology and Climatology in Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany   
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A B S T R A C T   

The task of representing remotely sensed scattered point clouds with mathematical surfaces is ubiquitous to 
reduce a high number of observations to a compact description with as few coefficients as possible. To reach that 
goal, locally refined B-splines provide a simple framework to perform surface approximation by allowing an 
iterative local refinement. Different setups exist (bidegree of the splines, tolerance, refinement strategies) and the 
choice is often made heuristically, depending on the applications and observations at hand. In this article, we 
introduce a statistical information criterion based on the t-distribution to judge the goodness of fit of the surface 
approximation for remote sensing data with outliers. We use a real bathymetry dataset and illustrate how 
concepts from model selection can be used to select the most adequate refinement strategy of the LR B-splines.   

1. Introduction 

Approximating observations with mathematical surfaces allow 
reducing millions of points to a comparably compact representation. 
Prominent applications include the processing of point clouds from 
terrestrial laser scanners in geodesy (Kermarrec et al. 2020), of ba
thymetry observations (Skytt et al. 2017), elevation data (Mitasova et al. 
2005), or of point clouds from turbine blade (Bracco et al. 2020). 

Most software packages use interpolating methods of irregularly 
spaced data into a regularly spaced grid (raster representation), which is 
unfavourable in case of noisy observations. Approximation strategies 
using Radial Basis Function (RBF, Skala et al. 2020) necessitate often to 
solve huge linear systems of equations and may lead to several local 
optima for the parameter estimations. Thin plate splines are a variant of 
RBF, and used for interpolation (see Keller and Borkowski 2019 for an 
application to earth gravity modelling). The method can be extended for 
approximation problems (Sprengel et al. 1996) but may be computa
tional demanding so that a reduction of the point clouds is mandatory 
(Majdisova and Skala 2016). Another method uses Non-uniform rational 
B-splines (NURBS): this provides an intuitive and tractable scheme for 
solving a mathematical point cloud approximation and is widely used in 
computer graphics and geometric modelling (Piegl and Tiller 1997). 
Unfortunately, the tensor product-based structure yields many super
fluous parameters to fit the topological requirement (Li et al. 2016) so 

that the approximated surface may oscillate in case of scattered and 
noisy point clouds with missing data and curvature changes (Bracco 
et al. 2018). 

These issues can be addressed by locally refining the spline space. To 
that end, different approaches have been proposed including Hierar
chical B-splines (Forsey and Bartels 1995), T-splines (Sederberg et al. 
2003), Truncated Hierarchical B-splines (Giannelli et al. 2012), and 
locally refined (LR) B-splines (Dokken et al. 2013). LR B-splines were 
shown to provide well-behaved mathematical surfaces for remote 
sensing applications: they are the focus of the present contribution, 
following investigations of Skytt and Dokken (2022) on various point 
clouds. A comparison between different methods is not straightforward - 
see Stangeby and Dokken (2021) for an intent -, and will depend on 
some chosen criteria (numerical stability, goodness of fit, number of 
degrees of freedom, computational time, abbreviated as CT). Such a 
comparison is outside the scope of this paper. 

Within the context of adaptive fitting, a refinement is performed 
when the error between the noisy point cloud and the approximated 
surface exceeds a predefined tolerance at a given iteration step of the 
algorithm. The final LR B-spline surface depends on this tolerance, on 
the bidegree of the spline space, but also heavily on the method used for 
refining it. Each approximation setup -called “model” in the following- 
has its own strengths and weaknesses, may it be the CT needed to reach a 
given accuracy, the number of coefficients to estimate, the maximum 
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error, or the number of points outside tolerance. Usual criteria to judge 
the goodness of fit are the root mean square error (rmse) or the mean 
average error (mae) between the mathematical approximation and the 
point cloud. Unfortunately, these performance indicators are not 
optimal as they depend strongly on the number of observations. Addi
tionally, small values may be linked to a fitting of the point cloud’s 
noise, which should be avoided if possible. We identify a need for a new 
criterion that would balance the number of estimated coefficients of the 
surface with the rmse of the residuals of the approximation. Such a 
quantity would avoid overfitting. In this contribution, we introduce the 
penalized model selection criterion called Akaike Information Criterion 
to solve that challenge (AIC, Akaike 1973; Burnham and Anderson 
2002). Unfortunately, the major assumption for the derivation of the 
basic AIC is the normal distribution of the residuals of the approxima
tion. This is clearly unrealistic when dealing with real observations: 
outliers will be unavoidably present (Skytt et al. 2017; Skytt and Dokken 
2022). In such cases, the t-distribution is more favourable than the 
normal one. For that reason, we propose a “t-distribution based AIC” and 
show its potential to select an appropriate mathematical model to 
approximate remotely sensed point clouds. To illustrate the new meth
odology, we focus on the choice of two variants of the Full span 
refinement strategy within the framework of LR B-splines. We will make 
use of a bathymetry dataset for a real application and combine the 
output of the different criteria, including the newly developed AIC to 
analyse the result of the surface approximation. The same methodology 
can be used to select the optimal tolerance or the bidegree of the splines. 

The reminder of our contribution is as follows: in section 2, we 
briefly review the concept of surface refinement with LR B-splines as 
well as the principle of model selection with AIC. In section 3, we 
approximate a real bathymetry point cloud and illustrate how to inter
pret the minimum of the proposed AIC in combination with more usual 
criteria. We conclude with some recommendations on the refinement 
strategy when using LR B-splines for surface approximation. 

2. Methodology 

In this section, we present the main concepts needed to understand 
the adaptive refinement with LR B-splines. The reader should refer to the 
dedicated contribution for the corresponding detailed derivations 
(Dokken et al. 2013). 

2.1. Adaptive refinement with LR B-Splines 

LR B-splines can be viewed as a generalization of univariate non- 
uniform B-splines. We assume that the reader has some knowledge 
about B-splines, see, e.g., Piegl and Tiller (1997). We focus on the 
bivariate case (2D), where knotline segments take over the role of knots 
from univariate B-splines, and knotline segments are assigned 
multiplicity.  

• The starting point is a tensor product B-spline space. From this, we 
initiate the LR-mesh and a collection of tensor product B-splines 
spanning the spline space, from now on denoted the LR B-splines (see 
Fig. 1 for an example of a LR-mesh). 

• The LR-mesh is successively refined by inserting new knotline seg
ments in the initial LR-mesh.  

• An LR B-spline is required to have minimal support meaning that the 
B-spline cannot be decomposed into two or more B-splines with a 
smaller support in the mesh. The support is the domain where the B- 
spline has a value different from zero. 

2.2. Refinement strategies 

The approximation of a parametrized scattered point cloud by an LR 
B-splines surface is done iteratively where a requested accuracy measure 
is not met. The surface is refitted at each iteration step, or level. When 
there exist some points of a mesh cell with a distance to the surface 
larger than a given tolerance, at least one B-spline having a support that 
overlaps this element must be split. This action increases the number of 
degrees of freedoms available for the surface approximation, i.e., the 
number of coefficients, and is called a “local refinement”. We will focus 
on two related strategies of refinement of LR B-spline surfaces for scat
tered point cloud following Skytt et al. ( 2022). They are called the Full 
span strategies. Here elements are split either in four (i.e., both di
rections) halving the element width and height, or in two (i.e., one di
rection). These strategies are called FB and FA, respectively. In this 
contribution, we propose to judge if FA is more appropriate than FB 
within the context of surface approximation with LR B-splines. The 
potential number of new coefficients at each iteration step is much fewer 
for FA than for FB. Thus, for FA, more iterations are expected to reach an 
acceptable accuracy. In Fig. 1, we have highlighted these differences by 
drawing meshes obtained from the two methods and focusing on do
mains where the number of inserted lines slightly differs for FA and FB. 

Fig. 1. Meshes for the two refinement strategies: left FB and right FA. The meshes relate to the approximations in Section 3 after 3 and 6 iterations, respectively. The 
red circles focus on two domains of interest where differences are visible (right). 
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2.3. Addressing linear dependence for Full span strategies 

As for the general formulation of LR B-splines, linear dependence can 
occur also in the case of biquadratic Full span strategies. However, the 
refinement configuration resulting in linear dependence in this case is 
very special, we have not come across linear dependency using the 
biquadratic Full span strategies. However, to handle linear dependency 
should it occur, the following procedure can be followed:  

1. As meshlines are inserted incrementally, the maintenance of linear 
independence can be immediately confirmed after each meshline 
insertion by using the hand-in-hand principle, see Dokken et al. 
(2013). This procedure checks that the increase in the number of 
tensor product B-splines matches the increase in the dimension of the 
spline space spanned. If this is not the case a T-joint related to the last 
meshline inserted triggered this linear dependence.  

2. Using the Peeling algorithm from the paper above we can identify a 
collection of candidate tensor product B-splines for the linear de
pendency relation, and candidate regions to which they belong. As 
linear dependence is detected, at least one region that intersects the 
last meshline inserted have at least 7 tensor product B-splines nested 
inside (and 5 T-joints inside). Here we refer to Patrizi and Dokken 
(2020) for more details.  

3. The linear dependency is eliminated by extending a meshline ending 
in a T-joint so that it crosses such a region. Candidate meshlines here 
are either (i) the last meshline inserted, (ii) another meshline ending 
in a T-joint inside the region(s) or (iii) a meshline ending in a T-joint 
outside the region that will split the region(s) if extended.  

4. The algorithm returns to the situation before linear dependency 
occurred and check which alternative solves the situation best, if 
any. If the initial extension of the candidates doesn’t solve the situ
ation, further extensions of the candidate lines are made incremen
tally until a solution is found. In case that an extension of the 
meshline that triggered the linear dependence at each end connects 
to the boundary of the mesh, linear dependence will be guaranteed to 
be resolved. However, alternative and better candidate extension 
will in most case be found well before this occurs, i.e., extensions that 
meet a preexisting T-joint and eliminate this. As the Full span stra
tegies split the width and height of elements in two, there is a limited 
number of possible constant parameter values of meshlines at each 
refinement level. Consecutively, there is a good chance that that the 
extension can join to an existing T-joint. 

2.4. Iterative approximation 

The mathematical surface approximation of some points is per
formed iteratively. Here we define the surface as with the collection of 
tensor-products B-splines spanning the spline space of the LR B-spline 
surface . are the coefficients corresponding to the B-spline . The scaling 
factors , ensure that the collection of scaled tensor-products B-splines , 
form a partition of unity. 

We define the observation vector of size where , and assume that is 
parameterized. The vector of the coefficients of the LR B-spline surface 
gives a rough approximation of the third coordinate. We here outline the 
workflow for the functional case and thus name the parameter values x 
and y.  

(i) We compute the coefficients with least-squares approximation 
with a smoothing term (adaptation of Mehlum et al. (1997) to LR 
B-spline surfaces) for the first iteration levels. The smoothing 
term in the least-squares approximation ensures that the equation 
system built is non-singular as it involves also LR B-splines with 
no data points in their domain. 

(ii) If the sizes of the supports of adjacent B-splines differ signifi
cantly, the data of the observation vector is very rough, i.e., many 
coefficients have to be estimated with the least-squares 

approximation. To face that challenge, the local iterative 
approximation method (Multilevel B-spline Approximation, 
known as MBA) can be used after a few iterations (Lee et al. 1997, 
Zhang et. al. 1998). Here an underdetermined equation system 
setup allows many solutions. With MBA, a solution is chosen that 
computes the coefficients of each LR B-spline of the residual 
surface from residual values and evaluation of LR B-splines at 
data points. Although less optimal in regular cases, this local 
method is very stable and has a low memory consumption. 

The algorithm is summarized in Algorithm 1. 
Each iteration level gives rise to one approximating surface. One of 

these approximations will be called in the following a “model”. 
Furthermore, we call ε the vector of approximation error or residuals in 
the z-direction.  

Algorithm 1 adaptive surface approximation with LR B-splines 

Input: point cloud, max number of iterations, tolerance TH 
Output: fitted surface, quality parameters 

Generate initial surface (coarse mesh) 
while there exist points I with > TH and max number of iterations not reached 
do 

refine the surface using refinement strategy 
compute the approximated surface (LS or MBA) 
compute quality parameter (residual, mae, points outside tolerance, error term) 

end  

2.5. Judging the goodness of fit 

Judging the goodness of fit of the surface approximation can be made 
at each iteration step with the following performance indicators:  

• The rmse with respect to the approximated surface in the z-direction. 
This quantity has drawbacks: it does not consider the spatial pattern 
of the error term . Additionally, it is strongly influenced by the 
number of observations. A thinned version of a point cloud will give 
a smaller rmse regardless of the accuracy in each single point. We 
note that a small rmse is unfavourable if the noise is fitted. In this 
contribution, we use the mean absolute error (mae) as it is less 
sensitive to outliers than the rmse. This is favourable and fair when 
comparing with the proposed AIC with t-distribution, but still does 
not overcome the aforementioned challenges. 

• The maximum error defined as the maximum value of in the z-di
rection. The number of points outside tolerance or the CT are addi
tional indicators that can be combined to the rmse to judge the 
accuracy of the approximated surface. 

An analysis of the goodness of fit can be made by combining these 
indicators. This is a rather heuristic way to proceed and these values do 
not give any indication about the risk of overfitting. To address this 
drawback, we introduce a new version of the information criterion 
called AIC, which we adapt to the context of surface approximation. In 
the following, we review the mathematical concepts behind model se
lection for the user convenience. 

From an observed sample of data of size , we consider possible 
models called , each of them having a likelihood function specified by 
the parameter vector of length , which is here the number of estimated 
coefficients. Unlike a probability, a likelihood has no real meaning per 
se, but is only interpretable by comparing the likelihood of different 
models. It can be seen as a measure of the goodness of fit to the data 
(Burnham and Anderson 2002). It is convenient to work with the log- 
likelihood function for with the estimates , which is defined as . The 
AIC is a penalized IC defined as . When k models are compared with each 
other, the model with the smallest IC is chosen, as it minimizes the 
estimated information loss (Akaike 1973). From now on and for the sake 
of readability, we will skip the subscript k. 

The likelihood function is often taken to be the Gaussian one, 
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assuming the residuals of the surface approximation ε to be normally 
distributed. Unfortunately, this strong belief can lead to a biased AIC 
when violated. This compromises the correct and in-dubious determi
nation of the AIC minimum and the choice of the most adequate model 
among a set of candidates. Points outside the tolerance coming in the 
surface approximation and/or outliers in the observations themselves 
are likely to arise in a real case scenario and will be found in the 
approximation error. The t-distribution (also called student’s distribu
tion) gives more probability to observations in the tails of the distribu
tion than the standard normal distribution (McNeil 2006). 
Consequently, its maximum is lower than for the normal distribution 
and outliers “fall” in its heavy tails. This makes the t-distribution more 
appropriate to describe the statistical properties of a real data set, see, e. 
g., Kargoll et al. (1992). In this contribution, we make use of the t-dis
tribution to compute the likelihood of the model, which is the first term 
of the AIC. The second term is a penalty term and accounts for the in
crease of complexity as it becomes larger as the number of coefficients to 
estimate increases. The proposed AIC using the t-distribution is a global 
performance indicator: it weights the number of coefficients with the 
likelihood of the model. It accounts for the specificity of the point clouds 
and the residuals of the surface approximation which are expected to 
contain outliers. 

Here we consider the choice of the setup for surface approximation as 
a statistical model selection problem: our example focuses on the 
refinement strategies FA and FB described previously. 

3. Bathymetry dataset 

In this Section, we will demonstrate how the LR B-splines can be used 
to approximate a noisy bathymetry data set. We will further illustrate 
how the proposed AIC can be combined with the other performance 
indicators to judge the accuracy of the approximated surface. We will 
focus on the choice of the refinement strategy as presented in Section 2. 
The same methodology can be used to select the most adequate toler
ance for refinement, or the bidegree of the spline space. 

3.1. Description of the dataset 

Here we analyse a mainly subsea point cloud from Søre Sunnmøre in 
Norway. The acquisition is performed with multibeam sonar. A broad 
acoustic pulse is sent out from a transmitter and the depth is calculated 
from the time the sound waves need to reflect off the seabed and return 
to the transceiver. The width of the simultaneous measurements de
pends on the sea depth. In shallow water, the width will narrow down 
resulting in a very dense point cloud; the ship must cross the area several 
times to provide a good coverage of the seabed. 

The data set contains about 9 million points and covers an area of 
about 7 km2. The depth varies from − 132.31 m to 0.48 m. The point 
density and the consistency of the point cloud vary throughout the 
domain. We have selected a subset of this point cloud covering an area of 

0.3 km2 for a detailed study in Section 3.2; it contains about 100 000 
points and the depth varies from − 88 to − 44.3 m. Fig. 2 (left) shows the 
location of the subset, depicted in Fig. 2 (right). 

3.2. Approximation of the small subset of the point cloud 

A tolerance of 0.5 m is selected for the approximation of the subset, 
which corresponds to approximately 2 times the noise level. An initial 
biquadratic tensor-product B-spline surface of 10 times 10 coefficients 
approximating the point cloud is computed (iteration 0). Then the 
iteration is allowed to run until all residuals are smaller than the toler
ance. Strategy FB requires 14 and FA 24 iterations and the resulting 
surfaces have 7742 and 6432 coefficients, respectively. However, most 
iterations contribute little to an improved approximation accuracy and 
the risk of fitting noise is present as the iteration step increases. In order 
to avoid overfitting and do not increase unnecessary the CT, the algo
rithm should be stopped after an optimal number of iterations and not 
when all residuals are smaller than the tolerance. We wish to highlight 
how the cross-analysis of different evaluation criteria, including the 
proposed AIC with t-distribution, can answer this highly relevant 
question.  

• AIC: 

We compute the proposed AIC for FA and FB for each iteration step. 
Following Section 2.4, the minimum of the AIC is assumed to give a 
statistical indication about the most optimal model for each refinement 
strategy. This corresponds to the turning point, i.e., the iteration step for 
which continuing the refinement by increasing the degrees of freedom 
does no longer lead to a significant improvement of the approximation. 
The corresponding results are shown in Fig. 3 where the AIC is plotted 
against the iteration step. For each model, we search for its minimum. 
This latter is obtained only for the t-distribution after 3 and 6 iterations 
for the FB and FA strategy, respectively. Here the dotted line in Fig. 3 
corresponds to the use of the normal distribution to compute the AIC and 
the bold line (red for FB and blue for FA) to the proposed t-distribution. 
This finding highlights the advantage of using the correct distribution to 
compute the AIC, and find a minimum, see section 2.4. 

Results 
In Table 1, we interpret the minimum of the AIC together with the 

usual performance indicators, such as the number of coefficients, the 
mae, and the maximum distance for a given iteration step. The com
putations are performed on a stationary desktop with 64 GB of DDR4- 
2666 RAM. It has an i9-9900 K CPU with 8 cores and 16 threads. A 
single core implementation is used in the approximation. The approxi
mation functionality is implemented in C++. We focus on the optimal 
iterations with AIC (3 and 6) found in the previous section, and the 
iteration step from which the improvement in terms of average distance 
was shown to be small, i.e., under 0.5 mm (iteration 7 and 15 for FB and 
FA, respectively). We give additionally the results after the 6th and 14th 

Fig. 2. Full point cloud with indication of the position of the subset of the point cloud (left). The subset is scaled with a factor of 10 in the height direction for the sake 
of visualization to emphasize the seabed features (right). 
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iterations for the sake of completeness and comparison. 
Table 1 highlights that the minimum found with AIC is corre

sponding to an optimal global approximation: it balances the likelihood 
with respect to the number of coefficients. The average distance (mae) 
minima for FA_AIC and FB_AIC are rapidly reached after 3 and 6 itera
tions and do not significantly decrease as the iterations increase. The 
outputs after 6 and 14 iterations are comparable to the one after 7 and 
15 iterations. However, the maximum distance is lower in the latter 
case: this finding is linked with a local improvement of the surface 
fitting. 

We note that the optimum number of coefficients is less for FA_AIC 
than for FB_AIC while the accuracy is quite comparable. Furthermore, 
the minimum of the AIC is reached for the FA strategy (see Fig. 3 left). 
This latter seems, thus, to be preferable for this point cloud from a sta
tistical point of view. The same holds true after more iterations. 

Unfortunately, the FA has a higher CT compared with the FB method. 
The difference is not too large in our example but may not be negligible 
for larger point clouds. 

Increasing the number of coefficients is a decision that has to be 
balanced with respect (i) to the details that one wishes to capture as 
illustrated in Fig. 4 or (ii) the CT: the proposed AIC is, thus, a global 
indicator. 

To illustrate the differences between the levels of refinement, we 
have plotted the different meshes obtained after 3 and 7 iterations with 
the FB strategy as well as the corresponding surface approximations, see 
Fig. 4. Here the optimal iteration level given by the AIC avoids noise 
fitting over to the price of fewer details in the approximated surface. 
This can be seen in the domain specified by a blue circle in Fig. 5. Further 
refinements of the surface have been performed after iteration level 6 
and 3 for FA and FB, respectively. Having a look in details at another 
domain (Fig. 5 red circle), we see that the FA surface fits the point cloud 
tighter than the FB surface after a low level of iterations. In both cases 
the distances between the points and the surface are less than the 

tolerance. FA, which introduces new knot lines in a slower pace than FB 
and consequently has more information when these knot lines are 
defined, has been able to position them better. No significant refinement 
has taken place in this area after the iteration level given by AIC, as the 
surface is refined only in areas where there are unresolved points. Thus, 
continued iterations will not improve the accuracy in such areas. 

3.3. Approximation of the complete dataset 

The AIC computed for the whole dataset (9 106 045 points) has a 
minimum when the t-distribution is used only: this is an indication that 
an adequate distribution is favourable to judge the goodness of fit in a 
global sense. The minimum of the AIC exists but is weak for the FA 
strategy after 16 iterations, and for the FB strategy after 9 iterations. 
This finding is coherent with the results of section 3.2 regarding the 
differences between FA and FB. Due to the high number of points of the 
dataset with regard to the number of coefficients to estimate, the second 
term of the AIC has a low influence, and the AIC becomes dominated by 
the likelihood of the model, which distribution has to be chosen with 
care. Here the t-distribution is more appropriate due to the presence of 
outliers. 

Table 2 presents some approximation results at these iteration levels. 
Despite the difference in magnitudes, most results are similar to those 
outlined in Table 1. The FB method has lower CT than FA, which is al
ways an important factor when fitting huge point clouds. The surface 
generated with strategy FA has considerable fewer coefficients than the 
one from FB. More iterations typically lead to higher CT, but it can be 
outweighed by a decrease in time due to few coefficients. 

We note an unnoticeable decrease in the overall average distance 
mae for both strategies as the number of iterations increases, which is 
linked with the weak AIC minimum. In relation to the size of the initial 
point cloud, the numbers of unresolved points are neglectable for both 
strategies and iteration levels. Due to the lower number of coefficients, 
FA would be preferred to FB in most circumstances. However, even if the 
AIC converges to nearly similar values for both strategies, there is a 
slight preference for FB for this point cloud. Consequently, we propose 
to combine the different criteria to judge the goodness of fit for 
approximating such point clouds; an improved IC based on the local 
stochasticity of the approximation needs to be specifically developed for 
such challenging surfaces with a huge number of points. 

We have used a bathymetry dataset to illustrate the challenge in 
combining statistical measures to evaluate models approximating a 
point cloud with highly non-uniform properties. We showed that an 
improved AIC using the t-distribution to account for outliers provides an 

Fig. 3. Left: FA_AIC and FB_AIC with respect to the number of iterations for the two distributions (normal G: dotted line and t for the t-distribution: full line) for the 
small dataset. The first iteration step is labelled as 0. Right: same as left for the whole dataset. 

Table 1 
Results of the comparison for FA and FB strategies after a given number of it
erations (subset).  

Strategy Iter. Max. d. mae No. out No. coefs CT 

FB 7  0.665  0.079 24 7 222 0 m0.99 s 
FB 6  0.682  0.079 56 6 730 0 m0.89 s 
FB_AIC 3  1.262  0.081 359 2 100 0 m0.41 s 
FA 15  0.779  0.080 25 6 173 0 m1.45 s 
FA 14  0.876  0.080 41 6 007 0 m1.36 s 
FA_AIC 6  1.283  0.081 380 1 784 0 m0.62 s  
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indication about the accuracy of the fitting for a given setup. Here we 
chose to compare the Full span refinement strategies FA and FB. Our fair 
comparison pointed out the challenges linked with the finding of opti
mality when an approximation of a large, noisy and scattered point 
cloud is performed: combining the output of different criteria is 
indicated. 

4. Conclusions 

An information criterion is a weighted measure of the quality of a 
complex statistical model and aims to answer the question how well a 
model fits some data compared to other models. We have applied it 
within the context of adaptive surface approximation with LR B-splines. 
Compared to other local methods for refinement of spline spaces, LR B- 
splines have the advantage of high flexibility in the definition of new 
meshlines. 

Up to now, judging adaptive surface approximations is performed 
rather “heuristically” and the choice of the refinement strategy or the 
decision to stop the algorithm is rather empirical. This may lead to an 
overfitting, i.e., the fitting of the noise when too many coefficients have 
to be estimated. 

In this contribution, we have introduced some statistical concept in 
the domain of surface fitting by using concepts from model selection. To 
that end, we have proposed an adapted version of the AIC to be used 
within the context of surface approximation of real point clouds. We 
showed that:  

• The proposed AIC can be used it to identify the most adequate model 
regarding two refinement strategies. To illustrate the methodology, 
we have chosen Full span refinement strategies (FA and FB) for 
which the linear dependencies of B-splines can be easily addressed.  

• Unavoidable outliers present in the approximation can be accounted 
for with the proposed AIC. This way, a minimum of the AIC can be 
found when increasing the iteration step to identify the most 
adequate model. To that end, we used the t-distribution to compute 
the likelihood of the model. This new development allows to avoid 
unnecessary iterations of the surface approximation algorithm and 
the associated and unfavourable overfitting of the point cloud.  

• The model selection strategy has been applied to a real bathymetry 
data to judge the goodness of fit of the approximation. We computed 
the AIC as well as more usual criteria such as the mae, the maximum 
distance and the CT for two Full span refinement strategies. The AIC 
minimum was reached earlier than for the usual criteria such as the 
mae, the number of points outside tolerance or the maximum error. 
The FA strategy was identified as optimal for a small dataset, but this 
result should be balanced by its higher CT. For the bigger dataset, the 
FB strategy was weakly preferable. 

The proposed AIC accounts for the specificity of the point clouds but 
remains a global indicator. It gives a first indication about the accuracy 
of the fitting for large point clouds and helps to avoid fitting of the noise 
for a given setup. It can be combined with other performance indicators, 
depending on how “optimality” is defined and with respect to the 
application at hand. In this contribution, we have applied this meth
odology and discussed two Full span refinement strategies. It should be 

Fig. 4. Surface and the corresponding mesh structure created with strategy FB after 3 (top) and 7 iterations.  
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noted that there exist refinement strategies such as N2S2, see Patrizi et al. 
(2020) that ensure local linear independence in all elements. These 
strategies run a process for each hierarchical refinement level where a 
significant amount of additional meshlines is inserted. This way, local 
linear independence that are not required for accuracy is maintained. 
The effect is that each degree of freedom will contribute less to 
improving accuracy than in the case of the FB or FA strategies. A future 
study could make use of the AIC within the context of surface approxi
mation to study alternative refinement strategies to the Full span ones. 
We cite exemplarily structured mesh for LR B-splines, Truncated Hier
archal B-splines and different variants of T-splines. 

Similarly, further investigations should be performed using the 
proposed AIC to determine the most optimal tolerance as well as the 
bidegree of the splines for larger and more challenging datasets. They 
would serve an improved understanding of optimality within the context 
of surface approximation of noisy and scattered point clouds with LR B- 

splines. 
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Code availability 

The source codes are available for downloading at the link: https://gi 

Fig. 5. Approximation error for the models at different iteration step. TH = 0.5. Left: FA, right: FB. Top: AIC optimal refinement step; Bottom: refinement step 7 and 
15 for FA and FB, respectively as in Table 1. 

Table 2 
Results of the comparison for FA and FB strategies after a given number of it
erations (complete data set).  

Strategy Iter Max d. mae No. out No. coefs CT 

FB 15  1.057  0.050 63 203 081 2m46s 
FB 14  1.054  0.050 84 202 427 2m40s 
FB_AIC 9  1.27  0.050 3 629 157 977 1m39s 
FA 26  1.079  0.052 128 159 032 3m37s 
FA 25  1.09  0.052 213 158 271 3m29s 
FA_AIC 16  2.039  0.052 5 613 108 738 2m8s  

V. Skytt et al.                                                                                                                                                                                                                                    

https://github.com/SINTEF-Geometry/GoTools/wiki/Module-LRSplines2D


International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102894

8
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