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Abstract 

High or even prohibitive computational cost is one of the key limitations of robust optimization 

using the Ensemble-based Optimization (EnOpt) approach, especially when a computationally 

demanding forward model is involved (e.g., a reservoir simulation model). It is because, in 

EnOpt, many realizations of the forward model are considered to represent uncertainty, and 

many runs of forward modeling need to be performed to estimate gradients for optimization. 

This work aims to develop, investigate, and discuss an approach, named EnOpt-ML in the 

thesis, of utilizing machine learning (ML) methods for speeding up EnOpt, particularly for the 

gradient estimation in the EnOpt method. 

The significance of any deviations  is investigated on three different optimization test functions: 

Himmelblau, Bukin function number 6 and Rosenbrock for their different characteristics. A 

thousand simulations are performed for each configuration setting to do the analyses, compare 

means and standard deviations of the ensembles. Singled out cases are shown as examples of 

gradient learning curves differences between EnOpt and EnOpt-ML, and  the spread of their 

samples over the test function. 

Objectives: 

Objective1: Building of a code with a main function that would allow easy configurations and 

tweaking of parameters of EnOpt, Machine learning (ML) algorithms and test function or 

objective functions in general (with two variables). Codes necessary for test functions, ML 

algorithms,  plotting and simulation data saving files are defined outside of that main function. 

The code is attached in the Appendix.  

Objective2: Testing and analysis of results to detect any special improvement with EnOpt-ML 

compared to EnOpt. The use of Himmelblau as a primary test function was with a modification 

of specific parameters, one at a time, starting with a base configuration case for possible 

comparisons.  After gathering traits of effects of those configurations, an example where the 

improvement could show interesting were presented and then applied to the other two test 

functions and analyzed.   

The main objective then has been to reduce the number of times the objective function is 

evaluated while not considerably reducing the optimization quality.  



EnOpt-ML yielded slightly better results when compared to EnOpt under the same conditions 

when fixing a maximum objective function evaluations through the number of samples and the 

iteration at which this number is reduced. 

 

 

  



Chapter 1: Introduction  

Background and motivation: 

Companies in different sectors implement optimization solutions to make informed decisions 

to increase profitability, improve efficiency and reduce costs. The purpose of optimization is 

to find the “best available” solution(s) of an objective function using a set of properties that are 

held constant throughout an analysis (i.e., control variables).  

There are two approaches to optimization: gradient free and gradient based. The gradient free 

optimization approach has slower convergence but is capable of finding a global optimum 

whereas the gradient based approaches have a fast convergence, but the optimum can be either 

local or global. This thesis work will consider a gradient based optimization.  

When the optimization problem at hand contains uncertain data, we should consider this 

incertitude. Robust optimization (RO) is a field of optimization theory that deals with 

optimization problems and accounts for uncertainty that can be represented as deterministic 

variability in the value of the parameters of the problem or its solution (Fonseca et al. 2017). 

RO used by Essen et al. (2009) on water flooding optimization with an adjoint-based method, 

for example, required access to reservoir simulator codes  (usually inaccessible) and proved 

computationally intensive. A method independent of the simulator that is easier to implement 

is the  Ensemble-based Optimization (EnOpt), it was  proposed by Lorentzen et al. (2006) and 

Nwaozo (2006). EnOpt was then used by Chen et al. (2009) for RO where the  gradient is 

approximated between the randomly perturbed control variables (random samples) and their 

objective function values. 

The accuracy of EnOpt estimation relies on the sample size of the perturbed controls and the 

covariance matrix that generates those samples. The perturbed controls are commonly 

generated with  a multivariate normal distribution with a pre-defined mean vector and  

covariance matrix. As one objective function evaluation needs to be performed for each set of 

perturbed controls, the number of objective function evaluations and the computational 

intensiveness of optimization increases with the number of sampled sets of perturbed controls.  

This thesis aims to develop, investigate, and discuss an approach, named EnOpt-ML in the 

thesis, of utilizing machine learning (ML) methods for speeding up the EnOpt method. In 

EnOpt-ML, sets of perturbed controls and their corresponding objective values are used to train 

a ML model, and then the trained ML model is used for gradient estimation. 



For investigating the performance of EnOpt-ML, various objective functions, configurations 

of EnOpt-ML, and ML algorithms are experimented. The main objective of the experiments is 

to identify an optimal combination of an EnOpt-ML configuration and ML algorithm that can 

reduce the number of objective function evaluations and computational cost. 

Novelty of the work: 

The key novelty of the thesis work is that the EnOpt-ML approach is proposed to incorporate 

ML in EnOpt for enhancing gradient estimation and speeding up optimization, and the 

approach is tested and discussed under various settings. To the best of the author’s knowledge, 

this approach has not been addressed specifically in the literature.  

Outline of the thesis: 

The rest of the thesis is structured as follows: 

● Chapter 2 presents key concepts/theories, equations/algorithms, and models used for 

the thesis work. 

● Chapter 3 introduces the workflows of various experiments on EnOpt-ML and analyses 

the experiments results.  

● Chapter 4 tests the optimal EnOpt-ML setting, determined based on the analysis in 

Chapter 3, on  three objective functions. 

● Chapter 5 summarizes the thesis work with a general discussion and conclusions.  

  



Chapter 2: Concepts and approaches 

In this chapter, principal concepts and components of the algorithm used throughout this thesis 

are presented.  

Robust optimization (RO): 

Material uncertainties should be considered for achieving high-quality decision making. The 

optimal values of control (or decision) variables for a risk-neutral decision maker are those that 

optimize the mean (or expected value) of the decision maker's objective function over the 

uncertainty. The optimal control variables are expected to be robust to any possible realization 

of the uncertainties, and thus optimizing the mean of the objective function under uncertainty 

is also referred to as Robust Optimization (RO). 

Ensemble optimization (EnOpt): 

Ensemble optimization (EnOpt) is a stochastic optimization method that uses an ensemble of 

realizations sampled via Monte Carlo simulation to account for and express uncertainties. Its 

goal is to maximize or minimize the mean of the objective function across the ensemble. It is 

a robust optimization (RO) strategy that is both simple and practical to implement (Hong et al. 

2017).  

As a gradient-based optimization algorithm, EnOpt requires a starting point (initial mean ) and 

a covariance matrix to define the search area for gradient estimation. In  EnOpt, the values of 

control variables are updated/improved iteratively towards their optimal values. In each 

iteration, an ensemble of perturbed controls is generated and evaluated (i.e., the objective value 

corresponding to one combination of the values of control variables is calculated), then the 

gradient is estimated based on the perturbed controls and their corresponding objective values, 

and finally the estimated gradient is used to update the values of the control variables. The 

iteration of search for the optimum continues until some stopping criteria are met. EnOpt is a 

promising RO approach, but when based on rich grid-based reservoir models with hundreds of 

realizations for example, it is computationally demanding (Hong et al 2017). 

EnOpt can be sensitive to the user-defined starting point (i.e., the choice of initial mean) when 

there are several local optima, and it may not lead to the global optimum. The covariance matrix 

in EnOpt specifies a search area – changing the covariance matrix allows to widen/shrink the 

search area– which corresponds to a more global/local search strategy (Fonseca et. al. 2014). 

Despite its cheap computing cost, previous research has demonstrated that the EnOpt can 

efficiently and satisfactorily improve the objective function (Chen et al., 2009; Chen and 



Oliver, 2010, 2012). However, EnOpt may not yield appropriate findings, for various 

geological models for example, unless the variation in the ensemble models is small enough, 

according to Fonseca et al. (2017).  

Stochastic gradient descent: 

Stochastic gradient descent (SGD) is a widely used algorithm for optimization . The basic idea 

of SGD is that it, in each iteration, searches for a smaller value of an objective function in a 

search direction with a certain learning rate (step size at each iteration), and such iteration 

repeats for smaller and smaller objective values to approach an unknown minimal (usually, 

near minimal) objective value until a certain criterion or criteria are fulfilled for stopping the 

iteration.   

Machine learning algorithms:  

The algorithms for the three ML regressors used in this thesis were made available by Sklearn. 

Sklearn (Pedregosa et al. 2011) is a free software machine learning library for the Python 

programming language that includes a number of tools for machine learning and statistical 

modeling. 

Gradient Boosting Regressor: 

Gradient boosting (GBR) is a machine learning approach for prediction studies that generates 

a model in the form of an ensemble. For optimizing the different levels of stages, GBR 

simplifies the random differences of loss function. Later, the gradient boosting algorithm was 

developed to optimize the cost function and iteratively select function points in the negative 

gradient direction (Friedman 2001). Gradient boosting combines weak “learners” (ML 

algorithms that perform slightly better than a random guess) into a single strong learner (models 

with good accuracy) in an iterative fashion.  

There are two types of Gradient boosting: classifier and regressor. It is a regressor in this thesis 

because we are predicting continuous values.  

Adaptive Boosting (AdaBoost) Regressor: 

Adaptive boosting Regressor is similar to GBR with the distinction being that the AdaBoost  

is, as its name suggest, adaptively adjusting to errors on weak hypotheses (hypotheses 

concentrating on a specific feature) (Freund et.al. 1995).  AdaBoost does not need prior 

knowledge of the accuracies of the weak hypotheses as it adapts to them and generates a 



weighted majority hypothesis in which the weight of each weak hypothesis  is a function of its 

accuracy (Freund et.al. 1995).  

Random Forest: 

Random Forest is an ensemble of decision trees in which the outputs of all trees are aggregated 

to give one final prediction, which is, in regression , the average of the individual tree 

predictions (Svetnik et al. 2003). While growing the trees, Random Forest adds more 

randomization to the model.  

EnOpt-ML: 

EnOpt-ML is a modified EnOpt method that uses machine learning algorithms to reduce the 

computational cost of EnOpt. It trains the ML model on the samples from the real objective 

function and predicts more  samples that are also used in the gradient estimation. EnOpt-ML 

method is explained through the diagram in figure 1 : 



 

Figure  1Workflow chart of EnOpt-ML 



Optimization test functions: 

Presented in the following are the three optimization test functions used in this thesis: 

Himmelblau, Rosenbrock and Bukin function number 6. Himmelblau is used in chapters 3 and 

4 while Rosenbrock and Bukin function number 6 are only used in chapter 4.  

Himmelblau:  f(x, y) = (x2 + y – 11)2 + (x + y2 -7)

 

Figure  2 Himmelblau. Test function for optimization 

The Himmelblau function was chosen for the challenges that different minima would present:  

- four identical local minima at different (x, y) locations:  

f(x,y) = 0 at (x,y)  = (3, 2) 

f(x,y) = 0 at (x,y)  = (−2.805118, 3.283186) 

f(x,y) = 0 at (x,y)  = (−3.779310, −3.283186) 

f(x,y) = 0 at (x,y)  = (3.584458, −1.848126) 

- Evaluated on the rectangle x ∈ [-5, 5], y ∈ [-5, 5]. 



 
Figure  3 Bukin function number 6. Test function for optimization 

Bukin’s function # 6:  f(x, y) = 100  √ | y - 0.01 x2| +0.01|x+10| 

The Bukin function number 6 has been chosen to test the optimization on an example for 

function with a ridge region. 

Some Characteristics of the Bukin function number 6: 

- One global minimum: 

f(x,y) = 0 at (x,y) = (-10, 1) 

- Numerous local minima all of which are located in a ridge. 

- Evaluated on the rectangle x ∈ [-15, -5], y ∈ [-3, 3]. 

 

Rosenbrock: f(x, y) = (x - 1)2 + 10(y -x2)2 

(also known as: Rosenbrock's valley or Rosenbrock's banana function) 



 

Figure  4 Rosenbrock. Test function for optimization (evaluated in the interval x ∈  [-2.048, 2.048], y ∈   [-2.048, 2.048]) 

 

Figure  5 Rosenbrock. test function for optimization (evaluated in the interval x ∈ [-5, 10], y ∈  [-5, 10]) 



 

The Rosenbrock function has been chosen to test the optimization on an example for function 

with a valley-like region. 

Some Characteristics of the Rosenbrock function: 

- One global minimum: 

f(x,y) = 0 at (x,y)  = (1, 1)  

- The function is unimodal, with a narrow, parabolic valley as the global minimum. 

Despite the ease with which this valley can be found, convergence to the minimum is 

not easy (Picheny et al., 2012) 

- Evaluated on the rectangle x ∈ [-5, 10], y ∈ [-5, 10]  

  



Chapter 3: Experiments on EnOpt-ML  

Introduction: 

The main goal of this chapter is to investigate the impact of machine learning algorithms on 

stochastic gradient descent (SGD). The Himmelblau function is used for optimization testing 

in the present chapter. The algorithms that were written in the Python programming language 

(version 3.8.8)  and are available in Appendix A. A function called “run(.)”, in the thesis Python 

code, has been created to facilitate the change in parameters for testing of EnOpt and EnOpt-

ML. As long as a result in optimization is less than 10% of the range of the function, it is 

considered  “good enough” in these chapters.  

Workflow: 

1. Definition of the starting point (initial mean) and initial covariance matrix that the 

optimization needs to start from,  

2. In the function run(.) defined in Appendix A, several parameters are varied for testing 

different EnOpt and EnOpt-ML configurations. Those parameters are: 

- Mean (mu) and covariance ( C ):  are mandatory fields where mu is the starting 

point and C is the initial covariance matrix. 

- Initial sample size (init_N)   

- Reduced sample size (reduced_N): in case of reduction of sample size, this 

parameter defines the number of samples used at a defined iteration and in the 

following iterations. in the case that reduced_N= 0, No more evaluations on the 

original objective function  are performed. 

- Number of samples predicted by the machine learning model (Nml)  

- The objective function used (of)  

- The maximum number of iterations (max_iter) as a stopping criterion, for the 

optimization  

-  Train iteration (train_iter):  the number of iterations after which the ML model 

starts the learning process and being used. 

- Reduce at iteration (reduce_at_iter): iteration at which the number of samples 

is reduced (i.e., when ‘reduced_N’ is used) 

- Machine learning algorithm (ML): the machine learning algorithm that will be 

used. 

Note: run(.) is not the only function used in the process, but it is the main 

function for optimization with EnOpt and EnOpt-ML in this thesis work. Other 



functions specify, for instance, the test functions and the machine learning 

algorithms needed/used. In addition, there is a sequence of  for loops, outside of 

run(.) that goes through different configurations and simulations on this main 

function(see Appendix A).   

- Other configurations that have to be specified for the different simulations: 

» seed: the seed() method in Python is used to get the random 

number generator started, this method needs a starting value 

which we specify with this configuration. If the seed value is 

specified and unchanged, we will always get the same values of 

the optimizations so long as the other parameters are 

unchanged. If the seed = None, it will indicate that we are 

getting different samples (because of the unfixed seed) at each 

rerun of the function. The latter is useful when we need to 

perform multiple simulations for more robust results. 

» sims: the number of simulations performed on the function. 

When sims >1, the seed has to be set to None 

3.  Analysis of results and recommended practices of using EnOpt-ML. 

  



Base case configuration: 

In the base configuration -configuration from which sensitivity analyses are going to be 

derived- the optimization test function is Himmelblau on which it is applied both EnOpt and 

EnOpt-ML with the use of machine learning based perturbed sample evaluation approach on 

the gradient. The latter will be referred to in this thesis as EnOpt-ML. the GBR is used in this 

configuration case as a ML technique. 

The initial mean is at (0, 0) , the initial covariance matrix is [0.1 0 0 0.1 ], and the rest of the 

configuration is as follows:  

config_sims                  = 1       

 (config_sims= 1 for a single simulation.  config_sims>1 for  simulations    repeated a number 

config_sims with different generated samples) 

config_init_N               = [20]               

config_reduced_N       = [5]                

config_max_iter         = [100]              

config_train_iter        = [999, 1] 

(config_train_iter = 999 for EnOpt (never reaching train iteration for  ML), and config_train_iter = 1 

is for the use of ML at 2nd iteration)     

config_reduce_at_iter = [999]   

( config_reduce_at_iter =999 is so that config_reduced_N is not used/reached)       

config_seed               = 1000  

 (the seed = 1000 (randomly chosen value) is set for single simulation cases for comparison purposes 

with   other configurations.  When seed = None, the simulations are repeated with different seeds 

(generating different samples) for multiple simulations. 

 

After running the base configuration for optimization, the following results are obtained: 

- for a single simulation: 

 

  



 

Figure  6 Base configuration gradient (single simulation) 

 

Figure  7 Base configuration EnOpt and EnOpt-ML samples and ML model predicted samples 

Mean square error (MSE): 34.39 



MSE of EnOpt-ML refers to the mean square error between the trained ML model predictions 

of the objective function and the actual objective function. It will be abbreviated as MSE in the 

rest of this thesis’ following chapters.  

The MSE of the GBR shows a relatively small value. A small value of MSE indicates a good 

fit between the model predicted samples and the test function. 

in (fig. 6) EnOpt_ML gradient moved in the same way as EnOpt gradient for the first 5 

iterations. After the 5th iteration, EnOpt-ML gradient continued in a linear-like trajectory while 

EnOpt gradient was zigzagging.  This EnOpt-ML behavior could be due to that, in EnOpt-ML, 

the samples used to predict the ML samples are collected from all previous iterations and, after 

a number of iterations, new samples will have less  effect on the training of the ML model.  

The samples of both methods have the distribution of samples shown in (fig. 7), it offers a 

picture of the change in covariance matrix and its effect on the sampling as the covariance 

matrix decreases in size. Because of this, In the last iterations, (earlier in EnOpt-ML than with 

EnOpt) the samples are distributed in narrower trajectory (fig.7).  

In this simulation, EnOpt has performed one extra iteration compared to EnOpt_ML (the latter 

evaluated 40 fewer objective function). Both the optimal control vectors and the optimized 

objective functions were very close in value both to each other (table 1) and to the local minima 

(optimal vector being [3 2] and optimal objective function equal to 0). 

Table 1 Optimization results for base configuration case (single simulation) 

 

 

 

 

 

 

 

 



- 1000 simulations: 

-  

- Figure  8 Base confirmation cases objective function optimization results (1000 simulations) 

-  

- Figure  9 Base configuration case: EnOpt and EnOpt-ML means of simulations 

 

For the 1000 simulations case,  EnOpt-ML resulted in a slightly higher objective function mean 

and standard deviation through the simulations in average(table 2). EnOpt on the other hand 

performed an average number of objective function evaluations 8% higher than EnOpt-ML. 

the simulations of EnOpt and EnOpt-ML show very close values throughout the iterations (fig. 

9). Figure 8 shows all the different 1000 simulations (in gray) in each method, where we can 

appreciate .that the standard deviation between the simulations of EnOpt and EnOpt-ML are 

not very different ; 9.24for EnOpt and 10.77 for EnOpt-ML (table 2). The mean of EnOpt and  

EnOpt-ML objective functions are very similar along the iterations (fig. 9) and the results show 

a slightly better but almost half the value of optimization in EnOpt than EnOpt-ML (table 2) 



The quartiles from the boxplot (fig. 10) show that the maximum, minimum, 25% and 50% 

quartiles in the objective function values obtained are very close to one another, but the 75% 

quartile is double the value in EnOpt-ML with respect to EnOpt. 

In (table 2), we see that the number of objective function evaluation is very close with 8% 

higher value for  EnOpt compared to EnOpt-ML. 

 

Figure  10Base configuration case: Boxplot of optimized objective function 

Table 2 Base case configuration summary output values (1000 simulations) 

 

 

As introduced in Chapter 2, the Himmelblau test function has four local minima. The 

simulations with both EnOpt and EnOpt-ML with an initial vector [0 0],  yielded values that 

mostly fall in the lower-right quadrant of (fig. 11). Few simulations produced values closer to 

the minima in the top-right quadrant and even fewer values were close to the lower-left one. 

No values were close to the minimum on the top-left area of (fig. 11). 



Another observation is that the blue dots, representing EnOpt gradient optimization values, 

land closer to the top-right minima, while the red dots, EnOpt-ML gradient optimization values, 

are mostly stuck on the slope leading to that minimum. 

More EnOpt-ML simulations got closer to the lower-left minima than EnOpt-ML. 

The distribution of EnOpt and EnOpt-ML simulation (fig. 11) plot of results shows that 

EnOpt and EnOpt-ML can end up on distinct optimal values. 

 

Figure  11  Base case simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

 

  



Changing the starting point 

The initial point is known to affect the EnOpt results. The choice of the initial point is made to 

get an example of starting on a steep region versus a starting on a flat region.   

Starting at [-5  2]  is for the case of steep region start, while starting at [3  -1] is for the flat 

region start case. 

Note: all other configurations are kept unchanged. 

Starting point [-5  2]: 

- Single simulation: 

 

Figure  12  case starting point [-5  2] gradient (single simulation) 

MSE:  44.77 

The MSE is small, this mean that the errors on the ML model are small.  

When we start at [-5  2] on this simulation, The objective function optimization stops after two 

iterations for both EnOpt and EnOpt-ML (fig. 12). The closest of the four minima of the 

Himmelblau is not approached enough and this is due to the flatter region on the final iteration.  



 

 

Figure  13  Case starting point [-5  2] , EnOpt and EnOpt-ML samples and ML model predicted samples 

  

Figure 13 shows the distribution of the samples of EnOpt and EnOpt ML. we see a linear-like 

distribution of samples after the second as the covariance matrix became smaller faster. The 

covariance did not allow the samples to be taken from a wider area and it was then not possible 

for the gradient to go closer to the closest local minimum. 

Very few iterations were performed due to the fact that the tolerance set as stopping criterion 

is 10-3 was reach early on the iteration process.  

Table 3 Optimization results for  case starting point [-5  2]  (single simulation) 

 



A slight improvement is seen when using EnOpt-ML In comparison with EnOpt (table 3). 

EnOpt yielded 91.14 while EnOpt-ML yielded 86.83 as an optimal value. Both values are high 

compared to the actual minimum that is zero and to the base configuration case (≈ 3 for both 

EnOpt and EnOpt-ML (table 1)). 

The same number of objective function evaluations were performed on both methods (120 

times for EnOpt and EnOpt-ML, table 3) 

- 1000 simulations: 

 

Figure  14  Case starting point [-5  2] : objective function optimization (1000 simulations) 

 

Figure  15  case starting point [-5  2] : EnOpt and EnOpt-ML means of simulations 
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When the simulation is  repeated 1000 times with different random seeds, the means of 

objective functions are showing a better optimization with EnOpt compared to EnOpt.-ML (fig. 

15). EnOpt gave in average 36.47 while EnOpt-ML gave 48.31 which is approximately 20% 

higher. They both have almost the same standard deviation (33.58 EnOpt versus 33 for EnOpt-

ML, table 4). The optimized objective functions also show a higher mode (50% quartile, figure 

22). 25% quartile value (fig22) is also closer to the minimum on the boxplot for EnOpt than it 

is for EnOpt-ML.  

In (fig. 14) we see the mean of the different simulations tend to stop iterating in earlier iterations 

in EnOpt-ML compared to EnOpt.  

42 more objective function evaluations were obtained, in average, with EnOpt compared to  

EnOpt ML (table 4).  

 

Figure  16  Case starting point [-5  2] :  Boxplot of optimized objective function 

Table 4  Case starting point [-5  2] : summary output values (1000 simulations) 

 



In summary, we can say that we got 20% less objective function evaluations in EnOpt-ML than 

in EnOpt, but the Optimizations results are 20% higher in EnOpt-ML compared to EnOpt. 

The plot of 1000 simulations results (fig. 17) show that, with this starting point [-5 2], none of 

the optimizations (be it with EnOpt or EnOpt-ML) have landed in any other minima than the 

one on the top-right quadrant of this figure. 

 

Figure  17  Case starting point [-5 2] :  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

 

  



Starting point [3  -1]: 

Single simulation: 

 

Figure  18  Case - Starting point [3 -1]: gradient (single simulation) 

MSE: 6.17 

MSE is very low which shows a good ML model prediction.  

Almost the same behavior in this case  with starting point [3  -1](fig. 18) as the previous case 

as we are again in a relatively flat region. But since we started on a lower slope, the simulations 

gave better optimization results , EnOpt -ML(3.81) and EnOpt (4.71). 

 



 

Figure  19  Starting point [3 -1]:  EnOpt and EnOpt-ML samples and ML model predicted samples 

 

The number of objective function evaluations is clearly lower in EnOpt-ML than in EnOpt by 

80 times (table 5). This makes EnOpt-ML as the difference is very small in the optimization 

results between the two methods.  

Table 5  Optimization results for Starting point [3 -1] (single simulation) 

 

 

 

 



- 1000 simulations: 

 

Figure  20  Case starting point [3 -1]:  objective function optimization (1000 simulations) 

 

Figure  21  Case starting point [3 -1]:  EnOpt and EnOpt-ML means of simulations 

There are 10 times smaller standard deviations in the simulations with the starting point being 

in a flatter area compared to starting on a higher  steep slope in the previous case (Enopt (2.55 

in current case versus 33.5 in the previous one) EnOpt-ML (2.5 in current case  versus 33 in 

previous case)). The mean over the simulation means (fig. 21) shows lower EnOpt values 

which is better than EnOpt-ML results, but this difference is very small (last optimal objective 

function means on EnOpt 5.21 in comparison EnOpt-ML resulted in 5.59 (table 6). 



 

Figure  22  Case starting point [3 -1]: : Boxplot of optimized objective function 

Table 6  Case starting point [3 -1]:  summary output values (1000 simulations) 

 

Both optimizations run a same proportion of objective functions when starting in an already 

flat region, as in this case. The difference is that EnOpt-maximum ML's number of iterations 

was reduced by two, as seen in the table 6. 

The quartiles on (fig. 22) show a higher maximum value of the objective function in EnOpt 

than in EnOpt-ML. (fig. 22) also shows that the EnOpt-ML has a higher 25% quartile value 

optimization, EnOpt-ML tends then to have higher objective function in these simulations than 

EnOpt but with a mode that is very close between the two methods (5.47 in EnOpt versus 5.95 

in EnOpt-ML, table 6). The objective function evaluation mean over the simulations  



 

Figure  23  Case starting point [3 -1]:  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

The simulations yielded optimization results (fig. 23) on the same area as the minima on the 

lower-left quadrant in all the 1000 simulations. 

  



Changing initial covariance matrix 

 

Initial covariance matrix: 0.2I 

 
Figure  24  Case: covariance 0.2I : gradient (single simulation) 

 

 
Figure  25  Case: covariance 0.2I :  EnOpt and EnOpt-ML samples 

and ML model predicted samples 

MSE: 63.65 

 

 

Initial covariance matrix: 0.4I 

 
Figure  26  Case: covariance 0.4I :  gradient (single simulation) 

 

 
Figure  27  Case: covariance 0.4I :  EnOpt and EnOpt-ML samples 

and ML model predicted samples  

MSE: 178.77 

 

The MSE is more than double the deviation for I×0.4 than I×0.2 covariance matrices and has 

led to an optimum that is 5.58  when I×0.2 EnOpt-ML lead to 2.06 which is slightly better in 

this case.  



We also observe that, in this configuration, the EnOpt-ML for I×0.4 performed in more 

iterations than EnOpt (13 versus 7) while the EnOpt-ML for I×0.2 performed in fewer iterations 

than EnOpt (6 versus 12). The base configuration case had 11 iterations in EnOpt and 10 for 

EnOpt-ML, which are only one iteration difference (tables 7 and 8).  

Figures 24 and 26 show the difference in spread of function sampling, we can observe that in 

the case where the covariance is higher, the EnOpt-ML and EnOpt samples are taken in the 

later iterations on the same narrow region which is not what we have seen with the base case 

configuration or in the case where the covariance is 0.2I where the show parallel narrow 

scattering. 

 

Table 7  Optimization results for  case: covariance 0.2I (single simulation) 

 

 

Table 8  Optimization results for  case: covariance 0.4I (single simulation) 

 

The number of objective function evaluation increased in EnOpt from the configuration with a 

Covariance matrix of 0.1 I (440, table 1) to a covariance of 0.2I (480, table 7), but then it 

decreased in the case of a covariance matrix of 0.4I (280, table 8). On the other hand, for EnOpt-

ML, the number of objective function evaluation only kept decreasing with higher covariances 

(400 to 360 to 260 in covariances 0.1I, 0.2I and 0.4I respectively, tables 1, 7 and 8). The optimal 

values of the objective function on all covariances are not very different between the base case 

configuration and the covariance of 0.2I (approximately 3  with covariance 0.1I, and  

approximately 2 with covariance 0.4I). for the case where the covariance is 0.4I, the value is 

four times higher in the result of EnOpt-ML in comparison with EnOpt (1.12 in EnOpt versus 

5.58 in EnOpt-ML, tables 1, 7 and 8) 

 



- 1000 simulations:  

 

Figure  28  Case: covariance 0.2I :  objective function optimization results (1000 simulations) 

 

Figure  29  Case: covariance 0.4I :  objective function optimization results (1000 simulations)  

 

Figure  30  Case: covariance 0.2I :  EnOpt and EnOpt-ML means of simulations 

 

Figure  31  Case: covariance 0.4I :  EnOpt and EnOpt-ML means of simulations 



The means gathered from the 1000 simulations show very close optimization values throughout 

the  iterations with respect to the methods (EnOpt or EnOpt-ML) and with respect to the 

covariances (0.1I and 0.4I),(fig. 30 and 31). The iterations mean is around 8 for all cases which 

indicates that there is not much difference in the number of times the objective function has 

been evaluated. 

 

Figure  32  Case: covariance 0.2I :  Boxplot of optimized  objective function 

 

Figure  33  Case: covariance 0.4I :  Boxplot of optimized  objective function 

In figures 32 and 33, the quartiles look very close to each other for the two present configuration 

cases as well as EnOpt and EnOpt-ML with the only visible overall difference of EnOpt-ML 

computed with a covariance matrix equal to 0.4I, where the maximum value obtained through 

all simulations is lower.  

When comparing the EnOpt to EnOpt-ML of I×0.4 in those simulations, we get about one third 

less on the value of EnOpt-ML results with slightly fewer evaluations of the objective function 

from the EnOpt evaluations (tables 9 and 10). For I×0.2, same observation, but with smaller 

difference on the optimized objective values and the number of objective function evaluation. 

The standard deviation of the different simulations is higher on the 0.4I covariance for both 

optimal values and objective function number of evaluation (tables 9 and 10).   



Comparing to the base case configuration, the EnOpt-ML overperforms EnOpt when the initial 

covariance is greater. However, for EnOpt-ML, I×0.2 did best  in terms of objective function 

optimization both on the means and the standard deviation of the simulations in comparison 

with both covariances I×0.4  and I×0.1. (tables 2, 9 and 10).  

In summary, the values obtained on the means for both present cases show that EnOpt-ML 

performed better with larger covariance matrix (see also fig. 32 and 33). And on the contrary, 

the objective function had more evaluations in EnOpt-ML than in EnOpt where the covariance 

is 0.4I in comparison with the 0.2 covariance matrix case (tables 9 and 10). 

Table 9  Case: covariance 0.2I :  summary output values (1000 simulations) 

 

Table 10  Case: covariance 0.4I :  summary output values (1000 simulations) 

Figures 34 and 35, show that with a higher covariance matrix, there are more chances that the 

EnOpt/ EnOpt-ML can fall into other minima. These two examples also have a concentration 

of simulation results on the lower-right minimum of the figure, few on the top – right minimum, 

one outlier for covariance equal to 0.4I and none for the rest of the minima. Of course, the 

wider the covariance matrix the more possibilities it is to sample from areas that may lead to 

different directions. 



 

Figure  34  Case: covariance 0.2I :  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

 

 

Figure  35  Case: covariance 0.4I :  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 



Changing the sample size N 

In EnOpt, The number of samples N is very important to the performance of the optimizations, 

but also, it is a factor in the objective function number of evaluations, meaning, it is best to 

generate high number of samples for finding better near optimal values, but it also means that 

the computational time is going to increase. In this subchapter, EnOpt-ML is going to be 

performed to explore its impact  

- Single simulation

N = 5 

 

Figure  36  Case N=5: gradient (single simulation) 

 

Figure  37  Case N=5: EnOpt and EnOpt-ML samples 

and ML model predicted samples 

MSE:  40.86 

N = 100 

 
Figure  38  Case N=100: gradient (single simulation) 

 

Figure  39  Case N=100: EnOpt and EnOpt-ML samples 

and ML model predicted samples 

MSE:  19.42 



The base configuration with a lower number of samples N = 5, compared to a higher number 

of samples N = 100, has more wiggly gradients both with EnOpt and EnOpt-ML(fig. 36 and 

38). The increase of N number of samples also improves the MSE as the machine learning 

algorithm also benefits from the data it is training on.The samples on figures 37 and 39 also 

show that a smaller number of samples would fail to collect features in the function if it had 

some data that would have redirected the gradient to a different slope. 

Table 11  Optimization results for case N=5: (single simulation) 

 

Table 12  Optimization results for case N=100 single simulation): 

 

The objective function is clearly evaluating more times in N=100 than N= 5, but curiously in 

this simulation (and contrary of most simulations See table 11), in the case where the sample 

size is 5, EnOpt performed better than in the case where the sample size was 100 (0.3 for N 

equal to 5 versus 3.29 for N equal to 100, tables 11 and 12). EnOpt-ML evaluated more times 

the objective function than EnOpt, but it computed 200 fewer times than EnOpt when N=100 

. when N= 100, EnOpt-ML yielded a value a slightly smaller than EnOpt on the same 

configuration. 

Compared to the base case with a single simulation, N=20, EnOpt yielded very close values to 

the case with N=100 while we obtained slightly better value with EnOpt-ML where the sample 

size are higher (3.18 with N=5, 2.99 with N=20 and 1.99 with N=100). But since the difference 

is small between the results with N=20 and N=100 considering we need a lot more objective 

function evaluations, we can say that N=20 did best on EnOpt-ML front. 

 

 

 

 



- 1000 simulations:  

 

Figure  40  Case N=5: objective function optimization results (1000 simulations) 

 

Figure  41  Case N=100: objective function optimization results (1000 simulations) 

 

Figure  42  Case N=5: EnOpt and EnOpt-ML means of simulations 

 

Figure  43  Case N=100: EnOpt and EnOpt-ML means of simulations 



For both cases discussed in this subchapter, EnOpt-ML has, in average, fewer objective 

function evaluations than EnOpt with optimization results that are fairly close to each other 

although closer for the case where N = 100. 

The main objective is to observe the part that machine learning algorithm model plays when 

used on the gradient. EnOpt-ML grants around 222 fewer evaluations of the objective function 

(tables 13 and 14) when using higher number of samples (N = 100), while being still pretty 

close to the value obtained with EnOpt. In addition, it appears that the bigger the sample size 

the closest are the results of EnOpt and EnOpt-ML. 

 

Figure  44  Case N=5: Boxplot of optimized objective function 

 

Figure  45  Case N=100: Boxplot of optimized objective function 

The quartiles (figures 44 and 45) show how the case of higher number of samples (N=100), the 

mean of the optimized objective functions of the simulations is way better than where the 

sample size is very small.  The highest optimized objective function obtained was EnOpt-ML 

where N=5 (15.35 which is about 5 times higher than where N=100, tables 13 and 14)  



Table 13  Case N=5: summary output values (1000 simulations) 

 

Table 14  Case N=100: summary output values (1000 simulations) 

 

We can deduce the same thing for EnOpt-ML comparison on all sample size cases as we can 

for single simulations: because the difference between the results with N=20 and N=100, where 

we need a much higher number of objective function evaluations (1548.75, table 14), we can 

say that the N=20 case with EnOpt-ML method is good enough.  

The same can be said about EnOpt as, in fact, it was better with more samples but the 

counterpart of computational intensity, and since the difference is small in optimized value. we 

can say that the sample size of 20 is good enough and best of the three cases (9.33 for N=5, 

3.64 for N=20 and 2.33 for N=100, tables 2, 13 and 14) for the purpose of balancing 

optimization results with reduction of the objective function evaluation. 

In Figure 46, the simulations performed with N=5 landed mostly on the true minimum on the 

lower-right quadrant but also on the top-right and the lower-left quadrants' true minima (and 

some in between those three) with more EnOpt-ML optima on the lower-left true minimum 

quadrant than EnOpt and more EnOpt optima on the top-right true minimum than EnOpt-ML 

optima. none of the optimizations' simulations landed on the top-left true minimum. 



 In figure 47, the simulations performed with N=100 landed all on the same true minimum on 

the lower right quadrant.  

We notice that, when compared to the base case (fig.11), the larger the sample size, the more 

simulations end up on the same minimum. 

 

Figure  46  Case N=5: simulations' results of EnOpt and EnOpt-ML with respect to true minimum 



 

Figure  47  Case N=100: simulations' results of EnOpt and EnOpt-ML with respect to true 

  



Changing the Number of the predicted samples by the machine learning model 

The predicted samples from the ML model can also affect the optimization of EnOpt-ML due 

to the errors they can present. In this subchapter, the number of those predicted samples is 

changed from Nml=100 (base configuration case) to Nml = 20 and Nml=1000 to explore the 

effect it can have on the EnOpt-ML method. 

- Single simulation

Nml = 2 

 

Figure  48  Case Nml = 20: gradient (single simulation)  

 

Figure  49  Case Nml = 20:  EnOpt and EnOpt-ML 

samples and ML model predicted samples 

Nml = 1000 

 

Figure  50  Case Nml = 1000: gradient (single 

simulation)  

 

Figure  51  Case Nml = 1000  EnOpt and EnOpt-ML 

samples and ML model predicted samples 

MSE : 95.05 MSE : 85.99 



When changing the number of samples predicted by the machine learning model,   we can see 

that with  smaller Nml , we get better optimization value (for this single  simulation) compared 

to the base case configuration. In fact ,  with even higher number of predicted samples used we 

ended up with a declined performance (34.98 for Nml= 1000 versus 0.9 for Nml=20, tables 15 

and 16) .  This is due to that the Nml samples do not necessarily fall in the  Himmelblau surface. 

The MSE (Mean Square Error)   is higher on Nml=20 case than the Nml=1000 case which may 

be misleading, but this is the effect of the very different number of samples used to  calculate 

the MSE.  

Table 15  Optimization results for  case Nml = 20 (single simulation) 

 

Table 16  Optimization results for  case Nml = 1000 (single simulation) 

 

In EnOpt-ML, the difference in the number of times the objective function was evaluated has 

dropped with the use of Nml=1000 by 160 times compared to Nml=20 case (tables 15 and 16), 

while both cases of Nml= 20 and the base configuration case of Nml=100 evaluated the 

objective function an equal number of times.  

 

 

 

 

 

 

 



- 1000 simulations  

 

Figure  52  Case Nml = 20: (top-right), case Nml = 1000(bottom right), EnOpt (left): objective function optimization results 

(1000 simulations) 

  

Figure  53  Case Nml = 20: (top-right), case Nml = 1000(bottom right):  EnOpt and EnOpt-ML means of simulations 



The deviations between the different cases’ simulations are almost the same. The EnOpt result 

does not change since its algorithm does not include the use of Nml, so the tables included are 

only for EnOpt-ML. for the different Nml. 

The mean of the simulations means lead to very close values  with slightly lower value for 

Nml=1000. This is contrary of the single simulation where the difference was pronounced with 

Nml=1000’s result being higher (tables 16 and 18). 

The EnOpt in both cases performed only very slightly better than EnOpt-ML (3.64 versus 

6.82 and 5.31). The results between Nml= 20 and Nml=1000 led to very similar results with 

just a little higher 75% quartile value on Nml=20 case configuration (fig. 54 and 55, table). 

 

Figure  54  Case Nml = 20:  Boxplot of optimized objective function 

 

Figure  55  Case Nml = 1000:  Boxplot of optimized objective function 

  

 



The average number of objective function evaluation has doubled with an Nml=1000 compared 

with the case of Nml=20 while the optimization results’ mean over the simulations are not so 

different (tables 17 and 18). 

Table 17  Case Nml = 20:  summary output values (1000 simulations) 

   

Table 18  Case Nml = 1000:  summary output values (1000 simulations) 

 

In comparison with the base configuration case, Nml=100, the average of simulations of 

optimization results are very close to the ones with Nml= 20 (tables 2 and 17) 

The distribution of EnOpt and EnOpt-ML simulation (fig. 56 and 57) plot of results shows that 

EnOpt and EnOpt-ML can end up on distinct optimal values. The majority of them for both 

plots (fig. 56 and 57) are in the lower-right quadrant of the figures 56 and 57. Few simulations 

produced values that were closer to the top-right quadrant's true minimum, and even fewer 

were close to the lower-left quadrant's true minimum (in Nml= 20 ,it was barely approached ). 

No optimization approached  the true minima in the top-left corner of the figures (fig. 56 and 

57). 



 

Figure  56  Case Nml = 20:  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

 

Figure  57  Case Nml = 1000:  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values  



Different training iterations   

In the process of using machine learning model on the gradient to observe its contribution/ 

effect on the optimization, we need to decide which data will be included in the model 

prediction samples. Here it is discussed whether it has an impact and if it does, how important 

of an impact it has on the optimization. 

The following figures(fig 58) present the different iterations at which machine learning started 

being included in the algorithm (including the predicted samples in the gradient calculations ). 

 

Figure  58  Objective function means over 1000 simulations for EnOpt,  and EnOpt-ML with ML model trained at different 

iterations 



When it is trained at first iteration (fig. 58), we can see that there is smaller deviation for the 

ensemble of simulations, but it has on the rest of the cases a shape (envelope of the simulations 

standard deviation) that start looking almost unchanged overall.  

 

Figure  59  means of  1000 simulations for EnOpt and EnOpt-ML with ML model trained at different iterations 

Comparing all the simulations’ means on different trained iterations (fig. 59), we can observe 

that:  

1. EnOpt lead to the lowest objective function in comparison with all the EnOpt-ML 

versions 

2. The training at later iterations (5 and 6 here) led to better results compared to training 

at earlier stages. 

3. The test function optimizations with all the different start training iteration cases are 

very close to one another . 



Reduction of sample size N throughout the iterations 

Reduced sample size N used at iteration 4 (after 3rd 

iteration)to N=5 

- Single simulation 

 
Figure  60 Reduced sample size N = 5 used at iteration 4  gradient (single 

simulation) 

 

 
Figure  61  Reduced sample size N = 5 used at iteration 4 EnOpt and 

EnOpt-ML samples and ML model predicted samples 

 

MSE: 52.55 

Reduced sample size N used at iteration 4 (after 3rd 

iteration) to N=10 

- Single simulation 

 
Figure  62  Reduced sample size N = 10 used at iteration 4  gradient 

(single simulation)  

 

Figure  63  Reduced sample size N = 10 used at iteration 4  EnOpt and 

EnOpt-ML samples and ML model predicted samples 

 

MSE: 35.49 



In an attempt to reduce the number of the objective function evaluations, the sample size is 

reduced to check if it is possible to get a near-optimum value while at the same time running 

fewer objective function evaluations. The goal is also to observe if EnOpt-ML gives better 

result than EnOpt when the sampling on the original function is reduced or stopped. 

In the case of a single simulations presented here, comparing the reduction to N=5 and N=10 

we can see that the performance is better where the sample size is only reduced to 10 (fig. 60 

and 62). There is a small difference between the EnOpt and EnOpt-ML results; in the reduction 

of sample size to N=5 , we get slightly better optimization on the EnOpt-ML front(4.99 in 

EnOpt-ML versus 6.26 in EnOpt, table 19). With the sample size reduced only to N=10, EnOpt 

had better optimization results than EnOpt-ML(0.39 in EnOpt compared 2.31to EnOpt-ML). 

The comparison of EnOpt-ML in the two cases, shows a double value of the optimized function 

when N=5 but with 50 fewer objective function evaluations (table 20) which is a good tradeoff 

between number of objective function evaluations and the optimal value.  

Table 19  Optimization results for   Reduced sample size N = 5 used at iteration 4 (single simulation) 

 

Table 20  Optimization results for  Reduced sample size N = 10 used at iteration 4 (single simulation) 

 

  



- 1000 simulations: 

 

Figure  64  Reduced sample size N = 5 used at iteration 4  objective function optimization results (1000 simulations) 

 

Figure  65   Reduced sample size N = 10 used at iteration 4  objective function optimization results (1000 simulations) 

 

Figure  66  Reduced sample size N = 5(left)/N=10(right) used at iteration 4  EnOpt and EnOpt-ML means of simulations 



From figures 61 and 63, we can see from the distribution of the different simulations (in gray), 

that more simulations of EnOpt and EnOpt-ML optimizations have stopped earlier than for the 

base configuration case.  

The means (fig. 66) show that EnOpt had gotten slightly better value of optimization than 

EnOpt in both configurations. 

At the fourth iteration, we have fewer function evaluations (see tables 21 and 22)when the 

sample size N has been reduced to 5 (168 for EnOpt and 161 for EnOpt-ML ) and a smaller 

deviation (21 for EnOpt and 17 for EnOpt-ML ). When N is reduced to 10 at the 4th iteration, 

the objective function is evaluated a greater number of times (226 for EnOpt and 208 for 

EnOpt-ML) with higher standard deviations too (37 for EnOpt and 32 for EnOpt-ML). The 

optimization value is, on the other hand, not significantly different on the means or standard 

deviations between the simulations on both cases of configuration.  

 

Figure  67  Reduced sample size N = 5 used at iteration 4   Boxplot of optimized objective function 

  

 

Figure  68  Reduced sample size N = 10 used at iteration 4   Boxplot of optimized objective function 



The (fig 67 and 68) show that the variability is a little higher in EnOpt-ML values of the 

optimized objective function than on EnOpt for both of the cases where  the 50% quartile is 

centered for EnOpt-ML but is very close to the 25% quartile for EnOpt.  

Table 21  Reduced sample size N = 5 used at iteration 4 summary output values (1000 simulations) 

 

Table 22  Reduced sample size N = 10 used at iteration 4 summary output values (1000 simulations) 

 

Figures 69 and 70 do not show any interesting differences compared to each other and to the 

base case configuration. 



 

Figure  69  Reduced sample size N = 5 used at iteration 4 : simulations' results of EnOpt and EnOpt-ML with respect to true 

minimum values 

 

Figure  70  Reduced sample size N = 10 used at iteration 4 : simulations' results of EnOpt and EnOpt-ML with respect to 

true minimum values 



Since the results of the reduction of sample size are interesting from the number of objective 

function evaluations point of view, a comparison with change in at what iteration we reduce N 

number of samples and the reduction to N=0 (i.e., sampling from the objective function is 

stopped) for both the cases involved is made in the following comparison: 

- Reduced sample size N used at iteration 4 (after 

3rd iteration) to N=0  

- Single simulation: 

 
Figure  71  Case reduced sample size N = 0 used at iteration 4 gradient 

(single simulation): 

 

 
Figure  72  Case reduced sample size N = 0 used at iteration 4  EnOpt 

and EnOpt-ML samples and ML model predicted samples 

MSE: 629.65 

- Reduced sample size N used at iteration 5  

(after 4th iteration) to N=0  

- Single simulation: 

 
Figure  73  case reduced sample size N = 0 used at iteration 5: gradient 

(single simulation) 

 

 
Figure  74  Case reduced sample size N = 0 used at iteration 5 : EnOpt 

and EnOpt-ML samples and ML model predicted samples 

MSE: 709.66 

 



The MSE in these configurations is much higher than we obtained in previous cases. It is due 

to that  the ML model is predicting  on the same samples since the stopping of objective 

function sampling.  

Table 23  Optimization results for  case reduced sample size N = 0 used at iteration 4 (single simulation)  

 

Table 24  Optimization results for  case reduced sample size N = 0 used at iteration 5 (single simulation) 

 

The 1st case (N = 0 from Iteration 4) shows that EnOpt-ML led to better optimization value in 

comparison with EnOpt (tables 23 and 24) and so happened also for the 2nd case (N = 0 from 

Iteration 5). The second case has better optimization as it gathers more data from the extra 

iteration compared to where we stop sampling from the objective function at the previous 

iteration. For this simulation we can say that the optimization of reduced N at iteration 4 to 

N=0  yielded good enough optimization result (6.47 for EnOpt-ML) for EnOpt-ML if we 

compare it to the case where EnOpt run all the simulation on N=20 from the base configuration 

(3.21 for EnOpt  and 2.99 for EnOpt-ML). 

Reduced sample number to N=0 is equivalent to stopping all sampling from the objective 

function which would limit the number of objective function evaluations. 

 

 

 

 

 

 

 



- 1000 simulations: 

 

Figure  75  Case reduced sample size N = 0 used at iteration 4 : objective function optimization results (1000 simulations) 

 

Figure  76  Case reduced sample size N = 0 used at iteration 5 : objective function optimization results (1000 simulations) 

When stopping the sampling at 4th iteration, the mean on EnOpt-ML is not far from where it 

stopped at EnOpt (18.73 in EnOpt-ML versus 29.59 in EnOpt in average and the standard 

deviation are not very different tables 25 and 26).  The optimizations are again not much 

dissimilar in value for all the cases.  

In the case where we stop sampling at 5th iteration, the optimizations in EnOpt and EnOpt-ML 

are not very different (12.63 for EnOpt-ML versus 17.09 EnOpt, tables 25 and 26) 

From the comparison of the mean values over the simulations’ means, the EnOpt-ML is slightly 

better for the reason that we stop gathering EnOpt samples and so EnOpt does not improve 

after that(fig. 77 and 78). The boxplots(fig. 79 and 80) the 25% quartile of EnOpt in the case 

of stopping the sampling at the 4th iteration is higher than the 50% quartiles  of EnOpt- 



 

Figure  77  Case reduced sample size N = 0 used at iteration 4 : EnOpt and EnOpt-ML means of simulations 

 

 Figure  78  Case reduced sample size N = 0 used at iteration 5 : EnOpt and EnOpt-ML means of simulations 

 

 

 

Figure  79  Case reduced sample size N = 0 used at iteration 4 : Boxplot of optimized objective function 



 

Figure  80  Case reduced sample size N = 0 used at iteration 5 : Boxplot of optimized objective function 

ML of the same case and it is also higher than the 50% quartile of EnOpt and EnOpt-ML of 

the case where we stop the sampling at 5th iteration. This is showing that EnOpt in that case is 

poorly performing (fig. 81 and 82)  

Table 25  Case reduced sample size N = 0 used at iteration 4 : summary output values (1000 simulations) 

 

Table 26  Case reduced sample size N = 0 used at iteration 5 : summary output values (1000 simulations) 

 

In Figures 81 and 82  we can appreciate a move towards the middle of the lower right quadrant 

of the figure from stopping at iteration 4 to stopping at iteration 5 for EnOpt minimums 

obtained in the multiple simulations. We do not appreciate that translation as much when it 

comes to EnOpt-ML. 



 

Figure  81  Case reduced sample size N = 0 used at iteration 4 : simulations' results of EnOpt and EnOpt-ML with respect to 

true minimum values 

  

Figure  82  Case reduced sample size N = 0 used at iteration 5 : simulations' results of EnOpt and EnOpt-ML with respect to 

true minimum values  



Machine learning algorithms 

 There are various machine learning algorithms that could improve the performance of the 

gradient in EnOpt. As introduced in chapter 2, in this chapter two ML algorithms are used. 

AdaBoost and Random Forest 

Adaptive boosting regressor: 

- Single simulation:  

 
Figure  83  AdaBoost case: gradient (single simulation)  

 

Figure  84  AdaBoost case: EnOpt and EnOpt-ML samples and ML 

model predicted samples 

MSE: 56.4 

Random Forest:  

- Single simulation: 

 
Figure  85  Random Forest case: gradient (single simulation) 

 

Figure  86  Random Forest case:  EnOpt and EnOpt-ML samples 

and ML model predicted samples 

MSE: 368.46 



EnOpt-ML with Random forest stopped iterating early in the optimization and on an optimized 

value that is pretty high (39.44 table 28) compared to both AdaBoost (0.03, table 27) and GBR 

(2.99 table 1). 

The AdaBoost Regressor performed best compared to the base configuration with GBR and 

the Random Forest regressor which performed the worst and got stuck pretty early along the 

slope. The AdaBoost regressor actually performed even better than EnOpt for this single 

simulation. 

The MSE of the Random Forest shows it cannot fit the training data well as the MSE 368.46, 

in the contrary of MSE of AdaBoost 56.4 and the MSE of GBR with 34.39. 

  

Table 27  Optimization results for  AdaBoost case  (single simulation) 

 

Table 28  Optimization results for  Random Forest case (single simulation) 

 

 

- 1000 simulations:  

 

Figure  87  AdaBoost case: objective function optimization results (1000 simulations)  



 

Figure  88  Random Forest case:  objective function optimization results (1000 simulations)  

 

Figure  89  AdaBoost case: EnOpt and EnOpt-ML means of simulations 

 

Figure  90  Random Forest case:  EnOpt and EnOpt-ML means of simulations 

Most of the simulations on Random Forest end earlier in the iteration process (an average of 5 

iterations) while the means are around 38.21(table 30). For AdaBoost on the other hand, the 

optimum mean is almost 5 times lower and ends in average around the 7th iteration. The 

AdaBoost regressors results are much closer to the GBR (6.38 for GBR versus 8.19 for 

AdaBoost, tables 2 and 29)from the simulations obtained here.  



 

Figure  91  AdaBoost case: Boxplot of optimized objective function 

 

Figure  92  Random forest case : Boxplot of optimized objective function 

Table 29  AdaBoost case: summary output values (1000 simulations) 

   

Table 30  Random Forest case:  summary output values (1000 simulations) 

 



From the figures 91 and 92 are an illustration of how poor is the efficacy of Random Forest 

regressor in this case in comparison with GradBoost regressor, AdaBoost regressor and EnOpt. 

as we can see that EnOpt-ML with Random Forest has very large quartiles compared to EnOpt-

ML with AdaBoost and also with EnOpt.  

From figure 93,  we see that the AdaBoost regressor as an ML used for EnOpt-ML has the 

simulations’ optima’s distributed very similarly to when GBR was used. Figure 94, on the other 

hand, shows that Random forest’s EnOpt-ML simulations yielded in general poor results that 

only very few simulations led to optimizations that are closer to one of the minima.  

 

Figure  93  AdaBoost case: simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 



 

Figure  94  Random Forest case:  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

  



Chapter 4: Improvement example  

Based on the previous cases observations, a collection of ‘best’ performers is applied to 

Himmelblau, Rosenbrock and Bukin function number 6 for optimization testing. Some 

interconnections in terms of optimizing through the reduction of time the objective function 

has been evaluated and the overall average of performed iterations are taken into account. 

These two latter functions will be an example to observe the possibility of generalization for 

the use of ML algorithms to improve the gradient estimation when also at a given iteration, we 

reduce the number of samples added. 

 The “best” configuration is as the following: 

- Number of samples N = 20, 

- Initial Covariance matrix [0.2 0 0 0.2 ], 

- Machine learning model, GBR  trained at 2nd iteration, 

- Reduced N = 0 (stop sampling from objective function) reduced at 5th  iteration. 

- Nml = 500 

On Himmelblau  

 

Figure  95  Improvement example: gradient (single simulation) 

 



 

Figure  96  Improvement example EnOpt and EnOpt-ML samples and ML model predicted samples 

MSE: 454.9 

In this case, a simulation with 20 samples in each iteration has been performed until the 4th 

iteration and at the 5th iteration there were no new samples used. The relatively large number 

of model-predicted samples Nml  in combination with the stopping of sample collection at 5th  

iteration explains the MSE obtained (454.9) because the ML model is not learning on any new 

data, hence the errors between the predicted samples and the actual test function become more 

pronounced. 

This case is a recollection of what was observed in the previous chapter and could improve the 

optimization to get a ‘good enough’ result with smaller number of evaluations of the objective 

function (because of fewer iterations) through the optimization.  

There are, of course, many other configurations that could give even better results. Here in this 

thesis, this case will mainly serve as an example to what  could be done with respect to reducing 

the objective function evaluations by using machine learning algorithms on the gradient 

estimation. 

The total number of iterations specified for reducing the sample size to zero, is doubled (for 

evaluating upon update) then multiplied by the number of samples used up to that point, is 

usually the objective function run total. It is not always the case, as the optimization may stop 



before the iteration, at which point we put N=0. This means that by determining the setting, we 

can determine the maximum number of times the function will be executed ahead of time. 

Table 31  Optimization results for   improvement example (single simulation) 

 

After stopping the sampling, EnOpt-ML improved the results of the gradient by more than 1.5 

times(table 31). The result obtained by EnOpt at that stop iteration. 

- 1000 simulations:  

 

Figure  97  Improvement example objective function optimization results (1000 simulations) 

 

Figure  98  Improvement example EnOpt and EnOpt-ML means of simulations 

The 1000 simulation in this configuration has shown an improvement in the optimization with 

the use of the EnOpt-ML (mean of 8.09 compared to 14.99 for EnOpt, table 32) even when 



reducing/stopping the sampling. The mean resulted from these simulations is satisfactory 

especially that the function run only 160 times which is fewer than what we observed in the 

base case configuration (333.65 as average from EnOpt and 307.42 from EnOpt-ML, table 2) 

without 

Figure 99 shows medians with close values in the EnOpt and EnOpt-ML boxplots, with the 

EnOpt boxplot skewed towards the 25% quartile while having a 75% quartile that is 

significantly higher than the EnOpt-ML boxplot. 

 

Figure  99  improvement example Boxplot of optimized objective function 

Table 32  Improvement example: summary output values (1000 simulations) 

The 

plot (fig. 100) shows that most simulations yield optimized values that are around the true 

minimum on the lower-right of the figure.  

 



 

Figure  100  Improvement example simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

  



On Buckin function number 6 

The configuration here has been deviated from the Himmelblau in the previous subchapter 

configuration by:  

▪ test function : Bukin function number 6,  

▪ starting point  [-12 , 2].  

- Single simulation 

 

  

Figure  101   Bukin function 6: gradient (single simulation) 

 



 
Figure  102  Bukin function 6: EnOpt and EnOpt-ML samples and ML model predicted samples 

 

MSE: 64.62 

 

MSE of the ML model (64.62) is lower than the one obtained with Himmelblau (454.9); this is 

due to the shape of Bukin function number 6. 

The Buckin function n6 is characterized by many local minima and one global one. We can see 

that the two algorithms lead to different minima. Here, EnOpt-ML fell into a lower minimum 

(3.16, table 33) than EnOpt-ML (7.23, table 33). The objective function evaluations are set to 

result in 160 evaluations. 

Since there are many local minima, neither EnOpt nor EnOpt-ML approached the global 

minima (fig. 101).  

Table 33  Optimization results  for Bukin function 6 (single simulation) 

 



- 1000 simulations:  

 

Figure  103 Bukin function 6 objective function optimization results (1000 simulations)  

 

Figure  104  Bukin function 6 EnOpt and EnOpt-ML means of simulations 

The simulations show a slight improvement on the results with the use of EnOpt-ML compared 

to the use of EnOpt both in terms of means and standard deviation of the ensemble of 

simulations(fig. 103 and 104). The minimum number of iterations (lower than 160 in average 

for both EnOpt and EnOpt ML, table 34) suggest that the reduction in N could be applied even 

sooner with a possibility to reduce the number of objective function evaluations and still be 

able to get a ‘good’ enough optimization results. If the objective function is expensive to 

calculate, it may be more difficult to choose the iteration at which we can stop or reduce the N 

number of samples to still be able to get a good optimization result. 

Figure 105 shows that the median of simulations from EnOpt method (15, table 34)results is 

higher than the 75% quartile of the simulations with EnOpt-ML method (13.4, table 34). 

In figure 106 we can see that there were some simulations with EnOpt and EnOpt-ML that 

were getting closer to the global minimum. The figure also shows that simulations led to 

different local minima as they are very close and on the same ridge. 



 

Figure  105  Bukin function 6 Boxplot of optimized objective function 

Table 34  Bukin function 6 : summary output values (1000 simulations) 

 



 

Figure  106  Bukin function 6 : simulations' results of EnOpt and EnOpt-ML with respect to true minimum values 

  



On Rosenbrock 

The configuration here has been deviated from the Himmelblau in the previous subchapter 

configuration by:  

▪ test function : Rosenbrock,  

▪ starting point [8, -2].  

- Single simulation 

 

 

 
Figure  107  Rosenbrock: gradient (single simulation) 



 
Figure  108  Rosenbrock:  EnOpt and EnOpt-ML samples and ML model predicted samples 

MSE: 5197560.11 

 

The MSE is high for the higher scale (compared to the other two test functions) and the different 

function shape. The Rosenbrock function has a very high maxima in the chosen interval of 

evaluation. The chosen starting point is at almost 45000. At this scale (global minimum being 

0), a 1714.56 (in EnOpt-ML, table 35)is not a bad optimization result for this specific 

simulation in comparison with the other test functions used in this thesis. EnOpt on the other 

hand did poorly (4520, table 35 ) which means that using the ML model with the gradient 

helped getting better optimization value.  

Table 35  Optimization results for   Rosenbrock (single simulation) 

 

- 1000 simulations:  



 

Figure  109  Rosenbrock:  objective function optimization results (1000 simulations)  

 

Figure  110  Rosenbrock: : EnOpt and EnOpt-ML means of simulations 

 

 

EnOpt-ML performed better than EnOpt (it is still only slightly better scale-wise)  knowing 

that there are no more samplings on the true objective function after the 4th iteration for both 

methods. 

Figure 111 shows how much all simulations with EnOpt-ML yielded better optimized values 

of the objective function for all quartiles compared to EnOpt simulations with medians of 

683.02 for EnOpt-ML compared to 3923.13 for EnOpt (table 36).  



 

Figure  111  Rosenbrock:  Boxplot of optimized objective function 

 

Table 36  Rosenbrock:  summary output values (1000 simulations) 

 

When plotting the simulations’ results for both EnOpt and EnOpt-ML (fig. 112), we can see 

that few EnOpt-ML simulations results approached pretty much the global minimum while all 

EnOpt simulations optimizations stayed behind all EnOpt-ML simulations’ optimized values  



 

Figure  112  Rosenbrock:  simulations' results of EnOpt and EnOpt-ML with respect to true minimum values   



Chapter 5: Final remarks and Conclusions 

 

The objective of this thesis work is to investigate whether using ML to include all information 

from previous iterations for gradient estimation in StoSAG can improve the computational 

efficiency for optimization. Throughout the thesis, the EnOpt-ML approach, where a ML 

model is trained using control vectors and objective values from all previous StoSAG iterations 

and used for gradient estimation, has been developed and applied for optimization. The 

optimization results of EnOpt-ML and that of EnOpt are compared and discussed, under 

various configurations and on challenging objective functions.  

Observations/ remarks: 

 

1. For Himmelblau test function: 

● The starting point of the optimization effects both EnOpt and EnOpt-ML although 

they may land on different minima. 

● Increasing the sample size improves both EnOpt and EnOpt-ML, the latter requires 

fewer evaluations on the objective function and has good enough results. 

● Increasing the Nml (number of samples created through the predictions of the 

machine learning algorithms used ) does not yield significant improvement on the 

optimization results. 

● Increase in the initial covariance matrix gave slightly better means (smaller means 

for minimization) and smaller standard deviations on the side of EnOpt-ML 

compared to EnOpt. 

● Training ML model at later iterations gives even better results than if it is trained 

from the start. 

● We can reduce the number of samples N at certain iteration level for both EnOpt 

and EnOpt-ML and that reduces the objective function evaluations for both and does 

result in fairly good optimization results for EnOpt-ML compared to EnOpt. The 

later we reduce the sample size N, the better the optimization results are, but the 

specified value of N gives us an upper hand over the maximum number of function 

evaluation we are willing to run. Note: reducing N to 0 is not equivalent to stopping 

the iterations at the given step for EnOpt-ML (only in EnOpt) as the iterations 

continue with the Nml predicted samples. 



● EnOpt-ML requires fewer objective function evaluations than EnOpt, in average. 

Especially with higher covariance matrix values. 

● Among the three machine learning algorithms used in this thesis, Gradient Boosting 

regressor and Ada Boosting regressor achieve significantly better optimization 

results than Random Forest regressor.  

2. For Bukin function number 6: (a ridge function) 

● EnOpt-ML achieved faintly better optimization results than EnOpt in the 1000 

simulations as average. 

● This function has many local minima which lie along a ridge, and EnOpt and EnOpt-

ML did not land at the same minimum.  

3. For Rosenbrock test function: (valley function) 

● The function has a global minimum lying  in a narrow parabolic valley. it descends 

very slowly on its way to it compared to at the side of the function. 

● EnOpt-ML achieved better results than EnOpt. 

● None of the two optimization results were very satisfying, but this can also be 

attributed to the fact that the function has a much higher values in the chosen 

evaluation interval in comparison with the two other test functions in this thesis. 

 

Conclusion: 

 

As the objective, this thesis work has developed, implemented, investigated, and discussed an 

approach – EnOpt-ML – of using ML in the stochastic gradient descent for improving the 

computational efficiency of gradient estimation and optimization. For some specific cases, 

EnOpt-ML does improve the computational efficiency in terms of fewer objective function 

evaluations and achievement of a near-optimum, compared to EnOpt. However, the experiment 

results do not provide clear evidence on that EnOpt-ML overperforms EnOpt in general. The 

use of fewer samples from EnOpt means feeding fewer data to the training of machine learning 

models. Thus, although the reduction in the number of samples reduces the number of objective 

function evaluations, it also negatively impacts the training of ML in EnOpt-ML, as the more 

training data, the more accurate a trained ML model will be. The increase in sample size N has 

led, on average (in the examples studied), to fewer objective function evaluations with  EnOpt-

ML than  objective function evaluations  with EnOpt. 



We can control the maximum number of objective function evaluations we want to perform 

(and then the objective value will be predicted using the trained ML model) to reduce the 

computational intensiveness. However, we should keep in mind that the earlier we reduce the 

sample size or stop sampling, the less “optimal” the results might be.  

In conclusion, this thesis work has set up the stage for utilizing ML in SGD for speeding up 

optimization. However, more analysis and further research should be conducted to investigate 

the effect of ML and better utilize it. Recommendations for future works are, for example, 

testing more different configurations of EnOpt-ML, using other ML algorithms, modifying the 

way ML is used, test on more computational demanding objective functions (e.g., reservoir 

simulation models), and include uncertainty (i.e., robust optimization).  

 

  



Appendix 

EnOpt and EnOpt-ML codes 

 

%matplotlib inline 

import numpy                  as     np 

import matplotlib.pyplot      as     plt 

import scipy.stats            as     ss 

from   numpy.random           import multivariate_normal as multinormal 

from   numpy.linalg           import eig 

import statistics           

from   numpy                  import random 

from   pandas                 import DataFrame 

import timeit           

from   mpl_toolkits           import mplot3d 

from   mpl_toolkits.mplot3d   import Axes3D 

import math 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.ensemble import AdaBoostRegressor 

from sklearn.ensemble import GradientBoostingRegressor 

from sklearn.metrics import mean_squared_error 

 

Objective Functions for test: 

 

def of_HimmelBlau(M1, M2): 

    truth       = [3, 2]  # (or an other depending on starting mu) 

    x           =  M1 

    y           =  M2#M[1]     

    return (x**2 + y - 11)**2 + (x + y**2 - 7)**2 

 

def of_Rosenbrock(M1, M2): 

    x           =  M1 

    y           =  M2#M[1]  

    b           = 10 #choice  b=10 . 

    return (x-1)**2 + b*(y-x**2)**2 

 

def of_BukinFunc6(M1, M2): #Bukin function N.6 

    x           =  M1 

    y           =  M2#M[1] 

    return 100*(abs(y-0.01*x**2)**(1/2))+ 0.01*abs(x+10) 

 



Machine Learning algorithms 

def ML_GradBoostReg(Xs, Ys): 

    param = {'n_estimators': 100,'max_depth': 1, 'learning_rate': 0.1, 'criterion': 'mse'} 

    model = GradientBoostingRegressor(**param) 

    model.fit(Xs, Ys) 

    return model 

 

def ML_RandForest(Xs, Ys): 

    param = {'n_estimators': 100,'max_depth': 1} 

    model = RandomForestRegressor(**param) 

    model.fit(Xs, Ys) #reshape(-1, 1) 

    return model 

 

def ML_AdaBoostReg(Xs, Ys): 

    param = {'n_estimators': 100,'random_state':0} 

    model = AdaBoostRegressor(**param) 

    model.fit(Xs, Ys) #.reshape(-1, 1) 

    return model 

 

Function for testing (EnOpt and EnOpt-ML) 

  

def run(mu, C, init_N=20, reduced_N=5, Nml=100, of=None, max_iter=100, 

        train_iter=2, reduce_at_iter=100, ML=None, seed=None, show_plot=False, 

        show_results= False, plot_func=None, minx=-6, maxx=6, miny=-6, maxy=6): 

     

    current_iter = 0 

    converged    = 0 

    model        = None 

         

    tol                 =  10**(-3)                   # Tolerance 

    stepMu              =  1                          # Stepsize for the mean  (mu) 

    stepC               =  0.1                        # Stepsize for the covariance matrix 

(C) 

    Fold                =  of(mu[0], mu[1])           # Objective function at initial point 

mu 

                 

    if seed != None:               

        np.random.seed(seed)                          # seed: which seed or random seed?  

     

    X1s      = np.array([]) 

    X2s      = np.array([]) 

    Fs       = np.array([]) 

     



    X1sML    = np.array([]) 

    X2sML    = np.array([]) 

    XsML     = np.array([]) 

    FsML     = np.array([]) 

     

    of_runs  = 0 

     

    histMu   = [] 

     

    # add initial mu 

    histMu.append(mu.copy()) 

     

    while converged     == 0: 

          force_stop     = 1     # force stop gradient calculation  

                              #when N=0 in non-MLsimulation       

        # Run objective function 

         

        if current_iter < reduce_at_iter: 

            N = init_N 

        else: 

            if reduced_N > 0: 

                N = reduced_N 

         

        if current_iter < reduce_at_iter or reduced_N > 0: 

     force_stop  = 0 

            of_runs    += N 

            X = multinormal(mu, C, N)                        # N: Number of control samples 

            X1s         = np.concatenate((X1s, X[:,0].copy())) # history X1 

            X2s         = np.concatenate((X2s, X[:,1].copy())) # history X2 

            Xs          = np.array([X1s, X2s]) 

            F           = list(map(lambda x:of(x[0], x[1]), X))  

            Fs          = np.concatenate((Fs, F))              # history F 

         

        if current_iter >= train_iter: 

      force_stop  = 0 

            N           = Nml 

           

            # Use data for prediction 

            if current_iter < reduce_at_iter or reduced_N > 0: 

                model       = ML(Xs.T, Fs)                     # Training model 

                                 

            X               = multinormal(mu, C, Nml)  

                            # Nml: Number of control samples added for ML  

            F               = model.predict(X) 



            # separate variables for ML history 

            X1sML           = np.concatenate((X1sML, X[:,0].copy())) # history X1_ML 

            X2sML           = np.concatenate((X2sML, X[:,1].copy())) # history X2_ML 

            XsML            = np.array([X1sML, X2sML]) 

            FsML            = np.concatenate((FsML, F))                         

 

    If  force_stop  == 0     

# Gradient calculation 

        gradMu           = np.mean([[i - Fold for i in F][i] * (X-mu)[i] for i in 

range(N)], 0)  

     

                                                                 

        gradMu          /= np.linalg.norm(gradMu)               #normalize gradient 

        gradC            = np.zeros((2,2)) 

 

        

 

 

 

        for k in np.arange(0, N): 

            # updating covariance gradient 

 

            gradC       += (F[k] - Fold) * (np.matmul((np.asmatrix(X[k] - mu)), 

(np.asmatrix(X[k] - mu)).T) - C) / N 

                                                                 

        gradC           /= np.linalg.norm(gradC)               # normalize gradient 

        muNew            = mu - stepMu * gradMu                # updating the mean ((-) 

since we are minimizing) 

        Cnew             = C  - stepC  * gradC                 # updating the covariance 

         

    # Must have positive definite covariance C: 

        E                = np.linalg.eigvals(Cnew)             # eigenvalues of the new 

covariance matrix 

 

        if (min(E))     <= 0: 

            Cnew         = Cnew + np.dot(np.abs(min(E))+ 10**(-6), (np.eye(2)))        

                 

    # Checking if the F new point has reduced the objective: 

        Fnew             = of(muNew[0], muNew[1]) 

        delta            = Fold - Fnew 

         

    # Gradient descent 

        while delta      < 0: 

            stepMu       = 0.5 * stepMu 



            muNew        = mu - stepMu * gradMu 

            Fnew         = of(muNew[0],muNew[1]) 

            delta        = Fold - Fnew 

  

        # New values:       

        mu               = muNew 

        C                = Cnew 

        Fold             = Fnew 

         

        histMu.append(mu.copy()) 

     

        # End of iteration 

        current_iter    += 1 

        if current_iter >= max_iter or delta<tol or force_stop == 1: 

            converged    = 1 

         

            #diff_Truth = of(mu[0], mu[1])-of(truth[0], truth[1])  

               # the above would be used if the true minimum is different than 0 

 

 

             

        # Prepare data for plotting 

            histFlatMu      = np.array(histMu) 

            histObjectiveMu = of(np.array(histFlatMu)[:,0], np.array(histFlatMu)[:,1]) 

            x               = np.linspace(minx, maxx, 200) 

            y               = np.linspace(miny, maxy, 200) 

            meshX, meshY    = np.meshgrid(x, y) 

            Z               = of(meshX, meshY) 

             

        # Plot 

            if show_plot: 

                fig             = plt.figure(figsize  =(12, 12)) 

                ax              = plt.axes(projection ='3d') 

                ax.contour3D(meshX, meshY, Z, 50, cmap='RdGy') 

                ax.plot(histFlatMu[:,0], histFlatMu[:,1], of(histFlatMu.T[0], 

histFlatMu.T[1]),   color ='purple') 

                ax.scatter(np.array(histFlatMu)[:,0], np.array(histFlatMu)[:,1], 

histObjectiveMu, color ='red') 

                plt.show() 

             

        # Show results 

            if show_results: 

                print('Finished at itereration number: \n', current_iter) 

                print("The mean at last point of iteration: \n", np.round(mu, 6)) 



                print("Objective function at the mean at last point of iteration: \n", 

round(of(mu[0], mu[1]), 6) , '\n' ) 

                 

                #print('The difference to the true value is: \n', round(diff_Truth, 6))  

                # this would only be used if the true minimum is not 0 so to compare 

             

       # Initialize learning step 

        stepMu = 1 

         

    return { 

        "train_iter": train_iter, 

        "iterations": current_iter, 

        "init_N": init_N, 

        "reduced_N": reduced_N, 

        "reduce_at_iter": reduce_at_iter, 

        "Nml": Nml, 

        "max_iter": max_iter, 

        "The mean at last iteration": np.round(mu, 6), 

        "Number of times the objective function run": of_runs, 

        "Optimized objective function": round(of(mu[0], mu[1]), 6), 

        "X": Xs, 

        "F": Fs, 

        "Mu": histFlatMu, 

        "XsML": XsML, 

        "FsML": FsML 

            } 

Testing with different configurations On  test functions 

 

%matplotlib qt 

import time 

 

config_mu             = [ 0, 0]           # Different starting means:  

                                          # [ 0, 0], [-5,2], [ 3, -1]   for himmelblau, 

                                          # [-6,-2], [-12,2]            for bukin fct 6 

                                          # [-6,-2], [8,-2]             for rosenbrok 

config_C              = 0.1 * np.eye(2)   # initial covariance matrix 

config_sims           = 1000              # number of simulations  [1, 1000] 

config_init_N         = [20]              # number of samples (or samples before  

                                            reduction   if it applies) 

config_reduced_N      = [0]               # reduced sample size used with 

'config_reduce_at_iter' 

config_of             = [of_HimmelBlau]   # [of_HimmelBlau, of_Rosenbrock ,of_BukinFunc6] 

config_max_iter       = [100]             # 100 as stopping criteria 

config_train_iter     = [999, 1]          # the iterations ML starts training its model on. 



                                             999 when ML algorithm is not used 

config_reduce_at_iter = [999]             # the iteration at which 'config_reduced_N' 

                                             is used. 999 when 'config_reduced_N' not used 

config_ML             = [ML_GradBoostReg] # [ML_GradBoostReg, ML_RandForest, 

ML_AdaBoostReg] 

config_seed           = None              # None for random; 1000 for base 

                                            configuration case 

stats = [] 

 

for init_N in config_init_N: 

    for reduced_N in config_reduced_N: 

        for of in config_of:              # of = objective funct.  

                                               = optimization test function 

            for max_iter in config_max_iter: 

                for train_iter in config_train_iter: 

                    for reduce_at_iter in config_reduce_at_iter: 

                        for ML in config_ML: 

                            for s in range(0, config_sims):             

                            # for simulating with different random seeds 

                                start_time            = time.time() 

                                run_stats             = run( 

                                    mu                = config_mu, 

                                    C                 = config_C, 

                                    init_N            = init_N, 

                                    reduced_N         = reduced_N, 

                                    of                = of, 

                                    max_iter          = max_iter,  

                                    train_iter        = train_iter, 

                                    reduce_at_iter    = reduce_at_iter, 

                                    ML                = ML, 

                                    seed              = config_seed, 

                                    Nml               = 500,  

                                    #minx             =-10,  #-15, # change when changing   

test function 

                                    #maxx              = 50,  #-5, # change when changing 

test function 

                                    #miny              =-10,  #-3,  # change when changing 

test function 

                                    #maxy              = 50,  # 3,  # change when changing 

test function                         

                                    show_plot         = False, 

                                    show_results      = False) 

 

                                run_time              = time.time() - start_time 



                                run_stats["run_time"] = run_time 

                                run_stats["Sim"]      = s 

                                stats.append(run_stats) 

 

COMPUTE F MEANS AND PREPARE DATA FOR PLOTTING 

 

# set colors in desired order (for simulation means to show, basically) 

colors = ['blue',  'orange','red', 'green' ,'yellow', 'cyan', 'purple'] 

 

# fill missing values due to different end iterations to be able to compute the means 

def fill_list_with_last_element(x, n): 

    temp = x.tolist() 

    while len(temp) < n: 

        temp.append(temp[-1]) 

    return np.array(temp) 

 

# find longest running simulation (max iterations) 

iters = [] 

for s in stats: 

    iters.append(s['iterations']) 

f_max_len = np.max(iters) + 1 

 

f_sims = [] 

f_sims_filled = [] 

f_means = [] 

 

# compute means over simulations 

for i in range(len(config_train_iter)): # [999, 1, 2, 3, 4] 

    #  

    f_sims.append([]) 

    f_sims_filled.append([]) 

     

     

    for j in range(config_sims): 

        k = config_sims*i+j                                  # find sim index 

        f = of(stats[k]['Mu'][:,0], stats[k]['Mu'][:,1])     # calculate Obj.Funct.from MUs 

        f_filled = fill_list_with_last_element(f, f_max_len) # fill list 

        f_sims[i].append(f) 

        f_sims_filled[i].append(f_filled)                     

    f_means.append(np.mean(f_sims_filled[i], axis=0))        # append means 

 

PLOT simulation means  

 



fig, ax = plt.subplots() 

 

for i in range(len(f_means)): 

    Y = f_means[i] 

    X = range(0, len(Y)) 

     

    if config_train_iter[i] == 999: 

        plot_label = f"EnOpt " 

    else: 

        plot_label = f"EnOpt-ML, ML model trained at iteration number: 

{config_train_iter[i]+1}" 

         

    plt.plot(X, Y, label=plot_label,color=colors[i]) 

             

plt.xlabel('Number of iterations') 

plt.ylabel('Objective function ') 

plt.title(f"Objective function means over {config_sims} simulation(s)") 

plt.legend() 

plt.show()  

 

 

MEANS of different simulations (SEPARATE PLOTS for EnOpt and EnOpt-ML) 

 

fig, ax = plt.subplots(1, 2) 

axs = ax.ravel() 

 

for i in range(len(f_means)): 

    Y = f_means[i] 

    X = range(0, len(Y)) 

     

    if config_train_iter[i] == 999: 

        plot_label = f"Mean of EnOpt simulations " 

    else: 

        plot_label = f"Mean of EnOpt-ML simulations, \nML model trained at iteration 

number: {config_train_iter[i]+1} " 

             

     

    for j in range(len(f_sims[i])): 

        axs[i].plot(range(0, len(f_sims[i][j])), f_sims[i][j], color="gray") 

    axs[i].plot(X, Y, label=plot_label, color=colors[i])        

    axs[i].set_xlabel('Number of iterations') 

    axs[i].set_ylabel('Objective function') 

    axs[i].set_title(f"Objective function means over {config_sims} simulation(s) ") 

    axs[i].legend() 



       

 

plt.show() 

 

min and max values for plots 

 

#  

# RUNS ONLY WITH single simulation of both EnOpt and EnOpt-ML 

if len(stats) == 2: 

     

    # min and max values 

    X1_s = [*stats[0]['X'][0], *stats[1]['XsML'][0]] # concat X1s from all simulations 

    X2_s = [*stats[0]['X'][1], *stats[1]['XsML'][1]] # concat X2s from all simulations 

 

    X1min = np.min(X1_s) * 1.1 

    X2min = np.min(X2_s) * 1.1 

    X1max = np.max(X1_s) * 1.1 

    X2max = np.max(X2_s) * 1.1 

 

Plotting Gradient 

 

# RUNS ONLY WITH single simulation of both EnOpt and EnOpt-ML 

 

if len(stats) == 2: 

    #Show Mu's 

    stats0 = stats[0] 

    stats1 = stats[1] 

 

    x               = np.linspace(X1min, X1max, 50) 

    y               = np.linspace(X2min, X2max, 50) 

    meshX, meshY    = np.meshgrid(x, y) 

    Z               = of(meshX, meshY) 

 

    #  

    fig             = plt.figure(figsize  =(20, 20)) 

    ax              = plt.axes(projection ='3d') 

    ax.contour3D(meshX, meshY, Z, 50, cmap='RdGy') 

 

    #Gradient with Enopt 

    EO_Grad_curve   = ax.plot(stats0['Mu'][:,0], stats0['Mu'][:,1], 

                              of(stats0['Mu'].T[0], stats0['Mu'].T[1]), color ='cyan') 

    EO_Grad_Mu      = ax.scatter(np.array(stats0['Mu'])[:,0], np.array(stats0['Mu'])[:,1], 



                              of(np.array(stats0['Mu'])[:,0], np.array(stats0['Mu'])[:,1]), 

color ='blue') 

 

    #Gradient with EnOpt+ML 

    EO_ML_Grad_curve= ax.plot(stats1['Mu'][:,0], stats1['Mu'][:,1], 

                             of(stats1['Mu'].T[0], stats1['Mu'].T[1]), color ='orange') 

    EO_ML_Grad_Mu   = ax.scatter(np.array(stats1['Mu'])[:,0], np.array(stats1['Mu'])[:,1], 

                             of(np.array(stats1['Mu'])[:,0], np.array(stats1['Mu'])[:,1]), 

color ='red') 

 

# Plotting the minima for reference:     

    minima1  = ax.scatter(3, 2, of(3, 2), color = '#274e13',marker='x') # minimum 1  

                                                                          for Himmelblau 

    #minima2  = ax.scatter(-2.805118, 3.283186, of(-2.805118, 3.283186), color = 

'#274e13',marker='x')# minimum 2 for Himmelblau 

    #minima3  = ax.scatter(-3.779310,-3.283186, of(-3.779310,-3.283186), color = 

'#274e13',marker='x')# minimum 3 for Himmelblau 

    #minima4  = ax.scatter(3.584458,-1.848126, of( 3.584458,-1.848126), color  = 

'#274e13',marker='x')# minimum 4 for Himmelblau 

    #minima5  = ax.scatter( 1       , 1       , of( 1       , 1       ), color = 

'#274e13',marker='x')# global minimum of Rosenbrok 

    #minima6  = ax.scatter(-10      , 1        , of(-10      , 1      ), color = 

'#274e13',marker='x')# global minimum of Bukin function N#6 

 

    plt.legend(( EO_Grad_Mu,  EO_ML_Grad_Mu,  minima1),      # minima 1,2,3,4,5 or 6 

                                                               depending on function 

              ( 'Gradient Mu with EnOpt', 'Gradient Mu with EnOpt-ML', 'Minima'), 

               markerscale=2, fontsize=20) 

    plt.xlabel('X') 

    plt.ylabel('Y') 

    plt.show() 

 

Plotting samples 

 

# RUNS ONLY WITH single simulation of both EnOpt and EnOpt-ML 

if len(stats) == 2: 

     

    # X's and F's 

    fig             = plt.figure(figsize  =(15, 15)) 

    ax              = plt.axes(projection ='3d') 

    ax.contour3D(meshX, meshY, Z, 50, cmap='RdGy') 

 

    # EnOpt Samples 



    EO_samples      = ax.scatter(stats0['X'][0], stats0['X'][1], 

                                 stats0['F'], color ='blue',marker='o')  

    # EnOpt-ML Samples 

    EO_ML_samples   = ax.scatter(stats1['X'][0], stats1['X'][1], 

                                 stats1['F'], color ='red', marker='o') 

    # Samples from ML model prediction 

    ML_samples      = ax.scatter(stats1['XsML'][0], 

                                 stats1['XsML'][1], stats1['FsML'], color ='green', 

marker='.') 

     

    plt.legend((EO_ML_samples, EO_samples, ML_samples) ,  

               ('(Enopt-ML) samples', 'EnOpt samples','ML model prediction samples Nml'), 

               markerscale=3, fontsize=20) 

     

     

    plt.xlabel('X') 

    plt.ylabel('Y') 

    plt.show() 

 

MSE for EnOpt-ML :  ML predicted samples (Nml)  

(N.B: for EnOpt only, no predictions since it is mapped on the objective function) 
 

# RUN ONLY WITH 2 SIMULATONS: 

if len(stats) == 2: 

 

    # Given values 

    Y_true2 = of(stats1['XsML'][0], stats1['XsML'][1]) # objective function on the X and 

                                                       Y used in model prediction by ML  

 

    # calculated values 

    Y_pred2 = stats1['FsML']                           # ML predicted  

 

    # Calculation of Mean Squared Error (MSE)  

    # https://www.geeksforgeeks.org/python-mean-squared-error/   

    MSE = mean_squared_error(Y_true2,Y_pred2) 

 

    stats1['MSE'] = MSE                                # Append MSE to the stats 

    print('MSE: ', round(MSE, 2)) 

 

Create output files 

 

from tabulate import tabulate 

header    = stats[0].keys() 



rows      =  [x.values() for x in stats] 

#print(tabulate(rows, header, tablefmt="tsv")) 

 

content   = tabulate(rows, header, tablefmt="csv") 

text_file = open("output.csv","w") 

text_file.write(content) 

text_file.close() 

 

Creating excel file with summary table (useful when doing multiple simulations with numerous simulations) 

 

import pandas as pd 

import subprocess 

from datetime import datetime 

 

if len(stats) == 2: 

 

    df                = pd.DataFrame(data=stats) 

         

    now               = datetime.now() 

    current_time      = now.strftime("%y_%m_%d_%H_%M_%S") 

         

    file_name         = f'stats_{current_time}.xlsx' 

    

    df.to_excel(file_name) 

     

    df = df.drop(['train_iter', 'init_N', 'Nml', 'max_iter'], axis=1)  

                      #  dropping unnecessary summary columns 

 

else: 

    now               = datetime.now() 

    current_time      = now.strftime("%y_%m_%d_%H_%M_%S")     

    # all stats 

    file_name = f'stats_all.xlsx' 

     

    df                 = pd.DataFrame(data=stats) 

 

    df.to_excel(file_name) 

         

    # df0 for EnOpt 

    df0                = pd.DataFrame(data=stats[0:config_sims-1]) 

         

    now               = datetime.now() 

    current_time      = now.strftime("%y_%m_%d_%H_%M_%S") 

         



    file_name         = f'stats_{current_time}.xlsx' 

    file_name_summary = f'stats0_{current_time}_summary.xlsx' 

     

    df.to_excel(file_name) 

     

    df0 = df0.drop(['train_iter', 'init_N', 'Nml', 'max_iter', 'reduced_N', 

'reduce_at_iter', 'Sim'], axis=1) #  dropping unnecessary summary columns 

     

    df0_summary        = df0.describe() 

    df0_summary        = df0_summary.drop(index=('count'))  # drop rows 

    df0_summary.to_excel(file_name_summary)     

     

    # df1 for EnOpt-ML 

    df1                = pd.DataFrame(data=stats[config_sims: 2*config_sims-1]) 

         

    current_time      = now.strftime("%y_%m_%d_%H_%M_%S") 

         

    file_name_summary = f'stats1_{current_time}_summary.xlsx' 

     

    df1.to_excel(file_name) 

     

    df1 = df1.drop(['train_iter', 'init_N', 'Nml', 'max_iter', 'reduced_N', 

'reduce_at_iter', 'Sim'], axis=1)  

     

    df1_summary        = df1.describe() 

    df1_summary        = df1_summary.drop(index=('count'))   

    df1_summary.to_excel(file_name_summary) 
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