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Abstract  

Portfolio optimization has been in existence for years owing to efforts made to comprehend which aspects 

of a business drive shareholder value and which may be eroding value. It has been consistently applied in 

the energy industry to maximize returns and manage risks. Amidst energy transition, changing market 

trends, value migration, and carbon emission reduction now determine which new assets should be added 

and which old assets should be shed. A typical energy investment portfolio now includes hydrocarbon 

assets, renewables, and CCS (Carbon Capture and Storage) assets. The portfolio optimization problem 

becomes very complex because the oil industry now needs to consider different types of projects and 

multiple objectives. These objectives may include net profit maximization, net emission reduction and 

improving green energy technologies. Given these goals and the high uncertainty inherent in the energy 

industry, a consistent portfolio selection process is needed to achieve these goals. 

In this work, we developed, implemented, and demonstrated a decision analysis framework and workflow 

for optimizing the portfolio of investments in different energy and CCS projects, with the consideration of 

multiple objectives, based on the multi-attribute utility theory (MAUT). The utility function ranked the 

decision alternatives according to the decision-maker's preference for achieving each of the multiple 

objectives. The decision entails possible investment scenarios targeted toward energy transition at different 

paces. 

The main contribution of this work is to apply a decision analysis framework to develop a flexible decision 

model for handling multiple objectives using multi-attribute utility theory in the decision model. The 

decision model can be used to generate insights for supporting high-quality decision-making by 

investigating the effect of changing targets, constraints, and weighting on the portfolio decision. Another 

key relevance of the optimization model to the energy industry is the ability to demonstrate how different 

corporate objectives impact a decision in their transition journey. The portfolio model was developed using 

python programming language because of its computational efficiency and computational complexity of 

portfolio optimization. 
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1 Introduction  

In an organization, the projects in view for execution must fulfill the core objectives. In the energy industry 

today, there are multiple objectives, ranging from increasing net present value (NPV), net-zero emission, 

and reducing project costs, to enhancing safety practices. Hence a rational decision must be made based on 

the decision maker's objectives. Today, the energy sector is responsible for one-quarter of carbon emissions 

(EPA 2022), and the need to mitigate the adverse effect of climate change makes energy transition 

inevitable. Today, the energy sector is saddled with the responsibility of averting the adverse effect of 

climate change; perhaps the greatest challenge mankind has faced. 

Oil and gas companies are now considering investment diversification to include renewables and cleaner 

energy sources like wind, solar, blue hydrogen, and water as key to minimizing CO2 emission. They now 

make efforts to have a positive reputation by taking social responsibility to fund renewable energy and 

CCUS projects. The recent years have been challenging for the energy industry due to market disruption 

caused by the COVID-19 pandemic. The need to further strengthen the energy portfolio and develop risk-

management capabilities cannot be overemphasized in the years ahead. As oil and gas companies embark 

on the energy transition journey, they are also concerned with the choice of petroleum assets to invest in, 

the technologies to adopt, and when to embark on the energy transition journey.   

If building a winning portfolio from just two choices (oil and/or gas) was not easy, imagine the complexity 

when there are n number of resource options. While companies understand the imperative to change, the 

choice between staying and competing for the remaining value in hydrocarbons (the traditional choices) 

and embracing energy transition (the new choices) is not an easy one (Deloitte Insights, 2021).  Over the 

years, mathematical frameworks have been developed to evaluate a portfolio of assets such that the 

expected return is maximized. The simplest method involves allocating resources to projects within capital 

constraints based on a defined objective. However, it remains the approach most frequently applied across 

the energy industry, particularly when imposing budget constraints (Wood, 2016). In 1952, Harry 

Markowitz introduced Modern portfolio theory (MPT), which earned a Noble Prize in Economic Sciences 

for being a notable discovery in the theory of financial economics. This method quantifies return and 

investment risk. However, given energy diversification and transition in the oil and gas industry, 
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optimization problems must be approached differently. This thesis seeks to develop a flexible multi-

objective optimization model by applying multi-attribute utility theory (Keeney and Raiffa, 1993). It solves 

portfolio optimization problems in the oil and gas industry that involve multiple objectives and multiple 

constraints based on hydrocarbon, renewables, and CCS assets. 

 

1.1 Objectives   

Most corporate decision-making is based on economic evaluation of projects considering the relevant and 

material uncertainties involved. The goal is not to reduce the uncertainties but to make good decisions 

despite the uncertainties. Howard defines a good decision as "an action we take that is logically consistent 

with our objectives, the alternatives we perceive, the information we have, and the preferences we 

feel."(Keeney and Raiffa, 1993). 

Therefore, the objectives or questions that this research seeks to identify are:   

1. Develop a decision analysis framework and implement portfolio optimization methods for 

optimizing the portfolio of investments in  Hydrocarbon, Renewable, and CCS Assets. 

2. Develop project models that are applicable to the portfolio evaluation of petroleum, renewables, 

and CCS assets. 

3. Develop a flexible multi-objective optimization model (by applying multi-attribute utility theory) 

that can represent energy companies' objectives, preferences, and risk behavior as they gravitate 

toward greener solutions. 

4. Demonstrate a robust scenario analysis for specified portfolio scenarios to significantly help energy 

firms make better decisions with respect to their targets and constraints. 

 

1.2 Diversification 

The popular saying "do not put all your eggs in one basket" is attributed to the concept of diversification. 

Portfolio diversification reduces the chance that all capital investments will encounter the same negative 

market forces at the same time because returns from different capital investments do not move in the same 

direction. An essential aspect of risk and risk measurement is portfolio diversification. Diversification is 

the concept that one can reduce total risk without sacrificing possible returns by investing in more than one 
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asset. This is possible because not all risks affect all assets (Mitra, 2009). For instance, a fall in crude prices 

would affect returns from oil and gas assets but not necessarily the revenues from energy sales generated 

from wind farms.  

Therefore, one of the key concepts of portfolio management is diversification across sources of returns and 

risks in a portfolio. A simple way to achieve diversification is to allocate capital equally across multiple 

investments. Recent studies claim this simple approach can be more effective in achieving an optimal 

portfolio than a variety of other diversification approaches (Kolm et al., 2014). 

Besides its simplicity, an important "advantage" of the equally-weighted strategy is that it does not use 

return and risk models. Therefore, it is not subject to the estimation errors in such models (Kolm et al., 

2014). Another approach to achieving diversification is selecting projects with low or negative correlations. 

 

1.3 Formulation 

This section explains the methodology founded on decision theory used to structure the optimization 

problem, objectives, decision variables, and the decision maker's preference for the objectives. For the 

scope of this thesis, Figure 1.1 illustrates an influence diagram is used to represent the interconnectivity 

amongst these decision elements and how they influence one another in making a decision.    
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Figure 1.1: Influence Diagram of the Decision Model  

 

Based on diversification of assets amidst energy transition, an energy firm with options to invest in a 

portfolio consisting of a single hydrocarbon, windfarm, and CCS project is considered. This is the scope of 

this thesis. The weights of investment for each of these assets in the portfolio are the decision variables. 

Although the decision variables are unknown information in an optimization problem, they have domains 

of possible values. For simplicity, these domains are considered as a percentage share of capital investment 

in the portfolio, and the alternatives are pre-defined based on this consideration.  

An absolute prerequisite for rational decision-making is to identify and state clearly a set of objectives by 

which the worth of each alternative is judged (Bratvold & Begg, 2010). Three key objectives are considered 

based on the global energy sector's shift from fossil-based systems of energy production and consumption 

to greener solutions:  

1. Maximizing economic worth, measured by the net present value (NPV). 

2. Minimizing net carbon emission. 

3. Improving the company's reputation by increasing investment share in renewable energy and low 

emission technologies. 
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2  Methods  

In portfolio optimization of hydrocarbon, renewable energy, and carbon capture and storage assets, three 

major metrics are essential. They are maximizing NPV, minimizing carbon emission, and improving green 

reputation. Depending on the assets involved, decision models will be implemented to achieve either single 

objective optimization or multi-objective optimization in complex scenarios where more than one objective 

needs to be optimized.   

2.1 Rank and Cut Method   

The rank and cut method is the simplest optimization method and is extensively applied across the oil & 

gas industry because of its simplicity in generating good portfolios when faced with budget limitations. It 

optimizes a single objective using a single portfolio constraint. A common example is optimizing expected 

NPV given budget limitations. Some organizations have budget limitations and are unable to invest in all 

viable (positive expected NPV) projects; therefore, a capital allocation method is required to impose budget 

(i.e. capital investment) constraints while optimizing the objective function. However, this approach can 

also be applied to other single objectives and constraints depending on the decision maker's choice.  

Wood (2016) developed a portfolio optimization algorithm. The algorithm contains four steps:  

a) establish the performance metric to be used to rank the asset, typically the objective function that 

the decision-makers plan to optimize (e.g. maximize NPV, minimize capital expenditure, etc.);    

b) rank the assets, and order the assets according to their respective contributions to the selected 

performance objective;    

c) Select the constraint performance metric,  

d) Identify and accumulate the assets; begin with the asset ranked #1 and add assets in order (i.e., rank 

#2, rank #3 etc.) until the constraint limit is reached;    

e) As the projects are funded to the constraint limit, only a fraction of one of the lower rank assets can 

be added without exceeding the performance constraint limit, and all assets ranked below that asset 

fraction are removed from the portfolio.   
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 This approach is applied to the project pool illustrated in Table 2.1, involving 12 assets available for 

selection, with the results optimizing the portfolios. The notation 'E' means expected value. For instance, 

E[NPV] means the expected NPV. 

 

Table 2.1: Project Pool 

Project 
E[NPV] 

US$ (million)  

E[CapEx] 

US$ (million)  

CapEx (R&C) 

US$ (million)  

E[CO2)emissions] 

t CO2(million) 

1 826 540 150 0.40 

2 505 842 613 0.27 

3 1400 900 268 2.54 

4 930 387 12 5.12 

5 2314 1760 1507 0.21 

6 243 152 56 0.54 

7 936 422 217 1.88 

8 1730 1555 253 0.92 

9 396 214 79 3.57 

10 1378 897 780 4.95 

11 573 680 401 0.34 

12 2470 985 184 1.93 
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Table 2.2: Ranking based on maximizing expected Profitability Index 

Project 

E[NPV] 

US$ 

(million)  

E[CapEx] 

US$ 

(million)  

CapEx 

(R&C) 

US$ 

(million)  

E[CO2 

emissions] 

t CO2(million) 

Profitability 

Index 

E[NPV]/CapEx 

Weight 

% 

12 2470 985 184 4.95 2.51 100.00 

4 930 387 12 5.12 2.40 100.00 

7 936 422 217 1.88 2.22 100.00 

9 396 214 79 3.57 1.85 100.00 

6 243 152 56 0.54 1.60 100.00 

3 1400 900 268 2.54 1.56 100.00 

10 1378 897 780 1.93 1.54 49.05 

1 826 540 150 0.40 1.53 0.00 

5 2314 1760 1507 0.21 1.31 0.00 

8 1730 1555 253 0.92 1.11 0.00 

11 573 680 401 0.34 0.84 0.00 

2 505 842 613 0.27 0.60 0.00 

 

In Table 2.2, the projects are ranked based on the profitability index (PI). The total Capex constraint 

(maximum expenditure limits) applied is $3500 million, and the projects are funded to this constraint 

limit. Accumulated total capex of top ranked six projects is $3060 million. The remaining $440 million 

is allocated to project #10 while the remaining assets are removed from the portfolio since the ranking 

of the assets determines in which order the assets are excluded from the selected portfolio. 
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Table 2.3: Ranking based on minimizing Co2 Emissions 

Project 
E[NPV] 

US$ (million)  

E[CapEx] 

US$ (million)  

CapEx (R&C) 

US$ (million)  

E[CO2 emissions] 

t CO2(million) 

Weight 

% 

5 2314 1760 1507 0.21 100.00 

2 505 842 613 0.27 100.00 

11 573 680 401 0.34 100.00 

1 826 540 150 0.40 100.00 

6 243 152 56 0.54 100.00 

8 1730 1555 253 0.92 26.09 

7 936 422 217 1.88 0.00 

12 2470 985 184 1.93 0.00 

3 1400 900 268 2.54 0.00 

9 396 214 79 3.50 0.00 

10 1378 897 780 4.90 0.00 

4 930 387 12 5.10 0.00 

 

Minimizing Carbon emission is selected as the objective function in Table 2.3, and ranking is done based 

on the expected emission from the respective projects ranging from the lowest to the highest. In this 

case, the total emission constraint (maximum emission limit) applied is $2 million, and top-ranked five 

projects are completely funded, while 26.09% share was allocated to project #8, being the next ranked. 

Accumulated total Capex of top-ranked five projects is $3060 million. The remaining $440 million is 

allocated to project #10 while the remaining assets are removed from the portfolio since the ranking of 

the assets determines in which order the assets are excluded from the selected portfolio. 
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Table 2.4: Ranking based on maximizing Green Reputation Index 

Project 

E[NPV] 

US$ 

(million)  

E[CapEx] 

US$ 

(million)  

CapEx 

(R&C) 

US$ 

(million)  

E[CO2 

emissions] 

t CO2(million) 

Green Reputation 

Index 

CapEx 

(R&C)/E[CapEx] 

Weight 

% 

10 1378 897 780 1.54 0.87 100.00 

5 2314 1760 1507 1.31 0.86 100.00 

2 505 842 613 0.60 0.73 100.00 

11 573 680 401 0.84 0.59 0.00 

7 936 422 217 2.22 0.51 0.00 

9 396 214 79 1.85 0.37 0.00 

6 243 152 56 1.60 0.37 0.00 

3 1400 900 268 1.56 0.30 0.00 

1 826 540 150 1.53 0.28 0.00 

12 2470 985 184 2.51 0.19 0.00 

8 1730 1555 253 1.11 0.16 0.00 

4 930 387 12 2.40 0.03 0.00 

 

Amidst energy transition, one of the key objectives of the E & P industry is to have a good renewable 

reputation as the industry aims to achieve net-zero emission by 2050. Hence, Green Reputation Index 

(GRI) is considered the objective function for Table 2.4. Green Reputation Index for a project is the 

ratio of renewable-allocated Capex to the total Capex of the project. Based on ranking by GRI, three 

projects with the highest GRI are fully funded using a maximum capex limit of $3500 million, and the 

remaining $218 million is allocated to project #7. 

The project selection varies with respect to the objective function as expected: 
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PI maximization: Projects #12 ,4, 7, 9, 6, 3 

Carbon emission minimization: Projects # 5, 2, 11, 1, 6, 8   

Renewable Reputation Index: Projects #10, 5, 2  

As the objective function changes from PI maximization to emission minimization, the project selection 

also changes, with only Project #6 being retained in the portfolio. Project #10 is only selected when 

ranking is done based on the renewable reputation index. Although the rank and cut optimization method 

is widely applied in the O & G industry, the inability to optimize a portfolio when multiple objective 

functions and constraints are considered is a major drawback. It also ignores project uncertainty 

(Erdogan et al., 2001). Nonetheless, this method serves as a starting point for more robust optimizers.   

 

2.2 Mean-Variance Approach   

In 1952, Markowitz (1952) derived a quantitative model called the Mean-Variance Approach which is 

based on Markowitz's Portfolio Theory or Modern Portfolio Theory (MPT) (Markowitz, 1952).  It aims to 

help investors create optimal portfolios that best meet the investor's goals and risk/return combination. In 

the model, the expected return is given by the average of the historical data of the stock's return, and the 

risk is calculated using the variance of these returns. Although MPT was formulated based on stock market 

investment decisions, the theory can be applied to portfolio optimization of petroleum investments. The 

main idea of the mean-variance model is to deal with the returns of individual assets as random variables 

and adopt the expected return and variance value to quantify the return and investment risk (Milhomem 

and Dantas, 2020). MPT allows for the evaluation of expected return and how much of it can be sacrificed 

in return for a reduced risk or how much risk can be taken with respect to an increase in expected return. 

Markowitz divides the portfolio selection process into two stages. The first stage involves the evaluation 

of available projects, while the second stage pertains to the construction of efficient and optimal portfolios 

from the selection of these projects (Hightower and David, 1991). The mean-variance method 

accommodates correlations between assets. As the correlation decreases, risk reduction can be improved 

by spreading investments around so that exposure to any type of asset is limited. However, Markowitz's 

model is questioned for its use of variance as a risk measure. Variance calculates both fluctuations above 
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and below the expected value in the same way. However, in reality, only returns below the mean are 

undesirable and consistent with the notion of risk (Babaei et al., 2015). 

Given a set of n assets and a time period J, the mean µ and the variance σ2 can be calculated from the 

historical data of the stock price using the following relations: 

For each asset 

µ1 = 
1

𝐽
∑𝑅1𝑗

𝑗

𝑗=1

, µ2 = 
1

𝐽
∑𝑅2𝑗

𝑗

𝑗=1

, …   µ𝑛 = 
1

𝐽
∑𝑅𝑛𝑗

𝑗

𝑗=1

 (2.1) 

σ1
2 = 

1

𝐽
∑(𝑅1𝑗 − µ1)

2

𝑗

𝑗=1

, σ2
2 = 

1

𝐽
∑(𝑅2𝑗 − µ2)

2

𝑗

𝑗=1

, …  σ𝑛
2 = 

1

𝐽
∑(𝑅𝑛𝑗 − µ𝑛)

2

𝑗

𝑗=1

 (2.2) 

where: j is the time along the period J; j=1….., J 

  i is the asset number; i = 1………, n 

  𝑅𝑖𝑗  is the return value of asset i at time j 

   

For the portfolio, the expected return 𝐸[𝑃], and the variance 𝑉𝑎𝑟[𝑃],  can be expressed as: 

𝐸[𝑃] =  ∑(

𝑛

𝑖=1

𝑦𝑖 . 𝑅𝑖) (2.3) 

𝑉𝑎𝑟[𝑃] =  ∑(

𝑛

𝑖=1

𝑦𝑖 .σ1
2) + 2 ∑ (𝑦𝑖𝑦𝑘. 𝑐𝑜𝑣(𝑅𝑖

𝑛

𝑖=1,𝑘=1

, 𝑅𝑘)) (2.4) 

𝑐𝑜𝑣(𝑅𝑖 , 𝑅𝑘) = 𝐸[(𝑅𝑖 − µ𝑖)( 𝑅𝑘 − µ𝑘)] (2.5) 

 

Where 𝑦𝑖: corresponding portfolio weight of asset i 

  𝑐𝑜𝑣(𝑅𝑖 , 𝑅𝑘): covariance of returns 𝑅𝑖 and 𝑅𝑘 
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Expressing the expected return µ and portfolio weight y of n assets as vectors, and portfolio variance as 

matrix Σ: 

µ =

(

 
 

µ1
µ2
µ3
⋮
µ𝑛)

 
 
,   𝑦 =

(

 
 

y1
y2
y3
⋮
y𝑛)

 
 
, Σ =

(

 
 
 

σ11 σ12 σ13 σ14 ⋯ σ1𝑛

σ21 σ22 σ23 σ24 ⋯ σ2𝑛

σ31 σ32 σ33 σ34 ⋯ σ3𝑛

σ41 σ42 σ43 σ44 ⋯ σ4𝑛

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
σ𝑛1 σ𝑛2 σ3𝑛 σ4𝑛 … σ𝑛𝑛)

 
 
 

 (2.6) 

   

Portfolio expected return 𝐸[𝑃] can be written as  

𝐸[𝑃] =  𝑦𝑇µ (2.7) 

 

Portfolio variance 𝐸[𝑃]can be written as 

𝑉𝑎𝑟[𝑃] =  𝑦𝑇Σy (2.8) 

   

However, the portfolio optimization problem can also be reformulated in two ways(Zhou and Palomar, 

2021). 

1) Maximization of mean return 

max
𝑦
𝑦𝑇µ (2.9) 

 

Subject to:  

𝑦𝑇Σy ≥ α 

1𝑇w = 1 . 

2) Minimization of risk  

min
𝑦
𝑦𝑇Σy (2.10) 

Subject to:  
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𝑦𝑇µ ≥ β 

1𝑇y = 1.  

Where α and β are user-chosen positive constants.  

Furthermore, as a trade-off between expected return and risk of the portfolio, a risk aversion parameter 𝜆 

which is a measure of how risk-averse the decision-maker is, is considered: 

min
𝑦
𝑦𝑇Σy − 𝜆𝑦𝑇µ (2.11) 

𝑓𝑜𝑟 𝜆 ∈ [0,∞] 

 

They all require choosing one parameter (α, β, or λ). 

Possible portfolios given assets available can be constructed by plotting expected return (y-axis) against 

variance(y-axis) to identify an efficient frontier that maximizes return while minimizing variance. The 

efficient frontier concept ensures minimum risk is carried for a given return or maximum return is achieved 

for a given level of risk. Figure 2.1 shows all possible portfolios, and the curve BC represents the efficient 

portfolio. All other portfolios below the curve do not maximize return given their risk or minimize risk 

given their return. In conclusion, the concept of efficient frontier helps a decision maker select a portfolio 

consistent with his risk tolerance while investing in available assets. 

 

Figure 2.1: Efficient Frontier (adapted from Grasse et al. (2016)) 
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2.3 Multi-Objective Optimization Approach   

In the oil & gas industry, most portfolio optimization problems always involve multiple objectives and 

constraints. However, because the multiple objectives of projects often conflict with one another, single-

objective optimizations do not offer practical solutions, as optimizing one objective would often adversely 

affect other objectives that are not being optimized. Many multi-objective optimization approaches that can 

help manage projects and achieve the required objectives have been developed, each of which has its own 

advantages and disadvantages depending on the project structure and the sets of objectives involved.    

Golkarnarenji et al. (2019) proposed that two approaches are involved in describing the nature of multi-

objective optimization problems. Firstly, all the objectives are aggregated into one function, or all but one 

objective is moved into the sets of constraints. Methods like the weighted sum technique and multiattribute 

utility theory are used to deal with the first approach. The problem with this approach is that it is not easy 

to assign weights and utility functions to multiple objectives. In the second approach, a group of Pareto-

optimal solutions (optimal solutions) instead of one best solution is adopted so that the final decision can 

be made by the decision-maker. Pareto-optimal solution reflects the robustness of the multi-objective 

method in ensuring multiple objectives are optimized.  

2.3.1 Time Series Goal Seeking Approach  

Howell and Tyler (2001) proposed the multi-objective portfolio optimization method and used a goal-

seeking approach to manage the interactions between projects and business performance goals. The 

optimization process begins by defining the business performance goals distributed across a future period. 

The goals may or may not be attainable, but they represent the starting point for the analysis. The second 

step is to introduce the projects described by the business segments. These projects can be deterministic or 

probabilistic. For the probabilistic case, a probability density function is used to represent the decision-

maker's risk preference, and then the portfolio expected value is calculated using this probability function.  

As shown in Figure 2.2 and Figure 2.3, the goals are depicted with purple bars. The blue bars represent the 

expected portfolio values, and the probabilities of exceeding the goals are depicted with a black line. 

Decision-makers can use the performance-probability plots to fully assess the issues associated with a given 

strategy (Howell and Tyler, 2001). Since the goal-seeking approach leverages the interactions between 
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projects and performance goals to generate feasible solutions,  various portfolios can be generated from the 

starting point by evaluating or changing the project selections and performance goals until an optimal 

portfolio is attained. 

 

Figure 2.2: Performance Metric Graph for Gas Production 

 

 

Figure 2.3: Performance Metric Graph for Gas Production  
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2.3.2 Multi-Attribute Utility Theory 

An essential step in decision analysis is the correct representation of the decision maker's preferences. 

Multi-attribute utility theory is a multi-objective optimization approach that considers the decision-maker's 

preferences in the form of a utility function defined over a set of attributes. A utility function is a device 

that quantifies a decision-maker's preferences by assigning a numerical index to varying levels of 

satisfaction of a particular criterion (Mateo, 2012). In a deterministic decision problem, each alternative 

results in a single prospect, and a value function defined by the attributes is enough to rank the decision 

alternatives. However, in a probabilistic case where uncertainty is present, each decision alternative may 

result in several prospects; therefore, we need to assign utility values to the prospects to maximize the 

expected utility.  

While a value function determines the trade-offs between levels of attributes, the attributes need to be 

carefully examined to know if there exists additive dependence between them or not. An additive value 

function implies that the increase in one attribute required to compensate for a decrease in the other is 

constant across the entire domain of the attributes(Abbas, 2010). In other words, this means the preference 

for levels of one attribute does not affect the level of other attributes.The advantage of additive 

independence is that it allows the decision-maker to derive a multi-attribute utility function by finding the 

simple weighted sum of single-attribute utility functions. 

Based on the additive independence assumption, Henrion et al. (2015) developed an approach to 

constructing a multi-attribute utility function. They can be summarized in the following five steps:  

1. Identify the uncertain attributes. 

2. Define a precise scale for each attribute, either cardinal, meaning quantified, as in US$ for direct 

costs, or ordinal, meaning a list of outcomes in order of preference.  

3. Define a single-attribute utility function to score the possible levels of each attribute into a utility 

from 0 (worst outcome) to 100% (best outcome). 

4. Select swing weights (or equivalent costs) to model stakeholder preferences about relative value or 

cost for each attribute  

5. Combine the swing weights and attribute scores into an overall multi-attribute utility for each 

decision option. 



   

26   

   

Given a multi-objective portfolio problem characterized by n uncertain attributes, (𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛) and  

a scalar utility function, 𝑈(𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛). The multi-attribute utility function can be expressed as the 

weighted sum of each attribute utilities. 

𝑈(𝑥1, 𝑥2, 𝑥3) =  ∑𝑤𝑖

𝑛

𝑖=1

𝑢𝑖(𝑥𝑖) (2.12) 

0 ≤ 𝑈(𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛) ≤ 1,=  ∑𝑤𝑖

𝑛

𝑖=1

= 1 

The multi-attribute value function 𝑉(𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛) can be used to score levels of each attribute into a 

value from 0 (worst outcome) to 100 (best outcome), and can be expressed as weighted sum of each values:  

𝑉(𝑥1, 𝑥2, 𝑥3) =  ∑𝑤𝑖

𝑛

𝑖=1

𝑣𝑖(𝑥𝑖) (2.13) 

0 ≤ 𝑉(𝑥1, 𝑥2, 𝑥3, … . . 𝑥𝑛) ≤ 100, ∑𝑤𝑖

𝑛

𝑖=1

= 1 

Where  𝑥𝑖 is an uncertain attribute for i =1……., n 

 𝑣𝑖(𝑥𝑖) is a single attribute value function for i = 1…………,n 

  𝑢𝑖(𝑥𝑖) is a single attribute utility function for i =1……., n 

 𝑤𝑖 is the normalized weight for an uncertain attribute for i =1……., n 

 𝑉 = weighted overall value function of portfolio 

 𝑈= weighted overall utility function of portfolio 
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Utility functions describe the decision-maker's risk attitude. As shown in Figure 2.4, concave utility 

functions signify a risk-averse attitude, convex utility functions signify a risk-seeking attitude, and linear 

utility functions signify a risk-neutral attitude.  

 

Figure 2.4: Utility Function (adapted from Mateo (2012)) 

 

The multi-attribute utility function (MAUT) approach has a wide application in financial, energy policy-

making, energy management, portfolio analysis, and other fields when faced with decision problems where 

the decision-maker needs to select the best alternatives (Wallenius et al., 2008). One limit of this approach 

is the complicated framework required to solve a typical multi-attribute decision problem. A more 

comprehensive explanation of the multi-attribute utility theory can be found in the books written by  Keeney 

(1993) and Abbas (2010). 
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3 Project Model 

Three probabilistic asset models were used in the asset evaluation for this work. These models are 

petroleum, wind farm, and CCS asset models. The three asset models and python codes were developed 

by Moubarak (2021) and modified to evaluate the project assets used in this thesis work. 

 

3.1 Petroleum Asset Model 

The petroleum asset model was developed using a Python class "petroleum asset" and the petroleum project 

used in the portfolio analysis is represented as an instance of this class. Monte Carlo simulation was adopted 

to model uncertainties with probabilities and was done with 5,000 iterations over 30 years. This petroleum 

asset model was modified for this asset evaluation. In evaluating the petroleum asset model, a hydrocarbon 

reserve model, an oil production model, an economic model, and a carbon emission model were modified 

and implemented. The input arguments for the class are shown in Table 3.1 

 

Table 3.1: Input Parameter of Petroleum Asset 

Input Argument Unit/Possible Outcomes  

Current Project Phase [phase] “exploration”, “development” 

Location of the Project[location] “onshore”, “offshore” 

Hydrocarbon Type [hc_type] “oil”, “gas” 

Recoverable Reserves [res_est] Mstb; Bscf  

Unit of Average Maximum Well Rate [well_max_rate] Kbpd; Mscfpd  

Project Start Year [init_year] years  

Time Period [period] years  

Number of Realizations [n] -    

 



   

29   

   

3.1.1 Reserve Model 

Volumetric reserve estimation is one method of calculating oil and gas reserves in reservoirs that have been 

used in the oil industry until now. The required data needed in using this method are obtained from basic 

data sources such as log data (gamma-ray log data, resistivity log data, density log data, and neutron log 

data), core rocks or side terraces, area estimates, Rf and fluid properties (Ibrahim et al., 2020). However, a 

simpler approach was adopted to estimate the reserves due to the uncertainty in reserve estimation during 

the early development of deep reservoirs solely because of the difficulty in representing these required data 

with their individual distributions. The reserves Model has eight input uncertainties, as shown in Table 3.2 

and Table 3.3, as a function of the project phase(exploration/development) and project location 

(offshore/onshore). The uncertain reserve estimates are simulated as random variables that follow PERT 

distribution, and the possible outcomes were estimated using Monte Carlo simulation with 10,000 samples. 

Figure 3.1 shows the reserve estimation distribution estimated using the reserve model. 

 

Table 3.2: Uncertainty parameters as a function of the project phase 

Exploration Development 

Min  Max Min Max 

0.20 2.00 0.85 1.50 

 

 

Table 3.3: Uncertainty parameters as a function of the location phase 

Onshore Offshore 

Min Max Min Max 

1.00 1.20 0.7 1.50 
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Figure 3.1: Reserves Estimation Distribution 

 

3.1.2 Production Forecast Model 

The production model estimates the oil and gas production from the petroleum asset. Some input 

parameters were also used in developing the model. The function "year_phase" calculates the years in 

which the exploration, development, and production start. The function 'production' estimates the 

production from the reserves using the production forecast model. 

The oil and gas production forecast was modeled using the exponential decline curve model proposed by 

Arps (1945). An exponential decline exists when the loss in production rate per unit time is proportional 

to the production rate(Poston and Poe, 2008). It assumes that oil and gas production drop over a constant 

interval is a percentage of the initial production rate. 

 

𝑞𝑡(𝑡) =  𝑞𝑖/(1 + 𝑏𝐷𝑖𝑡)
1/𝑏

 (3.1) 

 

Where: 𝑞𝑡(𝑡) : oil production rate at time t 

 𝑞𝑖 : initial production rate 
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 𝐷𝑖  : continuous decline rate 

 𝑏 : hyperbolic exponent 

 

Table 3.4: Input Parameters of O&G Production Model (adapted from Moubarak(2021) 

Input Parameter  Possible Outcome  Python Argument Distribution   

Length of exploration period  2, 3, 4 or 5  expl_len multinomial 

Length of development period 1, 2 or 3 dev_len multinomial 

Chance of exploration success  0 or 1  expl_succ bernoulli 

Exploration factor 0 or 1  expl_fac -    
 

Table 3.4 describes the input parameters for the production model. Also, the production profile depends 

on four time-variables: the development, build-up, plateau, and decline period (Moubarak, 2021). Table 

3.5 illustrates the input parameters for the production time variables. 

 

Table 3.5: Input Paramters of Production time-variables Model (adapted from Moubarak(2021) 

Parameter Unit  Python Argument Distribution   

Delay period years  t_delay uniform  

Ramp-up period years t_to_plateau uniform  

Plateau period t_plateau years  t_plateau uniform    

Decline rate parameter  fraction  a_factor uniform  

Total maximum processing capacity Mstb; Bscf [total_max_cap -    

Start of production year years start_year -    

Reserves Mstb; Bscf reserves -    
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A detailed description of the production model used in this work will not be discussed. For a detailed 

review of the production model, the reader should look into Moubarak (2021), Arps (1945) and Höök et 

al. (2009). 

Using the input parameters in Table 3.4 and Table 3.5, The function 'production' returns the production 

forecast and Figure 3.2 illustrates annual production distribution for year 25 

 

 

Figure 3.2: Annual Production Distribution for Year 25 

 

3.1.3 Oil and Gas Price Model 

Due to the high volatility in oil prices, oil and gas price model must capture the uncertainty in future prices 

and their impact over time. In this work, oil and gas prices were modeled as mean-reverting process. This 

approach was used because it addresses the dependencies in price changes and that oil prices tend to be 

continually pulled towards a long-term mean (Begg and Smit, 2007). Mean reversion is a stochastic process 

that models such that oil price follows a log-normal diffusion and the logarithmic price variations depend 

on each other and have a constant long-term equilibrium price and mean aversion rate (Begg and Smit, 

2007). The mean-reverting process can be expressed with the following stochastic equation:  
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𝑑𝑃

𝑃
=η(𝑃 − 𝑃∗)𝑑𝑡 + 𝜎𝜖√𝑑𝑡  (3.2) 

 

where  P: price  

 P*: long term equilibrium price 

 t: time period 

 η: mean reversion rate 

 𝜎: price volatility 

 𝜖: standard normal distribution 

 dt: increment in time 

The parameters used in the price model are illustrated in Table 3.6. The function 'og_price' estimates the 

oil and gas price from these parameters using a Monte Carlo simulation of 5,000 realizations over 30 

years, and the resulting distribution is illustrated in Figure 3.3. 

Table 3.6: Input Parameters for Oil and Gas Price 

Input Parameter Unit Python Argument Oil Gas 

Time Period years period 30 30 

Time increment years dt 1 1 

Price Floor $/bbl;  $/Mscf oil_floor; g_price_floor 8 0.8 

Volatility of Annual Increments $/bbl;  $/Mscf oil_sd; gas_sd 3 0.7 

Half Life years oil_half; gas_half 4 8 

Initial Price USD/bbl; USD/Mscf oil_ini_price; gas_ini_price 40 2.3 

Long Term Mean Price USD/bbl; USD/Mscf oil_mean_price; gas_mean_price 70 5 
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Figure 3.3: One Monte Carlo Realization Showing Oil Price Across 30 Years 

 

3.1.4 Economic Model 

Three operation stages were considered in developing the economic model: exploration, development, 

and production. The cash outflow for the hydrocarbon project includes the annual capital expenditure 

(Capex) and operating expenditures (Opex), while the cash inflow is the revenue generated from oil sales.  

 

The capital expenditure was modeled as triangular distribution using the input parameters illustrated in 

Table 3.7. The capex depends on the number of wells required for each operation stage thus, different 

capex structures were generated for different operation stages, as illustrated in Table 3.5. The offshore 

capex is calculated using the offshore multiplier. 
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Table 3.7:  Input Parameters of Petroleum Project Capex 

Parameters Min Mode Max  Offshore Multiplier  

Seismic and Data Acquisition Cost ($ million) 8 10 15 2.50 

Exploration Well Unit Cost ($ million/well) 90 100 130 5.00 

Injection Well Unit Cost ($ million/well) 90 100 130 5.00 

Appraisal Well Unit Cost ($million/well) 90 120 140 2.50 

Production Well Unit Cost ($million/well) 90 120 140 3.00 

 

 

The operating expenditure consists of the fixed and the variable operating cost and are modeled as 

triangular distribution using the input parameters illustrated in Table 3.8. 

 

Table 3.8: Input Parameters of Petroleum Project Opex 

   Onshore   Offshore     

    min  mode  max  min  mode  max  

  Fixed Opex ($million/well)  1.30 1.50 1.80 1.50 1.70 2.10 

Exploration Stage Variable Opex ($/bbl) – Oil  5.00 10.00 15.00 15.00 20.00 25.00 

  Variable Opex ($/bbl) – Gas  8.00 12.00 22.00 21.00 25.00 33.00 

Development Stage Fixed Opex ($million/well)  1.30 1.80 2.40 1.80 2.30 2.70 

  Variable Opex ($/bbl)   7.50 10.00 12.50 18.00 20.00 27.00 
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The annual revenues were estimated as the product of the annual production and the respective annual oil 

or gas price generated using the oil price model. The net present value was calculated using the annual 

cash flows, and Figure 3.4 illustrates the resulting NPV distribution for a petroleum asset. 

 

 

Figure 3.4: NPV distribution of an Oil and Gas Asset 

 

3.1.5 Carbon Emission Model 

Greenhouse gas emissions is a global challenge with likely adverse effect on the climate and environment. 

The global oil and gas industry is saddled with the responsibility of reducing global emissions to ensure 

that the net-zero emission goal of 2050 is achieved. In order to develop a carbon emission model, the major 

drivers behind emission intensity need to be considered. 

The first driver behind the carbon emission intensity is the oil field production. As the production declines 

from the peak level, the emission per unit extraction increases enormously. For instance, a field producing 

20% of peak level has about three times higher emission intensity than in the peak phase (Gavenas et al., 

2015). In an oil field, as the amount of oil production reduces, water production increases, significantly 

increasing the field's emission intensity.  
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Secondly, carbon intensity emission also depends on the production infrastructure in place, as opposed to 

just the production decline from the historical peak level. Once in production, the energy requirement at a 

production plant is approximately the same, and so are the carbon emissions. The emission projections thus 

take into account that emissions are a consequence of the time the installation is producing and to a much 

lesser extent, the production on the installation (Norwegian Ministry of Climate and Environment, 2020). 

When new gas-fired power plants are added to the pre-existing infrastructure, an increase in the carbon 

intensity is expected. A reduction in carbon intensity is also expected when the old installation is removed.  

Many O&G companies operating on the Norwegian continental shelf are implementing modern technology, 

and other energy efficiency measures for existing and future development of their fields, resulting in less 

carbon emission per unit produced compared to global figures. Equinor had some 70 projects offshore in 

2020, including operational measures, process improvements, production, drilling and well optimization, 

and reduced flaring. While eight were modifications, the rest involved operational adjustments identified 

and implemented during the year. Over the past six years, Equinor has pursued CO2 reduction programs 

that have eliminated emissions averaging 200 000 tonnes per annum. That adds up to 1,125,000 tonnes in 

yearly avoided emissions (Konkraft, 2021). In this same regard, Conoco Phillips implemented low-carbon 

emission technology measures in the last 20 years, mitigating up to 160 000 tonnes of CO2 emissions 

annually.  

Thirdly, CO2 price also affects carbon emission intensity. Emissions can be reduced with a relatively modest 

carbon price. Figure 3.5 was adapted from Cullen and Mansur (2017) and showed the emission intensity 

change with respect to the carbon price ($/ton). An increase of $20/ton in carbon price on the vertical axis 

would reduce emission intensity by 5% baseline emission. For instance, if the baseline emission is 20,000 

tons, an increase in carbon price from $0/ton  to $20/ton will reduce the baseline emission by 1,000 tons. 

However, as the carbon price increases significantly from $20/ton, an indistinct decrease in emission 

intensity is observed. Though high carbon prices result in further reduction in carbon dioxide emissions, it 

seems that the large impact from a high carbon price is likely to come from retooling the generating 

infrastructure(Cullen and Mansur, 2017).  This implies that the most significant reduction in CO2 emission 

will come from companies who use technologies to reduce Co2 emissions. 
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Figure 3.5: Carbon emission intensity change with respect to the Carbon price  

(adapted from Cullen and Mansur (2017)) 

 

Another reason for variations in carbon emission intensity is the oil share of a field's original hydrocarbon 

reserves. Oil extraction generates a higher carbon footprint per unit than gas extraction. A likely explanation 

for this could be that oil generates more revenue than gas. Historically, oil prices are higher than gas prices; 

therefore, more return is observed on investments in oil production. Since the cost of infrastructure for gas 

extraction is more capital intensive compared to oil, it seems more likely that a high-cost oil field will be 

developed than a high-cost gas field, and higher costs are often associated with higher energy use (Gavenas 

et al., 2015). 

The relationship between these emission drivers and carbon emission intensity is incorporated into the 

carbon emission model used in this thesis. Moubarak (2021) describes a detailed formulation of the carbon 

emission model used in this work. 
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3.2 Wind Farm Asset Model 

The windfarm asset model was developed by Moubarak (2021) and evaluated using a Python class 

"wind_farm_asset", and the wind farm project used in the portfolio analysis is represented as an instance of 

this class. Monte Carlo simulation was adopted to model uncertainties with probabilities and was done with 

5,000 iterations over 30 years. The input parameters for the class are shown in Table 3.9.  The project is 

divided into four stages: development, production, repowering, and production. The wind farms in this 

work are assumed to have three years of development, after which production begins. Repowering 

commences after a useful life of 15 years before re-production starts and lasts for another 15 years. The 

capex structure signifies the capex share in percentage made in the first, second, and third year of 

development. For example, a "30/60/10" capex form signifies that 30%, 60%, and 10% of the total capex 

were incurred in the first, second, and third year respectively.  

In this model, an offshore wind project with a "10/80/10" capex structure, and 200 turbines was considered 

in the project evaluation. Note that there is a higher estimated capex and opex in an offshore wind project 

relative to an onshore wind project. Offshore wind farms are larger and require more expensive foundations, 

difficult installation environment, and higher transport costs, primarily driven by rentals of large vessels. 

Furthermore, the offshore wind industry is still maturing. This means that technological elements for harsh 

offshore conditions are still being tested and developed while also the offshore supply chain is developing 

to match the needs of the industry (Deloitte, 2014). Investment in wind power is quite complex, considering 

many uncertainties associated with its profitability. Uncertainties in available wind power production, price 

of electricity, technology, wind speed, and variation in electricity demands are important risk factors for 

wind investment. We will not discuss the detailed description of these factors as it is beyond the scope of 

this work. 

Table 3.9: Input Parameters for Wind Farm model 

Input Parameter  Python Argument Unit/Possible Outcomes  

Project location location "onshore", "offshore" 

Number of turbines n_turbine 100 or 200  

Capex structure const_sc "10/80/10" or "30/60/10" 

Subsidies percentage perc_subs %  

Time Period period years  
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3.2.1 Wind Energy Production Model 

The energy production parameters are selected from a wind power investment case presented by Deloitte 

Analysis(2014). Theoretical yearly energy production of 8,000MWh and a turbine production capacity of 

2.3MW were considered in this section. Both parameters were modeled following a PERT distribution, as 

illustrated in Table 3.10. A yearly production degradation of 0.5% was also used to account for the wear 

and tear of wind turbine blades. The energy production is expressed as: 

  

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =  𝐶 ∗ 𝑃 ∗ 𝑁 ∗ (1 − 𝑑)𝑡 (3.3) 

 

Where 𝐶:  turbine production capacity (in %) 

𝑁: number of wind turbines 

𝑃: theoretical yearly production (in MWh) 

t: annual production degradation (in %) 

 

Table 3.10: Input Parameters for Wind Energy Production Model 

Input Parameter    Unit   Python Argument Min   Mode  Max   

Annual Theoretical Production MWh energy_prod_theo 6500 8000 10000 

Energy Production Capacity % energy_cap 50 65 85 

 

3.2.2 Economic Evaluation Model 

The capex and opex structure varies depending on the nature of the project whether it is offshore or onshore. 

Opex for an offshore wind farm is somewhat higher than for an onshore farm due to greater costs of 
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accessing and maintaining turbines. Harsh marine environment can also increase the failure frequency of 

some components (Deloitte, 2014). Input parameters for offshore and onshore projects are illustrated in 

Table 3.11 and Table 3.12. 

 

Table 3.11: Input Parameters for Offshore Project Costs 

Input Parameter    Unit   Python Argument Min   Mode  Max   

Opex [opex] $/kWh opex 0.015 0.03 0.048 

Total Capital Variable Cost million$/MW capex_var 2.29 3.50 5.42 

Total Capital Fixed Cost million $ capex_fix 43.20 72.12 90.00 

Partial Repowering Investment million$/MW repower   1.056   

 

 

Table 3.12: Input Parameters for Onshore Project Costs 

Input Parameter    Unit   Python Argument Min   Mode  Max   

Opex [opex] $/kWh opex 0.01 0.015 0.035 

Total Capital Variable Cost million$/MW capex_var 1.2 1.8 2.29 

Total Capital Fixed Cost million $ capex_fix 36.03 60.4 75.51 

Partial Repowering Investment million$/MW repower   0.88   

 

Note that subsidy is an integral tool used by the government to motivate more investments in wind projects. 

Nevertheless, the subsidy scheme should be examined to understand the effect on the project. The subsidy 
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size and the conditions for receiving the subsidies are some of the key factors to be considered. Based on 

the subsidy awarded by Enova to Equinor in the Hywind Tamper project (Enova reports 2020), an 80% 

subsidy of initial capex is assumed in the wind farm project evaluation. Using the energy production model 

and the economic model, the cash flow and NPV were estimated and Figure 3.6 shows the NPV distribution 

of a wind farm project.   

 

Figure 3.6: Distribution of a wind farm project 

 

3.3 CCS Asset Model 

Carbon capture and storage(CCS) is a key tool for abating carbon emissions from anthropogenic sources. 

This section presents the asset evaluation of CCS projects by examining different stages that constitute 

the carbon capture and storage process. The CCS asset model was represented as an object of python class 

"CCS_asset." Table 3.13 shows the input parameter for the class. 

The CCS value chain can be divided into three processes: carbon capture, transport, and storage. We 

considered two stages in developing the CCS asset model: demonstration and commercialization. The 

demonstration phase is a sub-commercial scale project to validate CCS as an integrated technology at 

scale, while the commercialization phase is the first full-scale project to ramp up the CO2 abatement 

potential (Kim and Choi, 2014).  Similar to the petroleum and wind farm assets, a project life of 30 years 
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was also considered for the CCS project, with each project phase spanning 15 years.  Given these two 

stages of the project, two different investment costs were developed, and Table 3.14 illustrates the 

parameters used to model the investment and operating cost.  The operating cost is divided into capture, 

transportation, storage, and leakage costs. All parameters were modeled after PERT distribution by 

generating 5,000 realizations using Monte Carlo simulation for 30 years. 

The CCS utilization is the percentage of the storage capacity in use depending on the project phase. 

McKinsey & Company (2008) presented the CCS utilization for demonstration and commercial phase as 

80% and 86%, respectively, and were used in developing this model. 80% subsidy was considered as the 

percentage of initial investment provided by the government towards the CCS project. More details about 

the CCS asset model used in this work are presented in Moubarak (2021). 

 

Table 3.13: Input Parameters for CCS Aset Model 

Input Parameter  Unit Python Argument 

CCS Utilization percentage  % util 

Subsidies percentage %  perc_subs 

Time Period Years  perc_subs 

 

Table 3.14: Input parameters for CCS Capex and Opex Cost 

Input Parameter  Unit   Python Argument Min   Mode  Max   

Unit Investment of 1st Stage  $ million capex1 150 178 200 

Unit Investment of 2nd Stage  $ million capex2 100 155 130 

Capture Cost  $/t CO2 capt_cost 30 37 39 

Transportation Cost $/t CO2 trans_cost 4 4.9 7.3 

Storage Cost $/t CO2 stor_cost 4.9 12 14.5 

Leakage Cost $/t CO2 leak_cost 24 31 35 
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4 Portfolio Case Study 

In this chapter, we consider a hypothetical portfolio case study. It is supposed that the management team 

will choose a combination of energy investments consisting of a petroleum project, a wind farm project, 

and a CCS project. A multi-objective portfolio optimization will be used to generate optimized portfolios 

consistent with the management choice and preference. The decision variables for this case study are the 

shares or amounts of the capital budget invested into petroleum, wind farm, and CCS project.  

NPV, carbon emission, and company's green reputation are chosen as the decision criteria and these criteria 

are evaluated over the complete project lifespan of 30 years.  

 

Figure 4.1: Workflow of the Case Study 

 

Fig 4.1 describes the workflow of the case study. The analysis begins with identifying stakeholders, 

specifying possible investment scenarios, and identifying key objectives and attributes. Based on the 

decision variables, different investment scenarios centered on achieving energy transition at different pace 

are generated, and multi-attribute utility theory is applied to attain optimized investment portfolios. 

Furthermore, a sensitivity analysis and decision mapping will be carried out on the decision model. 

4.1 Development of the Portfolio Model 

4.1.1 Identification of Stakeholders 

The management team are the main stakeholder in a decision context because they outline the corporate 

objectives and the possible pathways to achieve them. They must carefully examine, evaluate and represent 

various energy strategies that would fulfill these objectives in a way that allows us to choose the optimal 



   

45   

   

one. The main focus of this work is to select an optimal energy portfolio that attains the energy transition 

goal; the global energy shift from fossil-based energy production and consumption to renewable energy. 

 

4.1.2 Portfolio Scenario Generation 

Energy transition signifies a pathway to achieving gradual transformation from carbon-intensive projects 

and solutions to greener solutions by integrating renewables and other energy-efficient solutions. Every 

energy firm will evolve its strategy using various approaches based on its short and long-term goals. This 

transition can be achieved by increasing the percentage of renewable energy and decreasing the percentage 

of fossil energy in the project portfolio since the main goal is to reduce emissions and attain net-zero energy 

in the long run. While the exact speed and path of the transition are unknown, the endpoint of a low-carbon 

energy system is inevitable. Hence, four energy scenarios were presented by gradually varying the 

percentage of hydrocarbon and renewables in the portfolio:  

 

Scenario 1 (Conservative):      Hydrocarbon - 70%  Renewables - 15%   CCS - 15% 

Scenario 2 (Less Conservative): Hydrocarbon - 50% Renewables - 25%  CCS - 25% 

Scenario 3 (Less Aggressive):     Hydrocarbon - 33.3% Renewables - 33.3%  CCS - 33.3% 

Scenario 4 (Aggressive):         Hydrocarbon - 20% Renewables - 40%,   CCS - 40% 

 

Depending on the momentum of transforming the energy portfolio, these scenarios range from the 

Conservative Scenario being the slowest transition to the Aggressive Scenario being the fastest. Scenario 

1(Conservative)  has the largest share of O&G assets and the smallest renewable energy share, while 

Scenario 4 (Aggressive) has the most significant renewable energy share and the smallest fossil fuel assets. 

Several factors such as technological progress, public and private policies, infrastructure availability, oil 

prices, and energy production may affect the transition pace at which the company moves. Using these 

scenarios, we will evaluate the long-term impact of the transition pace on the portfolio value by using the 

defined value function that represents the decision-maker's preference. 
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4.1.3 Identification of Key Attributes 

The net-zero carbon emission ambition is vital for the industry in limiting global warming increase to 20C 

in 2050. Operators are now developing balanced and integrated energy portfolios. More recently, Equinor 

has announced the ambition to attain a carbon-emission target of 8 kgCO2e/boe by 2030. O&G companies 

are now looking beyond the common goal of maximizing their shareholder value to other objectives like 

building a good energy reputation and reducing carbon intensities of upstream assets based on factors such 

as technology and infrastructural complexity. Taking this into account, the attributes that quantify the 

degree of attainment of these objectives are identified and selected. After that, a clear scale for each attribute 

is defined to show how well a decision alternative meets each objective.  

Using the data generated by the project model simulation, the attributes and scales are shown below  in 

Table 4.1:  

 

Table 4.1: Attributes, Scales, and 'Best' and 'Worst' outcomes of any Decision Alternative 

Attributes Scale Best Worse 

NPV  NPV (million $) 725.68 454.44 

Net Carbon Emission  Net C02 emissions( million t CO2) 40770.00 1039978.00 

Green Reputation % of renewable and CCS project 80% 30% 

 

Table 4.1 illustrates the attributes, scales, and their respective 'best' and 'worst' values. These values 

symbolize the best and worst outcomes for each attribute that any decision alternative could achieve; thus, 

these values are obtained from the best and worst possible outcomes of various scenarios. For the NPV 

attribute, the best possible outcome is Scenario 1 with 725.68 million dollars, while the worst possible 

outcome is Scenario 4 with 454.44 million dollars.  

A key assumption in evaluating the net carbon emission of this decision problem is that if the CCS capacity 

is greater than the CO2 emissions from the oil and wind projects, there is no extra revenue from the CCS 
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project by storing CO2 from external CO2 sources. This means that negative net emissions are considered 

zero emissions. 

This methodology used in defining the attributes and scales is vital for developing the value function, as 

introduced in the next section. 

 

4.1.4 Constructing Multi-attribute Utility Functions Using Value Functions 

Having identified the attributes, the next step is constructing the multi-attribute utility function. However, 

as presented in section 2.3.2, a single-attribute value function to score the possible levels of each attribute 

into a value form from 0 to 100 is first developed. A linear transformation from attribute scores to attribute 

values is assumed for all attributes; thus, a linear value function is used to establish a linear relationship 

between the scores and the scenario performance, as illustrated in Figure 4.2. 
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Figure 4.2: Value Function for Key Attributes: NPV, Net Emission, and Green Reputation 

 

The next step is to select swing weights to model stakeholder preferences and combine the swing weights 

and attribute scores into an overall multi-attribute value function for each decision option. The overall 

value function for each alternative's pay-off is given as: 
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𝑉 = 𝑛𝑝𝑣_𝑤𝑡(0.3687 ∗ 𝑁𝑃𝑉 –  167.54)   + 𝑒𝑚𝑖𝑠_𝑤𝑡(−0.0001 ∗ 𝑒𝑚𝑖𝑠 +  104.08) + 𝑟𝑒𝑝_𝑤𝑡(200 ∗ 𝑟𝑒𝑝 –  60) (4.1) 

 

Where 𝑉:  Overall multi-attribute value function 

 𝑛𝑝𝑣_𝑤𝑡: NPV preference weight 

𝑒𝑚𝑖𝑠_𝑤𝑡: net emissions preference weight 

𝑟𝑒𝑝_𝑤𝑡: green reputation preference weight 

emis: net carbon emissions 

rep: green reputaion 

 

4.2 Applying Portfolio Model To Scenarios 

This section defines a base case for the four scenarios by assigning weights to each decision criteria in the 

multi-objective decision problem. However, the first step of the base case analysis is to assess the strategies 

against the NPV objective such that any scenario that does not fulfill this single objective is removed. To 

achieve this, the assigned attribute weights for NPV, carbon emission, and green reputation are 1.0, 0.0, 

and 0.0, respectively, describing the decision-maker's preference for fulfilling only the NPV objective in 

this case. These preference weights illustrated in Table 4.2 were implemented in the value function. The 

expected NPV in the results calculated in Table 4.3 illustrates that the four investment strategies generate a 

positive NPV. 

 

Table 4.2: Attribute weights describing preference for only the NPV objective 

Attributes NPV Net C02 emission Green reputation 

Weight 1.0 0.0 0.0 
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Table 4.3: Scenario results for NPV objective 

Scenarios Scenario 1 Scenario 2 
Scenario 

3 

Scenario 

4 

Expected NPV(million $) 719.63 612.76 523.70 452.45 

Objective value 98.40 55.18 23.00 0.36 

    

 

Table 4.3 shows that all four scenarios generated positive NPV. However, Scenario 1 generated the highest 

objective value. Therefore, Scenario 1 is the optimal portfolio when the portfolio analysis considers only 

the NPV objective. Scenario 1, being the conservative scenario, retains more investment share of 

hydrocarbon in its portfolio than the other scenarios, thereby maximizing the NPV objective the most 

compared to other scenarios. 

Moving on to access the investment strategies against multiple objectives, attribute weight is assigned to 

each objective according to the decision maker's preference. Table 4.4 shows the decision maker's preferred 

assumptions for the attribute weights.  

 

Table 4.4: Attribute weights describing preference for multiple objectives 

Attributes NPV Net C02 emission Green reputation 

Weight 0.4 0.3 0.3 

 

The final step is to calculate the portfolio value for each scenario using the multi-objective value function 

earlier defined in section. From the portfolio results in Table 4.5,  Scenario 4 generated the highest objective 

value. 
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Table 4.5: Scenario results for multiple objective 

Scenarios Scenario 1 Scenario 2 
Scenario 

3 
Scenario 4 

Expected 

NPV(million $) 
719.63 612.76 523.70 452.45 

Objective value 41.58 52.78 58.27 59.40 

 

From Table 4.5, the portfolio result illustrates that Scenario 4 generated the highest objective value and 

Scenario 1, the lowest objective value, thus making Scenario 4 the optimal portfolio based on the decision-

maker's preference. This is expected as Scenario 4 has more green energy solutions than other scenarios, 

thereby fulfilling the decision maker's goal of reducing carbon intensity in the portfolio selection. However, 

the optimal scenario for multiple objectives differs from that of a single objective. The optimal scenario for 

the multiple objectives is the aggressive scenario, while for a single objective (NPV maximization), the 

optimal scenario is the conservative scenario. This show that when we change the attribute weights, the 

optimal decision changes. This means the attribute weight is material to our decision. 

Using the base case results alone, the optimal portfolio choice from the four scenarios can not be made. The 

base case only provides an overview for the decision-maker to further evaluate the alternatives by 

performing a robust sensitivity analysis on the portfolio values while changing the estimated inputs or 

assumptions, particularly for uncertain quantities and variables over which we have choices. In the section 

that follows, we will perform a sensitivity analysis on the portfolio model. This will significantly help 

energy firms make better decisions with respect to their targets and constraints and agree on the optimal 

choice according to organizational goals and strategy. 

 

4.3 Sensitivity Analysis 

To demonstrate the sensitivity of the portfolio decision to the choices made regarding the model parameters, 

a sensitivity analysis was conducted on the strategies. In the first step, a one-way sensitivity analysis was 

done on the portfolio value by varying the attribute weights. For simplicity in this analysis, NPV weight is 
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used to represent the decision maker's preference, and the net carbon and green reputation weights are a 

function of the NPV weight: 

 

𝑛𝑒𝑡 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 =   𝑔𝑟𝑒𝑒𝑛 𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡 =
1 − 𝑛𝑝𝑣 𝑤𝑒𝑖𝑔ℎ𝑡

2
 (4.2) 

 

An increase in the NPV weight signifies a decrease in the net carbon and green reputation weights. 

The sensitivity analysis was repeated for CCS storage, hydrocarbon emissions, and windfarm emissions. 

This assessment helps to know to what extent the portfolio decision is sensitive to these input parameters.  

 

 

4.3.1 NPV weight 

 

 

Figure 4.3: Sensitivity Analysis of Portfolio Model to NPV weight 
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We develop an approach to analyze how the portfolio value changes as a function of the attribute weights 

and, more importantly, to recognize situations where a slight change in the decision-maker's preference for 

fulfilling an objective is likely to change the decision.  

Figure 4.3 indicates that the portfolio value increases as the NPV weight increases for the conservative and 

less conservative scenarios. In contrast, the portfolio value decreases as the NPV weight decreases for the 

aggressive and less aggressive scenarios. This is possible because the hydrocarbon project maximizes net 

profit the most compared to the renewable and CCS project. In other words, the NPV is the primary driver 

of the portfolio value. As the NPV weight increases, the NPV objective is prioritized above other objectives 

across all alternatives considered, and the alternative that best meets this objective generates the highest 

objective value corresponding to the conservative scenario.  However, the optimal decision is most sensitive 

when the NPV weight is between 0.4 and 0.5, as we see that the portfolio values of the scenarios are the 

closest to each other and the optimal scenario (alternative) changes across the four scenarios within this 

range."  Another observation from this Figure 4.3 is that Scenario 2 is the optimal only for a narrow range 

of the NPV weight (around 0.5) 

Finally, whether the decision-maker should choose Scenario 4 is insensitive to all NPV weights less than 

0.4 since the optimal decision remains Scenario 4. Similarly, this applies to all NPV weights more than 0.5 

as the optimal decision remains Scenario 1. Given that the attribute weights are material to the decision, the 

decision-maker can use this analysis to study the implication of their preferences on portfolio value. 

 

4.3.2 CCS Storage Capacity 

Here we study the effect of the CCS storage capacity of the CCS asset on the portfolio value by considering 

the interaction of other input parameters that influence the portfolio value. Different investment scenarios 

would generate different carbon footprints depending on the percentage of fossil-fuel projects in the 

portfolio. 
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Figure 4.4: Sensitivity Analysis of Portfolio Model to CCS storage Capacity 

 Fig 4.4 shows that as the CCS storage capacity increases, the portfolio value for all scenarios increases 

steadily. A possible explanation for this might be that as the carbon storage capacity increases, more carbon 

emissions can be captured, thereby reducing the net carbon emission and improving the green reputation of 

the energy company. Also, with a reduction in the carbon footprints, the company can avoid paying excess 

carbon tax and save more, maximizing the net profit. This observation further explains the significance of 

the CCS project in an energy portfolio as it maximizes all specified objectives directly or indirectly.  

However, the significance of the CCS storage capacity is relative across all scenarios. As the CCS storage 

increases, we see in Figure 4.4 that the portfolio value increases gradually and remains constant after a 

certain point, depending on the scenario. There are several possible explanations for this result. As the CCS 

capacity keeps increasing to the point where all carbon emissions are captured, resulting in a zero net carbon 

emission, an increase in the storage capacity above this point no longer adds significant value to the 

portfolio. This is evident in the case of Scenario 4, with a constant portfolio value of 60 for all CCS storage 

above 100,000 kg CO2. 
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Since the oil project generates the highest NPV compared to other projects, suppose the CCS storage 

capacity increases and every other variable of the model remains constant. In that case, we can invest more 

in the hydrocarbon project because we have more storage capacity to store carbon emissions, thereby 

making Scenario 1 (Conservative scenario) the optimal scenario at CCS storage capacity above 430,000 kg 

Co2. Finally, whether the decision-maker should choose Scenario 1 is insensitive to the CCS storage 

capacity at capacities more than 430,000 kg Co2 since the optimal scenario remains Scenario 1. 

 

4.3.3 Carbon Emission Intensity 

The relationship between the carbon emissions and the portfolio value can be inspected in Figure 4.5. As 

the target windfarm and hydrocarbon emissions become larger, the portfolio value of all the scenarios 

decreases with a larger variation seen with the hydrocarbon carbon emission. This confirms that the 

objective value is more sensitive to the hydrocarbon emission than the windfarm emission. If the target 

windfarm emission is increased, we should invest more in the hydrocarbon project, so the optimal decision 

changes to Scenario 1, the conservative scenario. 

On the other hand, if the target hydrocarbon emission is increased, you should reduce your investment in 

hydrocarbon and invest more in the wind farm project, changing to the aggressive scenario, Scenario 4.  
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Figure 4.5: Sensitivity Analysis of Portfolio Model to Carbon Emission Intensity 

 

 

4.4 Decision Map 

A decision map approach is adopted to show the optimal portfolio given the underlying uncertain criteria 

in the quest for more insight and support for quality decision-making. The multi-attribute value model is 

used to generate a decision map displaying which investment scenario is optimal, that is, the scenario with 

the largest portfolio value based on bi-criteria slices of portfolio values. The result allows the mannagement 

board and staff to understand the interaction of the decision criteria with one another in achieving the 

organizational goals rather than looking at each criterion individually.   

 

4.4.1 CCS storage capacity and NPV weight 

First, a decision map was developed with the portfolio value of the scenarios as a function of the CCS 

storage capacity and the NPV weight criteria. Different values of both model parameters were generated 

for each as input into the portfolio value model. The maximum and the minimum limits are defined by the 

management based on their targets and constraints. The vertical axis of the plot corresponds to different 
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CCS storage capacity levels, and the horizontal axis is graded according to the NPV weights levels. The 

color map shows the optimal scenarios for a combination of both model variables.  

As seen in Figure 4.6, the optimal scenario tends to change according to changing levels in the CCS storage 

and NPV weights. For instance, for an NPV weight of 0.6, an increasing level of CCS storage from 100,000 

kg CO2 to 250,000 kg CO2 causes a change in decision across the four scenarios from Scenario 1 to 

Scenario 4. Additionally, if the CCS capacity is 200,000kg CO2, a change in the NPV weight from 0.1 to 

0.9 causes a change in decision across the four scenarios from Scenario 4 to Scenario 1.  

However, for all CCS storage capacity less than 130,000kg CO2, the optimal decision is Scenario 4 – 

aggressive scenario, regardless of the NPV weight assigned by the decision-maker. Here, the decision-

maker would always prefer to invest more in green energy projects at all profit levels, provided the available 

carbon storage capacity is less than 130,000kg CO2. This observation also applies to all CCS capacity more 

than 225,000 kg Co2 as the optimal decision is Scenario 1 – conservative scenario, irrespective of the NPV 

weight. Hence at a storage capacity less than 130,000kg CO2 or more than 225,000 kg, the decision-maker 

will be indifferent about his preference for NPV maximization as this is inconsequential to the decision. It 

also showed that the aggressive scenario dominates all scenarios for all CCS storage capacities less than 

130,000kg CO2, and the conservative scenario dominates all scenarios for all CCS storage capacities more 

than 225,000kg CO2.  

 Finally, the optimal decision is most sensitive to the NPV weight when the carbon storage capacity is 

between 130,000kg CO2 and 225,000kg CO2, as we see the decision changing across the four portfolio 

scenarios within this range. 
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Figure 4.6: CCS storage capacity and NPV weight 

 

4.4.2 Hydrocarbon emissions and CCS storage capacity 

Moving on now to consider a decision map that examines the optimal portfolio from combinations of annual 

hydrocarbon emission and annual CCS storage capacity, provided all model parameters are the same. This 

analysis helps to understand the relationship between the available CCS storage capacity and the carbon 

emission from the hydrocarbon project. With this, the decision-maker can determine how a change in the 

emission target and the CCS storage capacity causes a change in the investment scenario and be able to 
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select the scenario that maximizes value at a given annual hydrocarbon emission target and CCS storage 

capacity constraint.  

The approach used is similar to that of the previous section. 100 different values were generated for each 

of both annual hydrocarbon emission target and CCS storage capacity as input for the portfolio model. In 

this analysis, base case weights of 0.4, 0.3, and 0.3 were assigned to profit maximization, carbon reduction, 

and green reputation attributes to represent the decision maker's preference. We generated a decision map 

in Figure 4.7 with hydrocarbon emission on the vertical axis and the CCS storage capacity on the horizontal. 

The optimal portfolio for each slice of both criteria is visualized using a color map.  

  

Figure 4.7: Hydrocarbon emissions and CCS storage capacity 

 

As it is easy to see in Figure 4.7, the optimal scenario changes as the hydrocarbon emission and the CCS 

storage capacity change. Considering a hydrocarbon emission of 100,000 kg Co2, an increasing level of 
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CCS storage from 50,000 kg CO2 to 150,000 kg Co2 causes a decision change from Scenario 4 to Scenario 

3. A further increase from 150,000 kg CO2 to 230,000 kg causes the decision to change from Scenario 3 to 

Scenario 2. It is observed that for the 100,000kg Co2 emission target, as the CCS storage increases, the 

optimal scenario tends to shift away from the aggressive scenario. A possible explanation is that at constant 

emission and increasing CCS storage capacity; the company can invest more in the hydrocarbon project 

and produce more oil. Increasing CCS storage capacity motivates compannies to increase their oil 

production since increasing carbon storage can help abate more carbon emissions from oil production. This  

makes the optimal decision to gravitate towards fossil-dominated energy sources.   

. 

In order to gain more insights to support quality decision making, from the result obtained in Figure 4.6, 

we will examine four different combinations of HC emissions and CCS storage capacity representing a 

hypothetical hydrocarbon emission target and CCS storage capacity constraint being considered by the 

decision-maker. Note that all other model parameters apart from hydrocarbon emission and CCS storage 

capacity remain constant in this analysis. These four combinations correspond to A, B, C, and D in Table 

4.6.  

 

Table 4.6: Combinations of Hydrocarbon Emission and CCS storage 

Combinations CCS Storage Capacity (kg CO2) Hydrocarbon Emission (kg CO2) 
Optimal 

Scenario 

A 300000 50,000 4 

B  250000 100000 3 

C 200000 120000 2 

B  50000 200000 1 

 

Point A constitutes a significant amount of CCS storage capacity and a low hydrocarbon emission in this 

analysis. The optimal scenario at point A is Scenario 4. However, considering point B with a considerable 
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decrease in CCS storage capacity and increase in hydrocarbon emission compared to point A, we observe 

a decision change from Scenario 4 to Scenario 3. A further decrease in CCS storage capacity and increase 

in hydrocarbon emission caused a decision change to Scenario 2, and then to Scenario 1. This analysis is 

based on the portfolio model and the decision-maker's preference for fulfilling the specified corporate 

objectives. The optimal scenario may tend to change for points A, B, C, and D if the decision-maker's 

preference changes. 

 

4.4.3 Three-Way Sensitivity Analysis Using Decision Maps 

In the previous section, we adopted a decision map approach to investigate the effect of NPV weight, carbon 

emissions, and CCS storage capacity on the optimal scenario, using a two-way sensitivity analysis. This 

section will consider a three-way sensitivity analysis of the portfolio model to changes in the material 

variables. First, we consider maps that can be used to assess the optimal decision at different hydrocarbon 

emissions, CCS capacities, and different NPV weights. The concept is to generate decision maps displaying 

portfolio values as functions of carbon emissions and CCS capacities using different NPV weights.  

Figure 4.8 illustrates the decision maps for four different NPV weights. As shown in Figure 4.7, if the NPV 

is less important and is assigned a weight of 0.3, we will always choose Scenario 4. However, when NPV 

becomes essential and is assigned preference weights of 0.4, 0.5, and 0.6, we observe visible decision 

change across the maps that correspond to these preference weights. Therefore, the preference weight is 

material to our decision.  

In order to generate more insight for decision-making, a particular hydrocarbon emission target and CCS 

storage capacity can be used as a case study. Hence, Point P corresponds to 100,000 kg CCS storage 

capacity and 60,000 kg hydrocarbon CO2 emission and is identified with a white dot on the four decision 

maps as shown in Figure 4.8.  For an NPV weight of 0.3 which means the decision-maker cares less about 

maximizing net profit but much about reducing carbon intensity and the company's green reputation, the 

optimal investment decision for point P is to implement the aggressive scenario. However, as NPV weight 

increases to 0.4, the less aggressive, Scenario 3 becomes the optimal decision for point P. A further increase 

in the NPV weight to 0.5 and 0.6 changes the decision at point P to Scenario 2 and Scenario 1.  
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  NPV weight = 0.3          NPV weight = 0.4 

 

  

  NPV weight = 0.5     NPV weight = 0.6 

Figure 4.8: NPV weight, CCS storage capacity, and Hydrocarbon emission 
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In general, what is striking in the decision maps in Figure 4.8 is the continual growth in the area of  Scenario 

1 with increasing NPV weight. It confirms that the conservative scenario helps to fulfill the net profit 

maximization objective more than other investment strategies. 

This case study shows the value creation derived from the interaction and flexibility of the uncertain 

decision model parameters and its significance in making good decisions. The robustness of the decision 

maps generated in Fig is that they can easily be used to assess the optimal decision for possible values of 

hydrocarbon emission, storage capacity, and preference weight (NPV, carbon reduction, and green 

reputation). Hence decision-makers can quantify the expected portfolio values and determine the optimal 

scenario to implement at any given target or constraint. 

 

Let us consider the effect of the windfarm emission target and CCS capacity on the portfolio decision using 

similar decision maps in Figure 4.9. 

Similar to the approach used in the last section, we conduct a scenario analysis by developing decision maps 

showing portfolio values as functions of windfarm emissions and CCS capacities using different NPV 

weights. Fig illustrates that when the NPV preference weight is 0.3, the aggressive scenario dominates other 

scenarios. Although the conservative scenario is the optimal decision in the slices where the windfarm 

emission is more than 160,000 kg Co2 with a limited CCS capacity of less than 70,000 kg Co2, we observe 

that the area of the aggressive scenario is quite larger than the area of the conservative scenario. This 

explains that when the decision-maker is less concerned about maximizing net profit but more concerned 

with reducing net carbon emission and improving their green reputation, the aggressive scenario maximizes 

the portfolio value the most compared to other scenarios. However, as the decision-maker's preference for 

NPV increases by assigning an NPV weight of 0.4, a comparison of the decision maps generated for both 

0.3 and 0.4 weights confirms a decision change across the maps. This is evident from the emergence of the 

less conservative and less aggressive scenarios as the optimal scenario for some slices in the decision map 

generated when the NPV weight is 0.4.  
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  NPV weight = 0.3          NPV weight = 0.4 

 

 

  

NPV weight = 0.5     NPV weight = 0.6 

 

Figure 4.9: NPV weight, CCS storage capacity, and Wind Farm emission 
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Particular attention should be paid to point Q in Figure 4.9, which corresponds to 100,000 kg Co2 windfarm 

emission and 250,000kg Co2 storage capacity. As the NPV weight increases across the four decision maps,  

the optimal portfolio changes from scenario 4 to Scenario  3, to Scenario 2, and to Scenario 1. The three-

way sensitivity analysis of these maps shows that the optimal investment scenario can easily be visualized 

and decided given any combination of NPV weight, CCS storage capacity, and windfarm emission.  

 In Figure 4.8, as the NPV weight increases to across four decision maps, the area dominated by the 

conservative scenario grows bigger, while that dominated by the aggressive scenario shrinks. A possible 

explanation for this result is that the conservative scenario meets the net profit maximization objective 

more than other scenarios since its area grows as the NPV preference weight increases. On the other hand, 

the aggressive scenario forfeits the NPV maximization compared to other scenarios since its area reduces 

when the NPV weight increases. 

 

 

4.5 Risk-Attitude Analysis 

Previously, we conducted the multi-attribute decision analysis without considering risk aversion (i.e., the 

previous analysis is for a risk-neutral decision maker). In this section, we perform a risk-attitude analysis 

to model risk aversion in the portfolio model. An exponential utility function is used as a utility function to 

represent the decision maker's risk attitude and the uncertainty in the portfolio value. The exponential utility 

form is adopted in MAUT applications, and it models that the decision-maker has a constant risk aversion 

over the attribute range considered. The exponential utility function has only one parameter - the risk 

tolerance rho - which is a measure of the level of a decision maker's risk-aversion. The expected utility and 

certain equivalent were calculated for the possible outcomes of a decision alternative; then the decision 

alternatives are ranked based on their certainty equivalents (or expected utility). 
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Table 4.7: Expected Utilities and Certain Equivalents for rho =500 

Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Expected utility values -0.9996 -0.9443 -0.9211 -0.9146 

Certain equivalent 0.20 28.67 41.11 44.60 

 

Table 4.7 illustrates the expected utility values, certain equivalent, and the order of preference for the 

investment scenarios. Note that the expected utilities and certain equivalent for all scenarios show that the 

decision-maker preferred Scenario 4 the most, followed by Scenario 3, Scenario 2, and Scenario 1 in that 

same order. This preference is similar to the result obtained in Table 4.5, if the decision-maker is risk- 

neutral, indicating that the decision-maker's risk tolerance does not impact the decision.   

A sensitivity analysis was conducted to study the effect of changes in the company's risk tolerance on the 

portfolio results. Different values of risk tolerance bounded by a low and high value of 0 and 300, 

respectively, were generated. A smaller tolerance value signifies the company is more risk-averse, while a 

larger tolerance value signifies less risk-averse. As shown in Figure 4.10, the certain equivalent for each 

investment scenario are calculated and plotted against the risk tolerance. When the decision-maker's risk 

tolerance is in this range the range from 0 to 300, the risk attitude is not material to the decision because it 

will not change the investment. Therefore, Scenario 4 is the best investment scenario, given the company's 

risk attitude.  

 

Figure 4.10: Sensitivity Analysis of Portfolio Decision to Risk tolerance 
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However, suppose the company considers a "no investment" option as a decision alternative; the certain 

equivalent for this scenario is estimated and plotted together with four other alternatives against the risk 

tolerance in Figure 4.11. 

 

 

Figure 4.11: Sensitivity Analysis of Portfolio Decision to Risk tolerance with No Investment option 

 

Figure 4.11 illustrates that if the company is very risk-averse, then they would prefer not to invest in any 

project as the "do not invest" scenario is the optimal decision because its CE is the greatest among the 

decision alternatives when the risk tolerance is less than 30. In this range, the company is concerned about 

the risk of losing portfolio value and prefers not to invest at all. However, if the company is less risk-averse 

(risk tolerance greater than 30), the company will implement Scenario 4, the aggressive scenario.   
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5 Conclusion 

During the energy transition, the portfolio optimization problem becomes more complex because the oil 

industry now needs to consider more different types of projects and also multiple objectives. The main 

contributions of this work are: 

1) Development of a decision analysis framework and workflow for optimizing the portfolio of 

investments in different energy and CCS projects. 

2) Application and demonstration of the decision analysis framework and workflow with the 

consideration of a hydrocarbon, windfarm, and CCS project, multiple objectives, and risk attitude. 

Oil and gas companies are continually looking for ways to optimize their portfolio and mitigate risks arising 

from several uncertain decision elements.  

In this work, we presented a workflow to make high-quality decisions regarding energy investment 

strategies. This decision problem focused on multiple objectives; net profit maximization, carbon intensity 

reduction, and improving the company's green reputation. 

The workflow includes the evaluation of the hydrocarbon assets, windfarm, and CCS assets, identification 

of key objectives and attributes, specifying possible investment scenarios, construction and implementation 

of the multi-objective function, and sensitivity analysis and decision mapping. Based on the evaluated assets 

available for selection, four investment scenarios centered on achieving energy transition at different 

accelerations are specified, and multi-attribute utility theory is applied to optimize investment portfolios. 

This approach was used to evaluate and compare these different investment scenarios and also to identify 

the optimal investment decision that is consistent with the decision maker's preference for each corporate 

objective. Furthermore, in the quest to generate more insight for high-quality decision-making, a sensitivity 

analysis was conducted that illustrated to what extent individual objectives impact the portfolio decision.  

In order to achieve a more robust scenario analysis, decision maps were developed to visualize a bi and tri-

parameter analysis of the portfolio values. This analysis can help the management board to understand the 

interaction of the decision criteria with one another in achieving the organizational goals rather than looking 

at each criterion individually. 
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For the decision problem framed in this work, the results of the portfolio analysis can help energy companies 

understand how their pace towards the transition impacts their organizational objectives and choose the 

optimal strategy most consistent with their preferences for each performance objective.   

Although this decision analysis is based on a small hypothetical energy firm looking to make a good 

investment decision, the analysis can be extended to actual projects with cash flows, carbon emissions, and 

CCS storage assets for future studies. 
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