
FACULTY OF SCIENCE AND TECHNOLOGY

MASTER’S THESIS
Study programme/specialization: Spring semester, 2022

MSc. Computational Engineering Open
Author:

Md Fazlul Haque ..
Md Fazlul Haque

Programme coordinator:
Aksel Hiorth

Supervisors:
Prof. Dan Sui
Jie Cao

Title of master’s thesis:
Path design and optimization with obstacle avoidance via reinforcement learning

Credits: 30

Keywords: Number of pages: 68
Machine Learning, Reinforcement Learning,
Q-Learning, Drilling.

Stavanger, 15th July 2022

Md Fazlul Haque

Path design and optimization with obstacle
avoidance via reinforcement learning

Master Thesis Project for the degree of
MSc in Computational Engineering

Stavanger, July 2022

University of Stavanger
Faculty of Science and Technology
Department of Computational Engineering

Abstract

For the last couple of decades, finding an optimized drilling path has been one of the key con-
cerns for drilling engineers. It takes a couple of months to plan a well for a large number of
people. The motive of this thesis is to find the optimal drilling path based on coordinates. To
trace the optimal path, this thesis will apply the reinforcement learning algorithm in Matlab.

Another approach for this thesis is to find the shortest path by avoiding collision in a three-
dimensional grid view.

ii

Acknowledgments

First, I would like to thank almighty God, for providing me with the strength needed to complete

my studies satisfactorily.

To the University of Stavanger, in particular my supervisor Prof. Dan Sui for the weekly

meetings and continuous guidance. Also, to Jie Cao for the productive discussions held during

the elaboration of this study.

Finally, I am thankful to my family and friends for their unconditional support, without you

all, this would not have been possible.

Md Fazlul Haque

July 15, 2022

University of Stavanger

iii

List of Abbreviations

AFSA Artificial Fish Swarm Algorithm
IDE Integrated Development Environment
MRST MATLAB Reservoir Simulation Toolbox
ML Machine Learning
AI Artificial Intelligence
RL Reinforcement Learning
LSTM Long Short Term Memory
StoSAG Stochastic Simplex Approximate Gradien
GA Genetic Optimization Algorithm
KOP kick-off point
DLS dog-leg severity
ROP Rate of Penetration
RPM Revolutions per minute
SWOB Surface Weight on Bit
TOB Torque on Bit
TVD True Vertical Depth
MSE Mechanical Specific Energy
MOP Multiobjective Optimization Problem
API Application Programming Interface
WOB Weight on Bit

iv

Table of Contents

Abstract ii

Acknowledgments iii

List of Abbreviations iv

List of Figures viii

List of Codes ix

1 Introduction 1

1.1 Background, Motivation and Challenge . 1

1.2 Objectives and Scope . 2

1.3 Methodology . 3

2 Background 4

2.1 Technical Background . 4

2.1.1 Machine Learning (ML) . 4

2.1.2 Reinforcement Learning (RL) . 5

2.1.3 Q Learning . 5

2.1.4 Grid World and 3D Environment 6

2.1.5 MRST toolbox in Matlab . 6

2.2 Current Ideas . 7

2.3 Open Source Solutions . 8

2.3.1 OpenLab App . 8

2.3.2 Drilling Data Web Application . 8

v

vi TABLE OF CONTENTS

2.4 Commercial Solutions . 8

2.4.1 eDrilling Softwares . 9

2.4.2 Schlumberger Softwares . 11

2.4.3 Halliburton Softwares . 12

3 Solution Approach 14

3.1 Trajectory optimization . 14

3.2 Use of RL in Well Planning . 15

3.2.1 Location Optimization of a well . 15

3.3 Proposed Solution . 16

4 Implementation 18

4.1 Experimental Procedure . 19

4.1.1 Environmental Overview . 19

4.1.2 Obstacles in 3D space . 19

4.1.3 Start and End Points . 21

4.1.4 Cost and Reward Calculation . 21

4.1.5 Grid Index Structure . 21

4.2 3D Program . 22

4.2.1 Program Configuration . 23

4.2.2 Initializing the Environment and Training 23

4.2.3 Generating 3D Environment . 28

4.2.4 Point Conversion Process . 28

4.2.5 3D Visualization . 29

5 Results 30

5.1 3D Environment using MRST . 30

5.2 Existing Wells in Grid View . 30

5.3 Results from QLearning in Matlab . 32

6 Discussion and Conclusion 39

TABLE OF CONTENTS vii

6.1 Discussion on the results . 39

6.2 Limitations . 39

6.3 Conclusion . 40

6.4 Future Work . 40

Appendices 45

Appendix A Matlab Code 47

A.1 Installed Packages and Softwares . 47

A.2 Program Configuration Code . 47

List of Figures

2.1 Basic components of Q-learning . 5

2.2 Cost/reward calculation function of Q-learning 6

4.1 Points conversion flow . 20

4.2 Point conversion code . 20

4.3 Flowchart of Q-learning program in 3D . 22

5.1 3D visualisation of environment using MRST toolbox 31

5.2 Single well 3D visualisation . 31

5.3 Multiple well 3D visualisation . 32

5.4 Start and end point zoom in view . 33

5.5 Start and end point . 33

5.6 Path design using reinforcement learning . 34

5.7 End point close to the obstacle . 35

5.8 Avoiding collisions side view . 35

5.9 Avoiding collisions down side view . 36

viii

Listings

4.1 Termination condition for Q-learning program 23

4.2 Staring condition for Q-learning program . 24

4.3 Choose best action for Q-learning program . 24

4.4 Choose next location for Q-learning program 25

4.5 Get shortest Path for Q-learning program . 27

4.6 Generating 3D Environment . 28

4.7 Point conversion in Matlab . 29

4.8 3D final grid visualization . 29

5.1 Grid index calculation using MRST . 37

5.2 Result points with index . 37

A.1 Program Configuration Code . 47

ix

Chapter 1

Introduction

1.1 Background, Motivation and Challenge

Directional drilling is one of the most popular drilling technologies. With the increasing appli-

cation of directional drilling, solving problems fetched by a complex geological environment

is of remarkableness. Optimization of drilling trajectory is important to decrease the risk of

drilling accidents and increase the efficiency of the drilling process in advance.[1]

Most of the previous researchers focused on the length to optimize a drilling trajectory

[2],[3] and [4]. Because reducing a trajectory length can directly reduce the drilling time,

thereby decreasing the drilling cost. As drilling cost is one of the major concerns for drilling

companies. However, the reduced trajectory length will lead to a more complex wellbore struc-

ture, which may result in drilling accidents.

Some of the researchers used different machine learning algorithms for drilling optimiza-

tion. For instance, Chiranth and Ken [5] used two different machine learning algorithms named

the random forests algorithm and the metaheuristic optimization algorithm. For applying these

2 models, researchers used the random forests algorithm to train a model on each formation

using half the data for training and the trained model was evaluated for prediction accuracy on

the data set.

1

2 CHAPTER 1. INTRODUCTION

The artificial fish swarm algorithm was used to optimize the goal function, which was the

smallest well length (AFSA) introduced by Zhang et al. (2019).[6] The calculations were com-

pleted using the Matlab environment. Compared to previously published data, AFSA optimiza-

tion offers the best numerical results and the shortest route while also providing great stability

and reliability. The algorithm has a basic structure and fast convergence, resulting in a global

optimum in a short amount of time. As a result, AFSA can be utilized to determine the best

drilling path. Wendi et al. (2020) [7] have shown that because of the difference between an ac-

tual trajectory and a planned trajectory, it is defined as a multi-objective optimization problem

(MOP) with parameter uncertainties.

Well planning is a tedious and time-consuming job for a drilling engineer. During the recent

oil price slump, drilling companies have focused on cost reductions associated with drilling and

well planning. In response, a concept of smart well planning complete with automation has

developed. typical time spent for designing and planning a well in Norway is 2-3 months and

predicts that it could be reduced by 80 percent if more automation and machine learning are

involved in the process.[8]

1.2 Objectives and Scope

Drilling path optimization is not only meaning that to find the shortest path but also finding it

without extending the drilling cost. Based on this statement the main goal of this thesis is to

find the optimized path optimally in addition to avoiding collisions. After investigating pre-

vious and recent papers it is proven that machine learning is a proven method to complement

existing optimization techniques and the reinforcement learning algorithm performs better to

simulate path optimization than the other models. So, this thesis will use the technique from the

reinforcement learning algorithm to give a user to interact with the model and change the coor-

dinates together with start-end points to check the different behavior when drilling. Finally, will

be made a model based on this thesis for industry-level where it includes proper documentation,

and validation and considers the costing.

1.3. METHODOLOGY 3

1.3 Methodology

The base of this study is coding and for such purpose Matlab [9] will be the application or IDE

of choice as it is user-friendly, handles the selected programming language Matlab, and allows

to set an appropriate environment to develop the study. Matlab has gained a lot of adepts during

these last years, as it is easy to learn and apply since previous programming experience is not

that required. Several packages were used to set the proper programming environment, the list

of them is located in Appendix A (6.4).

To solve one of the most important objectives of this study, a Matlab [9] code-based toolbox

is used which is called MRST (MATLAB Reservoir Simulation Toolbox) [10].To generate the

environment, the MRST toolbox helps a lot and gives some of the built-in functionalities for

3-dimensional visualization. Based on this, the thesis used a dynamic environment where the

user can change the start and the endpoints as well as the number of grids in each direction.

For constituting the environment, this thesis used some existing well data to generate the

hard and soft constraints. Each hard constraint is surrounded by soft constraints in six directions.

The hard obstacles or constraints are defined using a specific color which is dark blue for all the

existing wells and the soft constraints are defined using light blue color.

The final generated path avoids these hard constraints and produce an optimized path.

Chapter 2

Background

This is an important chapter of this report, this chapter line up to provide a background to the

work. It starts with short summaries of technical and theoretical information that is relevant to

this thesis.

The following section describes the terms such as Machine Learning, Reinforcement Learn-

ing, Q-learning, Drilling Technique, and trajectory optimization are discussed, as well as more

advanced terms such as Grid-world, 3D environment, and MRST toolbox.

It is also important to know about the currently available approaches as well as the open

source and commercial software applications which will be discussed in the last section of this

chapter.

2.1 Technical Background

As stated before, this section target to provide a little summary of the technical and theoretical

knowledge as well as some related works that are required to understand the work that has been

done in this thesis.

2.1.1 Machine Learning (ML)

"Machine learning" and "Reinforcement Learning" is fundamental to this thesis. "Machine

learning is an application of artificial intelligence (AI) that provides systems the ability to auto-

matically learn and improve from experience without being explicitly programmed" [11]. Expe-

4

2.1. TECHNICAL BACKGROUND 5

rience can be some kind of input data (text, excel tables, images, sound clips, videos, etc). With

Machine Learning a computer can find patterns in the data to make some kind of predictions

that would normally be very complex for a human being [12].

2.1.2 Reinforcement Learning (RL)

Reinforcement learning (RL) is an area of machine learning concerned with how intelligent

agents ought to take actions in an environment in order to maximize the notion of cumulative

reward. Reinforcement learning is one of three basic machine learning paradigms, alongside

supervised learning and unsupervised learning[13].

Reinforcement learning differs from supervised learning in not needing labeled input/output

pairs to be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead,

the focus is on finding a balance between exploration (of uncharted territory) and exploitation

(of current knowledge)[13].

2.1.3 Q Learning

Q-learning is an off-policy reinforcement learning algorithm that seeks to find the best action

to take given the current state. It’s considered off-policy because the q-learning function learns

from actions that are outside the current policy, like taking random actions, and therefore a

policy is not needed. More specifically, Q-learning seeks to learn a policy that maximizes the

total reward[14].

The ‘Q’ in Q-learning stands for quality. Quality in this case represents how useful a given

action is in gaining some future reward.

Figure 2.1: Basic components of Q-learning

The environment responds to the agent’s actions by generating new observations, O(t), and

6 CHAPTER 2. BACKGROUND

scalar reward signals, R. (t). The subsequent action is determined by history, which is defined

as the sequence of observations, actions, and reward signals at time t.

States are the information used to determine what happens next. There are three main types

of states- environment state (Se
t), agent state (Sa

t), and the information/Markov state (St).

Figure 2.2: Cost/reward calculation function of Q-learning

The reward function r is sum-mated over t (the time steps) which means the objective func-

tion calculates all potential rewards that can be attained through the game. x represents the state

at any given time step (denoted by t), and r represents the reward function for x and a.[15]

2.1.4 Grid World and 3D Environment

"Grid World" is the primary concept of this thesis and it carries the whole working environment.

Grid World, a two-dimensional plane, is one of the easiest and simplest environments to test

reinforcement learning algorithms. In this environment, agents can only move up, down, left,

and right in the grid, and there are traps in some tiles. The agent starts at the fixed start position

and when it arrives at the goal or trap, the episode ends.[16]

But 3D Environment is different and agents can move in six directions, up, down, left, right,

and front, back. This is possible using the MRST toolbox in Matlab [10] which is used in this

thesis. More about the MRST toolbox is discussed in the following section.

2.1.5 MRST toolbox in Matlab

The MATLAB Reservoir Simulation Toolbox (MRST) is a free open-source software for reser-

voir modelling and simulation, developed primarily by the Computational Geosciences group in

the Department of Mathematics and Cybernetics at SINTEF Digital. The software has a large

2.2. CURRENT IDEAS 7

international user base and also includes third-party modules developed by researchers from

Heriot-Watt University, NTNU, University of Bergen, TNO, and TU Delft. [10]

2.2 Current Ideas

This section discusses existing approaches. This section has mainly three different parts.

1. Discuss some existing methods that are used to well path optimization

2. Some open source solutions and

3. Some existing commercial solutions.

There have been many attempts to incorporate machine learning with drilling engineering

to reduce time and design costs. Reinforcement learning has been used as the algorithm can

learn and perform based on previous experiences on its own. Some of the works related to this

thesis are discussed below.

One of the current existing ideas is “Gradient based Well Trajectory Optimization”. A

method to automate the process of optimizing the trajectory of production well was first pro-

posed by Vlemmix et al.[17]. Motivated by the advancements in the adjoint-based well location

optimization, the authors extended the method of Handels et al. [18] to determine an optimal

well trajectory in a three-dimensional reservoir model. Since optimal well trajectory is crucial

to avoid gas cusping and water coning, the authors verified the method on a thin oil rim reser-

voir with a relatively large gas cap and aquifer. The Vlemmix et al.[17] method is based on

surrounding each trajectory point with ‘pseudo-sidetracks’. These fictional ‘pseudo sidetracks’

have very small perforations and thus production rates. The reason that this approach was cho-

sen over placing vertical pseudo wells in each grid-block is that the effect of the sidetracks on

the total well behavior including lift and well bore friction can be considered. The gradients

of the objective function with respect to a dimensionless multiplication factor for perforations

(interpreted as a ‘pseudo valve representation’ of an Inflow Control Valve) are used to find the

improving directions for the trajectory points (Chowdhury [19]).

8 CHAPTER 2. BACKGROUND

2.3 Open Source Solutions

This section introduces some of the open source web applications those are really helpful for

drilling engineers to design and analysis on drilling data.

2.3.1 OpenLab App

OpenLab is developed and managed by the Drilling and Well Modeling group of NORCE En-

ergy in collaboration with the University of Stavanger. They seek to offer a world-leading simu-

lation environment within drilling and well technology for education, research, and innovation.[20]

A simulation in the Web Enabled Drilling Simulator is based on NORCE’s computer models

of well flow and drillstring mechanics. Although the computer models behind the simulator are

among the world’s most detailed models of their kind, they have created a web environment

where you can easily run simulations and handle the results.

The simulator can be run interactively through a web browser, or also programmatically

through our Matlab or Python packages..

2.3.2 Drilling Data Web Application

This is a web application where users can visualize different existing wells based on different

parameters. Also, it is possible to compare and do an analysis of existing well data based on

depth and time. The most important features are Well Configuration and Drilling Geology. The

well configuration section shows the different well configurations as well as the whole section,

well path design and drilling fluid, and drilling string in formations. On the other hand, the

drilling geology section visualizes the geopressure and geothermal in a graph [21]. Note that

this web application is still under construction.

2.4 Commercial Solutions

In contemplation of minimize the drilling challenges and decreased the costs and time associ-

ated with completion of wells. There are some others commercial solutions available in market

2.4. COMMERCIAL SOLUTIONS 9

who are doing extra ordinary work in drilling industry. Some of this commercial software and

its utilities will be presented in this section.

2.4.1 eDrilling Softwares

eDrilling AS is a well known world-leading supplier of AI, machine learning, and predictive

analytical solutions to the oil and gas industry. The company has created a Life Cycle Drilling

Simulation concept, diagnostics technology merged with a 3D visualization into a ‘virtual well-

bore’ and advanced dynamic drilling models. All the models can interact with one another

and be used in the whole drilling value chain from design and planning (wellPlanner) through

scenario developments and training (wellSim) and then real-time operations/monitoring (wellA-

head, wellBalance) and finally experience transfer and post-analysis.[22]

WellBalance

The wellBalance software improves any MPD control system to keep a better constant bottom

hole pressure during MPD operations and perform planning with an offline model. It provides

with real-time set points to the MPD control system, based on a dynamic real-time simulation

calibrated against downhole measurements. The software is complemented with an offline sim-

ulation tool, the wellBalance™ Offline, used to test and analyze operations and procedures.[22]

wellPlanner

wellPlanner Uses dynamic simulations to address the industry’s need to improve safety margins

and reduce and rid themselves of risk, as well as the need to drastically reduce well planning

time.[22]

The core features are:

1. Dynamic models verified in wellAhead, wellPlanner and wellSim by operators

2. Unique combination of models and functionalities

3. All combined in one Integrated Drilling Simulator (IDS)named Intellectus

4. All flow related dynamic functionalities and responses combined in one IDS

10 CHAPTER 2. BACKGROUND

5. Integrated part of Life Cycle Simulations with wellAhead and wellSim products

6. Seamless link to wellAhead, wellSim Interact and wellSim hiDRILL

Benefits of wellPlanner are increased drilling productivity, improved well planning accu-

racy,reduced drilling risks and uncertainty,improved drilling safety and quick well planning.

[23]

WellSim

The wellSim™ is the software product family for engineering and training of all disciplines

by improving insight and understanding of the dynamic well behavior; it has the potential to

change the ways of planning and drilling several complex wells. [22]

The core features are:

1. Interactive ROP model

2. Coupled Flow and Torque/Drag model

3. 3D Visualization with risk/info messages, proximity wells, formations, etc.

4. Malfunctions, kicks and losses in scenarios

5. Model state handling enables transfer of simulation states between the eDrilling appli-

cations (“move state and data from drilling operation to onshore simulator to explore

alternatives”)

6. Cross-application configuration enables transfer of virtual wells between the eDrilling

applications

7. Simulation speed up to 10 times real time

This software utilized an advanced downhole simulator, Intellectus, including a dynamic

ROP model and coupled Flow and T&D model. [24]

2.4. COMMERCIAL SOLUTIONS 11

2.4.2 Schlumberger Softwares

Schlumberger has created a cloud-based environment called DELFI to compliment their large

bank of data and different software solutions for the whole of the petroleum chain. It harnesses

data, domain expertise, and scientific knowledge changing the way to perform in every part of

the E&P value chain. The DELFI environment creates workflows and applications attainable

to every single user. It provides members with access to build shared workspaces for models,

interpretations, and data while respecting proprietary information boundaries.

The DELFI environment puts the full scope of available cognitive technologies to work from

AI to analytics. Robust cognitive systems recognize each user to deliver a uniquely personalized

experience. Intelligently searching, proactively learning, and automating tasks, enabling the

user to predict, prioritize, and advise. The new data is automatically shared between jobs across

the DELFI environment; each live project is dynamically optimized with the latest information.

Apart from the DELFI environment, the company also provides software for drilling de-

sign,such as the DrillPlan and the DrillBench software.[25]

DrillPlan

DrillPlan has the most exclusive fearures like automated engineering and design as well as

design validation. The DrillPlan solution is a digital well construction planning solution that

maximizes the results from shared teams by giving them access to all the data and science they

need in a single, common system. The automation of repetitive tasks and validation work-

flows, enables better quality drilling programs to be produced quickly, and ensures entire plan

is coherent.

DrillPlan solution includes circular workflows, plans are improved as new data is added—future

programs learn from the experience of all wells planned before.

Designed for the cloud and accessible in the DELFI cognitive E&P environment, the DrillPlan

solution provides easy access to all of your well construction projects.[26]

12 CHAPTER 2. BACKGROUND

DrillBench

The DrillBench Dynamic Drilling Simulation Software is a Schlumberger software that pro-

vides the user with dynamic simulations for pressure control, blow out control, managed and

underbalanced operations, and well control.

The company’s recent enhancements on this software include the integration of well paths

directly from the Petrel platform, being able to read pore and fracture pressure from the Techlog

platform, the support for dual gradient drilling with improved modeling of managed pressure

drilling, the strengthened dynamic S&S calculations, subsea pump, and the rig site Kick, which

is a standardized kick sheet for operational rig site use, based on robust well control modeling

and simulation. [27]

2.4.3 Halliburton Softwares

Halliburton is another famous company in the oil and gas industry, with a large bank of data

and different software solutions for the whole of the petroleum chain. The company provides

E&P professionals with a software-driven life-cycle named Halliburton Landmark Solutions.

Landmark Solutions is a hybrid cloud environment with seamless connectivity that uses a digital

twin technology to provide the user with a faster, more open, and collaborative open industry

platform. The following two are the central systems in landmark solutions

• the WellPlan software and

• the DecisionSpace® 365.

WellPlan software

The WellPlan software is the latest evolution in Halliburton’s well construction information

solutions. It is integrated with EDT and EDM applications, providing a complete well en-

gineering software tool kit capable of designing complex well string operations and navigate

different challenges found in the well construction.[28]

2.4. COMMERCIAL SOLUTIONS 13

DecisionSpace® 365

The DecisionSpace® 365 is a cloud-based subscription service for E&P applications found on

OSDU that provides high throughput, low latency, and self-cleaning solutions to large quantities

of data from various sources into the OSDU. Once the data is loaded, the DecisionSpace®

365 cloud provides modular, open, and plug-and-play solutions with an intelligent workflow to

provide efficiency and insight.[29]

Chapter 3

Solution Approach

This chapter explores works that are related and gives an overall idea of what is done in this

thesis to build a background and help understand the work done before this thesis was even

possible. At the end of this chapter, it discusses the approach that has been used in this thesis.

3.1 Trajectory optimization

Mansouri et al. [30] suggest a trajectory optimization model based on the genetic optimization

algorithm (GA) with an objective function that maximizes the minimum separation factor along

the wellbore. The algorithm seeks the least distance between the planned well and the refer-

ence well in three dimensions. They applied the minimum separation factor constraint of 1.5.

GA provides several random solutions, which are constrained in their study by KOP (kick-off

point), DLS (dog-leg severity), inclination, and azimuth. The interval for calculations was se-

lected to be 30 m. Busby et al. [31] point out that “manual optimization” of wellbore placement

is a formidable task due to many possible solutions, uncertainties in handling, and complex

wellbore trajectories. Therefore, they propose a methodology for well placement based on the

experiences organized as machine learning regression models using simulated data. In their

model, geological parameters, including uncertainties and trajectory parameters, were used as

inputs. Lu et al. [32] develop a bi-objective optimization technique to increase production based

on StoSAG (stochastic simplex approximate gradient). Two primary objectives of the defined

method are 1) search for optimal wellbore trajectory (including anti-collision) and control set-

14

3.2. USE OF RL IN WELL PLANNING 15

tings of injectors and producers to maximize the production and 2) minimize the risk related to

achieving low net present value (NPV). The authors propose an iterative simultaneous proce-

dure, where trajectory and control settings are updated for each iteration because it outperforms

more common sequential optimization as claimed in that paper. Yeten et al. [33] used GA in

conjunction with an artificial neural network, a hill-climber, and a near-well up-scaling tech-

nique to determine the optimum well location and trajectory for non-conventional (multilateral)

wells. Due to its stochastic nature, GA requires multiple iterations.

The artificial fish swarm algorithm is used to optimize the goal function, which is the small-

est well length (AFSA) [6]. The calculations were completed using the Matlab environment.

Compared to previously published data, AFSA optimization offers the best numerical results

and the shortest route while also providing great stability and reliability. The algorithm has a

basic structure and fast convergence, resulting in a global optimum in a short amount of time.

As a result, AFSA can be utilized to determine the best drilling path. An article has shown that

because of the difference between an actual trajectory and a planned trajectory, it is defined as

a multi-objective optimization problem (MOP) with parameter uncertainties [7].

3.2 Use of RL in Well Planning

For the past few years drilling engineers have been trying to reduce time and design costs using

the help of machine learning. Some of them were using reinforcement learning to learn and

perform based on previous experiences on their own. In the below section this report described

one of them.

3.2.1 Location Optimization of a well

In this article, the researchers put the well location selection problem as a multi-stage sequential

decision. Using reinforcement learning techniques to formulate sequential well location selec-

tion as a dynamic programming problem. Within the reinforcement learning framework, geo-

statistical simulation techniques have been applied to characterize the uncertainty in reservoir

models and determine the updates to the beliefs regarding reservoir rock properties resulting

16 CHAPTER 3. SOLUTION APPROACH

from alternative well location decisions and hypothetical observations at those locations. Be-

cause of the number of feasible sequences of well locations, the possible observations within

each sequence, and the computational demands of simulating updated reservoir properties, tra-

ditional dynamic programming solution methods are not trackable. They show the application

of reinforcement learning, a class of algorithms that combine "Monte Carlo" sampling methods

with functional approximations of the objective function. These methods provide a computa-

tionally tractable approach to exploring sequential well location selection with explicit consid-

eration of the information value of initial well locations.

Using this approach, they test the hypothesis that a well location selection strategy is more

robust to uncertainty in the initial data than single-stage optimization approaches. To test this

hypothesis, they apply a novel reinforcement learning framework to select well locations ac-

counting for information value. They have developed several proxy geostatistical models to

reduce the computational time and effort and explore the effects of using a proxy model on

the suggested well placement strategy. To find the solution to the well location problem, they

used Q-learning and discuss its limitations. They build the framework on a more straightfor-

ward two-dimensional well location problem, using tabular and artificial neural networks as

functional approximators. In the 2D case, they explored the sensitivity of the policy devel-

oped using reinforcement learning to the hyperparameters that control the exploration of the

state-action space and convergence to the optimal policy.

Moreover, the deep reinforcement learning algorithm is also used for the Stanford V and

SPE comparative solutions project model 2 reservoirs, which are more prominent three-dimensional

reservoir cases. The results of the more significant reservoir cases demonstrate the benefits of

sequential well location selection relative to single-stage optimization approaches. [34]

3.3 Proposed Solution

There are several common methods such as steepest ascent algorithm; conjugate gradient method;

LBFGS method; Levenberg−Marquardt algorithm; Gauss−Newton method;SPSA; EnOpt; EnKF;

SID−PSM; NEWUOA; QIM−AG. have been applied to sort out the trajectory optimaization

as well as the different machine learning algorithms has been pit into action as well, to present

3.3. PROPOSED SOLUTION 17

the more clear and comprehensive picture of path−finding.[19]

This thesis has been used reinforcement learning (RL) for number of reasons:

• Most of the previous thesis used machine learning algorithms those thesis used some prior

data for learning and training but RL does not use any sort of prior data.

• The RL model is efficient to solve the problems when there is a need to teach an AI agent

to make decisions in a complex environment.

• Training does not involve human intervention but instead allowing exploring rules based

on self-play only.

Last but not the least, Two of the main gaps of the method were restriction of the trajectory

movement to only two directions and restriction to optimize the well length on Vlemmix et al.

(2009).[17] Additionally, the adjoint-based optimization technique may get stuck in a locally

optimal solution. The method employs a drill-ability/smoothing algorithm to ensure dogleg

severity is below the predefined limit. This ensures that the final well trajectory is drill-able

and realistic. This approach confirmed the scope for developing an algorithm to predict the

well trajectory optimization and significantly improve the overall efficiency during FDP. Also,

in Chiranth and Ken (2018) [5] paper, the optimization of the ROP model led to an increase

in MSE and TOB. Because of this problem, it may lead to additional costs due to not-optimal

use of bit energy, excessive vibrations, and drilling dysfunction. One more knowledge gap in

Chowdhury (2021) [19] is that only used 2D in python and 3D visualization in Unity3D but did

not mention the coordinates. Also, the path in 3D was not clear and directional.

Chapter 4

Implementation

This chapter manifests how each part of the system is brought about. The chapter begins with

the experimental procedure and the resulting architectural design. The section 4.2 explains the

3D program in Q-learning in Matlab.

This report has described the key problem area in the previous chapter 3, which primarily

sheds light on the view of well trajectory optimization through the implementation of ML tech-

niques. The main goal of this report is to find an optimal path between two points by avoiding

obstacles in a three-dimensional grid view.

This report is using a 3D program in Matlab to show the effectiveness of the algorithm in

this case. Up to a point, the 2D program or environment reflects a partial picture of the path

tracing of the well, which does not provide an intelligible or substantial solution in the real-life

scenario.[19] That’s why this thesis shows a 3D overview of a well and to build more concrete

picture through the application of a 3D program. This paper is not only concerned to present a

more efficient path tracing but also reflecting a more transparent and comparable picture of the

well trajectory by avoiding collisions.

18

4.1. EXPERIMENTAL PROCEDURE 19

4.1 Experimental Procedure

There are several ways to detect the shortest paths, this thesis has used several tools to exhibit

the results. Sequentially, this paper has used Travelling Salesmen Problem and Ant Colony Op-

timization(ACO) tools before determining the results through applying reinforcement learning.

4.1.1 Environmental Overview

The two most important factors lead the whole program or experimental environment. One

is Obstacles that contain hard, soft, and normal constraints. The other one is desired well

path where the essential factors are the start and the endpoints. Just as importantly, the 3D

environment contains 3D cubes that are generated based on different location points and those

points are defined based on north, east, and TVD.

4.1.2 Obstacles in 3D space

The implementation program in Matlab uses obstacles that are similar to real-world oil paths

that have been drilled in that area. For this program, the primary constraint is a soft or a hard

obstacle as well as some normal constraints.

Point to grid conversion

For the existing wells, it uses the east, north, and TVD values to generate the well structure.

But for this research need 3D cubes to generate the 3-dimensional environment. To achieve that

goal this thesis used a point conversion process based on the MRST toolbox shown in figure

4.1.

Hard obstacle or hard constraints

The hard obstacle is analogous to the existing oil path. In the real world, we cannot drill through

an existing oil path while drilling a new one. Thus, when optimizing a trajectory, avoiding

previous paths is critical. In the Matlab program, the algorithm determines the optimal path

20 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Points conversion flow

Figure 4.2: Point conversion code

using cost estimation. As a result, the cost/weight of a hard obstacle is significantly greater (this

thesis used -1000), preventing the new path from intersecting.

Soft Obstacle or soft constraints

The soft obstruction is analogous to the outer layer of the existing oil path. In ideal cases,

drillers avoid drilling new paths adjacent to existing ones, but this can be done if there is no

other option. Similarly, the cost/weight of soft obstacles is moderate (this thesis used -10),

4.1. EXPERIMENTAL PROCEDURE 21

allowing the algorithm to perform overall cost estimation and intersect with it only when the

cost of avoiding is significantly greater than the cost of passing.

4.1.3 Start and End Points

The program contains two points: a start point and a target or end point. These points corre-

spond to the positions of oil deposits on the surface and underground. Every point is generated

based on east, north, and TVD value. In the Matlab program, the start point is located at the

top or a specific position of the diagram and the target point is located at the bottom.The point

conversion process described in 4.1.2 section.

4.1.4 Cost and Reward Calculation

Because RL determines the optimal path based on the total cost, cost estimation is a critical

component of the algorithm.

Reinforcement Learning Program

Because the program is written in a grid-world environment, each grid has a cost of 10 and is

called normal grid. Additionally, because the program is designed to avoid obstacles whenever

possible, the cost of obstacle grids is higher than the cost of a standard grid. The cost of a hard

obstacle is set to -1000 because the desired path should avoid it; additionally, a small cost of

-10 has been specified for a soft obstacle. Additional obstacles can be added at a different cost.

For reaching the goal, a reward of 100000 is given.

4.1.5 Grid Index Structure

As this thesis stands for a grid view environment, the structure of the grid index is an essential

factor. This section described the grid index structure. The figure 4.1 shows the point conversion

process which returns only 3 points i,j, and k but this thesis used 2 more indexes. One is the

index number or grid number and the other one is the reward value or the cost which shows in

the 4.5 listing.

22 CHAPTER 4. IMPLEMENTATION

4.2 3D Program

This section discusses the three-dimensional implementation of the program. The primary ob-

jective of the 3D program was to find the optimal path while avoiding obstacles or hard con-

straints (existing oil paths) in a three-dimensional grid world.

Figure 4.3: Flowchart of Q-learning program in 3D

This flow chart 4.3 figured the 3D program in Matlab. The flow chart is mainly divided

into two parts of the program, where the main function flow refers to the initial conditions, and

qTables are drawn. It also defines the parameters of the Greedy algorithm and passes to the

training episode flow. Max epoch 10000 means maximum training episodes, after completion

of the training, the algorithm finds the shortest path from the QTable, and if it reaches a terminal

state, the program ends and shows the result.

In the training episode loop diagram, The algorithm gets starting and end locations for the

path. If the probability factor is greater than the given random number in the training function,

which starts the training procedure. Based on the condition, the movement kicks on (left, right,

4.2. 3D PROGRAM 23

up, down, front, and back). Based on the reward template, the algorithm updates the Q table

and sends the information to the get shortest path function.

4.2.1 Program Configuration

The program configuration starts with the program’s initial conditions, such as start and end-

points for the drill path that are coming from the point conversion function. Then, obstacle

coordinates those are coming from the existing well data mentioned in the code Appendix A.2

section. In the real world, a well path is composed of several layers and constraints. First and

foremost, there is the existing drilled well path. This is named the hard layer or hard constraints.

Consecutively, there is a protective outer layer which is denoted as a soft layer that surrounds

the hard layer in six directions. Full code available in Appendix A.2.

4.2.2 Initializing the Environment and Training

There are some stop/terminal conditions mentioned below:

1. Start point can not be inside hard obstacles.

2. Crushed into hard obstacle

3. Reach End point

1 f u n c t i o n [a c t i o n _ i n d e x 1] = i s _ t e r m i n a l _ s t a t e (c u r r e n t _ g r i d _ i n d e x)

2 i f c u r r e n t _ g r i d _ i n d e x (: , 5) == −1000 | | c u r r e n t _ g r i d _ i n d e x (: , 5) ==

100000

3 %d i s p (" I s t e r m i n a l S t a t e t r u e ") ;

4 a c t i o n _ i n d e x 1 = t r u e ;

5 e l s e

6 a c t i o n _ i n d e x 1 = f a l s e ;

7 %d i s p (" I s t e r m i n a l S t a t e f a l s e ") ;

8 end

9 end

Listing 4.1: Termination condition for Q-learning program

24 CHAPTER 4. IMPLEMENTATION

Listing 4.2 shows how the agent enumerates many times starting from random position,trying

to maximize its reward(reach start-point). It gets a random row and column index and continues

choosing random row and column indexes until a non-terminal state is identified. Initially, the

starting point is (-140,1320,200).

1 f u n c t i o n [c u r r e n t _ g r i d _ i n d e x] = g e t _ s t a r t i n g _ l o c a t i o n ()

2 g l o b a l Combine ;

3 c u r r e n t _ g r i d _ i n d e x = p o i n t _ c o n v e r s i o n (−140 ,1320 ,200) ;

4 [~ , i d_9] = ismember (c u r r e n t _ g r i d _ i n d e x , Combine (: , 1 : 3) , ’ rows ’) ;

5 c u r r e n t _ g r i d _ i n d e x (: , 4) = id_9 ;

6 di sp (c u r r e n t _ g r i d _ i n d e x) ;

7 l i d x _ 0 = Combine (id_9 , end) ;

8 c u r r e n t _ g r i d _ i n d e x (: , 5) = l i d x _ 0 ;

9 di sp (c u r r e n t _ g r i d _ i n d e x) ;

10 whi le i s _ t e r m i n a l _ s t a t e (c u r r e n t _ g r i d _ i n d e x)

11 c u r r e n t _ g r i d _ i n d e x = Combine (r a n d i (s i z e (Combine , 1)) , :) ;

12 di sp (" from whi le s t a r t i n g l o c a t i o n ") ;

13 di sp (c u r r e n t _ g r i d _ i n d e x) ;

14 end

15 end

Listing 4.2: Staring condition for Q-learning program

Then it chooses next action from given state with the highest probability.The epsilon is for

adding some randomness to the agent.

1 f u n c t i o n [o u t p u t A r g 1] = g e t _ n e x t _ a c t i o n (c u r r e n t _ g r i d _ i n d e x , e p s i l o n)

2 g l o b a l q _ v a l s _ f o r _ 6 ;

3 i f rand < e p s i l o n && (c u r r e n t _ g r i d _ i n d e x (: , 1)) <7

4 [t r a , i n d a] = max (q _ v a l s _ f o r _ 6) ;

5 o u t p u t A r g 1 = i n d a ;

6 e l s e

7 o u t p u t A r g 1 = r a n d i (6) ;

8 %d i s p (o u t p u t A r g 1) ;

4.2. 3D PROGRAM 25

9 end

10 end

Listing 4.3: Choose best action for Q-learning program

once the action is chosen,the agent returns the location and updates the action index after making

that action.

1 f u n c t i o n [n e w _ g r i d _ i n d e x] = g e t _ n e x t _ l o c a t i o n (c u r r e n t _ g r i d _ i n d e x ,

a c t i o n _ i n d e x)

2 g l o b a l Combine ;

3 n e w _ g r i d _ i n d e x = c u r r e n t _ g r i d _ i n d e x ;

4 a c t i o n s = [" up " , " r i g h t " , " down " , " l e f t " , " back " , " f r o n t "] ;

5 i f a c t i o n s (a c t i o n _ i n d e x) == " up " && c u r r e n t _ g r i d _ i n d e x (: , 3) > 1

6 n e w _ g r i d _ i n d e x = [c u r r e n t _ g r i d _ i n d e x (: , 1) , c u r r e n t _ g r i d _ i n d e x (: , 2)

, c u r r e n t _ g r i d _ i n d e x (: , 3) −1] ;

7 [~ , i d x] = ismember (new_gr id_ index , Combine (: , 1 : 3) , ’ rows ’) ;

8 n e w _ g r i d _ i n d e x (: , 4) = un iq ue (i d x) ;

9 l i d x = Combine (idx , end) ;

10 n e w _ g r i d _ i n d e x (: , 5) = l i d x ;

11 e l s e i f a c t i o n s (a c t i o n _ i n d e x) == " down " && c u r r e n t _ g r i d _ i n d e x (: , 3) <

max (Combine (: , 3))

12 n e w _ g r i d _ i n d e x = [c u r r e n t _ g r i d _ i n d e x (: , 1) , c u r r e n t _ g r i d _ i n d e x (: , 2)

, c u r r e n t _ g r i d _ i n d e x (: , 3) + 1] ;

13 [~ , i d x] = ismember (new_gr id_ index , Combine (: , 1 : 3) , ’ rows ’) ;

14 n e w _ g r i d _ i n d e x (: , 4) = un iq ue (i d x) ;

15 l i d x = Combine (idx , end) ;

16 n e w _ g r i d _ i n d e x (: , 5) = l i d x ;

17 e l s e i f a c t i o n s (a c t i o n _ i n d e x) == " l e f t " && c u r r e n t _ g r i d _ i n d e x (: , 1) <

max (Combine (: , 3))

18 n e w _ g r i d _ i n d e x = [c u r r e n t _ g r i d _ i n d e x (: , 1) +1 , c u r r e n t _ g r i d _ i n d e x

(: , 2) , c u r r e n t _ g r i d _ i n d e x (: , 3)] ;

19 [~ , i d x] = ismember (new_gr id_ index , Combine (: , 1 : 3) , ’ rows ’) ;

26 CHAPTER 4. IMPLEMENTATION

20 n e w _ g r i d _ i n d e x (: , 4) = un iq ue (i d x) ;

21 l i d x = Combine (idx , end) ;

22 n e w _ g r i d _ i n d e x (: , 5) = l i d x ;

23 e l s e i f a c t i o n s (a c t i o n _ i n d e x) == " r i g h t " && c u r r e n t _ g r i d _ i n d e x (: , 1) >

1

24 n e w _ g r i d _ i n d e x = [c u r r e n t _ g r i d _ i n d e x (: , 1) −1 , c u r r e n t _ g r i d _ i n d e x

(: , 2) , c u r r e n t _ g r i d _ i n d e x (: , 3)] ;

25 [~ , i d x] = ismember (new_gr id_ index , Combine (: , 1 : 3) , ’ rows ’) ;

26 n e w _ g r i d _ i n d e x (: , 4) = un iq ue (i d x) ;

27 l i d x = Combine (idx , end) ;

28 n e w _ g r i d _ i n d e x (: , 5) = l i d x ;

29 e l s e i f a c t i o n s (a c t i o n _ i n d e x) == " back " && c u r r e n t _ g r i d _ i n d e x (: , 2) <

max (Combine (: , 3))

30 n e w _ g r i d _ i n d e x = [c u r r e n t _ g r i d _ i n d e x (: , 1) , c u r r e n t _ g r i d _ i n d e x (: , 2)

+1 , c u r r e n t _ g r i d _ i n d e x (: , 3)] ;

31 [~ , i d x] = ismember (new_gr id_ index , Combine (: , 1 : 3) , ’ rows ’) ;

32 n e w _ g r i d _ i n d e x (: , 4) = un iq ue (i d x) ;

33 l i d x = Combine (idx , end) ;

34 n e w _ g r i d _ i n d e x (: , 5) = l i d x ;

35 e l s e i f a c t i o n s (a c t i o n _ i n d e x) == " f r o n t " && c u r r e n t _ g r i d _ i n d e x (: , 2) >

1

36 n e w _ g r i d _ i n d e x = [c u r r e n t _ g r i d _ i n d e x (: , 1) , c u r r e n t _ g r i d _ i n d e x (: , 2)

−1 , c u r r e n t _ g r i d _ i n d e x (: , 3)] ;

37 [~ , i d x] = ismember (new_gr id_ index , Combine (: , 1 : 3) , ’ rows ’) ;

38 n e w _ g r i d _ i n d e x (: , 4) = un iq ue (i d x) ;

39 l i d x = Combine (idx , end) ;

40 n e w _ g r i d _ i n d e x (: , 5) = l i d x ;

41 end

42 end

Listing 4.4: Choose next location for Q-learning program

4.2. 3D PROGRAM 27

The shortest path function in listing 4.5 takes start location as its parameters. The agent

will immediately return if this is an invalid starting location. If the start location is valid then

continue moving the path until reaches the end location. Moreover, while it is moving toward

the goal, it updates the shortest path index. After the training episode is finished, it accepts the

end location and returns the shortest path of both locations. The path location final array will

be looked like 5.2.

1 f u n c t i o n [s h o r t e s t _ p a t h] = g e t _ s h o r t e s t _ p a t h (s t a r t _ g r i d _ i n d e x)

2 i f i s _ t e r m i n a l _ s t a t e (s t a r t _ g r i d _ i n d e x)

3 di sp (" The t e r m i n a l s t a t e i s s t a r t i n g i n d e x ") ;

4 re turn ;

5 e l s e

6 di sp (" S t a r t i n g i n d e x i n n o t t h e t e r m i n a l s t a t e ") ;

7 c u r r e n t _ g r i d _ i n d e x = s t a r t _ g r i d _ i n d e x ;

8 s h o r t e s t _ p a t h = [] ;

9 s h o r t e s t _ p a t h = [s h o r t e s t _ p a t h , c u r r e n t _ g r i d _ i n d e x] ;

10 whi le ~ i s _ t e r m i n a l _ s t a t e (c u r r e n t _ g r i d _ i n d e x)

11 a c t i o n _ i n d e x = g e t _ n e x t _ a c t i o n (c u r r e n t _ g r i d _ i n d e x , 0 . 9) ; % 0 . 4

i s t h e e p s i l o n v a l u e

12 c u r r e n t _ g r i d _ i n d e x = g e t _ n e x t _ l o c a t i o n (c u r r e n t _ g r i d _ i n d e x ,

a c t i o n _ i n d e x) ;

13 s h o r t e s t _ p a t h = [s h o r t e s t _ p a t h , c u r r e n t _ g r i d _ i n d e x] ;

14 %d i s p (’ From S h o r t e s t Path ’) ;

15 di sp (s h o r t e s t _ p a t h) ;

16 end % w h i l e end

17 end % i f end

18 end %f u n c t i o n end

Listing 4.5: Get shortest Path for Q-learning program

28 CHAPTER 4. IMPLEMENTATION

4.2.3 Generating 3D Environment

The core concept of this thesis is the 3D Environment and to generate this environment, this the-

sis used some techniques as well as some basic programming concepts which will be discussed

in the following section. Firstly, it uses the MRST as a toolbox or third-party library.

1 mrstModule add ad − c o r e ad − b l a c k o i l d i a g n o s t i c s w e l l p a t h s

Then for finding the center of the whole grid box it uses very basic programming logic.

1 pdims = [3 3 0 0 , 1400 , 2 0 0 0] ;

2 dims = [2 0 , 20 , 2 0] ;

3 XX = pdims . / dims ; % For midd le p o i n t

4 F i n d _ c e n t r e = pdims . / 2 ; %Used t h i s v a r i a b l e t o f i n d t h e c e n t e r

Finally, using the help of MRST it generates the 3D grid view which shown in below code

and full workable code will be available on Appendix A.

1 G = c a r t G r i d (dims , pdims) ;

2 G = computeGeometry (G) ;

3 pos_Nor th = abs (Nor th) ; %Ref w e l l d a t a n o r t h v a l u e

4 a = [pos_North , E a s t] ; % combine n o r t h and e a s t

5 aa = [a (: , 1) + F i n d _ c e n t r e (1) , a (: , 2) + F i n d _ c e n t r e (2)] ;

6 w e l l p a t h 1 = m a k e S i n g l e W e l l p a t h ([aa ,TVD]) ; % Pa th g e n e r a t i o n

7 w e l l p a t h _ f o r k = combineWel lPa ths ({ w e l l p a t h 1 }) ; % Combine i n t o s i n g l e

w e l l p a t h

8 [c e l l s _ f o r k 1 , s e g I n d _ f o r k 1 , ~ , ~ , DT1] = f i n d W e l l P a t h C e l l s (G,

w e l l p a t h _ f o r k) ; % Dete rmine t h e c e l l s

Listing 4.6: Generating 3D Environment

4.2.4 Point Conversion Process

This section is the most important part of this thesis. As user only knows about the east value,

north value, and the tvd values but to achieve the goal of this thesis need to covert these points

into 3D grids. By using the following 4.7 code the point conversation has been done.

4.2. 3D PROGRAM 29

1 f u n c t i o n [c o n v e r s i o n _ o u t] = p o i n t _ c o n v e r s i o n (e a s t _ v a l , n o r t h _ v a l ,

t v d _ v a l)

2 pdims = [3 3 0 0 , 1400 , 2 0 0 0] ; %changed based on v a l u e

3 dims = [1 0 , 10 , 1 0] ; %t h i s can be changed based on g r i d

4 d i r e c t i o n _ x y z = pdims . / dims ;

5 c e n t r e _ p o i n t = pdims . / 2 ;

6 di sp (n o r t h _ v a l + c e n t r e _ p o i n t) ;

7 dem1 = n o r t h _ v a l + c e n t r e _ p o i n t (1) ;

8 dem2 = e a s t _ v a l + c e n t r e _ p o i n t (2) ;

9 n o r t h _ o u t = i n t 3 2 (dem1 / d i r e c t i o n _ x y z (1)) ;

10 e a s t _ o u t = i n t 3 2 (dem2 / d i r e c t i o n _ x y z (2)) ;

11 t v d _ o u t = i n t 3 2 (t v d _ v a l / d i r e c t i o n _ x y z (3)) ;

12 c o n v e r s i o n _ o u t = [e a s t _ o u t , n o r t h _ o u t , t v d _ o u t] ;

13 %d i s p (c o n v e r s i o n _ o u t) ;

14 end

Listing 4.7: Point conversion in Matlab

4.2.5 3D Visualization

MRST Matlab toolbox allows to plot 3 dimensional grid using the plotGrid function. PlotGrid

is an essential part of MRST’s visualization routines. It simply draws a grid to a figure with a

reversed z axis. [35].

1 p l o t G r i d (G, f i n a l _ p l o t _ a r r a y (: , 4) , ’ FaceCo lo r ’ , ’ r e d ’ , ’ FaceAlpha ’ , . 9)

;

Listing 4.8: 3D final grid visualization

In this report, the figure 5.6 and figure 5.7 shows the out put results using the above code

4.8 and the final-plot-array from 5.2.

Chapter 5

Results

This chapter presents the results from the implementation done in Chapter 4. It starts by show-

ing and explaining the results of Matlab program.

5.1 3D Environment using MRST

MRST contains a suite of visualization routines that make it easy to create visualizations of

grids and results. The following figure 5.1 shows how to visualize grids, and subsets of grids

and details the different routines included in MRST. [35]

5.2 Existing Wells in Grid View

Figure 5.2 and figure 5.3 shows the existing wells visualization. It is much important for this

thesis because the existing wells are considered as hard and the surrounded grids are considered

soft constraints. After generating the grid view the structure draws an existing well path and

then converted the well path into grids. Those grids are equivalent to the specific points of the

well path. Figure 5.2 shows the red curve inside the dark blue grids which is the actual existing

well path.

30

5.2. EXISTING WELLS IN GRID VIEW 31

Figure 5.1: 3D visualisation of environment using MRST toolbox

Figure 5.2: Single well 3D visualisation

32 CHAPTER 5. RESULTS

Figure 5.3: Multiple well 3D visualisation

5.3 Results from QLearning in Matlab

For the training purpose, this thesis used 8000 grids but the environment will work for any

number of grids.The figure 5.4 and 5.5, shows the starting and the endpoint. These are grids in

the 3D grid view but this grid was generated based on the North, East, and TVD value by using

the point conversion process which is discussed in section 4.1. That means north was -140,

east was 1320 and the TVD was 200 for the first point and (280,990,4000) for the second point

respectively. As the system used [3300, 1400, 2000] points in each direction then the Matlab

code found the center points based on grid numbers and finally visualize them into the graph.

5.3. RESULTS FROM QLEARNING IN MATLAB 33

Figure 5.4: Start and end point zoom in view

(a) View another side (b) View One side

Figure 5.5: Start and end point

34 CHAPTER 5. RESULTS

Figure 5.6 shows the optimized path from point A (start point shown in the yellow box) to

point B (endpoint shown in the green box). The result is found after 10000 training episodes. It

should be noted that the result is not unique. With the same condition, a different path can be

found because all the paths/results have the same total cost. One more important note is that, as

the system used the Q Learning greedy approach, it always tries to find a simpler and shortest

path to reach its goal. That’s why it gave a more flat and straight path as much as possible as

well as a curve in some cases. This also indicates that, if the start point can be moved closer to

the goal on the 3D surface, more drilling costs can be saved.

Figure 5.6: Path design using reinforcement learning

5.3. RESULTS FROM QLEARNING IN MATLAB 35

Figure 5.7 and 5.8 show two different points and their optimized path without any collisions.

Here the endpoint is much closer to the soft as well as a hard obstacle.

Figure 5.7: End point close to the obstacle

Figure 5.8: Avoiding collisions side view

36 CHAPTER 5. RESULTS

Figure 5.9 shows a different angle view from the 3D visualization of the final result. The

figure, clearly showed that the generated path is more clear in the three-dimensional grid world

and represented the path using grids. As mentioned before that, all the 3D cubes have six

directions and this result considered all the directions for finding the optimized path.

Figure 5.9: Avoiding collisions down side view

5.3. RESULTS FROM QLEARNING IN MATLAB 37

The listing 5.2 output array represents the path indexes and generates the path shown in

figure 5.9 or 5.8 or 5.7. In this output array, the fourth column indicates the grid index or grid

number. Also, the point-to-grid index conversion was done with the help of the MRST toolbox

and used the following code:

1 s = 1 :G. c e l l s . num ; %f i n d i n g t h e c e l l number u s i n g mrs t

2 [i j k { 1 : 3 }] = i n d 2 s u b (dims ,G. c e l l s . indexMap (:)) ;

3 i j k = [i j k { : }] ;

4 indexw = i j k ; % S t o r i n g i , j , k

5 i ndex_up = indexw ;

6 i ndex_up (: , 4) = s ; % a s s i g n i n g t h e g r i d i n d e x or c e l l number i n f o r t h

column

Listing 5.1: Grid index calculation using MRST

1 f i n a l _ p l o t _ a r r a y = [

2 I J K Index

3 4 9 2 564

4 4 9 3 964

5 4 9 4 1364

6 4 9 5 1764

7 4 10 5 1784

8 4 10 6 2184

9 4 10 7 2584

10 4 10 8 2984

11 4 10 9 3384

12 4 10 10 3784

13 4 9 10 3764

14 4 9 11 4164

15 4 9 12 4564

16 4 9 13 4964

17 4 8 14 5344

18 5 8 14 5345

38 CHAPTER 5. RESULTS

19 5 9 14 5365

20 5 9 15 5765

21 5 9 16 6165

22 5 9 17 6565

23 5 9 18 6965

24 5 9 19 7365

25 5 9 20 7765

26 5 8 20 7745

27 6 8 20 7746

28 7 8 20 7747

29 8 8 20 7748

30 9 8 20 7749

31 10 8 20 7750

32 11 8 20 7751

33 12 8 20 7752

34 13 8 20 7753

35 14 8 20 7754

36] ;

Listing 5.2: Result points with index

Chapter 6

Discussion and Conclusion

6.1 Discussion on the results

Based on the results presented in Chapter 5, the Matlab program behaves as expected in terms

of performance.

As only obstacles are given as a condition, the Matlab program finds a path by avoiding the

obstacles. It should be noted that there are three dimensions in RL program and the result is as

expected in the 3D grid view.

If more conditions are added, their behavior will change. If the condition of the mud layer

is given, they may try to make a path close to obstacles or go through soft obstacles also.

6.2 Limitations

The Matlab program has some limitations in terms of time complexity. It takes more time to

execute full code and train the whole model. This is one of the reasons for using 8000 grids for

testing and training the agent. Also, did not consider the condition such as rock formation, mud

layer, or steering condition, the algorithm provides a less realistic result for the instant curve

structure of the well path. Furthermore, in some cases, the path goes into the soft obstacles that

are near to the hard ones.

Another limitation was, that in the Matlab program, there were some visualization issues.

For differentiating or positioning the existing wells, this program used variables to separate

39

Bibliography

these into the 3D environment.

6.3 Conclusion

By the way of conclusion, the objective of this thesis was to design a path and optimize with

obstacle avoidance via reinforcement learning for well path optimization in a three-dimensional

grid world. Although, there are similar works going on for well path optimization using differ-

ent machine learning algorithms and enhancing existing optimization techniques. However, the

result shows that reinforcement learning can be a good option for path optimization in the 3D

environment using Matlab.

Last but not the least, it shows proper visualization in 3D than the previous 2D visualization

in other thesis [19]. At the end of the conclusion, there will be some more opportunities to start

work on using this 3D environment which is shown in this thesis section 4.2.

6.4 Future Work

This study can be used as a stepping stone to develop drilling optimization solutions, but before

this, it is advisable to follow the next steps:

• Comprehensive testing, path design with different configurations.

• More research on MRST [10] toolbox to extent more knowledge.

• Evaluate using the Principal Component Analysis (PCA)[36], against traditional input

selection based on petroleum engineering knowledge, and evaluate to determine the best

methodology.

Some other drilling parameters should be considered in the future to make the outcomes

more realistic.

References

[1] SPE. Directional Drilling. https://petrowiki.spe.org/Directional_drilling.

[2] Xiushan LIU. A true three-dimensional wellbore positioning method based on the earth

ellipsoid. Petroleum Exploration and Development, 44:299–305, 04 2017. doi: 10.1016/

S1876-3804(17)30034-4.

[3] Amin Atashnezhad, David A. Wood, Ali Fereidounpour, and Rasoul Khosravanian. De-

signing and optimizing deviated wellbore trajectories using novel particle swarm al-

gorithms. Journal of Natural Gas Science and Engineering, 21:1184–1204, 2014.

ISSN 1875-5100. doi: https://doi.org/10.1016/j.jngse.2014.05.029. URL https://www.

sciencedirect.com/science/article/pii/S1875510014001553.

[4] David A. Wood. Hybrid bat flight optimization algorithm applied to complex wellbore

trajectories highlights the relative contributions of metaheuristic components. Journal of

Natural Gas Science and Engineering, 32:211–221, 2016. ISSN 1875-5100. doi: https://

doi.org/10.1016/j.jngse.2016.04.024. URL https://www.sciencedirect.com/science/article/

pii/S1875510016302475.

[5] Chiranth Hegde and Ken Gray. Evaluation of coupled machine learning models for

drilling optimization. Journal of Natural Gas Science and Engineering, 56:397–407,

2018. ISSN 1875-5100. doi: https://doi.org/10.1016/j.jngse.2018.06.006. URL https:

//www.sciencedirect.com/science/article/pii/S1875510018302543.

[6] Zhang H. Gao D Sun, T. Application of the artificial fish swarm algorithm to well

trajectory optimization. Chem Technol Fuels Oils 55, 213–218, 2019. doi: https:

//doi.org/10.1007/s10553-019-01023-7.

41

https://petrowiki.spe.org/Directional_drilling
https://www.sciencedirect.com/science/article/pii/S1875510014001553
https://www.sciencedirect.com/science/article/pii/S1875510014001553
https://www.sciencedirect.com/science/article/pii/S1875510016302475
https://www.sciencedirect.com/science/article/pii/S1875510016302475
https://www.sciencedirect.com/science/article/pii/S1875510018302543
https://www.sciencedirect.com/science/article/pii/S1875510018302543

Bibliography

[7] Wendi Huang, Min Wu, Luefeng Chen, Jinhua She, Hiroshi Hashimoto, and Seiichi

Kawata. Multiobjective drilling trajectory optimization considering parameter uncertain-

ties. IEEE Transactions on Systems, Man, and Cybernetics: Systems, pages 1–10, 2020.

doi: 10.1109/TSMC.2020.3019428.

[8] Angelsen S. Sollie. O.K. Suyuthi A. Mistry R. Myrseth P. Tveiten Ellingsen, H.P. Study

on machine learning in the norwegian petroleum industry. 2020. URL https://www.og21.

no/en/strategy-and-analyses/og21-studies-and-analyses/previous-years-studies/.

[9] MATLAB. Get Started with MATLAB. https://se.mathworks.com/help/matlab/.

[10] MRST. MATLAB Reservoir Simulation Toolbox. https://www.sintef.no/projectweb/mrst/.

[11] Expert System. What is machine learning? a definition. URL https://expertsystem.com/

machine-learning-definition.

[12] Tom Mitchel. Machine Learning. McGraw-Hill, illustrated edition, 1997. ISBN

0071154671, 9780071154673. URL http://www.cs.cmu.edu/~tom/mlbook.html.

[13] Wikipedia contributors. Reinforcement learning — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=Reinforcement_learning&oldid=1029168114, 2021.

[Online; accessed 13-July-2022].

[14] Andre Violante. Simple reinforcement learning: Q-learning. https://towardsdatascience.

com/simple-reinforcement-learning-q-learning-fcddc4b6fe56, 2019.

[15] Suraj Bansal. Rl explained- reinforcing the intuition and math. https://medium.

datadriveninvestor.com/rl-explained-reinforcing-the-intuition-and-math-fd1185369186,

2020. [Online; accessed 13-July-2022].

[16] Team-Saida. Gridworld. https://teamsaida.github.io/SAIDA_RL/GridWorld/.

[17] Joosten Gerard J.P. Brouwer Roald Vlemmix, Stijn and Jan-Dirk Jansen. Adjoint-based

well trajectory optimization. 2009. doi: https://doi.org/10.2118/121891-MS.

https://www.og21.no/en/strategy-and-analyses/og21-studies-and-analyses/previous-years-studies/
https://www.og21.no/en/strategy-and-analyses/og21-studies-and-analyses/previous-years-studies/
https://se.mathworks.com/help/matlab/
https://www.sintef.no/projectweb/mrst/
https://expertsystem.com/machine-learning-definition
https://expertsystem.com/machine-learning-definition
http://www.cs.cmu.edu/~tom/mlbook.html
https://en.wikipedia.org/w/index.php?title=Reinforcement_learning&oldid=1029168114
https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56
https://towardsdatascience.com/simple-reinforcement-learning-q-learning-fcddc4b6fe56
https://medium.datadriveninvestor.com/rl-explained-reinforcing-the-intuition-and-math-fd1185369186
https://medium.datadriveninvestor.com/rl-explained-reinforcing-the-intuition-and-math-fd1185369186
https://teamsaida.github.io/SAIDA_RL/GridWorld/

Bibliography REFERENCES 43

[18] Zandvliet M.J. van Essen G.M. Brouwer D.R. Handels, M. and J.D. Jansen. Adjoint based

well-placement optimization under production constraints. 2007. doi: https://doi.org/10.

2118/105797-MS.

[19] UiS. Investigation and study on reinforcement learning for optimizing well path. https:

//uis.brage.unit.no/uis-xmlui/handle/11250/2788790.

[20] Open Lab App. OpenLab Drilling Web Application. https://openlab.app/.

[21] Drilling Data Web Application. Drilling Data Web Application. http://drillbotics.ddns.

net/.

[22] eDrilling. Products. https://www.edrilling.no/#featured, 2021. [Online; accessed 11-July-

2022].

[23] petromehras contribution. drilling-completion-software:wellplanner. https://www.

petromehras.com/petroleum-software-directory/drilling-completion-software/wellplanner,

2019. [Online; accessed 11-July-2022].

[24] petromehras contribution. drilling-completion-software:wellsim. https://www.petromehras.

com/petroleum-software-directory/drilling-completion-software/wellsim, 2019. [Online; ac-

cessed 11-July-2022].

[25] Schlumberger press release. Schlumberger announces delfi cognitive ep environment.

https://www.slb.com/newsroom/press-release/2017/pr-2017-0913-delfi, 2017. [Online; ac-

cessed 11-July-2022].

[26] Schlumberger . Drillplan. https://www.software.slb.com/delfi/delfi-experience/drillplan,

2018. [Online; accessed 11-July-2022].

[27] Schlumberger . Drillbench. https://www.software.slb.com/products/drillbench#

sectionFullWidthTable, 2015. [Online; accessed 11-July-2022].

[28] Halliburton . H012161 datasheet. https://www.landmark.solutions/Portals/0/LMSDocs/

Datasheets/WellPlan_Software_DATASHEET-.pdf, 2016. [Online; accessed 11-July-2022].

https://uis.brage.unit.no/uis-xmlui/handle/11250/2788790
https://uis.brage.unit.no/uis-xmlui/handle/11250/2788790
https://openlab.app/
http://drillbotics.ddns.net/
http://drillbotics.ddns.net/
https://www.edrilling.no/#featured
https://www.petromehras.com/petroleum-software-directory/drilling-completion-software/wellplanner
https://www.petromehras.com/petroleum-software-directory/drilling-completion-software/wellplanner
https://www.petromehras.com/petroleum-software-directory/drilling-completion-software/wellsim
https://www.petromehras.com/petroleum-software-directory/drilling-completion-software/wellsim
https://www.slb.com/newsroom/press-release/2017/pr-2017-0913-delfi
https://www.software.slb.com/delfi/delfi-experience/drillplan
https://www.software.slb.com/products/drillbench#sectionFullWidthTable
https://www.software.slb.com/products/drillbench#sectionFullWidthTable
https://www.landmark.solutions/Portals/0/LMSDocs/Datasheets/WellPlan_Software_DATASHEET-.pdf
https://www.landmark.solutions/Portals/0/LMSDocs/Datasheets/WellPlan_Software_DATASHEET-.pdf

Bibliography

[29] Halliburton . Decisionspace®365. https://www.landmark.solutions/Portals/0/LMSDocs/PDF/

DecisionSpace365.pdf?ver=2021-04-13-194707-547, 2020. [Online; accessed 11-July-2022].

[30] Khosravanian R. Wood D.A. Mansouri, V. Optimizing the separation factor along a di-

rectional well trajectory to minimize collision risk. J Petrol Explor Prod Techno, 10:

2113–2125, 2020.

[31] Daniel Busby; Frédérik Pivot; Amine Tadjer. Use of data analytics to improve well place-

ment optimization under uncertainty. Abu Dhabi International Petroleum Exhibition Con-

ference, 2017. doi: https://doi.org/10.2118/188265-MS.

[32] Ranran Lu; Fahim Forouzanfar; A. C. Reynolds. Bi-objective optimization of well place-

ment and controls using stosag. SPE Reservoir Simulation Conference, 2017. doi:

https://doi.org/10.2118/182705-MS.

[33] Durlofsky Louis J. Yeten, Burak and Khalid Aziz. Optimization of nonconventional well

type, location, and trajectory. SPE J, 2003. doi: https://doi.org/10.2118/86880-PA.

[34] Kshitij Dawar. Reinforcement learning for well location optimization.

[35] Visualizing in MRST. Visualizing in MRST. https://www.sintef.no/projectweb/mrst/

documentation/tutorials/visualization-tutorial/.

[36] Hervé Abdi and Lynne J. Williams. Principal component analysis. WIREs Computational

Statistics, 2(4):433–459, 2010. doi: 10.1002/wics.101. URL https://onlinelibrary.wiley.

com/doi/abs/10.1002/wics.101.

https://www.landmark.solutions/Portals/0/LMSDocs/PDF/DecisionSpace365.pdf?ver=2021-04-13-194707-547
https://www.landmark.solutions/Portals/0/LMSDocs/PDF/DecisionSpace365.pdf?ver=2021-04-13-194707-547
https://www.sintef.no/projectweb/mrst/documentation/tutorials/visualization-tutorial/
https://www.sintef.no/projectweb/mrst/documentation/tutorials/visualization-tutorial/
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101
https://onlinelibrary.wiley.com/doi/abs/10.1002/wics.101

Appendices

45

Appendix A

Matlab Code

A.1 Installed Packages and Softwares

Name Version Reference

MATLAB R2022a Download Matlab

MRST MRST 2022a Download MRST

A.2 Program Configuration Code

1 c l e a r

2 c l c

3 c l o s e a l l

4 mrstModule add ad − c o r e ad − b l a c k o i l d i a g n o s t i c s w e l l p a t h s

5 d a t a = ’ d a t a _ r e f w e l l . x l s x ’ ; %d a t a _ r e f w e l l

6 d a t a 1 = ’ d a t a _ o f f 2 _ n o r t h 1 0 0 . x l s x ’ ;

7 d a t a 3 = ’ d a t a _ o f f 3 _ e a s t 1 0 . x l s x ’ ;

8 d a t a 4 = ’ d a t a _ o f f 4 _ e a s t 2 0 . x l s x ’ ;

9 d a t a 5 = ’ d a t a _ o f f 5 _ a n g u l a r . x l s x ’ ;

10 North = x l s r e a d (da t a , ’ W e l l p a t h ’ , ’ P2 : P92 ’) ;

11 E a s t = x l s r e a d (da t a , ’ W e l l p a t h ’ , ’Q2 : Q92 ’) ;

12 TVD = x l s r e a d (da t a , ’ W e l l p a t h ’ , ’R2 : R92 ’) ;

47

https://se.mathworks.com/products/get-matlab.html
https://www.sintef.no/Projectweb/MRST/Download/

Bibliography

13 North1 = x l s r e a d (da ta1 , ’ W e l l p a t h ’ , ’ P2 : P92 ’) ;

14 E a s t 1 = x l s r e a d (da ta1 , ’ W e l l p a t h ’ , ’Q2 : Q92 ’) ;

15 TVD1 = x l s r e a d (da ta1 , ’ W e l l p a t h ’ , ’R2 : R92 ’) ;

16

17 North3 = x l s r e a d (da ta3 , ’ W e l l p a t h ’ , ’ P2 : P92 ’) ;

18 E a s t 3 = x l s r e a d (da ta3 , ’ W e l l p a t h ’ , ’Q2 : Q92 ’) ;

19 TVD3 = x l s r e a d (da ta3 , ’ W e l l p a t h ’ , ’R2 : R92 ’) ;

20 North4 = x l s r e a d (da ta4 , ’ W e l l p a t h ’ , ’ P2 : P92 ’) ;

21 E a s t 4 = x l s r e a d (da ta4 , ’ W e l l p a t h ’ , ’Q2 : Q92 ’) ;

22 TVD4 = x l s r e a d (da ta4 , ’ W e l l p a t h ’ , ’R2 : R92 ’) ;

23 North5 = x l s r e a d (da ta5 , ’ W e l l p a t h ’ , ’ P2 : P92 ’) ;

24 E a s t 5 = x l s r e a d (da ta5 , ’ W e l l p a t h ’ , ’Q2 : Q92 ’) ;

25 TVD5 = x l s r e a d (da ta5 , ’ W e l l p a t h ’ , ’R2 : R92 ’) ;

26 pdims = [3 3 0 0 , 1400 , 2 0 0 0] ;

27 dims = [2 0 , 20 , 2 0] ;

28 XX = pdims . / dims ;

29 F i n d _ c e n t r e = pdims . / 2 ; %Used t h i s v a r i a b l e t o f i n d t h e c e n t e r

30 G = c a r t G r i d (dims , pdims) ;

31 G = computeGeometry (G) ;

32 % Here j u s t u s i n g t h e a b s o l a t e v a l u e o f Nor th

33 pos_Nor th = abs (Nor th) ; %Ref w e l l d a t a n o r t h v a l u e

34 pos_Nor th1 = abs (Nor th1) ; %w e l l 1 d a t a n o r t h v a l u e

35 pos_Nor th3 = abs (Nor th3) ; %w e l l 3 d a t a n o r t h v a l u e

36 pos_Nor th4 = abs (Nor th4) ; %w e l l 4 d a t a n o r t h v a l u e

37 pos_Nor th5 = abs (Nor th5) ; %w e l l 5 d a t a n o r t h v a l u e

38

39 z = TVD;

40 zz = TVD1 ;

41 zzz = TVD3 ;

42

43 a = [pos_North , E a s t] ;

Bibliography A.2. PROGRAM CONFIGURATION CODE 49

44

45 aa = [a (: , 1) + F i n d _ c e n t r e (1) , a (: , 2) + F i n d _ c e n t r e (2)] ;

46 Cent_Nor th = pos_Nor th + F i n d _ c e n t r e (1) ;

47 C e n t _ E a s t = E a s t + F i n d _ c e n t r e (2) ;

48 b = [pos_North1 , E a s t 1] ;

49 bb = [b (: , 1) + F i n d _ c e n t r e (1) +XX(1) , b (: , 2) + F i n d _ c e n t r e (2) +XX(1)] ;

50

51 c = [pos_North3 , E a s t 3] ;

52 cc = [c (: , 1) + F i n d _ c e n t r e (1) +XX(1) *2 , c (: , 2) + F i n d _ c e n t r e (2) +XX(1) * 2] ;

53

54 c4 = [pos_North4 , E a s t 4] ;

55 cc4 = [c4 (: , 1) + F i n d _ c e n t r e (1) +XX(1) *2+XX(1) , c4 (: , 2) + F i n d _ c e n t r e (2) +XX

(1) *2+XX(1)] ;

56

57 c5 = [pos_North5 , E a s t 5] ;

58 cc5 = [c5 (: , 1) + F i n d _ c e n t r e (1) −XX(1) *3 , c5 (: , 2) + F i n d _ c e n t r e (2) −XX(1)

* 3] ;

59

60 w e l l p a t h 1 = m a k e S i n g l e W e l l p a t h ([aa , z]) ;

61 w e l l p a t h 2 = m a k e S i n g l e W e l l p a t h ([bb , zz]) ;

62 w e l l p a t h 3 = m a k e S i n g l e W e l l p a t h ([cc , zzz]) ;

63 w e l l p a t h 4 = m a k e S i n g l e W e l l p a t h ([cc4 , TVD4]) ;

64 w e l l p a t h 5 = m a k e S i n g l e W e l l p a t h ([cc5 , TVD5]) ;

65

66 % Combine i n t o s i n g l e w e l l p a t h

67 w e l l p a t h _ f o r k = combineWel lPa ths ({ w e l l p a t h 1 }) ; %w e l l p a t h 0 , ,

w e l l p a t h 3

68 w e l l p a t h _ f o r k 1 = combineWel lPa ths ({ w e l l p a t h 2 }) ;

69 w e l l p a t h _ f o r k 2 = combineWel lPa ths ({ w e l l p a t h 3 }) ;

70 w e l l p a t h _ f o r k 3 = combineWel lPa ths ({ w e l l p a t h 4 }) ;

71 w e l l p a t h _ f o r k 4 = combineWel lPa ths ({ w e l l p a t h 5 }) ;

Bibliography

72

73 % Dete rmine t h e c e l l s

74

75 [c e l l s _ f o r k 1 , s e g I n d _ f o r k 1 , ~ , ~ , DT1] = f i n d W e l l P a t h C e l l s (G,

w e l l p a t h _ f o r k) ;

76 [c e l l s _ f o r k 2 , s e g I n d _ f o r k 2 , ~ , ~ , DT2] = f i n d W e l l P a t h C e l l s (G,

w e l l p a t h _ f o r k 1) ;

77 [c e l l s _ f o r k 3 , s e g I n d _ f o r k 3 , ~ , ~ , DT3] = f i n d W e l l P a t h C e l l s (G,

w e l l p a t h _ f o r k 2) ;

78 [c e l l s _ f o r k 4 , s e g I n d _ f o r k 4 , ~ , ~ , DT4] = f i n d W e l l P a t h C e l l s (G,

w e l l p a t h _ f o r k 3) ;

79 [c e l l s _ f o r k , s e g I n d _ f o r k , ~ , ~ , DT] = f i n d W e l l P a t h C e l l s (G,

w e l l p a t h _ f o r k 4) ;

80

81 c l f ;

82 c = G. c e l l s . c e n t r o i d s ;

83 n = G. nodes . c o o r d s ;

84 s = 1 :G. c e l l s . num ;

85

86 [i j k { 1 : 3 }] = i n d 2 s u b (dims ,G. c e l l s . indexMap (:)) ;

87 i j k = [i j k { : }] ;

88 indexw = i j k ;

89 i ndex_up = indexw ;

90 i ndex_up (: , 4) = s ;

91 dem1 = pos_Nor th + F i n d _ c e n t r e (1) ;

92 dem2 = E a s t + F i n d _ c e n t r e (2) ;

93

94 f i r s t = u i n t 8 (dem1 /XX(1)) ;

95 second = u i n t 8 (dem2 /XX(2)) ;

96 t h i r d = u i n t 8 (TVD/XX(3)) ;

97

Bibliography A.2. PROGRAM CONFIGURATION CODE 51

98 p o i n t _ a r r a y = [f i r s t , second , t h i r d] ;

99 p o i n t _ a r r a y (~ p o i n t _ a r r a y) = 1 ;

100 p o i n t _ a r r a y = un iqu e (p o i n t _ a r r a y , ’ rows ’) ;

101 p o i n t _ a r r a y (p o i n t _ a r r a y > dims (1)) = dims (1) ;

102

103 [t f , i n d e x]= ismember (p o i n t _ a r r a y , indexw , ’ rows ’) ;

104 i n d e x = nonzeros (index ’) ;

105

106 %−−−−−−−−−SECOND PATH or PATH B−−−−−−

107 dem11 = pos_Nor th1 + F i n d _ c e n t r e (1) +XX(1) ;

108 dem21 = E a s t 1 + F i n d _ c e n t r e (2) +XX(1) ;

109

110 f i r s t 1 = u i n t 8 (dem11 /XX(1)) ;

111 second1 = u i n t 8 (dem21 /XX(2)) ;

112 t h i r d 1 = u i n t 8 (TVD1 /XX(3)) ;

113

114 p o i n t _ a r r a y 1 = [f i r s t 1 , second1 , t h i r d 1] ;

115 p o i n t _ a r r a y 1 (~ p o i n t _ a r r a y 1) = 1 ;

116 p o i n t _ a r r a y 1 = un iqu e (p o i n t _ a r r a y 1 , ’ rows ’) ;

117 p o i n t _ a r r a y 1 (p o i n t _ a r r a y 1 > dims (1)) = dims (1) ;

118 [t f 0 1 , index01]= ismember (p o i n t _ a r r a y 1 , indexw , ’ rows ’) ;

119 i ndex01 = nonzeros (index01 ’) ;

120

121 %−−−−−−−−PATH B ENDED−−−−−−−−−

122

123 %−−−−−−−−−−−−−−−−−THIRD PATH or PATH C−−−−−−−−−−

124 dem12 = pos_Nor th3 + F i n d _ c e n t r e (1) +XX(1) * 2 ;

125 dem22 = E a s t 3 + F i n d _ c e n t r e (2) +XX(1) * 2 ;

126

127 f i r s t 2 = u i n t 8 (dem12 /XX(1)) ;

128 second2 = u i n t 8 (dem22 /XX(2)) ;

Bibliography

129 t h i r d 2 = u i n t 8 (TVD3 /XX(3)) ;

130

131 p o i n t _ a r r a y 2 = [f i r s t 2 , second2 , t h i r d 2] ;

132 p o i n t _ a r r a y 2 (~ p o i n t _ a r r a y 2) = 1 ;

133 p o i n t _ a r r a y 2 = un iqu e (p o i n t _ a r r a y 2 , ’ rows ’) ;

134 p o i n t _ a r r a y 2 (p o i n t _ a r r a y 2 > dims (1)) = dims (1) ;

135 [t f 0 2 , index02]= ismember (p o i n t _ a r r a y 2 , indexw , ’ rows ’) ;

136 i ndex02 = nonzeros (index02 ’) ;

137

138 %−−−−−−−−−−−−−−−−−−−−−−−PATH C ENDED−−−−−−−−−−−−−

139

140 %−−−−−−−−−−−−−−−−−FOURTH PATH or PATH D−−−−−−−−

141 dem13 = pos_Nor th4 + F i n d _ c e n t r e (1) +XX(1) *2+XX(1) ;

142 dem23 = E a s t 4 + F i n d _ c e n t r e (2) +XX(1) *2+XX(1) ;

143 f i r s t 3 = u i n t 8 (dem13 /XX(1)) ;

144 second3 = u i n t 8 (dem23 /XX(2)) ;

145 t h i r d 3 = u i n t 8 (TVD4 /XX(3)) ;

146 p o i n t _ a r r a y 3 = [f i r s t 3 , second3 , t h i r d 3] ;

147 p o i n t _ a r r a y 3 (~ p o i n t _ a r r a y 3) = 1 ;

148 p o i n t _ a r r a y 3 = un iqu e (p o i n t _ a r r a y 3 , ’ rows ’) ;

149 p o i n t _ a r r a y 3 (p o i n t _ a r r a y 3 > dims (1)) = dims (1) ;

150 [t f 0 3 , index03]= ismember (p o i n t _ a r r a y 3 , indexw , ’ rows ’) ;

151 i ndex03 = nonzeros (index03 ’) ;

152

153 %−−−−−−−−−−−−−−−−−−PATH D ENDED−−−−−−−−−−−−−−−−−−−−

154

155 %−−−−−−−−−−−−−−−−−−−FIFTH PATH or PATH E−−−−−−−−−−−−

156 dem14 = pos_Nor th5 + F i n d _ c e n t r e (1) −XX(1) * 3 ;

157 dem24 = E a s t 5 + F i n d _ c e n t r e (2) −XX(1) * 3 ;

158 f i r s t 4 = u i n t 8 (dem14 /XX(1)) ;

159 second4 = u i n t 8 (dem24 /XX(2)) ;

Bibliography A.2. PROGRAM CONFIGURATION CODE 53

160 t h i r d 4 = u i n t 8 (TVD5 /XX(3)) ;

161 p o i n t _ a r r a y 4 = [f i r s t 4 , second4 , t h i r d 4] ;

162 p o i n t _ a r r a y 4 (~ p o i n t _ a r r a y 4) = 1 ;

163 p o i n t _ a r r a y 4 = un iqu e (p o i n t _ a r r a y 4 , ’ rows ’) ;

164 p o i n t _ a r r a y 4 (p o i n t _ a r r a y 4 > dims (1)) = dims (1) ;

165 [t f 0 4 , index04]= ismember (p o i n t _ a r r a y 4 , indexw , ’ rows ’) ;

166 i ndex04 = nonzeros (index04 ’) ;

167 %−−−−−−−−−−−−−−−−−−PATH E ENDED−−−−−−−−−−−−−−−−−−−−−

168

169 % −−−−−−−−−−− L e f t S ide C a l c u l a t i o n :−−−−−−−−−−−−−−−−−−

170 %−−−−−−−−−−One−−−−−−−−−−−−−−−−−−−−−

171 l e f t _ s i d e _ a r r = [p o i n t _ a r r a y (: , 1) +1 , p o i n t _ a r r a y (: , 2) , p o i n t _ a r r a y (: , 3)

] ;

172 l e f t _ s i d e _ a r r = u n i que (l e f t _ s i d e _ a r r , ’ rows ’) ;

173 l e f t _ s i d e _ a r r (l e f t _ s i d e _ a r r > dims (1)) = dims (1) ;

174 [t f 2 , i n de x2]= ismember (l e f t _ s i d e _ a r r , indexw , ’ rows ’) ;

175 Acommon = i n t e r s e c t (index , i nd ex2) ;

176 l e f t _ s i d e _ a r r _ p o i n t = s e t x o r (index2 , Acommon) ;

177 l e f t _ s i d e _ a r r _ p o i n t = nonzeros (l e f t _ s i d e _ a r r _ p o i n t ’) ;

178

179 %−−−−−−−−−−−−Two−−−−−−−−−−−−−−−−−−−−

180 l e f t _ s i d e _ a r r 2 = [p o i n t _ a r r a y 1 (: , 1) +1 , p o i n t _ a r r a y 1 (: , 2) , p o i n t _ a r r a y 1

(: , 3)] ;

181 l e f t _ s i d e _ a r r 2 = un iqu e (l e f t _ s i d e _ a r r 2 , ’ rows ’) ;

182 l e f t _ s i d e _ a r r 2 (l e f t _ s i d e _ a r r 2 > dims (1)) = dims (1) ;

183 [t f 2 _ 2 , index2_2]= ismember (l e f t _ s i d e _ a r r 2 , indexw , ’ rows ’) ;

184 Acommon_2 = i n t e r s e c t (index , index2_2) ;

185 l e f t _ s i d e _ a r r _ p o i n t _ 2 = s e t x o r (index2_2 , Acommon_2) ;

186 l e f t _ s i d e _ a r r _ p o i n t _ 2 = nonzeros (l e f t _ s i d e _ a r r _ p o i n t _ 2 ’) ;

187

188 %−−−−−−−−−−−−−Three −−−−−−−−−−−−−−−−−

Bibliography

189 l e f t _ s i d e _ a r r 3 = [p o i n t _ a r r a y 2 (: , 1) +1 , p o i n t _ a r r a y 2 (: , 2) , p o i n t _ a r r a y 2

(: , 3)] ;

190 l e f t _ s i d e _ a r r 3 = un iqu e (l e f t _ s i d e _ a r r 3 , ’ rows ’) ;

191 l e f t _ s i d e _ a r r 3 (l e f t _ s i d e _ a r r 3 > dims (1)) = dims (1) ;

192 [t f 2 _ 3 , index2_3]= ismember (l e f t _ s i d e _ a r r 3 , indexw , ’ rows ’) ;

193 Acommon_3 = i n t e r s e c t (index , index2_3) ;

194 l e f t _ s i d e _ a r r _ p o i n t _ 3 = s e t x o r (index2_3 , Acommon_3) ;

195 l e f t _ s i d e _ a r r _ p o i n t _ 3 = nonzeros (l e f t _ s i d e _ a r r _ p o i n t _ 3 ’) ;

196

197 %−−−−−−−−−−−−−Five −−−−−−−−−−−−−−−−−

198 l e f t _ s i d e _ a r r 5 = [p o i n t _ a r r a y 3 (: , 1) +1 , p o i n t _ a r r a y 3 (: , 2) , p o i n t _ a r r a y 3

(: , 3)] ;

199 l e f t _ s i d e _ a r r 5 = un iqu e (l e f t _ s i d e _ a r r 5 , ’ rows ’) ;

200 l e f t _ s i d e _ a r r 5 (l e f t _ s i d e _ a r r 5 > dims (1)) = dims (1) ;

201 [t f 2 _ 5 , index2_5]= ismember (l e f t _ s i d e _ a r r 5 , indexw , ’ rows ’) ;

202 Acommon_5 = i n t e r s e c t (index , index2_5) ;

203 l e f t _ s i d e _ a r r _ p o i n t _ 5 = s e t x o r (index2_5 , Acommon_5) ;

204 l e f t _ s i d e _ a r r _ p o i n t _ 5 = nonzeros (l e f t _ s i d e _ a r r _ p o i n t _ 5 ’) ;

205

206 %−−−−−−−−−−−−Angular −−−−−−−−−−−−−−−−−−−

207 l e f t _ s i d e _ a r r 4 = [p o i n t _ a r r a y 4 (: , 1) +1 , p o i n t _ a r r a y 4 (: , 2) , p o i n t _ a r r a y 4

(: , 3)] ;

208 l e f t _ s i d e _ a r r 4 = un iqu e (l e f t _ s i d e _ a r r 4 , ’ rows ’) ;

209 l e f t _ s i d e _ a r r 4 (l e f t _ s i d e _ a r r 4 > dims (1)) = dims (1) ;

210 [t f 2 4 , index24]= ismember (l e f t _ s i d e _ a r r 4 , indexw , ’ rows ’) ;

211 Acommon_4 = i n t e r s e c t (index , index24) ;

212 l e f t _ s i d e _ a r r _ p o i n t _ 4 = s e t x o r (index24 , Acommon_4) ;

213 l e f t _ s i d e _ a r r _ p o i n t _ 4 = nonzeros (l e f t _ s i d e _ a r r _ p o i n t _ 4 ’) ;

214 %−−−−−−−−−−−−−−−−− L e f t S ide C a l c u l a t i o n End −−−−−−−−−−−−−−−−−−

215

216 %−−−−−−−−−−−−−−−−− R e f e r e n c e Well ONE−−−−−−−−−−−−−

Bibliography A.2. PROGRAM CONFIGURATION CODE 55

217 r i g h t _ s i d e _ a r r = [p o i n t _ a r r a y (: , 1) , p o i n t _ a r r a y (: , 2) +1 , p o i n t _ a r r a y

(: , 3)] ;

218 [t f 3 , i n de x3]= ismember (r i g h t _ s i d e _ a r r , indexw , ’ rows ’) ;

219

220 %−−−−−−−−−−−−−−−− R e f e r e n c e Well Two−−−−−−−−−−−−−−−−−−−−

221 r i g h t _ s i d e _ a r r _ 2 = [p o i n t _ a r r a y 1 (: , 1) , p o i n t _ a r r a y 1 (: , 2) +1 ,

p o i n t _ a r r a y 1 (: , 3)] ;

222 [t f 3 _ 2 , index3_2]= ismember (r i g h t _ s i d e _ a r r _ 2 , indexw , ’ rows ’) ;

223

224 %−−−−−−−−−−−−−−−− R e f e r e n c e Well Three −−−−−−−−−−−−−−−−−−−−

225 r i g h t _ s i d e _ a r r _ 3 = [p o i n t _ a r r a y 2 (: , 1) , p o i n t _ a r r a y 2 (: , 2) +1 ,

p o i n t _ a r r a y 2 (: , 3)] ;

226 [t f 3 _ 3 , index3_3]= ismember (r i g h t _ s i d e _ a r r _ 3 , indexw , ’ rows ’) ;

227

228 %−−−−−−−−−−−−−−−− R e f e r e n c e Well Five −−−−−−−−−−−−−−−−−−−−

229 r i g h t _ s i d e _ a r r _ 5 = [p o i n t _ a r r a y 3 (: , 1) , p o i n t _ a r r a y 3 (: , 2) +1 ,

p o i n t _ a r r a y 3 (: , 3)] ;

230 [t f 3 _ 5 , index3_5]= ismember (r i g h t _ s i d e _ a r r _ 5 , indexw , ’ rows ’) ;

231

232 %−−−−−−−−−−−−−−−− R e f e r e n c e Well Angular −−−−−−−−−−−−−−−−−−−−−

233 r i g h t _ s i d e _ a r r _ 4 = [p o i n t _ a r r a y 4 (: , 1) , p o i n t _ a r r a y 4 (: , 2) +1 ,

p o i n t _ a r r a y 4 (: , 3)] ;

234 [t f 3 _ 4 , index3_4]= ismember (r i g h t _ s i d e _ a r r _ 4 , indexw , ’ rows ’) ;

235

236

237 % −−−−−−−−−−−−−Up Side C a l c u l a t i o n Using K:−−−−−−−−−−−−−−−−−−−−−−−

238 u p _ s i d e _ a r r = [p o i n t _ a r r a y (: , 1) , p o i n t _ a r r a y (: , 2) , p o i n t _ a r r a y (: , 3) −1] ;

239 [t f 4 , i n de x4]= ismember (u p _ s i d e _ a r r , indexw , ’ rows ’) ;

240 Acommon2 = i n t e r s e c t (index , i n de x4) ;

241 u p _ s i d e _ a r r _ p o i n t = s e t x o r (index4 , Acommon2) ;

242 Acommon3 = i n t e r s e c t (l e f t _ s i d e _ a r r _ p o i n t , i n de x4) ;

Bibliography

243 u p _ s i d e _ a r r _ p o i n t = s e t x o r (u p _ s i d e _ a r r _ p o i n t , Acommon3) ;

244 u p _ s i d e _ a r r _ p o i n t = nonzeros (u p _ s i d e _ a r r _ p o i n t ’) ;

245 %−−−−−−−−−−−−−−−Two−−−−−−−−−−−−−−−−−−

246 u p _ s i d e _ a r r _ 2 = [p o i n t _ a r r a y 1 (: , 1) , p o i n t _ a r r a y 1 (: , 2) , p o i n t _ a r r a y 1

(: , 3) −1] ;

247 [t f 4 _ 2 , index4_2]= ismember (u p _ s i d e _ a r r _ 2 , indexw , ’ rows ’) ;

248 Acommon2_2 = i n t e r s e c t (index , index4_2) ;

249 u p _ s i d e _ a r r _ p o i n t _ 2 = s e t x o r (index4_2 , Acommon2_2) ;

250 Acommon3_2 = i n t e r s e c t (l e f t _ s i d e _ a r r _ p o i n t _ 2 , index4_2) ;

251 u p _ s i d e _ a r r _ p o i n t _ 2 = s e t x o r (u p _ s i d e _ a r r _ p o i n t _ 2 , Acommon3_2) ;

252 u p _ s i d e _ a r r _ p o i n t _ 2 = nonzeros (u p _ s i d e _ a r r _ p o i n t _ 2 ’) ;

253 %−−−−−−−−−−−−−−−Three −−−−−−−−−−−−−−−−−−

254 u p _ s i d e _ a r r _ 3 = [p o i n t _ a r r a y 2 (: , 1) , p o i n t _ a r r a y 2 (: , 2) , p o i n t _ a r r a y 2

(: , 3) −1] ;

255 [t f 4 _ 3 , index4_3]= ismember (u p _ s i d e _ a r r _ 3 , indexw , ’ rows ’) ;

256 Acommon2_3 = i n t e r s e c t (index , index4_3) ;

257 u p _ s i d e _ a r r _ p o i n t _ 3 = s e t x o r (index4_3 , Acommon2_3) ;

258 Acommon3_3 = i n t e r s e c t (l e f t _ s i d e _ a r r _ p o i n t _ 3 , index4_3) ;

259 u p _ s i d e _ a r r _ p o i n t _ 3 = s e t x o r (u p _ s i d e _ a r r _ p o i n t _ 3 , Acommon3_3) ;

260 u p _ s i d e _ a r r _ p o i n t _ 3 = nonzeros (u p _ s i d e _ a r r _ p o i n t _ 3 ’) ;

261 %−−−−−−−−−−−−−−Five −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

262 u p _ s i d e _ a r r _ 5 = [p o i n t _ a r r a y 3 (: , 1) , p o i n t _ a r r a y 3 (: , 2) , p o i n t _ a r r a y 3

(: , 3) −1] ;

263 [t f 4 _ 5 , index4_5]= ismember (u p _ s i d e _ a r r _ 5 , indexw , ’ rows ’) ;

264 Acommon2_5 = i n t e r s e c t (index , index4_5) ;

265 u p _ s i d e _ a r r _ p o i n t _ 5 = s e t x o r (index4_5 , Acommon2_5) ;

266 Acommon3_5 = i n t e r s e c t (l e f t _ s i d e _ a r r _ p o i n t _ 5 , index4_5) ;

267 u p _ s i d e _ a r r _ p o i n t _ 5 = s e t x o r (u p _ s i d e _ a r r _ p o i n t _ 5 , Acommon3_5) ;

268 u p _ s i d e _ a r r _ p o i n t _ 5 = nonzeros (u p _ s i d e _ a r r _ p o i n t _ 5 ’) ;

269

270 %−−−−−−−−−−−−−−Angular −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Bibliography A.2. PROGRAM CONFIGURATION CODE 57

271 u p _ s i d e _ a r r _ 4 = [p o i n t _ a r r a y 4 (: , 1) , p o i n t _ a r r a y 4 (: , 2) , p o i n t _ a r r a y 4

(: , 3) −1] ;

272 [t f 4 _ 4 , index4_4]= ismember (u p _ s i d e _ a r r _ 4 , indexw , ’ rows ’) ;

273 Acommon2_4 = i n t e r s e c t (index , index4_4) ;

274 u p _ s i d e _ a r r _ p o i n t _ 4 = s e t x o r (index4_4 , Acommon2_4) ;

275 Acommon3_4 = i n t e r s e c t (l e f t _ s i d e _ a r r _ p o i n t _ 4 , index4_4) ;

276 u p _ s i d e _ a r r _ p o i n t _ 4 = s e t x o r (u p _ s i d e _ a r r _ p o i n t _ 4 , Acommon3_4) ;

277 u p _ s i d e _ a r r _ p o i n t _ 4 = nonzeros (u p _ s i d e _ a r r _ p o i n t _ 4 ’) ;

278 %−−−−−−−−−−−−−−−−−Up Side C a l c u l a t i o n Using K End −−−−−−−−−−−−−−−−−−

279

280 % −−−−−−−−−−−−−Down Side C a l c u l a t i o n Using K:−−−−−−−−−−−−−−−−−−−−−−−

281 d o w n _ s i d e _ a r r = [p o i n t _ a r r a y (: , 1) , p o i n t _ a r r a y (: , 2) , p o i n t _ a r r a y (: , 3)

+ 1] ;

282 d o w n _ s i d e _ a r r (d o w n _ s i d e _ a r r > dims (1)) = dims (1) ;

283 [t f 5 , i n de x5]= ismember (down_s ide_a r r , indexw , ’ rows ’) ;

284 Acommon4 = i n t e r s e c t (index , i n de x5) ;

285 d o w n _ s i d e _ a r r _ p o i n t = s e t x o r (index5 , Acommon4) ;

286 d o w n _ s i d e _ a r r _ p o i n t = nonzeros (d o w n _ s i d e _ a r r _ p o i n t ’) ;

287 d o w n _ s i d e _ a r r 2 = [p o i n t _ a r r a y (: , 1) , p o i n t _ a r r a y (: , 2) −1 , p o i n t _ a r r a y

(: , 3)] ;

288 [t f 6 , i n de x6]= ismember (down_s ide_a r r2 , indexw , ’ rows ’) ;

289 Acommon5 = i n t e r s e c t (index , i n de x6) ;

290 d o w n _ s i d e _ a r r _ p o i n t 2 = s e t x o r (index6 , Acommon5) ;

291 d o w n _ s i d e _ a r r _ p o i n t 2 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t 2 ’) ;

292

293 %−−−−−−−−−−−−−−−−Two−−−−−−−−−−−−−−−−−−−−−−−−−−−

294 d o w n _ s i d e _ a r r _ 2 = [p o i n t _ a r r a y 1 (: , 1) , p o i n t _ a r r a y 1 (: , 2) , p o i n t _ a r r a y 1

(: , 3) + 1] ;

295 d o w n _ s i d e _ a r r _ 2 (d o w n _ s i d e _ a r r _ 2 > dims (1)) = dims (1) ;

296 [t f 5 _ 2 , index5_2]= ismember (down_s ide_a r r_2 , indexw , ’ rows ’) ;

297 Acommon4_2 = i n t e r s e c t (index , index5_2) ;

Bibliography

298 d o w n _ s i d e _ a r r _ p o i n t _ 2 = s e t x o r (index5_2 , Acommon4_2) ;

299 d o w n _ s i d e _ a r r _ p o i n t _ 2 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t _ 2 ’) ;

300 d o w n _ s i d e _ a r r 2 _ 2 = [p o i n t _ a r r a y 1 (: , 1) , p o i n t _ a r r a y 1 (: , 2) −1 ,

p o i n t _ a r r a y 1 (: , 3)] ;

301 [t f 6 _ 2 , index6_2]= ismember (down_s ide_a r r2_2 , indexw , ’ rows ’) ;

302 Acommon5_2 = i n t e r s e c t (index , index6_2) ;

303 d o w n _ s i d e _ a r r _ p o i n t 2 _ 2 = s e t x o r (index6_2 , Acommon5_2) ;

304 d o w n _ s i d e _ a r r _ p o i n t 2 _ 2 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t 2 _ 2 ’) ;

305

306 %−−−−−−−−−−−−−−−−Three −−−−−−−−−−−−−−−−−−−−−−−−−−−

307 d o w n _ s i d e _ a r r _ 3 = [p o i n t _ a r r a y 2 (: , 1) , p o i n t _ a r r a y 2 (: , 2) , p o i n t _ a r r a y 2

(: , 3) + 1] ;

308 d o w n _ s i d e _ a r r _ 3 (d o w n _ s i d e _ a r r _ 3 > dims (1)) = dims (1) ;

309 [t f 5 _ 3 , index5_3]= ismember (down_s ide_a r r_3 , indexw , ’ rows ’) ;

310 Acommon4_3 = i n t e r s e c t (index , index5_3) ;

311 d o w n _ s i d e _ a r r _ p o i n t _ 3 = s e t x o r (index5_3 , Acommon4_3) ;

312 d o w n _ s i d e _ a r r _ p o i n t _ 3 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t _ 3 ’) ;

313 d o w n _ s i d e _ a r r 2 _ 3 = [p o i n t _ a r r a y 2 (: , 1) , p o i n t _ a r r a y 2 (: , 2) −1 ,

p o i n t _ a r r a y 2 (: , 3)] ;

314 [t f 6 _ 3 , index6_3]= ismember (down_s ide_a r r2_3 , indexw , ’ rows ’) ;

315 Acommon5_3 = i n t e r s e c t (index , index6_3) ;

316 d o w n _ s i d e _ a r r _ p o i n t 2 _ 3 = s e t x o r (index6_3 , Acommon5_3) ;

317 d o w n _ s i d e _ a r r _ p o i n t 2 _ 3 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t 2 _ 3 ’) ;

318

319 %−−−−−−−−−−−−−−−−−Five −−−−−−−−−−−−−−−−−−−−−−−−−

320 d o w n _ s i d e _ a r r _ 5 = [p o i n t _ a r r a y 3 (: , 1) , p o i n t _ a r r a y 3 (: , 2) , p o i n t _ a r r a y 3

(: , 3) + 1] ;

321 d o w n _ s i d e _ a r r _ 5 (d o w n _ s i d e _ a r r _ 5 > dims (1)) = dims (1) ;

322 [t f 5 _ 5 , index5_5]= ismember (down_s ide_a r r_5 , indexw , ’ rows ’) ;

323 Acommon4_5 = i n t e r s e c t (index , index5_5) ;

324 d o w n _ s i d e _ a r r _ p o i n t _ 5 = s e t x o r (index5_5 , Acommon4_5) ;

Bibliography A.2. PROGRAM CONFIGURATION CODE 59

325 d o w n _ s i d e _ a r r _ p o i n t _ 5 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t _ 5 ’) ;

326 d o w n _ s i d e _ a r r 2 _ 5 = [p o i n t _ a r r a y 3 (: , 1) , p o i n t _ a r r a y 3 (: , 2) −1 ,

p o i n t _ a r r a y 3 (: , 3)] ;

327 [t f 6 _ 5 , index6_5]= ismember (down_s ide_a r r2_5 , indexw , ’ rows ’) ;

328 Acommon5_5 = i n t e r s e c t (index , index6_5) ;

329 d o w n _ s i d e _ a r r _ p o i n t 2 _ 5 = s e t x o r (index6_5 , Acommon5_5) ;

330 d o w n _ s i d e _ a r r _ p o i n t 2 _ 5 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t 2 _ 5 ’) ;

331

332 %−−−−−−−−−−−−−−−−−Angular −−−−−−−−−−−−−−−−−−−−−−−−−

333 d o w n _ s i d e _ a r r _ 4 = [p o i n t _ a r r a y 4 (: , 1) , p o i n t _ a r r a y 4 (: , 2) , p o i n t _ a r r a y 4

(: , 3) + 1] ;

334 d o w n _ s i d e _ a r r _ 4 (d o w n _ s i d e _ a r r _ 4 > dims (1)) = dims (1) ;

335 [t f 5 _ 4 , index5_4]= ismember (down_s ide_a r r_4 , indexw , ’ rows ’) ;

336 Acommon4_4 = i n t e r s e c t (index , index5_4) ;

337 d o w n _ s i d e _ a r r _ p o i n t _ 4 = s e t x o r (index5_4 , Acommon4_4) ;

338 d o w n _ s i d e _ a r r _ p o i n t _ 4 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t _ 4 ’) ;

339 d o w n _ s i d e _ a r r 2 _ 4 = [p o i n t _ a r r a y 4 (: , 1) , p o i n t _ a r r a y 4 (: , 2) −1 ,

p o i n t _ a r r a y 4 (: , 3)] ;

340 [t f 6 _ 4 , index6_4]= ismember (down_s ide_a r r2_4 , indexw , ’ rows ’) ;

341 Acommon5_4 = i n t e r s e c t (index , index6_4) ;

342 d o w n _ s i d e _ a r r _ p o i n t 2 _ 4 = s e t x o r (index6_4 , Acommon5_4) ;

343 d o w n _ s i d e _ a r r _ p o i n t 2 _ 4 = nonzeros (d o w n _ s i d e _ a r r _ p o i n t 2 _ 4 ’) ;

344 %−−−−−−−Down Side C a l c u l a t i o n Using K End −−−−−−−−−−

345

346 % −−−−−−−−−−−−−Back S ide C a l c u l a t i o n :−−−−−−−−−−−−−−−−−−−−−−−

347 %−−−−−−−−−−−−−−One−−−−−−−−−−−−−−−−−−−

348 b a c k _ s i d e _ a r r = [p o i n t _ a r r a y (: , 1) −1 , p o i n t _ a r r a y (: , 2) , p o i n t _ a r r a y (: , 3)

] ;

349

350 [t f 7 , i n de x7]= ismember (b a c k _ s i d e _ a r r , indexw , ’ rows ’) ;

351

Bibliography

352 Acommon6 = i n t e r s e c t (index , i n de x7) ;

353 b a c k _ s i d e _ a r r _ p o i n t = s e t x o r (index7 , Acommon6) ;

354 b a c k _ s i d e _ a r r _ p o i n t = nonzeros (b a c k _ s i d e _ a r r _ p o i n t ’) ;

355 %−−−−−−−−−−−−−−Two−−−−−−−−−−−−−−−−−−−

356 b a c k _ s i d e _ a r r _ 2 = [p o i n t _ a r r a y 1 (: , 1) −1 , p o i n t _ a r r a y 1 (: , 2) , p o i n t _ a r r a y 1

(: , 3)] ;

357

358 [t f 7 _ 2 , index7_2]= ismember (b a c k _ s i d e _ a r r _ 2 , indexw , ’ rows ’) ;

359

360 Acommon6_2 = i n t e r s e c t (index , index7_2) ;

361 b a c k _ s i d e _ a r r _ p o i n t _ 2 = s e t x o r (index7_2 , Acommon6_2) ;

362 b a c k _ s i d e _ a r r _ p o i n t _ 2 = nonzeros (b a c k _ s i d e _ a r r _ p o i n t _ 2 ’) ;

363 %−−−−−−−−−−−−−−Three −−−−−−−−−−−−−−−−−−−

364 b a c k _ s i d e _ a r r _ 3 = [p o i n t _ a r r a y 2 (: , 1) −1 , p o i n t _ a r r a y 2 (: , 2) , p o i n t _ a r r a y 2

(: , 3)] ;

365

366 [t f 7 _ 3 , index7_3]= ismember (b a c k _ s i d e _ a r r _ 3 , indexw , ’ rows ’) ;

367

368 Acommon6_3 = i n t e r s e c t (index , index7_3) ;

369 b a c k _ s i d e _ a r r _ p o i n t _ 3 = s e t x o r (index7_3 , Acommon6_3) ;

370 b a c k _ s i d e _ a r r _ p o i n t _ 3 = nonzeros (b a c k _ s i d e _ a r r _ p o i n t _ 3 ’) ;

371 %−−−−−−−−−−−−−−Five −−−−−−−−−−−−−−−−−

372 b a c k _ s i d e _ a r r _ 5 = [p o i n t _ a r r a y 3 (: , 1) −1 , p o i n t _ a r r a y 3 (: , 2) , p o i n t _ a r r a y 3

(: , 3)] ;

373

374 [t f 7 _ 5 , index7_5]= ismember (b a c k _ s i d e _ a r r _ 5 , indexw , ’ rows ’) ;

375

376 Acommon6_5 = i n t e r s e c t (index , index7_5) ;

377 b a c k _ s i d e _ a r r _ p o i n t _ 5 = s e t x o r (index7_5 , Acommon6_5) ;

378 b a c k _ s i d e _ a r r _ p o i n t _ 5 = nonzeros (b a c k _ s i d e _ a r r _ p o i n t _ 5 ’) ;

379 %−−−−−−−−−−−−−−Angular −−−−−−−−−−−−−−−−−

Bibliography A.2. PROGRAM CONFIGURATION CODE 61

380 b a c k _ s i d e _ a r r _ 4 = [p o i n t _ a r r a y 4 (: , 1) −1 , p o i n t _ a r r a y 4 (: , 2) , p o i n t _ a r r a y 4

(: , 3)] ;

381

382 [t f 7 _ 4 , index7_4]= ismember (b a c k _ s i d e _ a r r _ 4 , indexw , ’ rows ’) ;

383

384 Acommon6_4 = i n t e r s e c t (index , index7_4) ;

385 b a c k _ s i d e _ a r r _ p o i n t _ 4 = s e t x o r (index7_4 , Acommon6_4) ;

386 b a c k _ s i d e _ a r r _ p o i n t _ 4 = nonzeros (b a c k _ s i d e _ a r r _ p o i n t _ 4 ’) ;

387

388 %−−−−−−−−−−−−−−−−−Back S ide C a l c u l a t i o n End −−−−−−−−−−−−−−−−−−

389 s o f t 1 = [l e f t _ s i d e _ a r r ; r i g h t _ s i d e _ a r r ; d o w n _ s i d e _ a r r ; d o w n _ s i d e _ a r r 2 ;

b a c k _ s i d e _ a r r ; u p _ s i d e _ a r r] ;

390 s o f t 2 = [l e f t _ s i d e _ a r r 2 ; r i g h t _ s i d e _ a r r _ 2 ; d o w n _ s i d e _ a r r _ 2 ;

d o w n _ s i d e _ a r r 2 _ 2 ; b a c k _ s i d e _ a r r _ 2] ;

391 s o f t 3 = [l e f t _ s i d e _ a r r 3 ; r i g h t _ s i d e _ a r r _ 3 ; d o w n _ s i d e _ a r r _ 3 ;

d o w n _ s i d e _ a r r 2 _ 3 ; b a c k _ s i d e _ a r r _ 3] ;

392 s o f t 4 = [l e f t _ s i d e _ a r r 4 ; r i g h t _ s i d e _ a r r _ 4 ; d o w n _ s i d e _ a r r _ 4 ;

d o w n _ s i d e _ a r r 2 _ 4 ; b a c k _ s i d e _ a r r _ 4] ;

393 s o f t 5 = [l e f t _ s i d e _ a r r 5 ; r i g h t _ s i d e _ a r r _ 5 ; d o w n _ s i d e _ a r r _ 5 ;

d o w n _ s i d e _ a r r 2 _ 5 ; b a c k _ s i d e _ a r r _ 5] ;

394

395 s t a r t _ p o i n t = p o i n t _ c o n v e r s i o n (−140 ,1320 ,200) ;

396 [t f _ s t a r t , i n d e x _ s t a r t]= ismember (s t a r t _ p o i n t , indexw , ’ rows ’) ;

397

398 s t a r t _ p o i n t (: , 4) = i n d e x _ s t a r t ;

399 s t a r t _ p o i n t (: , 5) = 1 0 ;

400

401 e n d _ p o i n t = [1 5 , 8 , 2 0] ; %p o i n t _ c o n v e r s i o n (2 8 0 , 9 9 0 , 4 0 0 0) ; %

402 [t f _ e n d , index_end]= ismember (e n d _ p o i n t , indexw , ’ rows ’) ;

403 e n d _ p o i n t (: , 4) = index_end ;

404 e n d _ p o i n t (: , 5) = 100000;

Bibliography

405

406 %−−−−−−−−−− R e i n f o r c e m e n t L e a r n i n g Code−−−−−−−−−−−−−−−−−

407 q _ v a l u e s = index_up ;

408 q _ v a l u e s (: , 5) = 1 0 ;

409 q _ v a l u e s = i n t 3 2 (q _ v a l u e s) ;

410 a c t i o n s = [" up " , " r i g h t " , " down " , " l e f t "] ;

411 H a r d _ c o n s t r a i n t s = [p o i n t _ a r r a y ; p o i n t _ a r r a y 1 ; p o i n t _ a r r a y 2 ;

p o i n t _ a r r a y 3 ; p o i n t _ a r r a y 4] ;

412 H a r d _ c o n s t r a i n t s _ i n d e x = [i n d e x ; index01 ; index02 ; index03 ; index04] ;

413 S o f t _ c o n s t r a i n t s = [s o f t 1 ; s o f t 2 ; s o f t 3 ; s o f t 4 ; s o f t 5] ;

414 [s o f t _ c o n s , S o f t _ c o n s t r a i n t s _ i n d e x]= ismember (S o f t _ c o n s t r a i n t s , indexw ,

’ rows ’) ;

415 S o f t _ c o n s t r a i n t s = i n t 3 2 (S o f t _ c o n s t r a i n t s) ;

416 %S o f t _ c o n s t r a i n t s _ i n d e x = n o n z e r o s (S o f t _ c o n s t r a i n t s _ i n d e x) ;

417 S o f t _ c o n s t r a i n t s (: , 4) = S o f t _ c o n s t r a i n t s _ i n d e x ;

418 i d x = any (S o f t _ c o n s t r a i n t s ==0 ,2) ;

419 ze ro_ rows = f i n d (i d x) ;

420 S o f t _ c o n s t r a i n t s (zero_rows , :) = [] ;

421 S o f t _ c o n s t r a i n t s = u n iq ue (S o f t _ c o n s t r a i n t s , ’ rows ’) ;

422 H a r d _ c o n s t r a i n t s = i n t 3 2 (H a r d _ c o n s t r a i n t s) ;

423 H a r d _ c o n s t r a i n t s (: , 4) = H a r d _ c o n s t r a i n t s _ i n d e x ;

424

425 H_S = v e r t c a t (H a r d _ c o n s t r a i n t s , S o f t _ c o n s t r a i n t s) ;

426 [t r a , i n d a] = ismember (H_S , index_up , ’ rows ’) ;

427 [q_va lue s , ps] = removerows (q_va lue s , ’ i n d ’ , i n d a) ;

428

429 H a r d _ c o n s t r a i n t s (: , 5) = −1000;

430 H a r d _ c o n s t r a i n t s = un iqu e (H a r d _ c o n s t r a i n t s , ’ rows ’) ;

431 H a r d _ c o n s t r a i n t s = s o r t r o w s (H a r d _ c o n s t r a i n t s , 4) ;

432

433 g l o b a l Combine ;

Bibliography A.2. PROGRAM CONFIGURATION CODE 63

434 S o f t _ c o n s t r a i n t s (: , 5) = −10;

435 S o f t _ c o n s t r a i n t s = s o r t r o w s (S o f t _ c o n s t r a i n t s , 4) ;

436 Combine = v e r t c a t (H a r d _ c o n s t r a i n t s , S o f t _ c o n s t r a i n t s , q _ v a l u e s) ;

437 Combine = un iq ue (Combine , ’ rows ’) ;

438 Combine = s o r t r o w s (Combine , 4) ;

439

440 [~ , idCombine] = u n i que (Combine (: , 4)) ;

441 Combine = Combine (idCombine , :) ;

442

443 a p s t a r t = f i n d (Combine (: , 4) == s t a r t _ p o i n t (: , 4)) ;

444 Combine (a p s t a r t , :) = s t a r t _ p o i n t ;

445

446 apend = f i n d (Combine (: , 4) == e n d _ p o i n t (: , 4)) ;

447 Combine (apend , :) = e n d _ p o i n t ;

448

449 VarNames = { ’ i ’ , ’ j ’ , ’ k ’ , ’ Index ’ , ’ Rewards ’ } ;

450 T = t a b l e (Combine (: , 1) , Combine (: , 2) , Combine (: , 3) , Combine (: , 4) , Combine

(: , 5) , ’ Var iab leNames ’ , VarNames) ;

451 t b l B = s o r t r o w s (T , ’ Index ’) ;

452

453 e q u a l _ i n d e x = mod (1 :G. c e l l s . num , 2) == 0 ;

454

455 c o l o r _ i n d e x _ t r a j e c t o r y = i n d e x ; %[1 37 73 109 145 146 182 183 184 185

186];%1 37

456 c o l o r _ i n d e x _ t r a j e c t o r y 2 = index01 ;

457 c o l o r _ i n d e x _ t r a j e c t o r y 3 = index02 ;

458 c o l o r _ i n d e x _ t r a j e c t o r y 4 = index03 ;

459 c o l o r _ i n d e x _ t r a j e c t o r y 5 = index04 ;

460

461 c o l o r _ i n d e x _ s o f t _ r i g h t = i nde x3 ;

462 c o l o r _ i n d e x _ s o f t _ r i g h t _ 2 = index3_2 ;

Bibliography

463 c o l o r _ i n d e x _ s o f t _ r i g h t _ 3 = index3_3 ;

464 c o l o r _ i n d e x _ s o f t _ r i g h t _ 4 = index3_4 ;

465 c o l o r _ i n d e x _ s o f t _ r i g h t _ 5 = index3_5 ;

466

467 c o l o r _ i n d e x _ s o f t _ l e f t = l e f t _ s i d e _ a r r _ p o i n t ;

468 c o l o r _ i n d e x _ s o f t _ l e f t _ 2 = l e f t _ s i d e _ a r r _ p o i n t _ 2 ;

469 c o l o r _ i n d e x _ s o f t _ l e f t _ 3 = l e f t _ s i d e _ a r r _ p o i n t _ 3 ;

470 c o l o r _ i n d e x _ s o f t _ l e f t _ 4 = l e f t _ s i d e _ a r r _ p o i n t _ 4 ;

471 c o l o r _ i n d e x _ s o f t _ l e f t _ 5 = l e f t _ s i d e _ a r r _ p o i n t _ 5 ;

472

473 g l o b a l o l d _ i n d e x ;

474 g l o b a l Side_up_QVal ;

475 g l o b a l Side_down_QVal ;

476 g l o b a l S i d e _ l e f t _ Q V a l ;

477 g l o b a l S i d e _ r i g h t _ Q V a l ;

478 g l o b a l Side_back_QVal ;

479 g l o b a l S i d e _ f r o n t _ Q V a l ;

480 g l o b a l q _ v a l s _ f o r _ 6 ;

481

482 e p s i l o n = 0 . 8 ; %t h e p e r c e n t a g e o f t ime when we s h o u l d t a k e t h e b e s t

a c t i o n (i n s t e a d o f a random a c t i o n)

483 d i s c o u n t _ f a c t o r = 0 . 9 ; %d i s c o u n t f a c t o r f o r f u t u r e r e w a r d s

484 l e a r n i n g _ r a t e = 0 . 4 ;

485

486 f o r e p i s o d e = 1 : 5

487 s t a r t _ i n d e x = g e t _ s t a r t i n g _ l o c a t i o n () ;

488 %d i s p (s t a r t _ i n d e x (: , 3)) ;

489

490 whi le ~ i s _ t e r m i n a l _ s t a t e (s t a r t _ i n d e x)

491

492 % S e a r c h i n g d i f f e r e n t Q Values

Bibliography A.2. PROGRAM CONFIGURATION CODE 65

493 i f s t a r t _ i n d e x (: , 3) > 1

494 Side_up = [s t a r t _ i n d e x (: , 1) , s t a r t _ i n d e x (: , 2) , s t a r t _ i n d e x

(: , 3) −1] ;

495 [~ , i dx0] = ismember (Side_up , Combine (: , 1 : 3) , ’ rows ’) ;

496 Side_up (: , 4) = idx0 ;

497 l i d x 0 = Combine (idx0 , end) ;

498 Side_up (: , 5) = l i d x 0 ;

499 Side_up_QVal = Side_up (: , 5) ;

500 e l s e

501 Side_up_QVal = 0 ;

502 end

503

504 i f s t a r t _ i n d e x (: , 3) < max (Combine (: , 3))

505 Side_down = [s t a r t _ i n d e x (: , 1) , s t a r t _ i n d e x (: , 2) ,

s t a r t _ i n d e x (: , 3) + 1] ;

506 [~ , i d x] = ismember (Side_down , Combine (: , 1 : 3) , ’ rows ’) ;

507 Side_down (: , 4) = i d x ;

508 l i d x = Combine (idx , end) ;

509 Side_down (: , 5) = l i d x ;

510 Side_down_QVal = Side_down (: , 5) ;

511 e l s e

512 Side_down_QVal = 0 ;

513 end

514

515 i f s t a r t _ i n d e x (: , 1) < max (Combine (: , 3))

516 S i d e _ l e f t = [s t a r t _ i n d e x (: , 1) +1 , s t a r t _ i n d e x (: , 2) ,

s t a r t _ i n d e x (: , 3)] ;

517 [~ , i d x] = ismember (S i d e _ l e f t , Combine (: , 1 : 3) , ’ rows ’) ;

518 S i d e _ l e f t (: , 4) = i d x ;

519 l i d x = Combine (idx , end) ;

520 S i d e _ l e f t (: , 5) = l i d x ;

Bibliography

521 S i d e _ l e f t _ Q V a l = S i d e _ l e f t (: , 5) ;

522 e l s e

523 S i d e _ l e f t _ Q V a l = 0 ;

524 end

525

526 i f s t a r t _ i n d e x (: , 1) > 1

527 S i d e _ r i g h t = [s t a r t _ i n d e x (: , 1) −1 , s t a r t _ i n d e x (: , 2) ,

s t a r t _ i n d e x (: , 3)] ;

528 [~ , i d x] = ismember (S i d e _ r i g h t , Combine (: , 1 : 3) , ’ rows ’) ;

529 S i d e _ r i g h t (: , 4) = un iq ue (i d x) ;

530 l i d x = Combine (idx , end) ;

531 S i d e _ r i g h t (: , 5) = l i d x ;

532 S i d e _ r i g h t _ Q V a l = S i d e _ r i g h t (: , 5) ;

533 e l s e

534 S i d e _ r i g h t _ Q V a l = 0 ;

535 end

536

537 i f s t a r t _ i n d e x (: , 2) < max (Combine (: , 3))

538 Side_back = [s t a r t _ i n d e x (: , 1) , s t a r t _ i n d e x (: , 2) +1 ,

s t a r t _ i n d e x (: , 3)] ;

539 [~ , i d x] = ismember (S ide_back , Combine (: , 1 : 3) , ’ rows ’) ;

540 Side_back (: , 4) = i d x ;

541 l i d x = Combine (idx , end) ;

542 Side_back (: , 5) = l i d x ;

543 Side_back_QVal = S ide_back (: , 5) ;

544 e l s e

545 Side_back_QVal = 0 ;

546 end

547

548 i f s t a r t _ i n d e x (: , 2) > 1

549 S i d e _ f r o n t = [s t a r t _ i n d e x (: , 1) , s t a r t _ i n d e x (: , 2) −1 ,

Bibliography A.2. PROGRAM CONFIGURATION CODE 67

s t a r t _ i n d e x (: , 3)] ;

550 [~ , i d x] = ismember (S i d e _ f r o n t , Combine (: , 1 : 3) , ’ rows ’) ;

551 S i d e _ f r o n t (: , 4) = un iq ue (i d x) ;

552 l i d x = Combine (idx , end) ;

553 S i d e _ f r o n t (: , 5) = l i d x ;

554 S i d e _ f r o n t _ Q V a l = S i d e _ f r o n t (: , 5) ;

555 e l s e

556 S i d e _ f r o n t _ Q V a l = 0 ;

557 end

558

559 q _ v a l s _ f o r _ 6 = [Side_up_QVal , Side_down_QVal ,

S i d e _ l e f t _ Q V a l , S i d e _ r i g h t _ Q V a l , Side_back_QVal , S i d e _ f r o n t _ Q V a l] ;

560 a c t i o n _ i n d e x = g e t _ n e x t _ a c t i o n (s t a r t _ i n d e x , e p s i l o n) ;

561 o l d _ i n d e x = s t a r t _ i n d e x ; %s t o r e t h e o l d i n d e x h e r e

562 s t a r t _ i n d e x = g e t _ n e x t _ l o c a t i o n (s t a r t _ i n d e x , a c t i o n _ i n d e x)

;

563 r eward = s t a r t _ i n d e x (: , 5) ;

564 o l d _ q _ v a l u e s = o l d _ i n d e x (: , 5) ;

565 t e m p o r a l _ d i f f e r e n c e = do ub l e (reward + (d i s c o u n t _ f a c t o r *

(s t a r t _ i n d e x (: , 5))) − o l d _ q _ v a l u e s) ;

566

567 new_q_va lues = o l d _ q _ v a l u e s + (l e a r n i n g _ r a t e *

t e m p o r a l _ d i f f e r e n c e) ;

568 %d i s p (" new_q_va lues ") ;

569 %d i s p (new_q_va lues) ;

570 o l d _ i n d e x (: , 5) = new_q_va lues ;

571 %d i s p (o l d _ i n d e x) ;

572 [~ , idx09] = ismember (o l d _ i n d e x (: , 1 : 4) , Combine (: , 1 : 4) , ’

rows ’) ;

573 Combine (idx09 , end) = new_q_va lues ;

574 end

Bibliography

575 di sp (" T r a i n i n g c o m p l e t e ") ;

576 end

577 p l o t G r i d (G, c o l o r _ i n d e x _ t r a j e c t o r y , ’ FaceCo lo r ’ , [0 , 0 , 0 . 5 4 5] , ’

FaceAlpha ’ , . 5) ; %[0 , 0 , 0 . 5 4 5]

578 p l o t G r i d (G, c o l o r _ i n d e x _ t r a j e c t o r y 2 , ’ FaceCo lo r ’ , [0 , 0 , 0 . 5 4 5] , ’

FaceAlpha ’ , . 5) ;

579 p l o t G r i d (G, c o l o r _ i n d e x _ t r a j e c t o r y 3 , ’ FaceCo lo r ’ , [0 , 0 , 0 . 5 4 5] , ’

FaceAlpha ’ , . 5) ;

580 p l o t G r i d (G, c o l o r _ i n d e x _ t r a j e c t o r y 4 , ’ FaceCo lo r ’ , [0 , 0 , 0 . 5 4 5] , ’

FaceAlpha ’ , . 5) ;

581 p l o t G r i d (G, c o l o r _ i n d e x _ t r a j e c t o r y 5 , ’ FaceCo lo r ’ , [0 , 0 , 0 . 5 4 5] , ’

FaceAlpha ’ , . 5) ;

582 p l o t G r i d (G, f i n a l _ p l o t _ a r r a y (: , 4) , ’ FaceCo lo r ’ , ’ r e d ’ , ’ FaceAlpha ’ , . 9)

;

583 p l o t G r i d (G, i n d e x _ s t a r t , ’ FaceCo lo r ’ , ’ ye l l ow ’ , ’ FaceAlpha ’ , . 9) ;

584 p l o t G r i d (G, index_end , ’ FaceCo lo r ’ , ’ g r e e n ’ , ’ FaceAlpha ’ , . 9) ;

585 p l o t G r i d (G, S o f t _ c o n s t r a i n t s (: , 4) , ’ FaceCo lo r ’ , [0 . 5 8 4 3 0 .8157

0 . 9 8 8 2] , ’ FaceAlpha ’ , . 3) ;

586 s e t (gca , ’ Xdi r ’ , ’ r e v e r s e ’) ;

587 %s e t (gca , ’ l a y e r ’ , ’ top ’) ;

588 view ([4 0 , 3 0])

589 x l a b e l (’ Nor th ’) ;

590 y l a b e l (’ E a s t ’) ;

591 z l a b e l (’TVD’) ;

592 t i t l e (’ T r a j e c t o r y V i s u a l i z a t i o n ’)

593 %−−−−−−−−−−−−−−−END ENVIRONMENT−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

594

Listing A.1: Program Configuration Code

	Abstract
	Acknowledgments
	List of Abbreviations
	List of Figures
	List of Codes
	Introduction
	Background, Motivation and Challenge
	Objectives and Scope
	Methodology

	Background
	Technical Background
	Machine Learning (ML)
	Reinforcement Learning (RL)
	Q Learning
	Grid World and 3D Environment
	MRST toolbox in Matlab

	Current Ideas
	Open Source Solutions
	OpenLab App
	Drilling Data Web Application

	Commercial Solutions
	eDrilling Softwares
	Schlumberger Softwares
	Halliburton Softwares

	Solution Approach
	Trajectory optimization
	Use of RL in Well Planning
	Location Optimization of a well

	Proposed Solution

	Implementation
	Experimental Procedure
	Environmental Overview
	Obstacles in 3D space
	Start and End Points
	Cost and Reward Calculation
	Grid Index Structure

	3D Program
	Program Configuration
	Initializing the Environment and Training
	Generating 3D Environment
	Point Conversion Process
	3D Visualization

	Results
	3D Environment using MRST
	Existing Wells in Grid View
	Results from QLearning in Matlab

	Discussion and Conclusion
	Discussion on the results
	Limitations
	Conclusion
	Future Work

	Appendices
	Appendix Matlab Code
	Installed Packages and Softwares
	Program Configuration Code

