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Abstract

This thesis investigates if synthetic porosity models are useful as a basis for comparison
between machine learning (ML) approaches to porosity prediction. In addition to the ML
methods, the sequential gaussian simulation (SGS) geostatistical method is used as a bench-
mark. The synthetic models are porosity and impedance cubes constructed from the F3 dataset
(offshore Netherlands) well-logs, to mimic specific geological geometries including a sedimentary
wedge and a normal fault. Based on the performance of the different methods on the synthetic
models, a porosity prediction is performed on the actual F3 dataset as well. The prediction
methods discussed are SGS, and ML methods such as KNN-regression, lasso-regression, random
forest-regression, and shallow neural network. The geostatistical and geophysical methods are
run using Petrel, and the ML methods using Python. ML methods are better at minimizing
the error while missing much of the detail of the SGS method. However, for the F3 dataset,
random forest appears to capture more details than the other methods. The synthetic models
provided a better basis for comparison of the different methods, however the workflow requires

improvement.
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1 Introduction

Over the past decade, Machine learning (ML) methods have been applied to many fields of sciences
in order to improve data-based workflows. In geosciences, one works with large amounts of data.
Thus, it is natural to investigate if ML methods can be an improvement to current subsurface

interpretation methods.

This thesis focuses on methods for predicting porosity, which is the ratio between the pore space
and the total volume in a rock. The pore space is the volume that can be filled with fluids, and in
reservoirs it correlates to some degree with permeability, which is a measure of how easily fluids flow
through the reservoir. This makes porosity estimation important for determining migration routes
and reservoir volumes for valuable fluids such as oil, as well as the storage of other types of energy
(e.g., hydrogen), or the sequestration of COs in the subsurface. The reservoir volume is of great

importance for making risk evaluations on whether a prospect is worth exploring.

In the petroleum industry, the available subsurface data are usually well-logs and seismic data.
The well-logs are localized and follow a specific path, while seismic data cover a larger, often 3D
volume. Additionally, the resolution in well-logs (cm) is about three orders of magnitude finer than
seismic. These differences make it challenging to extrapolate well-log data into a 3D seismic volume,
as the distances between wells are often large, and the difference in resolution between these two

datasets is significant.

While it is possible to make and evaluate ML porosity models using well-logs and seismic data, it
is difficult to truly evaluate the performance of these methods without a ”known” porosity cube, given
the varied geometry and complexity of the subsurface. For this reason, to test the effectiveness of
ML for porosity prediction, I use synthetic models which can be derived from well data and typically
consists of porosity, seismic and P-impedance cubes. In addition, the synthetic datasets can help us
to better understand how the ML models react to different well locations and distributions, seismic

signal to noise ratio, and subsurface geometries.



This thesis will compare porosity estimation methods using the classical ”sequential Gaussian
simulation” approach versus the ML approach. To compare the performance of these two approaches,
synthetic, artificially created porosity sections are made as validation sets using established geosta-
tistical methods. The synthetic models are based on a real dataset from offshore Netherlands, the
F3 block. The theoretical background of this thesis is thus divided in two parts: the geostatisti-
cal part and the machine learning part. Geostatistics is performed using the program Petrel by

Schlumberger. Machine learning is performed using Python with the aid of open source modules.

1.1 Thesis Structure

This thesis will first cover the relevant theory for both geostatistical/geophysical methods and ma-
chine learning as stated before. The geostatistical/geophysical part includes seismic inversion, the
F3 dataset, and geological geometries which are required to build the synthetic models. This part
also covers sequential Gaussian simulation as the geostatistical prediction method. The ML theory
portion covers all the methods used, which include lasso, KNN, random forest and neural networks.
This part also includes the Python tools used and an explanation of cross-validation. The second
part is the methodology covering the steps taken to get the results. This includes the classic poros-
ity prediction of the F3 dataset, and the construction and classic prediction of the synthetic models
using geostatistical/geophysical theory. The methodology of the ML part covers predictor extrac-
tion/editing and hyper-parameter tuning. The results of the predictions are presented and compared
in the Results chapter. Finally the results and the overall process of synthetic model construction

and porosity prediction are discussed.



2 Background theory

2.1 Geophysics
2.1.1 Seismic inversion and impedance

Seismic has little correlation to porosity directly. A much more useful attribute is acoustic impedance,
which typically correlates with porosity. Furthermore, acoustic impedance can be extended from
the well-logs to the area of interest covered by the seismic cube, using seismic attributes and seismic

inversion [I].

Seismic Inversion

v
Low frequency logs

Low frequency model

v
Inversion

Return P-impedance cube
Y

es

Figure 1: Seismic inversion workflow. The error minimum refers to the local minimum of the cost
function that needs to be found.



The general workflow of seismic inversion is shown in Figure Seismic inversion uses a low
frequency model (LFM) made by applying a low-pass filter to the acoustic impedance well-logs and
guided by the interpreted seismic horizons [I]. The LFM addresses the missing low frequencies of

the seismic cube, which are necessary for reliable estimation of the acoustic impedance values.

The process of going from the LFM to the acoustic impedance is applied trace by trace. The LFM
traces are modified, then a wavelet is used on the modified LFM trace to calculate the synthetic
seismic trace [I]. The synthetic seismic trace is then compared to the real seismic trace using a
cost function explained later. The difference between the synthetic and real seismic trace is caused
by errors in the estimated impedance trace, and therefore it should be minimized by changing the
impedance trace. If the difference is large, the impedance trace is modified and used to calculate a
new synthetic seismic. This optimization loop continuous until a local minimum of the cost function

is found [1].

The wavelet used for the inversion is an estimation of the source wave used during seismic
acquisition. The wavelet is used as a filter to calculate the synthetic seismic from the reflectivity
derived from the acoustic impedance. Statistical and deterministic wavelets are considered in this
thesis. The primary difference is that the statistical wavelets are constructed based only on the

seismic data. Deterministic wavelets are made based on both the seismic data and the well-log data

2.

The construction of the statistical wavelet can be summarized in three steps as displayed in
Figure[2| Tapered auto-correlation is used on the traces to address the seismic noise and control the
wavelet length. Then the auto-correlated traces are converted into a power spectrum (one spectrum
per trace). Finally, the averaged power spectrum is transformed into the time domain giving the
wavelet. The deterministic wavelet is based on the seismic trace and the reflectivity derived from the
impedance well-logs. The autocorrelation of the reflectivity and the cross correlation between the
reflectivity and the seismic trace are calculated. Then these values are tapered and converted into
the frequency domain where the amplitude and the phase spectrum of the wavelet is derived. The

deterministic wavelet has phase information, as opposed to the statistical wavelet which is zero-phase



and has no phase information [3] 2] [4].

Amplitude

Autocorrelations \/\/\

Power spectra of tapered
autocorrelations; blue:
averaged spectrum

Promvs |28

Wavelet of averaged
power spectrum

Figure 2: Workflow for constructing a statistical wavelet from seismic data, summarized in three
steps. Based on theory from [4] and [3]

The formula for evaluating the quality of the inversion is a cost function with four terms. The first
term penalizes for the difference between the synthetic and real seismic. The second term measures
the horizontal variation of the impedance. The third term penalizes for the P-impedance deviating

from the LFM. Finally, the fourth term determines the number of significant reflections, which are
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the reflections that exceed a certain absolute amplitude. This term also penalizes the model for the
number of significant reflections that exceed a chosen threshold [I]. The seismic inversion delivers
an acoustic impedance cube that covers the area of interest and, it is the main predictor used for

determining porosity outside the wells.

2.1.2 Sequential Gaussian simulation, Co-kriging and Variograms

To compare the results of the ML models, a porosity estimation that uses basic geostatistics is used.
This estimation involves populating a 3D grid with porosity guided by a P-impedance volume. Tak-
ing advantage of the correlation between porosity and acoustic impedance, collocated co-simulation
is used based on sequential Gaussian simulation (SGS) to derive the porosity. This method is imple-
mented in modeling software (Petrel, RMS etc) and often applied in the industry for static reservoir

modeling [5].

Sequential Gaussian simulation as described by [6] involves the following workflow (Figure [3]):
Transform the data into a normal Gaussian distribution. Loop over all grid cells randomly. For each
cell perform kriging using the weights calculated from the variogram and a coeflicient calculated
from the correlation between the porosity and the impedance. From kriging, one should get the
kriging value and the kriging variance at each grid cell. Then, the Gaussian distribution is derived
at each grid cell using the results of kriging. The Gaussian distribution represents the uncertainty
of the kriged value. Then, a random value is drawn and is applied to the cumulative distribution
function, which is found by integrating the Gaussian distribution. This random value is assigned
to the grid cell. When this is done to all the grid points, they are transformed back to the original

distribution [0}, [].
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Sequential Gaussian Simulation

v

v

Gaussian Gaussian
Transformation Transformation

Variogram Model Sample variogram

Find kriging value by
collocated co-kriging
Define random path

through 3D grid

Random sample from Gaussian 3D grid of Gaussian
distribution using kriging result porosity data

Gaussian back
Transformation

3D grid of porosity data
respecting original distribution

Figure 3: Workflow for the sequential Gaussian simulation.

In Petrel, all modeling is performed in depo-time. This means that all horizons are flattened and
the fault displacement is removed. Then, SGS modeling is performed and the result is transformed

back to the original domain [5]. This way, the interpreted geological time and it’s relationship to

12



the well-logs is honored.

To explain the concept of the variogram, it is useful to separate it into two main components:
the sample variogram and the variogram model. The sample variogram uses known data to calculate
the semi-variance on a horizontal or vertical axis, sorted by the spatial distance [7]. The calculation

of the semi-variance is:

Here N (h) is the number of data pairs, h is the spatial distance between x; and x; + h, and Z(x)

is the value of a rock property at location x.

Figure 4] shows an example of the sample variogram based on theory from [7, [6]. The plots
on the left show the distribution of the data to be analyzed. The three plots show the same data
distribution, each one highlighting data-pairs of different separation distance, as shown by the two-
way arrows connecting the data-pairs. On the plot to the right, the distance between the data
pairs is plotted along the x axis, and the average semi-variation of the data-pairs along the y-axis

(Equation 1).
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Figure 4: Data distribution with highlighted different data-pairs distances (left), sample variogram
(dots on right), and variogram model (blue line on right). The sill, nugget, and range define the
variogram model. Based on theory from sources [7] [6]

The blue line fitting the points on the distance versus semi-variance graph (Figure E[) is the
variogram model. The model is described by an analytical function which is controlled by the sill,
nugget and range parameters. The sill is the plateau of the variogram model, representing the
maximum semi-variance. The nugget is the intercept of the variogram model representing the data
uncertainty. The range can be interpreted as the separation distance where data pairs no longer
correlate. The rock property is regarded as anisotropic when the variogram range is different in
two perpendicular horizontal directions. For example, the variogram range of grain size is typically

smaller perpendicular to a river than along the river flow axis [7].
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By fitting a variogram model (an analytical function) to the sample variogram, the ranges in the
horizontal and vertical directions can be estimated. There are several variogram models, the most
common ones are exponential, spherical and Gaussian (Figure. All variogram models made in this
thesis share some properties. They increase from data pairs distance equal zero to distance equal
the range. At distances greater than the range, the model value is equal to the sill. Furthermore,
the variogram model starts at zero to assume zero variation in rock properties that are at the exact

same point (nugget = 0). This implies the assumption that the data are error free [7].

= == Spherical

= == Exponential

sseese Gaussian

Variogram

Cubic

= = = Cardinal-Sine

— POWEr

Distance

Figure 5: Most common analytical variogram models. In all models but the cardinal-sine and power
models, the range is 1000. From [g].
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Kriging is a weighted sum algorithm [6, [5]. It follows the equation:

z(xo) = D01 Niz(w;) (2)

xo is the point of computation, n is the number of datapoints, z(x;) is the data value at point

xz;, and A; is the weight assigned to the value at point x;, determined by the variogram model.

The weights should decrease up to the range, from which the weight value is zero. This is for
weights related to hard data, such as the porosity well-logs. If a grid point is outside the data range,
the kriging results would be zero. Simple kriging addresses this issue by involving the mean value

M provided by all data points [7, [6]. The equation is:

2(xo) = 307 Niz(i) + [1 = 37 MM (3)

The first term in this equation is the same as in Eq 2. However, there is now a second term
which is proportional to the mean M. The influence of this term increases when the sum of weights
decreases. This implies that at points away from known data, the simple kriging algorithm defaults

to the mean of the data, removing a possible trend [7, [6].

Another kriging algorithm is collocated co-kriging, which is the algorithm used in this thesis. This
algorithm includes soft data which guides the kriging. It uses the correlation coefficient between the
soft data (P-impedance) and hard data (porosity) as an alternative to the mean (M) used in simple

kriging [7, [6].

Co-kriging allows for the population of a 3D grid to use both well-log data and volume data as
secondary input or soft data. This means that it respects the distribution of the hard data while
correlating well data to the soft data. The kriging results are used for constructing a Gaussian
distribution, using the kriging mean and variance. For each point on the 3D grid to be populated, a
random sample is drawn from this distribution [7,[6]. The random number generator is controlled by
the user-selected seed number. Changing only the seed will change the result. Conversely if the seed

and data remain the same, the result will not change when re-running the algorithm. As an example,

16



Figure [6] shows three runs of the SGS using the exact same parameters and data, but different seeds.
This shows that the seed controls the distribution of the high and low porosity values. When one
value has been drawn for every point on the 3D grid, the grid is transformed back from the Gaussian

distribution to the distribution given by the well-logs [6].
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PHIE [U]

Porosity - effective [m?

Figure 6: Three runs of sequential Gaussian simulation using the same parameters and data, but
different seeds. The simulations were performed in Petrel using the F3 dataset. The porosity values
are indicated by the different colors in the porosity scale. The random draws produce significantly
different porosity models.
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2.1.3 F3 block

The F3 block is a public dataset provided by NAM(Nederlandse Aardolie Maatschappij https:
//www.nam.nl/) and NLOG (Nederlandse Olie- en Gasportaal Hoofdnavigatie https://www.nlog.
nl/)), and further developed by dGB Earth Sciences dgbes.com. The dataset includes seismic at-
tribute cubes and several wells with porosity and acoustic impedance (AC impedance) logs. dGB

Earth Sciences also provides interpreted seismic horizons [9].

The F3 block is located in the Dutch sector of the North Sea, as shown in Figure[7] The seismic
section used in this thesis is displayed in Figure |8] with three interpreted horizons. The location of
the section is shown in Figure[9] This figure shows the surface outline of the seismic cube, and the
two wells with the AC impedance logs. The prospect for oil and gas is located in Upper Jurassic to
Lower Cretaceous sediments. These sediments were deposited in a fluviodeltaic system, and exhibit
clinoform wedge-type geometries (Figure . The Late Permian Zechstein group is present at the
bottom of the section where the AC impedance well-log displays in black (Figure . This group is

known for evaporites that form salt domes [9].
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Figure 7: Location of the F3 block (red square) in the Dutch offshore sector. This map was edited

from [I0] and [I1].
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Figure 8: Seismic section containing the wells F02-1 and F03-2. The log displayed in both wells
is AC impedance. Well F03-2 reaches the evaporites of the Zechstein group, whose AC impedance
displays black.
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Figure 9: Location of the section in figure [8| The section intersects both wells F02-1 and F03-2.

The simplest synthetic model used in this thesis is the homogeneous wedge model. This model is
made using one well, F02-1. An additional well, F03-2 is used to construct the porosity, impedance,
and seismic sections of the other two synthetic models, the heterogeneous wedge and fault models.
These wells are also used for the porosity estimation of the actual F3 section. The wells and their
AC impedance and porosity well-logs are shown in Figure[10] These logs show a negative correlation

between acoustic impedance and porosity, i.e. as impedance increases, porosity decreases.
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Figure 10: The AC impedance and porosity logs of the wells F02-1 and F03-2.
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2.1.4 Geological geometries

Varying subsurface geometries add challenges to the porosity estimation. This is because the models
are trained for well locations that may not account for the geological variability in the seismic section.
To explore several possibilities, I use different geometries for the synthetic models: homogeneous-

wedge, heterogeneous-wedge, and normal fault geometries.

The homogeneous wedge takes a number of layers at a selected location given by the well. From
here the layers are vertically stretched in one direction increasing their thickness. In the opposite
direction, the layers are squeezed, reducing their thickness until they pinch out. This means that
either the top or base surface of the wedge must dip, or both. In the models of this thesis only
the base of the wedge dips downwards, meaning that the layers below the base have a constant dip.
The heterogeneous-wedge model has the same geometry, but in this case the rock properties change

laterally, reflecting different depositional environments.

Wedge geometries can be produced by laterally varying deposition. An example of this exists in
the F3 block. A significant portion of the seismic shows indication of having been deposited by a
marine delta. An example of this are the sediment onlaps displayed in Figure[§at approximately 900
ms two-way travel time (TWT) towards the northeast. Deltas often display a clinoform geometry as
seen in Figure The middle part of this figure shows a clinoform that has more thickness in the
middle than on the edges, just like a wedge. A clinoform surface is a sloping depositional surface

commonly associated with sediments prograding into deep water [12].

24



Land Undafoerm Clinoform

Fondoform

wSeaSurface

Basement . * - .

T TRDepth of Wave Base

- o - . —_
- - e - . » e e =L TS
-

FicurRE 1.—SKETCH ILLUSTRATING DEFINITIONS

Undaform, clinoform, fondoform, undathem, clinothem, fondothem, and wave base and the distribution

of muddy water after a storm.
Muddy water shown by stippling; density currents by arrows.
Vertical scale greatly exaggerated.

Figure 11: Change of depositional structures from land to deep water. The clinoform portion shows

greater sedimentary thickness landwards, and forms a wedge-like shape.

From [13]

The final synthetic model, model 3, involves displacement of rocks and rock properties along a

fault-plane. Faults are however not infinite and also have a folding effect in the area near the fault

plane as described in [I4] and shown in Figure The right plot in Figure [12] is used as a visual

aid for constructing seismic horizons consistent with this deformation.

Undeformed layers

Deformed layers
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Figure 12: Displacement and deformation of rock layers due to a normal fault. Fault displacement
is maximum at the center of the fault (red circle) and diminishes to zero towards the top and base
layers. The deformation follows the theory presented by [14]. Matlab code by Nestor Cardozo.
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2.2 Machine learning methods
2.2.1 Python tools and Modules

In Python version 3, modules are extensions to the program language, which add new data objects
and functionalities. All the work for this thesis is done in the Windows 10 operating system. The
coding, running, and debugging of the scripts are done in Sypder [15], while Jupyter Lab [I6] is used

for the analysis of the results. Both of these programs are open source.

Numerical Python or numpy is used extensively in the thesis. This library contains many useful
features, and probably the most important is the implementation of arrays. To those unfamiliar with
Python, the language does contain the ”list” type made up of several elements, for example [1, 2, 3].
However, if this list is multiplied by 2, the result is [1, 2, 3, 1, 2, 3]. The same operation on a numpy
array with the same elements will result in [2, 4, 6], which is what we expect. Thus, numpy arrays
are consistent with vectors and matrices (arrays). They allow vectors and matrices operations, while
lists don’t (at least not directly). Numpy also has a randomization module (numpy.random) which

I use in my code [I7].

The pyplot module of the Matplotlib library is used for many of the plots in this thesis. The
plots are usually made using numpy arrays as the input [I8]. The seismic data are stored in segy
format, and to work with these files and extract the data needed for Python, the module segyio

made by Equinor is used [19].

For all ML methods, except neural networks, scikit-learn is used. This module provides a large
library of machine learning algorithms and tools for improving and assisting the machine learning
models. An example of this is cross-validation, which is used for all the machine learning models in
this thesis. It is important to notice that the random number generation in scikit-learn is handled
with numpy.random. This means that changing the seed of numpy.random, also changes the seed

for scikit-learn [20].

The Pandas module handles the creation and editing of DataFrames. A DataFrame is an object

26



that functions similar to a table. Pandas is useful for loading, saving, analyzing and editing the
data-sets [21]. Finally, I use the Tensorflow module for neural network modeling. This includes
building, using, and saving neural networks [22]. Table 1 summarizes the tools I use in the thesis,

and their version for the purpose of recreating the environment of this work.

’ Tool: ‘ Version: ‘
Windows 21H2 (OS Build 19044.1645)
Python 3.7.11
Spyder 5.1.5
Jupyter Lab 3.2.1
numpy 1.20.3
matplotlib 3.5.0
segyio 1.9.7
scikit-learn 1.0.1
pandas 1.34
Tensorflow 2.3.0

Table 1: Tools used in this thesis, and their version.
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2.2.2 Introduction to Machine Learning

Machine learning algorithms are data-driven methods. What these methods set out to accomplish
is largely dependent on the dataset. For example, if one wants to predict whether a fish is a salmon
or a cod, one might have a dataset consisting of the length, weight and number of fins for a large
number of fish. These are called predictors related to the target, which is the type of fish. If one
does not have data on the type of fish, unsupervised machine learning must be used. In this case,
the ML algorithm tries to find groups of data-points that are similar to each other. If the type of
fish (the target value) for each data-point is given, then supervised learning is used. In this case,
ML uses the known target values with the available predictors to train the model. The model will

then predict the target value given a combination of predictor values [23] [24].

There are two types of target values, discrete and continuous, which require classification and
regression methods, respectively. Simple examples are shown in Figure[I3] Discrete means that there
are a limited number of possible answers (classes); these problems are solved by using classification
methods. This is shown in Figure [L3A, where the classes are (*) and (x). For example a fish can
be a salmon or a cod in the earlier example, making it a classification problem. Classifiers make
several decision regions equal to the number of classes (possible discrete values). If a data-point
is in a decision region, then it is classified as the class corresponding to that region. The different
decision regions are separated by a boundary line representing equal probability for these classes,
the boundary is shown in Figure as a straight line. When the target has a continuous value
range, for example if one is trying to predict the age of a person, a regression model is required. A
regression model tries to fit a function to the data with the least amount of error. An example is
given in Figure [I3B. Here the line is the regression model which tries to fit the data-points, so that

for any value of the predictor x, the linear function gives the target value y [23] 24].
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Classification Regression

(A) (B)

S

Goal: For a given combination of x1

, Goal: for a given value of x, what is
and x2 is the target value (*) or (x)?

the target value y?

Figure 13: (A) Simple classification problem, where the line represents the boundary between the
class regions. (B) Simple regression problem, where the line shows the solution fitted to the data.
Plots edited from [24].

The main feature of machine learning is that the resulting models adapt to the data. Supervised
ML methods are trained to predict the target value or class using provided data, including predictors
and target values for many samples [24]. Therefore, the data quality is important. Since this thesis
uses known porosity data as the target values, the focus will be on supervised methods, and since

porosity is a continuous value, regression methods are used [23], [24].

Different ML methods adapt to the data in different ways, and all have advantages and disadvan-

tages. A central theme in choosing the best method for the data set is simplicity versus flexibility,
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or bias versus variability. This refers to how much the ML method adapts to the data. One can
think of this as a sliding scale. Maximum simplicity means that the data has little to no effect on
the model, meaning that the model will always predict the same value. Maximum flexibility implies
that the model linearly interpolates the data, thus any new data added has a massive effect on the

model. Typically, one wants to find a balance between these two [23] [24].

Figure [T4] illustrates how two ML methods solve the same classification problem. The two ML
models are Bayes classification and KNN-classification. The important thing to notice is that the
Bayes classifier produces simpler (more biased) decision boundaries, while the KNN classifier (k
= 13) makes more flexible (more variable) decision boundaries. Figure [14] shows that the Bayes
classifier has a smoother shape than the KNN classifier, which means that the Bayes classifier is
more independent of the data-points than the KNN-classifier [24]. Different ML methods occupy
different areas on this sliding scale of bias versus variability. Finding the right method with the right

amount of flexibility is the key for consistent predictions that respect the target data [23].

13-NN

s  Seescccses I 3': INes

" i A

-2 0 2

Figure 14: KNN versus Bayes classifiers. The Bayes classifier has a smoother shape, and it adapts
less to the data than the KNN classifier. Red dots and grey asterisks represent two classes. From

[24].
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The ML methods used in this thesis are KNN, random forest, lasso regression and neural net-
works. SVR (support vector regression) was considered. However, this method scaled poorly to the

amount of data in terms of processing time.

The goal is to predict porosity from the seismic attribute acoustic impedance. As porosity is a
continuous value, regression models are the natural choice. KNN is chosen as it is a simple method
that can interpolate the data-points if this becomes ideal. Lasso regression is an extension of the
familiar linear regression, so if the data works well with linear regression, it also works well with
lasso regression. However, lasso regression, unlike pure linear regression can also perform automatic
predictor selection. Random forest is good at separating datasets into several regions that display
different relations. Finally, neural networks are used because of their flexibility. With enough time
and tuning, neural networks can be used for any dataset. That said, with a limited amount of time

and testing the neural networks may not work as well.

2.2.3 KNN-regression

K-nearest neighbors’ regression is a non-parametric regression method. Non-parametric means that
the resulting trained ML model does not have a consistent shape. For each point on the predictors
grid, the k-nearest data points are considered, the value on the grid equals the mean value of the
response of the data points. Because distance is important in this method, it is highly recommended
to standardize the predictors. By setting k& = 1, the method will linearly interpolate the data. If
N is the number of data points and k£ = N, then the method will produce the mean data value for
every point on the grid. This implies that the method has a wide range of adaptability. Depending
on k, KNN can interpolate the data or predict only the mean of the entire data-set. An example of
using a maximum, minimum and moderate k value is illustrated in Figure This method is the

simplest ML algorithm used in this thesis [23].

2.2.4 Lasso regression

Lasso regression builds on arguably the simplest regression model, linear regression. For every

predictor (dimension), a coefficient is found that minimizes a loss function, often residual sum
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k=1 k =50 k=10
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Figure 15: Changing k in KNN-regression changes the predictions (orange lines). The regression
uses the data points in blue as training data. Left shows k = 1, meaning maximum variability and
interpolation. Middle shows k = number of data points, meaning maximum bias and causing the
mean of the data to be chosen no matter of location. Right shows a more reasonable value of k =
10. Made in Python using Numpy, Scikit-learn and Matplotlib.

squares (RSS) [23]. The RSS is calculated as the sum of the squared difference between the target

value y and the predictor value z:

RSS = E?:l(yi — Bo — Z?:l ﬂjxﬂ) (4)

Here p is the number of predictors, n is the number of data-points, Sy = is the intercept, 3; is

the j*" coefficient, and z; is the j** predictor value.

This is not a flexible method, but it is easy to interpret. The aim is to find coefficients that
display the relation between the predictor and the target. However, this relation is often not linear.
Fitting a linear model to a non-linear predictor-target relation can be detrimental to the model’s
accuracy. There are several ways of identifying this problem such as separating the model into the
different groups of predictors and use statistical parameters such as R-squared or MSE to identify
poor fits. However, there are extensions of linear regression that attempt to automatically limit

the influence of poor predictor-target relations. These are known as shrinkage methods. Shrinkage
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methods aim to reduce the coefficients §; by adding a penalty term to the RSS [23]. Figure shows
a data-set that displays no linear correlation, x is the predictor and y is the target. To reduce the
linear regression and the data’s influence on the model a penalty A can be added. X is the penalty

strength, and a larger A reduces the poor correlation by reducing the ; coefficients [23].
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Figure 16: The orange points show a data-set with a nonlinear relationship. The continuous blue
line shows the linear regression result or the lasso/ridge regression where A = 0. The other dashed
blue lines show the lasso/ridge regression using increasing penalty terms A.

For the general case with multiple predictors, by reducing the j** coefficient one also reduces the
impact that the j* predictor has on the model. If the j** predictor has a non-linear relationship to
the target data, the full model will likely be improved by reducing this predictor. This is regardless
of whether the RSS is increased or decreased. This is why a penalty term is needed to find a balance
between the RSS and the total value of all coefficients. One such method is ridge regression [23].

The aim of ridge regression is to minimize the following equation:
RSS+ A Z§:1 ﬁjz (5)

The new term added to the RSS is the shrinkage penalty, where the strength of the penalty is
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determined by A. In order to minimize Equation 5, the model finds the balance between the RSS
and the shrinkage penalty, not allowing either one of them to get too big. If A = oo, the minimum
of the regression will set all coefficients to zero. If A = 0, the standard linear regression will be the
result. If A has a reasonable value (estimated by trial and error), it will decrease the error of the
model because it reduces the impact of coefficients that correlate poorly with the response. The
ridge regression method has a weakness in that even with a good A, none of the coefficients are
reduced to zero, but just approach zero. This implies that ridge regression can reduce the impact

of poor predictors, but has issues eliminating predictors [23].
The lasso regression method seeks to improve this. This method minimizes the following equation:
RSS+ X301 1851 (6)

Here the shrinkage term uses the absolute value of the coefficients instead of the squared value.
The following example explains the difference between these two methods. If A = 1 and 3; = 0.5, the
penalty for the ridge method is 0.25, while the penalty for the lasso method is 0.5. Another example:
Assuming A = 1 and §; = 5, the penalty for the ridge method is 25, while the penalty for the lasso
method is 5. So one can say that ridge regression penalizes large coefficients (; harsher, while lasso
regression penalizes smaller coefficients [3; approaching zero harsher. Therefore, lasso regression is
more likely to set the coefficients to zero. I use lasso regression instead of ridge regression, to observe

the effects of predictor elimination [23].

2.2.5 Random forest regressor

Decision trees are good at separating different regions in the data into decision regions. A decision
tree is composed of several decision levels. Each level represents a condition based on the previous
decision. For example is x larger than 17 If this condition is true, then the decision is to move down
to the left branch. At the end of the tree, there will be a value representing the estimate based on
the decisions taken. This estimate depends on if the tree is a classification tree or a regression tree.
A classification tree delivers the most common class in that region as the output. A regression tree

usually outputs the mean target value of all the data in the decision region. Building a decision tree
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involves making these levels of decisions so that they best split the data [23].

Years < 4.5

T 238

Rs

on
Hits <|117.5 R,
5.11
1 45 Tl
6.00 6.74 Years

Figure 17: How a decision tree translates to decision regions. Years and Hits are the predictors, the
target value is not displayed. The decision tree has two decisions resulting in two splits and three
decision regions. The first decision splits the dataset in half based on if Years < 4.5. If this is true,
then the decision if to go down to the left, resulting in R;. If false, another decision is encountered
to the right. This second decision splits the decision region into the regions Ry and R3. From [23]
and their ”Hitters” data-set.

A decision tree is made via a top-down recursive binary splitting. Starting from the top decision,
the tree splits the data in half based on what area minimizes the loss function, for example RSS
or MSE. The split defines two decision areas. Then for each new area a new split that minimizes
the loss function is found. This is done until the maximum depth is reached. Another method is
to make the entire tree at once many times until the loss function is minimized. This is however,
too computationally intensive, even if it is more accurate. Recursive binary splitting makes a large
decision tree that often overfits the data [23]. This is the same as saying that the decision trees have

high variance and adapt greatly to the given data, which can make the models unreliable.

Random forest is an ML method that makes many decision trees to estimate the response.
Random forest makes many smaller decision trees, where the predictors considered at each split
are determined randomly. Using random predictors for each tree makes it necessary to reduce the

correlation between the trees. The reason for this is mainly to reduce the variance of random forest
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in comparison to decision trees. Here variance means that the trained model changes significantly
if trained to a subset of the dataset. After all the trees are trained, the trees estimate a value at
a sample point based on what decision area the point is in. The mean of these values is returned
[23]. In scipy, bootstrapping is used for making random forest models. This method considers two
arguments: n_estimators which refers to the number of trees in the forest, and max_depth which

refers to the maximum depth of the decision trees.

2.2.6 Neural Networks

Neural Networks are designed to be similar to how mammalian brains function. The brain is com-
posed of neurons which fire electrical signals, the neurons are connected via synapses. The synapses
usually convert the neurons electrical signals into chemical signals that are converted back to a new
electrical signal that is transported to the next neuron. However, all neurons are not connected
to each other. Rather they are connected in a hierarchical layered manner. This allows for the
transportation and modification of electrical signals [24]. In a similar manner, a neural network is
composed of neurons that collect information and weights connecting the neurons while modifying

the information. Sets of weights and their connected neurons form a layered structure such as in
Figure [1§

2nd set of
weights

Input layer Output layer

‘.<>Y

Figure 18: One—layer neural network. The squares with an f represent the activation function. %
indicates that the inputs to the neuron are summed. 6;; represents a weight (floating point number)
which is multiplied with the connected input (j), and the result is sent to the connected neuron (7).
Based on theory from [24]
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The information here is not electrical, but rather numerical. The neurons sum all incoming
numbers together before sending them to the next layer. The weights multiply the numbers by a
specific value during transmission. The first set of neurons are the input layer, where the initial
data are provided. The last set of neurons is the output layer representing the result of the model.
Since the output is a set of neurons, one model can estimate several parameters at once, for example

porosity and density [24].

Figure [I§] shows a one—layer network. The structure is separated into 5 parts that do not
necessarily represent the current nomenclature but is useful for showing how a neural network
functions. The input data are added to the input layer. The input is multiplied by the 1st set of
weights and passed into the hidden layer. In the hidden layer, the connected data are summed in
the neurons represented by the circles. The output of the neurons is passed through an activation
function (sometimes called a transfer function depending on the source). The output of the hidden
layer is multiplied by the 2nd set of weights and passed to the output layer. The procedure of
the output layer is similar to the hidden layer. The result of the output layer and thus the neural

network model is y, which can be a vector or a single value depending on the desired output [24].

This ordered system of summation and multiplication allows the neural network to produce
virtually any function, making it extremely flexible. There are many extensions to neural networks.
The most common extension that is relevant for this thesis is the activation function. The activation
function can be used on every neuron. It is simply a function that takes a single argument. For
example in this thesis, the sigmoidal function will be used. This is because the sigmoidal function
limits the output between 0 and 1; this is useful when trying to predict porosity which is within
this range. By using the activation function, the flexibility is limited but it ensures that the model

behaves within reasonable limits [24].

After the output layer is calculated, a loss function is used for evaluating how close the output
is to the target. The mean—squared error is a common example of a loss function. I have explained
so far forward propagation. Backward propagation is how the weights are updated [24]. This is

done with an optimizer, for example ” Adam”, which is used by tensorflow. " Adam” is an algorithm
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for first—order gradient—based optimization of stochastic objective functions, based on adaptive
estimates of lower-order moments [25]. It calculates how much the set of weights should be changed,
which is then applied to the weights. One forward and one backward propagation equals one epoch
or one learning cycle of the model [24]. With each epoch, the performance of the model should

improve. In this thesis I use 100 to 1000 epochs.

2.2.7 K-fold Cross-validation

Cross validation is a resampling method, which involves taking samples from a training set and fitting
the model to these samples before repeating this process to the rest of the dataset. Resampling
methods give information on the dataset that cannot be acquired by simply fitting a model. In our
case, cross validation gives information on how prone the dataset is to over-training. Over-training
means that in the worst-case scenario, the model is simply interpolating the data. This means that
the model would likely fail predicting any new data. One can avoid over-training by constraining
the models shape (lowering how much it adapts to the data); the worst-case scenario is that the
model simply shows a linear relationship while the data shows a completely different relationship,
this would be under-training. Resampling methods allow finding the amount of constraints that

prevent both under and over-training [23].

Cross validation is useful for avoiding over-training and performing parameter tuning. For ex-
ample, when using KNN-regression what should be the "k” parameter equal to? In k-fold cross
validation, the dataset is split randomly into k folds (parts). Figure shows an illustration of
5-folded cross validation. For each split shown in Figure the model is trained using all other
folds, and then the method predicts the current fold to calculate the error (for example MSE). Thus,
the method returns a number of error scores equal to the number of folds. The mean of these errors
gives an evaluation of the robustness of the model against over-training and its accuracy. Cross
validation is ran once for each parameter value that is considered. Then, the model that performs
best is picked [23]. TensorFlow does not have cross validation built in, so the sklearn split function

is used instead to make the folds, and the cross-validation is manually coded.
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All Data

Training data Test data

| Fold1 || Fold2 | Fold3 || Fold4 || Fold5 Y

spit1 | Foldl || Fold2 | Fold3 || Folda | Fold5 |

Spit2  Fold1 || Fold2 | Fold3 || Fold4 | Folds |

Finding Parameters

Spiit3 | Fold1 || Fold2 || Fold3 || Fold4 | Fold5 |

Spit4 | Fold1 || Fold2 | Fold3 | Fold4 | Folds

Spiit5 | Fold1 || Fold2 | Fold3 || Folda || Folds

Final evaluation { Test data

Figure 19: Five folded (parts) cross-validation. One cycle per fold of training to 4 folds and validating
using the remaining fold. The validation error (cross-validation score) is calculated for each cycle.
The cross-validation mean (CV-score) is the mean of all the validation errors. From [26].
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3 Methodology

3.1 Workflow

The overall workflow aims to perform seismic inversion using either synthetic data or data from
the F3 block. This provides a P-impedance cube that correlates with porosity. Then the acoustic
impedance and porosity well-logs are used to predict the porosity of a selected seismic section using

SGS and ML methods. The predictions are later compared to each other in the Results section.

The workflows for the synthetic models and the F3 dataset are different. The workflows are
shown in figures and for the F3 dataset and synthetic models, respectively. The primary
difference is that the synthetic models have to be constructed, specifically the seismic cube and
seismic horizons, as these are the basis for seismic inversion. This is unlike the F3 dataset, which

has a seismic cube and interpreted seismic horizons.

For the synthetic models, 3D cubes of porosity and acoustic impedance are made from seismic
horizons and well-logs. From the acoustic impedance cube and a wavelet, a 3D seismic cube is
calculated (Figure . At this point, both the synthetic models and the F3 block have a seismic
cube and well-logs. For both situations, seismic inversion is performed to construct a P-impedance
cube (figures [20[ and . Then, SGS is performed to estimate porosity from the P-impedance cube
and the porosity well-logs. Finally, the ML methods are used to predict porosity from a section
of the P-impedance cube and the porosity well-logs. After that, the ML and SGS predictions are
compared to examine where and to what degree they differ from each other and the true porosity
model (figures 20| and 2I)). Notice that the SGS method operates on a 3D basis (seismic cube), while

the ML methods operate on a 2D basis (seismic section).
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Process to prediction for the F3 data-set.

Seismic inversion

Sequential Gassian
simulation

Machine learning
method

P-impedance cube

Porosity prediction
cross-section from
SGS method

Porosity prediction
cross-section from
ML method

Comparison and evaluation

Figure 20: Basic workflow for the F3 dataset. ML = machine learning, SGS = sequential Gaussian
simulation.

For the machine learning part there is an important difference if the model is synthetic. The
synthetic models have a true porosity cube unlike the F3 data. One advantage of this is that traces
in the porosity and acoustic impedance cubes can be used as synthetic well-logs. Thus, by changing
the well location(s), the impact of well placement can be investigated. For example, will the ML

methods perform well if the well is outside the wedge, despite the lack of information in the wedge?
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Process to prediction for a Synthetic model.

If synthetic model: use
porosity and impedance
traces as well-logs

Porosity and
impedance 3D model

Synthetic seismic with
or without Noise

Seismic inversion

Sequential Gassian
simulation

Machine learning
method

P-impedance cube

Porosity prediction cross-section
from ML method

Porosity prediction cross-section
from SGS method

Comparison and evaluation

Figure 21: Basic workflow for a synthetic model. MLi = machine learning, SGS = sequential Gaussian
simulation.

Sections across the synthetic acoustic impedance models are shown in Figure From left to
right, the models are the homogeneous wedge, heterogeneous wedge, and normal fault. The models
without spectral noise are the three top sections, the models with spectral noise are the bottom
sections. The models are constructed to evaluate how the seismic inversion, geostatistics (SGS), and

ML methods handle these types of subsurface geometries and noise levels.
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Case 1: . Case 2: Case 3:

|
v impedance, Normal fault without noise (case 3a},
impedance, heterogeneous wedge without noise (casg@a) P 3 e6

impedance, homogeneous wedge without noise (case 1a)

Case a:

Add spectral noise l

impedance, homogeneous wedge with noise (case 1b)
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Case b:

Figure 22: Sections across the synthetic acoustic impedance models. Case 1 is the homogeneous
wegde, case 2 is the heterogeneous wedge, and case 3 is the fault model. The first row are impedance
sections without noise. The second row are impedance sections with spectral noise. Case 1 has a
differant scale because it is using kPa.s/m, while the other cases use Pa.s/m

3.2 Seismic inversion and porosity estimation of F3 dataset

The inversion and porosity prediction of the F3 dataset are covered before the synthetic models, as
the construction of the synthetic models are based on the F3 dataset. The statistical wavelet, wells

and anisotropy are derived from the F3 dataset and used in the synthetic models.

The deterministic wavelet extracted from the F3 seismic data is displayed in Figure 23] This

wavelet shows a reversed polarity which was not obvious from the seismic.
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Figure 23: Deterministic wavelet from the F3 dataset. The wavelet is made from the seismic cube
and logs from well F02-1.

The lower-frequency model (LFM) is displayed in Figure The extrapolation of the LFM is
guided by the interpreted horizons. There are uncertainties in the low frequency impedance between
the wells, which is indicated by the LFM not following the horizons far away from the wells. Via
seismic inversion, the LFM and wavelet (Figure are used to derive the P-impedance shown in

Figure This P-impedance and the porosity well-logs are the input for the porosity estimation.
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Figure 24: F3 LFM impedance section with wells F02-1 and F03-2 and acoustic impedance logs.
Same location as in Figure [8 The impedance is in kPa.s/m.

45



SW NE

F03-2

-400

. AC Impedance

5000
4500
-700 — 4000
3500
TWT
-1200 —

Figure 25: Seismic inversion and resulting P-impedance section of the selected F3 section. Wells
F02-1 and F03-2 and acoustic impedance logs are included. The impedance is in kPa.s/m. Same
location as in Figure |§|

The parameters for the SGS method are determined from the P-impedance cube and porosity
well-logs. The number of wells is not enough to derive a horizontal variogram. As the porosity
correlates with the acoustic impedance, the impedance cube is used to estimate the variogram
horizontal major and minor ranges as well as their azimuth. Figure [26] shows the the major and
minor horizontal variogram directions for the F3 data. The major range is estimated to be 8000 m
with an azimuth of 320°. The minor range is estimated to be 4000 m, half of the major range, and

with azimuth 050°.
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Inversion P-impedance
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Figure 26: Time-slice of the F3 dataset and inverted P-impedance. Many time-slices are used to
estimate major and minor variogram ranges as well as their azimuth. These are shown as the white
arrows. The impedance is in kPa.s/m.

The vertical range however can be estimated from the well-logs using the variogram in Figure
The nugget is set to zero, assuming that the data have no errors. The vertical range is 11.6 m. Also,
the vertical variogram model fits well with an exponential function. The variogram parameters used

in the SGS algorithm are shown in Table
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Model: Exponential Vertical range: 11.585 ms
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Figure 27: Variogram of the porosity log in well F02-1. The fitted model gives a range of 11.6 m
with an exponential function shown by the blue line. The red boxes show the model function and
vertical range.

’ Parameter: Value:
Vertical range 11.6 m
Major range 8000 m
Minor range 4000 m
Azimuth major axis 320°
Azimuth minor axis 050°
Variogram model exponential

Table 2: Variogram parameters used in SGS modelling

3.3 Construction of synthetic models
3.3.1 Case 1: Homogeneous wedge

Case 1 is a homogeneous wedge. The model was made using the Petrel tool: "RokDoc - 2D Forward
Modeling”. This tool makes the two horizons that define the top and base of the wedge. The top
horizon is horizontal while the base horizon dips to the left. The layers below the wedge dip the
same than the base of the wedge. The horizons in the wedge increase in dip from the top to the
base of the wedge (Figure . The well F02-1 is used as the basis for constructing the porosity and
acoustic impedance models. The porosity and acoustic impedance logs are extended from the well
location to the rest of the section following the horizons. Since the vertical distance between the

horizons changes laterally, the well-logs are squeezed to the right where the wedge pinches out, and
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stretched to the left where the wedge thickens. The synthetic acoustic impedance model is displayed

in Figure 28

F02-1 Wdge

AC Impedance
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Figure 28: Case la: Acoustic impedance model of the homogeneous wedge without noise. The well,
impedance log and horizons used for the construction of the sections are shown. The impedance is
in kPa.s/m.

The synthetic seismic section for the homogeneous wedge is derived from the impedance model
(Figure using a statistical wavelet shown in figure Once the synthetic seismic section is
made, noise is added to the section, with a spectrum that is shaped by the analytical wavelet.
Seismic inversion is performed on both the seismic section without noise and the section with noise
to determine the P-impedance cube. The wedge model is only used for simple evaluation of the ML

performance. Therefore, no porosity estimation using SGS was done.

3.3.2 Cases 2 and 3: Heterogeneous wedge and fault models

These models are three-dimensional and they were made covering an area around the wells F02-1
and F03-2. The vertical TWT range should include the well-logs and is therefore limited to -400 and
-1300 ms TWT. In order to preserve the lateral variability, the major and minor variogram ranges

as well as the anisotropy azimuth are consistent with the F3 block (Table . These parameters
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are also used in the porosity estimation by sequential Gauss simulation, meaning that they are not

subject to uncertainty.

For these two models, four horizons (models 2 and 3) and a fault plane (model 3) are constructed
to build the structural model. The wedge model (model 2) requires two horizons that are parallel
in one area, before diverging with the lower horizon dipping downward as shown in Figure 29A. In
model 3, a fault plane is made shown as the blue surface in Figure[29B. At the top and bottom of the
fault plane, the horizons are approximately horizontal and indicate zero fault displacement. Between
the top and bottom horizons, Figure 29B shows that the horizons dip sharply in the area close to
the fault. These horizons and fault interpretations are used to define the shape and resolution of

the 3D grids that are populated with porosity and acoustic impedance.

(A) (B)

E'm 00
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—-1200.00

Figure 29: Seismic horizons and fault used to construct the synthetic models of cases 2 and 3

For both models, the 3D grid is populated with acoustic impedance using SGS. The horizontal
variogram ranges for the major and minor directions are the same as in Table 2. Similar to the
variogram model in Figure the exponential model was chosen for the vertical variogram. The
porosity model is made using SGS guided by the acoustic impedance model using the variogram
parameters specified earlier. The synthetic seismic is made using the impedance model and the
statistical F3 wavelet shown in Figure Noise is added with a frequency spectrum defined by the

statistical wavelet. The noise is necessary for challenging the estimation methods. The addition of
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the noise separates these two cases into sub-cases with and without noise.

Statistical F3 Wavelet
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Figure 30: Statistical wavelet made from F3 seismic.

From the synthetic seismic, a deterministic wavelet is calculated using the reflectivity derived
from the impedance log of well FO3-2 and the seismic traces near that well. Seismic inversion is
then performed to derive the P-impedance cube. Using the P-impedance cube with SGS (same
parameters as in Table 2), the porosity cube is estimated. The section used for testing the machine

learning algorithms contains the wells F02-1 and F03-2. Their location is shown in Figure [§

3.4 Design of ML methods for porosity prediction
3.4.1 Synthetic well-logs

The synthetic sections contain the true porosity and impedance. This means that traces from these
sections can be extracted as synthetic well-logs and used for training the ML models. This is done
to test the effects that different well locations have on the predictions. For example, placing the
synthetic well inside the wedge versus outside the wedge and examining the effects this has on the
error. A negative consequence of using traces as synthetic well-logs is that the sampling frequency is
lower than in a real well-log. This means less data than if real well-logs are used, which can reduce

the ML model accuracy.
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3.4.2 Window functions

In machine learning, predictor and target data are used to train the ML model. After the model is
made, it can predict the target value based on the input predictors for one data-point. If an ML model
makes several predictions, it does not consider previous or future predictors, only the current input
predictors (there might be some exceptions). In sedimentary rocks, there is a certain expectation
that vertical sequences in the rock properties have some continuation laterally. Therefore, it would

be useful to provide the ML models with information on how the rock properties change vertically.

To provide the ML models with information about vertical properties changes, rolling window
functions are used. The rolling median and mean windows calculate the median and/or the mean
within a predetermined interval at every point and add this as a predictor. The interval refers to
the number of data-points above and below the point of computation. The rolling selection window
works in a similar way. It adds all data points within an interval as new predictors. I use only
a window size of 10 data-points. This window size is included to examine if it improves the ML

models. This thesis will not look at optimizing the window size.

3.4.3 Geological time (depo-time)

Adding geological time as a predictor might improve the estimation for the same reason as the window
functions, since it provides the ML methods with information about the geometry and geology. For
example, the homogeneous wedge is made using three points: the beginning of the top and base,
the end of the base, and the end of the top. This same principle can be used for reconstructing the
geological time. From the top of the section to the bottom, time increases continuously where the
wedge is present. Where the wedge is not present, there is a gap in time. The depo-time constructed
in Python is shown in Figure The upper layers above the wedge are horizontal while the lower
layers below the wedge dip to the left. Also, on the right of the plot indicated by the red rectangle,

the depo-time jumps from about 300 to about 500 ms, indicating that the wedge is not present here.
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Figure 31: The depo-time for the wedge geometry used in case 1. This diagram is constructed based
on the assumption that time increases continuously from the top to the base of the wedge. The red
box shows the area of missing time.

In the heterogeneous wedge and fault models, depo-time (geological time) is also used. In the
process of making these time sections, seismic horizons are necessary. These horizons are surfaces
that represent an area where the deposition occurred at approximately the same time. This can be
used to derive the relative geological time. An example of the resulting time sections are shown in
Figure This method is also applicable to the F3 dataset as seismic horizons are available. Each
horizon is first given a label (depo-time), the upmost horizon equals 1, the second horizon equals 2,
etc. Then for each trace in the section, the depo-time is linearly interpolated between the horizons.
Since standardization (explained in the next section) is used, the depo-time absolute numbers don’t

matter so long as the rate of increase/decrease in time is constant.
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Figure 32: The depo-time constructed from seismic horizons in synthetic models 2 and 3 (heteroge-
neous wedge and fault). This construction is based on interpolation between the horizons.
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3.4.4 Standardization

For ML methods such as neural networks with a sigmoidal activation function and KNN; it is
important to standardize the predictors. Standardization ensures that a set of values have a mean
equal to zero and a standard deviation equal to 1. Standardization means that variables with
different scales, units of measurement, etc. can be compared [23]. For example, acoustic impedance
and porosity can be set to the same scale through standardization. This makes equal the scale of
predictors so that none have a greater influence than the others. If this is not done, it can result
in poor optimization during training. In the case of KNN, the predictors on a larger scale would

dominate since distance is important. Standardization is applied using the equation:

(predictor, —mean(predictor,)) (7)
std(predictor.,)

prediCtorstandardized -

predictor, stands for predictor vector, i.e. each predictor vector is standardized individually.
std() is the standard deviation. Additionally, the training predictors mean and std are saved and

latter used in the following function:

. _ (predictor,c. —mean(predictor,))
pTedZCtorstandardized - std(predictor,) (8)

This equation is similar to Eq. (7), except that predictor,e, is the predictor vector in either the
validation set or the dataset that lacks known target values. This means that the standardization

remains consistent to the standardization in the training dataset.

3.4.5 ML methods Parameter Tuning

The properties of each ML method are largely determined by their parameters. While parameter
tuning can be performed using cross-validation, the tuning is only done within a certain specified
parameter search range. Figure shows an example of the cross-validation MSE (MSE = mean
squared error) plotted against the parameter values. The x-axis shows the parameter range. The
orange line in Figure [33| displays where the MSE is closest to zero. The corresponding parameter
value on the x-axis will be the right parameter value to use in the model. Determining the range

is a matter of starting with a large but coarse range and observing the results. Then, the range is
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reduced to the area of best performance (cross validation MSE closest to zero) until a consistent
value range of satisfactory performing variables are found. If the MSE closest to zero appears to be

outside the search range, the range should be expanded. [23].

CV scores KNN
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Figure 33: Parameter tuning for the KNN method and specifically the number of neighbors. The
optimal number of neighbors is shown as the orange line.

The best parameter search ranges are compiled in Table (3| for the synthetic models, and Table

for the F3 dataset.

56



ML method: Parameter: Cross-validation search range:
KNN-regression (case 1) k 1 — 50
KNN-regression (cases 2 and 3) k 1 — 100
Lasso regression alpha or A 0 — 0.005
Random forest maximum depth 4 =9
Random forest number of estimators 25 — 110
Neural network number of neurons 1 — 40

Table 3: ML parameter ranges used in cross-validation for the synthetic models.

ML method: Parameter: Cross-validation search range:
KNN-regression (case 1) k 1 — 50
KNN-regression (cases 2 and 3) k 1 — 100
Lasso regression alpha or A 0 — 0.005
Random forest maximum depth 1—20
Random forest number of estimators 25 — 110
Neural network number of neurons 1 — 40

Table 4: ML parameter ranges used in cross-validation for the F3 data-set.

3.4.6 F3 well-log issues for Machine learning

To use the window functions, the section and well-log resolution must be equal (4 ms sampling).
This can be done by up-scaling the well-logs in Petrel. Upscaling is performed for the porosity and
P-impedance logs. This does mean that much of the data are lost in exchange for more predictors.
Whether or not this improves the predictions is not known a priori. If the window function is not

used, then the well-logs are not up-scaled.
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3.5 Evaluating Prediction results

The classical statistical parameters are calculated for the geostatistical and ML approaches. These
are: mean absolute error (MAE), mean squared error (MSE), and the 12 score. The r2 score is
similar to the classical R-squared metric and is used in the Sklearn module. The best score is 1.0

and the worst score is 0 and negative values [20].

In the synthetic models, to compare the ML models results against the true porosity in the
section, the absolute difference at every point on the grid is used. This produces a section of the
absolute error, which shows the error in a geometrical/geological context. The cross-validation scores

are saved for each ML model.

Boxplots are used to evaluate how the ML models performance changes depending on the cases
and predictors. A boxplot is a visualization of the data distribution of one variable. For example,
the probability distribution of the MAE. This is illustrated in Figure [34] The box indicates where
50 % of the data are located. The line inside the box is the median of the data. From the box, two
vertical lines extend, these are called whiskers. The range of these lines and the box show where the
majority of the data are (usually 95-99 % of the data). In this thesis, Pandas is used for making
the boxplots. In Pandas, the sum of the whiskers is equal to the range of the box, but they can be

slightly shorter. So, the full range should be 100 % aside from outliers [21].

The results comprise every combination of the sub cases, ML methods, and parameters for
predictor extraction. This corresponds to a total of 352 models. Because of this large number
of results, the overall impact of the different methods will be explored, not the specific impact.
For example, the impact of changing the well location for each ML method will not be explored.
Instead, for each synthetic model with and without added noise, all the resulting MAE are compiled
into a distribution. Then for each parameter (for example ML methods), the compiled MAE are
categorised by their values. For example, for case 1 with noise given the parameter ML methods,
there will be four boxplots for the MAE distributions, one for each of the ML methods. These

distributions contain all combinations of the remaining parameters.
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Figure 34: A boxplot made in Pandas using MAE values. The box represents the 50 % range of the
data, the line inside the box shows the median of the data. The vertical lines (whiskers) represent
where the majority of the data are located. The sum of the whiskers lengths extend no further than
the range of the box.

4 Results

As discussed in the methodology, the SGS and ML methods are used to predict the target porosity
sections. SGS does this using an impedance cube and the porosity and impedance well-logs. The ML
methods always use the impedance section, and synthetic or real well-logs of porosity and impedance.
However, using prediction extraction, the ML methods can also work with the rolling window mean,
median, data-point selection (see section , and/or the depo-time. Of course, the porosity logs
are not used as predictors, but as a target for the training process. When the window functions

are used, they are all used at the same time as predictors. Due to the number of results, only the
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predictions with added noise will be plotted as sections. This is because noise is expected in real

cases, thus these sections are more important to consider.

4.1 Statistical parameters

The statistical parameter used for comparison of the different predictions is the MAE. The other
parameters (MSE and r2 score) show the same trends as the MAE. The only exception is the cross-
validation (CV) method. The relationship between the CV MSE and MAE is shown in Figure
The plot shows that in synthetic cases 1 and 2 (wedge models), for a low CV MSE a low MAE is
very likely. However, in synthetic case 3 (fault model), there is no clear relationship. The reason for

this has to do with the well locations as it will be discussed latter in section [L.4.2]
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Figure 35: Scatter plot of the CV MSE versus the MAE for synthetic models 1 to 3. Cases 1 and
2 are the wedge models, and case 3 is the normal fault model. Points and linear fits are colored by
the case/model.
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4.2 Case 1 Homogeneous wedge

Case 1 tests the ML methods performance for predicting the porosity of a homogeneous wedge.
Figure [36] is the true porosity section and it is the basis for evaluating the performance of the ML
methods. Figure [37]shows the P-impedance sections. The right plot has noise, but it is still possible

to discern the wedge geometry.
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Figure 36: True porosity section of the homogeneous wedge model (case 1).
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Figure 37: P-impedance sections used for the porosity estimation of case 1 (homogeneous wedge).
The left section has no noise, while the right section has noise. The impedance is in kPa.s/m.
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4.2.1 ML results

The methods that made the best predictions according to the MAE are shown in Table [5| for the
cases without and with noise. The MAE is 0.37% and 1% for the cases without and with noise,
respectively. Both predictions used the same well locations and depo-time, but different window size

and ML methods (Table |5)). These results are useful to keep in mind as we proceed to the boxplots.

Parameter Type: Parameter value without noise | Parameter value with noise
ML method KNN Random Forest
Well location(s) [100, 200] [100, 200]
Window size 10 0
Depo-time implemented True True
MAE 0.0037 0.01

Table 5: Best prediction for case 1 (homogeneous wedge) with the ML methods and parameters
used.

Figure 38| shows the boxplots comparing the impact of different parameters on the mean absolute
error (MAE). From the plots al and a2, it appears that random forest and KNN regression result in
the lowest MAE regardless of noise. Lasso regression is the worst performing ML method, followed

by neural network.

Lasso and shallow neural net are less flexible methods (if the N-net has few neurons), so the poor
predictions imply that the porosity trend is not simple and requires a more flexible ML method.
Figure [38] d1 and d2 show that including the depo-time reduces the error. Figure [3§ c¢1 and c¢2
show that the window function has little effect on the prediction’s overall error, especially for the
section with noise. These observations imply that the depo-time provides the ML models with better

information on the geometry and geology.
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Figure 38: Box plots for homogeneous wedge without noise (al-dl) and with noise (a2-d2), and
exploring the effect of ML method (al, a2), wells location (b1, b2), window size (c1, ¢2), and depo-
time (d1, d2). For wells location, the numbers withing brackets are the x coordinates where the
wells are.
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The results in figure bl and b2 show that the wells locations have little to no effect on

the overall accuracy. However, the predicted porosity sections in Figure show that the wells

locations matter greatly. Figure[39|al and bl have well location(s) inside the wedge and show good

performance in the absolute error plots a2 and b2. Figure[39]cl shows the prediction using one well

at trace 290, which is outside the wedge. The porosity in the wedge in this case is underestimated,

and yields a significant error (c2). That the boxplots do not reflect this error means that it is not

significant for the overall MAE estimation. However, if the area of interest is inside the wedge, this

error would be highly problematic.
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Figure 39: The ML porosity predictions and error sections using the same data in case 1b (with
added noise), but with different well location(s). al, bl and ¢l show the porosity predictions, while

a2, b2 and c2 show the absolute error sections. The wells are displayed as black vertical lines.
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4.3 Case 2 Heterogeneous wedge

The true porosity section is displayed in Figure [0} while the P-impedance sections are shown in
Figure where the left plot has no noise and the right plot has noise. These two sections were

used for the ML porosity predictions.
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Figure 40: True porosity section in case 2, laterally heterogeneous wedge.
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Figure 41: P-impedance sections used for the porosity estimation of case 2 (heterogeneous wedge).
(a) has no added noise, while (b) has added noise. The impedance is in Pa.s/m.

4.3.1 Classical approach

Figure 42| shows the statistical error of the SGS prediction. SGS has an MAE of 2.3 % when the
P-impedance has no added noise, and 2.5 % when noise was added to the P-impedance. Figure
shows the porosity prediction using SGS to the left and the absolute error to the right. The SGS
method captures the general structure and heterogeneity of the sedimentary wedge well, aside from

the area to the right where it overestimates the porosity.

65



case MAE MSE r2 score abs error std

case 2a wedge hetero 0.023256 0.000972 0.477209 0.020761

case MAE MSE r2score abs error std

case 2b wedge hetero 0.025217 0.001046 0.437161 0.020258

Figure 42: Statistics of the SGS prediction in case 2, heterogeneous wedge. The upper row is the
prediction without noise, while the lower row is the prediction with added noise.
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Figure 43: Predicted porosity section for case 2 using SGS. The left plot shows the predicted porosity
section. The right plot shows the absolute difference between the predicted and the true porosity.
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4.3.2 ML results

The methods that made the best predictions with the lowest MAE are shown in Table[6] for the cases
without and with noise. The MAE are 1.5% and 2%, for the cases without noise and with noise,
respectively. These are better MAE results than the SGS method just discussed. The predictions
use the same window size and depo-time, but different well-locations and ML methods (Table @

As in case 1, it is useful to keep in mind these results as we proceed to the boxplots.
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Parameter Type: Parameter value without noise | Parameter value with noise
ML method Neural net Lasso
Well location(s) [200, 350, 500, 700] [700, 750, 650, 775)
Window size 10 10
Depo-time implemented True True
MAE 0.015 0.021

Table 6: Best ML predictions for case 2 (heterogeneous wedge) with the parameters used.

Figure [44] shows the boxplots of the MAE using the ML methods. The left column (al-d1) is the
section without noise, and the right column (a2-d2) is the section with noise. Figure [44| al and a2
show that the ML methods perform similarly in terms of the median MAE. The KNN and random
forest perform decently with a wide distribution of MAE when there is no noise (Figure [44] al).
However, when noise is added, the KNN performs worse and has a narrower MAE range than the
other methods (Figure a2). This is regardless the predictors or well-locations. The same plot
shows that the random forest (RF) method has a wide error distribution, but it does perform well
given the correct well-location(s) and predictors, or it can perform very poorly if this is not the case.

Lasso is the best performing method consistently, and has a narrow MAE distribution.

Figure [44] d1 and d2 show that the depo-time has little effect on the accuracy of the prediction.
However, the best models in Table [§] use the depo-time, meaning that this implementation has a
positive effect. Figure 4] c1 and c¢2 show that the window implementation has a positive effect on
the prediction. These observations imply that, opposite from case 1, in case 2 the window function
provides better information on the geometry and geology. Figure b2 shows that with added
noise, the well-locations produce similar MAE distributions. The first well-location [200, 350, 500,
700] (wells spread throughout the entire section) has a wider MAE distribution skewed towards
lower MAE. While the difference with the other well locations is small, this could imply that the
first well-location provides more reliable data. This is supported by Figure b1, where the first

well-location is clearly better than the other combinations.
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Figure 44: Box plots for heterogeneous wedge without noise (al-d1) and with noise (a2-d2), and
exploring the effect of the ML method (al, a2), wells location (b1, b2), window size (cl, ¢2), and
depo-time (d1, d2). For wells location, the numbers withing brackets are the x coordinates where
the wells are.
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In Figure [44] a2 to d2, one can observe two outliers with the worst performance. This occurs for
the KNN and RF methods when the wells are concentrated outside the wedge, the window function
is not used, and the depo-time is used. This supports the observations made so far and confirms
that while the well-locations do not have a large effect, if the wells are placed outside the wedge, the

predictions can be very poor.

Figure {45 shows the best predictions based on the well(s) location(s). Case (a) has one well
inside of the wedge. Case (b) has four wells concentrated to the right of the section. Case (c) has
four wells spread throughout the section. The sections and corresponding error plots (a2, b2, ¢2)
are similar. However, compared to the SGS prediction and true porosity shown in figures [3] and [40]
respectively, the ML predictions display less detail. Specifically, the predicted porosity (al, bl, cl)
shows less clear layering than the true section. One could say that it looks like the ML models are
interpolating the porosity between the layers. The layers containing higher true porosity (0.325 to
0.4) are predicted as lower porosity values ca. 0.3. This is probably an effect of optimizing the error,

meaning that the ML methods predict the most common porosity values to avoid large individual

errors.
Porosity Prediction Absolute error
(al) Case 2 lasso prediction (a2) Case 2 lasso prediction error -
0.40 o 0.08
I ¥ .y > I
-650 ke gl g e 0.35 0.06
i i ! (AT I
e . i M e 030 0.04
E—7°° | “,‘ I “ i umw\"} Ao w\'hlf'w'nwﬂ‘“‘“
i MM\"' It p 0.25 0.02
A ‘ " : :
=750 01l il (TR RN i) MY A" L) 0.00
100 200 300 400 500 600 700 800 : 200 300 4 600 ‘
(b1) Case 2 Neural Net prediction 0.40 (b2) Case 2 Neural Net prediction error 0.08
. _ ; = i .
—650 0.35 0.06
=
2700/ 0.30 0.04
i 0.25 0.02
=750 L C L N | ik ol & L1 0.20 A ft o T M 0.00
100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
(c1) Case 2 lasso prediction (c2) Case 2 lasso prediction e
0.40 §0.08
\“'1-'\ TN . y .
! (LA § I
—65011 i ‘ ] 0.35 0.06
Ty e mmm ol | |
2 700!, A | ] w 030 004
\NA ”\'\"' I " | 0.25 0.02
rsoLu ! o CabSHEL LR 020 i) A T |
100 200 300 400 500 600 700 800 ' 100 200 300 400 500 600 700 800 '

Figure 45: The ML porosity predictions and error sections using the same data than in case 2b (with
added noise), but with different well location(s). (al, bl, c1) show the porosity predictions, (a2, b2,
¢2) show the absolute error sections. The wells are displayed as black vertical lines.
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4.4 Case 3 Normal Fault

The synthetic porosity section in the normal fault case is shown in Figure [f6] The P-impedance
sections used for the porosity estimation are shown in Figure [I7] the left plot is without noise and
the right plot has noise. Notably, the fault trace is clear in the P-impedance section without noise,

but it is less clear in the P-impedance section with noise.
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Figure 46: True porosity section in case 3, normal fault.
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Figure 47: P-impedance sections used for the porosity estimation of case 3 (normal fault). The left
section has no added noise, while the right section has added noise. The impedance is in Pa.s/m.
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4.4.1 Classical approach

The MAE of the SGS porosity predictions are shown in Figure The MAE for the section without
added noise is 2.13%, while in the section with noise the MAE is 2.27%. The porosity prediction
for the section with noise is displayed in Figure [49] left, while Figure [49] right shows the absolute
error. The absolute error shows that the porosity is largely overestimated in the top left of the
section. However, for the rest of the section, the SGS method captures the fault well and displays

heterogeneity similar to the true porosity section.

case MAE MSE r2score abs error std

case 3a fault 0.021321 0.001354 0.259757 0.029984

case MAE MSE r2 score abs error std

case 3b fault 0.022717 0.001444 0.210382 0.03046

Figure 48: Statistics of the SGS prediction in case 3, normal fault. The first row is the prediction
without noise, while the lower row is the prediction with added noise.
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Figure 49: Predicted porosity section in case 3 using SGS. The left plot shows the porosity section.
The right plot shows the absolute difference between the predicted and true porosity.

4.4.2 ML results

The best predictions with the lowest MAE are shown in Table [7] for the cases without and with
noise. The MAE are 1.3% and 1.6% for the sections without and with noise, respectively. These
are better MAE results than the SGS method discussed in the previous section. The best models
use the same parameters in both cases, meaning that the noise level has less effect on the parameter

optimization than in cases 1 and 2. As in cases 1 and 2, it is useful to keep in mind these results as
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we proceed to the boxplots.

Parameter Type: Parameter value without noise | Parameter value with noise
ML method Random forest Random forest
Well location(s) [200, 350, 500, 700] [200, 350, 500, 700]
Window size 10 10
Depo-time implemented True True
MAE 0.013 0.016

Table 7: Best prediction for case 3 (Normal fault) with the parameters used.

Figure shows the MAE boxplots of the ML predictions. al-dl are predictions using the
impedance section without noise, while a2-d2 are predictions using the impedance section with
noise. Regardless of the noise level, the inclusion of the window functions tend to lower the MAE,
as shown by cl and c2. However, d1 and d2 show that the depo-time implementation has little to no
effect on the MAE. As in case 2, these observations imply that the window functions better informs
the ML models on the geometry and geology. Additionally, Table [7] shows that the best predictions

use the depo-time, implying that this implementation has a positive effect.

Figure [50] al and a2 show that the ML methods have similar MAE distributions, although the
best predictions use the RF method. Plot (a2) shows more clearly that this is due to the neural
network and RF methods producing a wider range of MAE results, both better and worse than the
KNN and lasso methods. This means that the neural network and RF methods must be given good

parameters, and that the other methods might be more robust.

From Figure 50| bl and b2, the impact of the well locations shows a clear pattern. Spreading the
well locations throughout the section ([200, 350, 500, 700]) causes the lowest MAE. Having the well
go straight through the fault ([400]) produces the second best results. The worst predictions occur

when the well(s) are located to one side of the section regardless of the amount of wells.
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Figure 50: Box plots for case 3, normal fault without noise (al-d1) and with noise (a2-d2), and
exploring the effect of ML method (al, a2), wells location (b1, b2), window size (c1, ¢2), and depo-
time (d1, d2). For wells location, the numbers withing brackets are the x coordinates where the
wells are.
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As discussed in section [£.1] case 3 has a unique relationship between the CV MSE and the MAE.
Boxplots show that this relationship is usually the same except for the cases displayed in Figure
This figure shows the boxplots of the cross-validation MSE by the well locations, which indicate
that having a well through the middle of the section (around trace 400) results in a higher error.
This is the opposite to the equivalent MAE shown in Figure [50| b1l and b2. The reason is likely poor
data quality in the area around trace 750. This is based on this location resulting in high MAE.
The cross-validation MSE is low in this area because it was easy to train to the data, but the data

was clearly not representative of the full sectionresulting in a higer MAE.

Cross-validation uses only the training data, that is the data at the well locations, while MAE
uses the full section. Thus, low cross-validation MSE and high MAE implies that the training data
did not capture the important data patterns. If this is the reason, it shows that while cross-validation
can limit the effect of over-training, if the training data is of poor quality, the results will most likely

have a high degree of error.
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Figure 51: Box plots for normal fault without noise (a) and with noise (b), and exploring the effect
of the wells location (a, b) on the cross-validation MSE.

Some of the predicted sections and their error plots are displayed in Figure[52] The best prediction
based on the well locations are displayed in each row. Case (a) has the wells spread throughout the
section. Case (b) uses a single well through the fault and looks similar to the prediction in case

(a). The last case (c) has the worst results of the three, having four wells concentrated towards the
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right of the section. This prediction displays some artifacts in the middle of the section, additionally
it lacks detail compared to the predictions in (a) and (b). This supports the conclusion from the
boxplots in Figure [50] b1l and b2, that the wells should cross the fault to produce a good prediction.
Plot (c1) uses four wells, yet performs worse than (bl). This underlines a point that more data do
not necessarily improve the predictions, and that the quality of the data is more important. All

these predictions used depo-time and the window functions.

Comparing these results to the SGS prediction in Figure 9] we get similar observations to
those in case 2. The ML methods predict a smaller range of values near the most common values,
producing sections with lower heterogeneity. This means that the porosity in many of the layers
with high or low porosity is replaced with a porosity value close to the mean. The effect of this is

that detailed information is blurred or removed.
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Figure 52: ML porosity predictions and error sections using the same data as in case 3b (with added
noise), but with different well location(s). (al, bl, c¢1) show the porosity predictions, (a2, b2, c2)
show the absolute error sections. The well-placements are displayed as black vertical lines.
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4.5 Noise impact and general comparison between cases and approaches

Figure shows each case’s box-plot based on the MAE. Figure [53/A shows the prediction error
using ML methods, while Figure [53B shows the MAE using SGS. A comparison of the median of
the ML and SGS methods shows that the ML methods tend to produce lower MAE. This difference,

however, is small, circa 0.3 % in MAE.
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Figure 53: Box-plots comparing the predictions of the different synthetic cases based on the MAE.
Cases xa are sections without noise, cases xb are sections with noise. (A) Errors of the ML predic-
tions. (B) Errors of the SGS predictions. These last ones are shown as lines since there is only one
SGS prediction for each case.

Figure [53| shows that all of the cases (xa) without spectral noise perform better than the cases
(xb) with spectral noise. This is the expected result. Additionally for the ML predictions, case 1
has a wider range of MAE values. This implies that in case 1, the MAE varies more depending on

the parameters of the ML model than in the other cases.
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4.6 F3 case
4.6.1 Classical approach

The impedance section and porosity prediction using SGS is shown in Figure The porosity
section shows that the SGS method displays little vertical heterogeneity, but tends to increase the
porosity from left to right. This lateral increase of porosity is likely due to the flow direction of the

river delta being from right (coarser grains) to left (finer grains).
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Figure 54: Top: P-impedance section of the F3 dataset from seismic inversion. Bottom: Predicted
porosity section for the F3 dataset using SGS. The impedance is in kPa.s/m.

4.6.2 ML results

The results from the synthetic models and MAE boxplots (e.g., Figure were used to select the
most likely accurate ML methods for the F3 case. The effect of the window functions and depo-time

implementation on the MAE depended on the model, but consistently has a positive effect. The
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effectiveness of the ML methods is not always clear from the results, except for the KNN method
which consistently was outperformed by the other methods. Figure shows the F3 ML porosity
predictions using the random forest (al and bl), neural network (cl), and lasso (d1) methods. All
these predictions use depo-time, but case al does not use the window function, while the other cases
b1l to d1 use the window function. In Figure the predictions are ordered from top to bottom by
increasing cross-validation MSE. Case al has the lowest cross-validation MSE, since this case does
not use the window functions and up scaling of the well-logs is not necessary. This means that this

model has access to more data.

Figure [55] b2 and ¢2 show that the prediction using RF and neural network mostly agrees with
the SGS method. This is clear by the comparatively large amount of purple in the corresponding
difference plots to the right. The lasso prediction (d1) shows the least amount of heterogeneity
(detail), populating the section with mostly high porosity values. The neural network prediction
(c1) tends to only predict medium (ca. 30%) or high (ca. 40%) porosity. Figure[55/al and bl show
that RF produces a larger variety of porosity values. Significantly, RF without a window function
(al) produces thin layers that are laterally consistent. This could mean that using RF with a large
weight on the depo-time produces a section with more detail. Based on the results of the synthetic
models this is likely to increase the error by a small amount, as the window function almost always

reduced the error.
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Figure 55: ML predictions of the F3 section. (al-d1) show the porosity predictions, (a2-d2) show
the difference between the ML and the SGS predictions. (al,a2) use the random forest prediction
without a window function, and (b1, b2) use the random forest prediction with a window function.
The rest of the predictors use the window function. (cl, ¢2) use the neural network method, and
(d1, d2) use the lasso method. All predictions use the depo-time implementation.



4.7 Impedance-Porosity relationship

Figure shows the scatter plot of the impedance well-logs against the impedance from the seismic
inversion, after these data have been assigned to the F3 model 3D grid. The linear correlation
coefficient equals 0.7. If the seismic inversion was perfect, this coefficient should equal 1.0. Since
this is not the case, this means that the inversion affects the porosity to impedance trend. Figure
HOB shows the correlation between the porosity from the well-logs and the impedance from the
seismic inversion in the area of interest of the F3 3D model. These data and correlation are used in

the SGS method.
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Figure 56: Plot A shows the correlation between the well-logs impedance and the impedance
from seismic inversion. Plot B shows the correlation between the porosity from well-logs and the
impedance from seismic inversion. This correlation is used in the SGS algorithm.

Figure[57|shows the scatter plots of the porosity against the impedance. The blue points represent
the well-log data. The orange points show the distribution of the predicted porosity based on the
P-impedance for both the SGS and ML methods. From Figure [56B it is expected that the porosity
should increase as the impedance decreases. From plot (a) in Figure |57| this is mostly true, though

it is likely that the inversion makes this relationship less clear.
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Figure 57: Porosity against impedance for the F3 case. Only the relevant portion of the plots are
shown for easier comparison, all axes limits are the same. (a) shows the well-log data, this plot is
repeated in the other plots for comparison. (b) shows the SGS results in orange. (c-f) show the
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Figure shows a portion of the well-log data relevant to the wedge area considered. The
range in the scatter plots includes the expected ranges of impedance and porosity data in this
region. Figure shows the SGS results in orange. SGS is expected to follow the original data
distribution, yet this is clearly not the case. This is because the scatter plot is only for the 2D
section, while SGS predicts a 3D model. Thus, this plot is fine. In fact, it shows a clear trend of
decreasing porosity with increasing impedance. However, the data are concentrated at the higher
impedance and lower porosity values. Additionally, the porosity values are cut off at approximately

0.23 and 0.33. This is because this is the main porosity range of the well-logs in the area of interest.

Figure[57]d to f show the predictions for the ML RF, N-net, and lasso methods, respectively. All
these three methods use the depo-time and window-functions implementations. The ML predictions
show little to no porosity-impedance trend, lasso (f) in particular has little correlation to the well-log
data compared to the other SGS and ML methods. RF with no window function (Figure [57f) shows
a different pattern from the other ML methods. It displays arcs of porosity predictions that deviate
from the more common distribution. Since this prediction did not use the window functions, these
deviations are most likely an effect of the depo-time. The case in Figure is the prediction shown
in Figure [55|al, which displays the most heterogeneity (detail) and clear layering. That the model
uses depo-time instead of the window functions implies that the predicted features occur because the
model weights the depo-time highly. This means that if the interpretation of the seismic horizons

are accurate, the ML model will predict similar porosity along the horizons.
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5 Discussion

Results:

Figure [56| shows that the seismic inversion is not ideal and certainly has an effect on the poros-
ity prediction results. However, testing the methods ability to handle this uncertainty in seismic
impedance is valuable, as it gives insight into the robustness of the methods. Since this was likely a
consistent issue in cases 2, 3 and the F3 block, it is likely that the methods that performed poorly

in these cases would perform better with a better seismic inversion.

The ML methods consistently have lower MAE than the SGS method (Figure (53). This is
reasonable since the ML methods are trained to reduce the error, while the SGS algorithm is made
to produce a similar porosity distribution in the porosity cube and in the well-logs. A possible
consequence of this is that in the synthetic models, the ML methods have a tendency to default to
a small range of values to minimize the error as seen in cases 2 and 3, while the SGS method seems

to display more heterogeneity and layering.

However for the F3 case, this situation is reversed. The SGS method, neural network and lasso
methods (Figures and ¢ and d) show the tendency to reduce the heterogeneity in order to
reduce the error. The RF method however, displays more heterogeneity while having a better
cross-validation score than the other methods (Figure a and b). This might be because the
RF method uses decision trees, which make decision regions that separate data points displaying
different patterns. The RF model that does not use the window functions has the clearest thin
layering. The arc-like deviations of this model from the normal porosity-impedance distribution
(Figurec) indicate that this is probably an effect of the depo-time being weighted highly. Whether
this is preferable depends on the validity of the assumption that the depo-time or geological time is
significant. Also, this model has the lowest cross-validation MSE, implying that the cross-validation

MSE might be a good parameter for selecting the best model.

That stated, in case 3, the cross-validation MSE boxplots categorised by the well location(s)

84



show the reverse pattern to the equivalent MAE boxplots. This indicates that the cross-validation
method cannot counter poor training data. Thus, one must be selective of the data used for training,

and make sure that the data displays the relationship patterns and contains minimal noise/outliers.

In machine learning or any data-based method, the model is only as good as the data that
it is based on. In the synthetic cases, the amount of wells had little to no effect on the models’
performance. However, in case 3, placing the well in a location with good data (across the fault)
is far more important than in the other cases. Also, in case 1 the well should be placed inside
the wedge to have access to data which show the data trend. This underlines the importance of
good well placement. That said, in a real scenario it would be difficult to determine what is a good
well-placement, so more wells imply higher chances of including well locations which contain the

data distribution representative of the subsurface geometry.

KNN regression is the ML method that performed the worst for synthetic cases 2 and 3. The
property that makes KNN different is it’s ability to interpolate data points. This is likely the reason
why this method performed well in case 1. Because case 1 is a homogeneous wedge, the trend is the

same in all layers, and interpolating the data works well in this case.

The lasso-regression method performed very poorly, as did the neural network method in case 1.
This might be because the spatial extension of the logs (impedance and porosity) causes the data
distribution to be non-linear. This would explain the poor performance of lasso-regression (a linear
regression extension). The neural network probably performed badly due to being shallow, meaning
that the found relationships are too simplistic, and probably a deeper network is needed to obtain

more realistic relationships.

SGS and ML methods:

The SGS approach requires the construction of a variogram model. This allows for professional
input into the model, meaning that one has an analytical basis to say why one SGS model should

be better than the others. The variogram model used in this thesis for the porosity prediction is
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the same than the variogram model used for making the synthetic models. This means that the
synthetic cases are close to the best possible results one can expect from an SGS approach. There
is some uncertainty due to the wavelet extraction, as one can never derive the true wavelet due to

the noise in the seismic.

For the ML methods, this same manual input (example: variogram) from an expert would likely
be difficult but very possible to implement. Also, while the SGS method is bound to using only
porosity and impedance as data, the ML methods can adapt to a wider variety of data input, includ-
ing via predictor extraction. For example, adding the mean rolling window, or facies interpretations,

etc. In my opinion, the ML methods are more flexible and have more potential for useful predictions.

Conclusion

The SGS method can provide a useful porosity model more quickly, if used by an experienced
professional. However, machine learning can potentially provide more useful and accurate predictions
due to its flexibility. Additionally, once the predictor extraction methods are implemented by an
expert, machine learning models can be used by non-experts. An expert can also produce a large
variety of results using different sets of predictors automatically and interpret which predictions
make the most geological sense. Such large amount of different predictions was made throughout
this thesis. It is clear that this is useful to determine the best ML methods. For example, in the
idealised case 1, the KNN method functioned well, but in the other cases it did not. This means

that KNN does not function well given a more geometrically complex data-set such as the F3 case.

Out of all the ML methods, random forest proved to be the most reliable method. However,
this thesis has not even scratched the surface of neural networks, which can in theory fit any data
provided the network is deep enough. The issue is user insight and time constraints rather than

algorithm limitations.
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To summarize:

The SGS method always requires professional expertise. ML methods have more potential from
additional data and flexibility, and once implemented they do not require the same level of expertise
for use. The RF method was the preferred method while the neural method has likely more potential.
Finally, the workflow of using synthetic data to analyse the impact of methods such as the depo-time

and RF, is beneficial for understanding prediction results.

6 Future Work

For future work it is recommended to use only one subsurface model, which can provide a more
reliable dataset than for example case 3. There were to many prediction results to analyze given
the time constraints. It would be useful to focus on more methods for analyzing such a large set of
results on whether they make geological sense. Additionally adding more predictors and observing
their effects should prove useful. There are also more ML methods that can be tested, including deep
neural networks. While it was not discussed in this thesis, making geological models using forward
process modeling could be considered, as these models can provide complex geological scenarios that
make physical sense, rather than making a section based on simple geological /geometrical rules, as

I did in this thesis.
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Appendices

A  Manual

A.1 Python environment

’ Tool: \ Version: ‘

Windows | 21H2 (OS Build 19044.1645)
Python 3.7.11
Spyder 5.1.5
Jupyter Lab 3.2.1
numpy 1.20.3
matplotlib 3.5.0
segyio 1.9.7
scikit-learn 1.0.1
pandas 1.3.4
Tensorflow 2.3.0

Table 8: The environment used in this thesis, and their version.

A.2 Summary of Python classes and scripts

A Dbrief explanation of the code developed for this thesis is included. In general, the code can be
separated into two types based on its functionality. Class scripts which contain the Python classes
used in the thesis; these are accessed by other scripts to perform actions. In Python, a class is a
broad category that contains attributes and methods. Classes can be instantiated to create objects,
and methods can be sent to objects to perform actions. The second type of scripts are those that

perform specific tasks.

class: seismic_ext.py

This class uses the segyio module to extract the raw traces and metadata from a .segy file. This

returns the seismic section.

class: load_well.py
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This class loads well-logs. The functionality depends on if the model is synthetic or the actual
F3 dataset. If the synthetic model is used, extraction of the trace(s) as well-log(s) is performed. For

the F3 data-set, the well-logs are extracted from csv files.
class: predictor_ext.py

This class uses the extracted well-logs as basis for predictor extraction. It includes the window
functions discussed in section It also contains the depo-time (geological time) construction
and extraction based on either the geometry of the wedge or the interpreted horizons. The stan-

dardization is also implemented here.
class: Mlearning.py

This class initialises, trains, tunes and applies machine learning algorithms. The tuning is per-
formed by cross-validation. Based on cross-validation, the best set of parameters within a predeter-
mined search range is selected. The prediction of the porosity section is performed for every trace.

This is mostly to simplify the implementation of the window functions.
class: plot_results.py

This class has the functions for generating reproducible plots to monitor the resulting predic-
tions during runs and catch bugs early. It also saves these figures and the predictions. The saved

predictions are important as one can later visualize and plot them in a desirable way.
class: useful _functions.py

This class contains some functions that don’t fit into the categories of the other classes but are
necessary. For example, it has a function that maps two input arrays to an output array without

any for loops (this is important for efficiency).

class: manage_cases.py
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This class functions as "glue” code, stitching the other classes together. It also automatically

retrieves the required files based on the case name.

Script: section_horizon_coord.py

This script uses a segy file and horizon point-sets to find and save the intersections between the

section and the seismic horizons.

Script: make_new_wells.py

This script takes the well-logs extracted from Petrel and formats them to be more easily usable

in the class load_well.

Script: upscale.py

This script uses the existing well-logs and an upscaled well-log as input. The upscaled well log
is made in Petrel. The script matches the MD (measured depth) in the upscaled well-log with the
closet MD in the real well-logs. This upscales the well-logs to match the vertical sampling frequency

of the seismic traces.

Script: well_paths_horizon.py

This script uses the well paths and seismic horizons as input. It locates where the horizons
intersect the well paths and saves this information. This information is later used to make the

depo-time in the well-logs.

Script: top_cases_script.py

This script uses primarily the manage_cases class to perform the predictions and comparisons
automatically for several combinations of parameters. This is used to perform all predictions of the

synthetic models in one run without supervision.
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Script: F3_script.py

This script has the same functionality as the top_cases script, but for the F3 case instead of the
synthetic models. This has to be a separate script because the top_cases script needs a porosity

section, which the F3 block doesn’t have one.

A.3 Folder composition

The organization of the code, data, and results of this thesis in directories is as follows:

Main (should be the directory)
classes
load_well.py
Mlearning.py
plot_results.py
predictor_ext.py
seismic_ext.py
manage_cases_class.py
usefull_functons.py
scripts
top-cases_scripts.py
F3_script.py
make_new_wells.py
section-horizon_coord.py
well_paths_horizon_coord.py
upscale.py
data
case la Wedge
Seis_Inv_Wedge_IIIc.segy
Por_Wedge_Illc.segy
case 1b Wedge
Seis_Noise_-Inv_-Wedge_IIlc.segy
Por_Wedge_Illc.segy
case 2a wedge hetero
case 2a wedge imp no noise.segy
case 2a wedge porosity.segy
case 2a wedge porosity estimation no noise.segy
case 2b wedge hetero
case 2b wedge imp noise.segy
case 2b wedge porosity.segy
case 2b wedge porosity estimation noise.segy
case 3a fault
case 3a fault imp no noise.segy
case 3a fault porosity.segy
case 3a fault porosity no noise.segy
case 3b fault
case 3b fault imp noise.segy
case 3b fault porosity.segy
case 3b fault porosity estimation noise.segy
case F3
Seis Inv depth Random line [2D Converted].segy
F3 porosity estimation.segy

Al resampled.xlsx [Upscaled impedance log]
F02_.1 well path.txt
F03-2 well path.txt
F02_1.xlsx [well-logs]
F03_2.xlsx [well-logs]
F3-Horizon-FS8 (Z).txt
F3-Horizon-MFS4 (Z).txt
F3-Horizon-Truncation (Z).txt
horizons
(Horizons point sets as .txt files, and locations where horizons intersect with cross-sections)
results
case la Wedge
figures (plots of the results, and save .npy files of the result arrays)
info (dataframes of the results saved as csv files)

case 1b Wedge

figures
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info
case 2a wedge hetero
figures
info
case 2b wedge hetero
figures
info
case 3a fault
figures
info
case 3b fault
figures
info
case F3
figures
info

dataframes

B Running the scripts for the results

The data and code is provided on my personal google drive and github. This folder can be accessed
atdrive.google.com or |github.com/ESalomonsen. The google drive contains a zip file with the main
directory. The structure is the same as the general structure described above. Two text files,
“requirements.txt” and ”"ReadMe.txt” provide information on the environment specifications and

general information about the code/data, respectively. The environment is also decribed in table

For reproducing the results of this thesis, just go to the ”scripts” folder. Then run the ”top_cases_script.py”
and "F3_script.py” scripts. If only interested in reproducing the results one can ignore the rest if
this appendix.
These scripts loop over lists of parameters for example, the combinations of well-locations. So,
to run a specific parameter combination simply enter the parameter values into the appropriate
list. For example, if one wants to test window size equal to 1 for the synthetic models, change
line 16 in ”top_cases_script.py” from window_list = [0, 10] to window_list = [1]. The scripts use
the ”"manage_cases_class.py” class as a compilation/glue code of the other classes. An example for

producing one prediction result is shown below.
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# —x— coding: utf—8 —w—

Created on Mon Jun 13 17:13:05 2022

Ezample of how to make one predction

@author: Eier
from classes.manage_-cases-class import manage_cases.class

import numpy as np

case = ’'case 2a wedge hetero’

window = 5

geo-int = True

method = ’Random Forest’

wells_-loc = [200, 500]

# start class which sets the basic parameters

case_class = manage_cases_class (case = case, wells_loc = wells_loc, window = window, geo_int = geo_int)

# get the cross—sections

case_class.load_sections ()

# load the well—logs and perform predictor exztraction
case_class.load_synthetic_wells_and_predictors_ext ()

# train the ML model

case_class.ML_with_cross_val (method, max_depth = np.arange (4,9, 1),n_estimators = np.arange (25, 110, 10))
# apply the model

case_class.predict ()

# get the prediction :

prediction = case-class.pred_map

Many of the figures of the thesis were made using the script ”making results.ipynb”. This script

compiles and plots the results for investigation using pandas.

The data used can be described as following: The sections of porosity, impedance, ect. are
extracted from Petrel as 2D .segy files. The seismic horizon data have the form of a point set in 3D,
directly extracted from Petrel. The well-paths are also directly extracted from Petrel. The well-logs

are copied into an excel file. An example of these data file are shown in the figure below.
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Well-logs Horizon pointset

€05835,473490 G073556.399255 016.055054
A B (x L | r S D B0B2E0.4€4073 E073557.097688 815.80734%
1 MD Por.Eff. MD P-imp. 3 605885.454648 6073557.796116 815.747314
2 "18.000 "0.000 4 €05910.445223 6073558.494544 815.593384¢
v v 5 £05935.435798 £073550.102973 515.445374
e [48.150 120.500 6 €05960.426373 €0D73550.891401 815.270068
4 '48.300 '31.000 T €05985.4169498 €073560.589829 B15.045044
5 48.450 31.500 8 €0€010.407523 €073561.288257 B814.685382
6 "48.600 P2 000 5 €06035.398098 €0T3561.986686 B14.185941
v, v 10 €0E0E0.388673 6073562.685114 813.861157
u '48.750 '31.5]) 11 €0€085.379247 €073563.383542 812.853027
g 48.500 [33.000 12 E0EL10.368822 E073564.081871 512.127686
9 49.050 33.500 13 €0€135.360397 €073564.78039% B811.437378
0 "5.200 "4.000 14 606160.350972 6073565.478827 §10.807800
v, T, 15 606185.341547 €073S66.177255 810,229980
i |19.50 [24.500 6 606210.332122 €073566.875684 809668945
12 49.500 (35.000 17 6€06235.322697 6073567.574112 809.085266
13 49,650 35.500 18 €06260.313272 €073568.272540 808.
14 "49.800 "36.000 £06285.303847 €073568.97096% 507
v . £06310.294422 €073568.668357 507.178711
ik [43.350 126.500 21 €06335.284596 €073570.367825 506.571594
18 |50.100 137.000 22 €06360.275571 6073571.066254 B806.002808
17 '50.250 37.500 23 606385.266146 €073571.764682 805453552
18 %0.400 %8.000 Sl 23 evesro.2s€721 6073872.463110 204.804348 v

Well-path

L # WELL TRACE FROM PETREL

2§ WELL NAME: F03-2

3§ DEFINITIVE SURVEY: X ¥ IVD survey

4 § WELL HEAD X-COORDINATE: 615101.00000000 (m)

5 § WELL HEAD Y-COORDIMATE: €0894%1.00000000 (m)

€ # WELL DATUM (KB, Kelly bushing, fzom MSL): 30,00000000 (m)

7 # WELL TYPE: UNDEFINED
# MD AND TVD ARE REFERENCED (=0) AT WELL DATUM AND INCREASE DOWNWARDS
# ANGLES ARE GIVEN IN DEGREES

10 # XY¥Z TRACE IS GIVEN IN COORDIMATE SYSTEM PowerPlan:TM-NL (MENTOR:PowerPlan:TM-NL:TM CM SE on Dutch EDSO) [SIS,501820]

11  # AZIM TN: azimuch in True Norch

12§ AZIM GN: azimuch in Grid North
4 DX DY ARE GIVEN IN GRID NORTH IN m-UNITS

4 # DEFTH (2, wvwd_z) GIVEN IN m-UNITS

S5 # RANGLES ARE NOT EXACT (TRACE WAS NOT IMPORIED USING ANGLES)

& # MD IS NOT EXACT (TRACE WAS NOT IMPORTED WITH MD-DATA)
MD X ¥ 2 TVD DX DY AZIM TN INCL DL5S AZIM GN
0.0000000000 €15101.00000 E089451.0000 30.000000000 0.0000000000 —0.000000000 0.0000000000 1.5217867566 0.0000000000 0.0000000000 0.0000000000
2140.0000000 §15101.00000 €085451.0000 -2110.000000 2140.0000000 —0.000000000 0.0000000000 0. 0 0 0.00 358.47821324

Figure 58: Logs of one well compiled into an excel file to the top left. The P. imp. and Por.Eff.
columns has numbers further down in the file, but it is more important to show the headers. To the
top right is an example of the point set for one seismic horizon, the coordinates are X, Y and depth.
The lower text file is an example of the well-path of one well.

Information on the scripts and classes can be seen in section[A-2] As only some of this information
is repeated here. Before the code can be run, the data must be altered using some of the scripts.
That said, the drive contains the altered and original data, making this process unnecessary. The
section_horizon_coord.py script is ran using the 2D cross-section and horizon point sets and produces
a .npy file for each horizon named after the original horizon file +TWT. After this, one should run
make _new_wells.py to make a .csv file from the excel well-logs file. This file is named the same as
the excel file + new. I used the upscale.py file to upscale the well-logs based on a previously made

upscaled log, however it does not matter how the upscaling is done. The last script for editing the
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16
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26
27

data is the well_paths_horizon.py file. It uses the horizon files and the well path to make a .csv file

with the horizon locations in the well-logs, called the same as the well-path name + horizon loc.

If one wants to implement their own cases, this is done in the manage_cases.py file, in the __init__
function. In the function, the necessary data files can be added to an elif block similarly to the other
cases shown in the other elif blocks (line 92 to 213).

I made the top cases script and the F3 script to automatically produce results for all parameter
values and compile the results. This is not strictly necessary, but should be used as a reference for

how to use the manage_cases.py to produce results.

C Code

The code below is provided in case the online code becomes inaccessible:

C.1 top_cases_script.py

# —x— coding: utf—8 —w—

Created on Fri Mar 11 19:19:29 2022

@author: Eier
from classes . manage_cases_-class import manage_cases.class
import numpy as np

import pandas as pd

# define parameters

# ’case la Wedge ', ’case 1b Wedge ', ’case 2a wedge hetero ’, ’case 2b wedge hetero’, ’case Sa fault ', ’case
b fault’

case_list =[’case la Wedge’, ’'case 1b Wedge’, ’'case 2a wedge hetero’, ’case 2b wedge hetero’, ’case 3a
fault ', 'case 3b fault ']

window_list = [0, 10]

geo_int_list = [False, True]

# ’lasso ’, 'KNN’, Random Forest’, ’Neural Net’

method_list = [’lasso’, 'KNN', Random Forest’, 'Neural Net’]

for case in case_list:

# prepare to store data
MAE_list = []
MSE-list = []
Rs_list = []
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29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

59
60

61
62
63
64
65
66
67
68
69

70

71
72

73

T4

75

76
T

78

CV_MSE._list

AE_std_list

case_-list_-new

wells_list-new

window_.list_-new

=10

=1l
=1l

geo_int_-list_-new = []

method.list_new

=1l

# define wells depending on the model
if case = ’case la Wedge’ or case = ’case 1lb Wedge’:
wells_loc_list = [[100, 200], [100], [290]]
# crop the sections?
vcut= [120, 400]
hcut = False
else:
# [200, 700], [200], [800], [400]
wells_loc_list = [[400], [200, 350, 500, 700], [700, 750, 650, 775], [750]]
# crop the sections?
vcut= False
hcut = False
# for every combination of the parameters

for

wells_lo

c i

for window

for

n wells_loc_list:

in window-_list :

geo_int in geo-int_list:

for

method in method-list:
# define seed

np.random.seed (seed = 1)
# dinitiallise
case_class = manage_cases_class (case = case, wells_loc = wells_loc , window = window,

geo-int = geo-int)

# get cross—sections

case-class.load_-sections (plot = False)

# get wells and perform predictor extraction

case_class .load_synthetic_.wells_and_predictors_ext ()

# train machine learning models with cross wvalidation

if case == ’case 2a wedge hetero’ or case == ’case 2b wedge hetero’: # less data due
to resolusion means KNN needs a k that will not exceed the number of datapoints
cv_mse = case-class.ML_with_cross_val(method, layers_list = [1],N = np.arange (1,
50, 1), cv = 10, plot = True,
neurons = np.arange (1, 40, 1),
max_depth = np.arange(4,9, 1),n_estimators = np.arange (25,
110, 10)

, al_array = np.arange (0, 0.005, 0.00005))

else:
cv_mse = case_class.ML_with_cross_val(method, layers_list = [1],N = np.arange (1,
100, 1), cv = 10, plot = True,
neurons = np.arange (1, 40, 1),
max-depth = np.arange (4,9, 1),n_.estimators = np.arange (25,
110, 10)
, al_array = np.arange (0, 0.005, 0.00005))
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79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

# compile

# predict porosity cross

case_class .predict ()

—section

# compare to True porosity

MAE, MSE, Rs,AE_std = case_class .

# store data
MAE_list . append (MAE)
MSE_list . append (MSE)

Rs_list .append (Rs)

CV_MSE_list .append (cv_mse)

ABE_std_list .append (ABE_st

case_list_new .append (cas

a)

e)

wells_list-new .append(wells_loc)

window_list_new .append (window)

geo_int_list_new .append (

geo_int)

method_list_new .append (method)

if case == ’case la Wedge’' or case

pass
# compare SGS solution t

else:

MAE, MSE, r_squared ,

df2 pd.DataFrame ()
df2[’case’] = [case]
df2 [ 'MAE’] = [MAE]
df2 ['MSE’] = [MSE]

df2 [ 'R—squared’] = [
df2[’abs error std’]

df2.to-csv(’results\dataframes\{} classic solution’

index = False,

results of ML

df = pd.DataFrame ()

df[’case’] = case_list_new

df[ ML method’] = method_list_new
df[’wells location’] = wells_list_new
df [ ’window size’] = window_list_new
df[’depo time implementation’'] = geo_int
df[’cross validation MSE’] = CV_MSE_list
df [ 'MAE’] = MAE_list

f['MSE’] = MSE._list

df[’abs error std’] =AE_std_list

f[ 'R—squared’] = Rs_list

df.to_csv(’results\dataframes\case {} auto results

encoding = ’utf-8)

C.2 F3_script.py

# i

coding :

utf —8 —x—

== ’case 1b Wedge’:

result-eval (veut= vcut,hcut =

o true porosity , and compile reults

AE_std =

r.squared]

= [AE_std]

encoding =

-list_new
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Tutf—87)

.format (case )+’ . txt’

.format (case )+’ .txt’ ,sep=’/

,sep="/

»
»

heut)

case_class.petrel_solution_eval ()

index

False ,

s
»
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Created

@author :

from classes

on Mon Apr 4 13:30:55 2022

Eier

import numpy as np

import pandas as pd

.manage-cases_-class import manage_cases_-class

‘data\case F3\F03.2 well path

import matplotlib.pyplot as plt
# np.random .seed (seed = 1)
case_type = ’'real’
case-list =[’case F37]
well_paths_horizons = [’data\case F3\F02_.1 well path horizon loc.txt’,
horizon loc.txt’]
window_list = [0, 10]
well_files = [’data\case F3\F02_l_new.txt’, ’data\case F3\F03_2_new.txt’]
geo_int_list = [False, True]
# ’'lasso ', 'KNN’, Random Forest ', ’'Neural Net’
method_list = [’lasso’ ’KNN’ , "Random Forest’, ’Neural Net’]
for case in case_list:
MAE_list = []
MSE_list = []
Rs-list = []

CV_MSE._list = []

case_list-new = []

wells_list_-new = []

window_.list_-new =

geo_int_list_new =

method.-list_new =

for

window in window_list :

if window == 0:
well_files = [’data\case F3\F02_1_new.txt’, ’'data\case F3\F03_2_new.txt’]
else:
well_files = [’data\case F3\F02_.l_new_upsacale.txt’, ’'data\case F3\F03_2_new_upsacale.txt’
for geo_.int in geo_int_list:
for method in method-list:
np.random.seed (seed = 1)
case_class = manage.cases_class (case = case, wells_loc = None, window = window, geo_-int
geo_int)
case_class.load_sections (plot = False, scaling = False)

case_class.load_-wells_and_predictors_ext(well_files

well_paths_horizons)
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57

58

60
61
62
63
64

66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86

87
88
89
90
91

93
94
95
96
97
98
99
100

N o o oe W N

cv_mse =

cv = 10, plot = True,
neurons =
max_depth

al_array

case_class . predict (case_-type =
case-class.result_eval_F3 ()

# case-class.predict (case_-type =

H

plt . imshow(case_class.pred_map.T)

# plt.show()

# MAE_list. append (MAE)

# MSE_list.append (MSE)

# Rs_list.append (Rs)
CV_MSE_list . append (cv_mse)
case_list_new .append (case)
# wells_list_-new .append (wells_loc)
window_list_new .append (window)
geo_int_list_new .append(geo-int)
method_list_new .append (method)
df2 = pd.DataFrame ()
df2 [’ case '] = case
df2 [ 'MAE '] = MAE
df2 [ MSE ] =

df2 [ 'R

MSE

R R SR N N N

squared '] = r_squared
# df2.to-csv (' results\dataframes\{}

False , encoding = ’utf —87)

df = pd.DataFrame ()

df[’case’] = case_list_new
df['ML method’] =
# df [ wells

df [’ window

method_list-new
location '] = wells_list_new
size’] = window-_list_new
df[’depo time implementation’] =

df[’cross validation MSE’] = CV_MSE_list
# df [ 'MAE’] =
# df [ MSE’] =

# df [ 'R—squared '] =

MAE_list

MSE_list

Rs_list
df.to_csv(’results\dataframes\case {} auto

encoding = ’utf—8")

C.3 manage_cases_class.py

# —%— coding: utf—8 —w—
Created on Fri Mar 11 17:483:48 2022
@author: Eier

EERY

import numpy as np

results

case-class . ML_with_cross_val (method,

np.arange (1,
= np.arange (1,20,

= np.arange (0,

cla

geo_int_list_new

102

ssic

' format (case)+’ . txt’

layers_-list = [1],N = np.arange (1,

40, 1),

1) ,n_estimators = np.arange (1, 41

0.005, 0.00005))

case_-type)

case_type)

solution '. format (case)+ . txt ' ,sep="/",

,sep="/"', index = False,

100,

1),

, 10),

index
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59
60
61
62

import segyio
import pandas as pd
import matplotlib.pyplot as plt
import tensorflow as tf
import pickle
from sklearn.metrics import r2_score
from classes.load_-well import load._-well
from classes.predictor_-ext import predictor_ext
from classes.Mlearning import Mlearning
from classes.plot_results import plot_results
from classes.usefull_functions import usefull_functions
from classes.seismic_ext import seismic_ext
class manage-cases-class:
e
Class for connecting the other classes and data.
This makes it easier to run many different parameter combinations automatically (iteratively).
def __init_._(self, case, wells_.loc, window, geo_int=False, # first line 4is all that is wused for the
thesis
file_ai=None, file_seis=None, file_por=None, max.TWT=None, min.TWT=None,
w_start=None, w_end_-top=None, w_end_base=None, horizons_list=None, petrel_solution=None):
EED)
sets the parameters of the case from a preset or defines them here
Parameters
case str
the case identification as to get all the preset parameters.
wells-loc list
the trace locations of the wells.
window TYPE
window size to be wused in predictor extraction .
geo-int str, optional
Should the depositional time be implemented and if so how?. The default is False.
file_a str, optional
path to segy file with impedance. The default is None.
file_seis str, optional
path to segy file with seismic. The default is None.
file_por str, optional
path to segy file with porosity. The default is Nome.
mazx-TWT int , optional
mazimum wvalue of the TWT. The default is None.
min-TWT int , optional
minimum value of the TWT. The default is None.
w-start list , optional
the starting position of the wedge: the pinch point. The default is None.
w-end_-top list , optional
the end of the top surface of the wedge. The default is None.
w-end-base list , optional
the end of the base surface of the wedge. The default is None.
horizons-list list or None, optional
list of mumpy arrays that describe where the horizons intersect with the cross—section. The
default is None.
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70
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87
88
89
90
91
92
93
94
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98
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100
101
102
103
104
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110
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114
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116
117
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petrel_-solution : str, optional

file path to the SGS solution of porosity. The default is Nome.

Returns

None .

self.case = case

self.win = window
self.wells_loc = wells_loc
self.geo_int = geo_int

# for new case:

self.file_ai = file_ai
self.file_seis = file_seis
self.file_por = file_por

self max TWT = max.TWT

self .min.TWT = min. TWT

self.w_start = w_start

self.w_end_top = w.end_top
self.w_end_-base = w-end-base

self. horizons_list = horizons_list
self . petrel_-solution = petrel_solution

# select the relevant files based on the case

if case == ’case la Wedge :
self.file_.ai = ’'datal\case la Wedge\Seis_-Inv_-Wedge_IIIc.segy’
#self . file_-seis = ’data\case 1a Wedge\ Synth-Wedge-Illc.segy’
self.file_por = ’data\case la Wedge\Por_-Wedge_IIIc.segy’

# self . maz-TWT

—618 # maz TWT of the seismic section

# self .minoTWT = —1162 # min TWT of the seismic section
# wedge start , the relitive location where the wedge has just thinned
self.w.start = [267, 178]

# the relitive location where the top of the wedge ends
self.w_.end-top = [0, 178]

# the relitive location where the base of the wedge ends

self.w_end_-base = [0, 400]

self. horizons_list = False

if self.geo_int == True:
self.geo_int = ’wedge’

elif case —= ’case 1lb Wedge’:

self.file_ai = ’'data\case 1b Wedge\Seis_Noise_.Inv_Wedge_IIIc.segy’
#self . file_seis = ’data\case 1b Wedge\ Synth_-Noise-Wedge_-IIllc.segy’
self.file.por = ’'data\case 1b Wedge\Por_-Wedge_IlIc.segy ’

# self .maz-TWT = —618 # mazx TWT of the seismic section

# self.min,TWT = —1162 # min TWT of the seismic section

# wedge start , the relitive location where the wedge has just thinned
self.w_start = [267, 178]

# the relitive location where the top of the wedge ends
self.w_end_top = [0, 178]

# the relitive location where the base of the wedge ends
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elif

elif

elif

self.w_end_base = [0, 400]

self.horizons_list = False

if self.geo_int == True:
self.geo_-int = ’wedge’

self.case == ~

self.file_ai =
#self . file-seis =
self.file_por =

self . petrel_solution =

’datal\case 2a wedge hetero\case 2a wedge porosity

case 2a wedge hetero

‘data\ case 2a

’,

"data\case 2a wedge hetero\case 2a wedge

wedge

hetero\ case

imp no noise.segy’

seis.segy ’

2 wedge

‘data\case 2a wedge hetero\case 2a wedge porosity.segy’

segy’
hor_file4 = ’data\case 2a wedge hetero\horizons\wedge surface base plus’
hor_file3 = ’datal\case 2a wedge hetero\horizons\wedge surface base’
hor_file2 = ’data\case 2a wedge hetero\horizons\wedge surface top’
hor_filel = ’datal\case 2a wedge hetero\horizons\wedge surface top plus’
self.horizons_list = [np.load(hor_filel4+ TWT’+’.npy’), np.load (

hor_file24+ "TWTI’+’ .npy’), np.load(hor_file34+ 'TWIT'+’ .npy’),
# self.maz.TWT = —618
# self . min.TWT = —1162
if self.geo_int True:

self.geo_in
self.case == ~
self. file_ai =

#self . file_seis

self. file_por =

’from horizons

case 2b wedge hetero

"data\ case

‘data\case 2b wedge

‘data\case 2b wedge hetero\case 2b wedge

2b wedge

hetero\case

hetero\ case

imp noise.segy’

2 wedge seis.seqy’

2b wedge porosity.segy’

estimation no noise

np.load (hor_filed+ 'TWI'+’ .npy ') ]

self . petrel_solution = ’data\case 2b wedge hetero\case 2b wedge porosity estimation noise.segy
s

hor_-file4 = ’datal\case 2b wedge hetero\horizons\wedge surface base plus’

hor_file3 = ’data\case 2b wedge hetero\horizons\wedge surface base’

hor_file2 = ’datal\case 2b wedge hetero\horizons\wedge surface top’

hor_filel = ’data\case 2b wedge hetero\horizons\wedge surface top plus’

self.horizons_list = [np.load(hor_filel+ TWI’+’.npy’), np.load (
hor_file24 TWT'+’ .npy’), np.load (hor_file3+ TWIT’+’.npy’), np.load (hor_filed+ TWT’+’ .npy’)]

# self.maz.TWT = —618

# self.min,TWT = —1162

if self.geo_int == True:
self.geo_int = ’from horizons’

self.case == ’'case 3a fault’:

self.file_ai = ’data\case 3a fault\case 3a fault imp no noise.segy’

#self . file_seis = ’data\case 83a fault\case 3 fault seis.segy’

self.file.por = 'data\case 3a fault\case 8a fault porosity.segy’

self.petrel_solution = ’data\case 3a fault\case 3a fault porosity no noise.segy’

hor_filel = ’datal\case 3a fault\horizons\cfault surface 1°

hor_file2 = ’datal\case 3a fault\horizons\cfault surface 4°

hor_file3 = ’datal\case 3a fault\horizons\cfault surface 3’

hor_file4 = ’datal\case 3a fault\horizons\cfault surface 5’

hor_-file5 = ’datal\case 3a fault\horizons\cfault surface 2’
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201

210
211
212
213
214
215
216
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219

self.horizons_list = [np.load(hor_filel4+ TWI’4+’ .npy’), np.load (hor_-file2+4+ "TWI’+’ .npy’), np.

load (

hor_file34+ 'TWI’+’ .npy’), np.load(hor_file4+"TWI'4+’ .npy’), np.load (hor_-file5+4+ ' TWI’+’ .npy’)]

# self.maz.TWT = 618
# self.min.TWT = —1162
if self.geo_-int == True:
self.geo_int = ’from horizons’
elif self.case == ’case 3b fault ’:
self. file_ai = ’data\case 3b fault\case 3b fault imp noise.segy’
#self . file_seis = ’data\case 3b fault\case 8 fault seis.segy’
self.file.por = ’data\case 3b fault\case 3b fault porosity.segy’
self.petrel_solution = ’data\case 3b fault\case 3b fault porosity estimation noise.segy’
hor_filel = ’data\case 3b fault\horizons\cfault surface 1’
hor_file2 = ’data\case 3b fault\horizons\cfault surface 4°
hor_file3 = ’data\case 3b fault\horizons\cfault surface 3’
hor_file4 = ’datal\case 3b fault\horizons\cfault surface 5’
hor_file5 "data\case 3b fault\horizons\cfault surface 2’
self.horizons_list = [np.load(hor_filel4+ TWI’4+’ .npy’), np.load (hor_file2+4+ " TWT’+’ .npy’), np.

load (

hor_file34+ 'TWTI’+’ .npy’), np.load(hor_file44+"TWT'+’ .npy’), np.load (hor_file5+4+ TWT '+’ .npy ’)]

# self.maz.TWT = —618
# self . min.TWT = —1162
if self.geo-int == True:
self.geo_int = ’from horizons’
elif self.case == ’case F3’:
self. file_ai = ’data\case F3\Seis Inv depth Random line [2D Converted].segy’
self.petrel_solution = ’data\case F3\F3 porosity estimation.segy’
hor_filel = ’data\case F3\F3-Horizon-FS8 (Z)’
hor_file2 = ’data\case F3\F3—Horizon—Truncation (Z)’
hor_file3 = 'data\case F3\F3—Horizon-MFS4 (Z)°
self.horizons_list = [np.load(hor_filel4+ TWT’+’ .npy’), np.load (

hor_file2+ TWT'+’.npy’), np.load(hor_file3+ TWT '+ .npy’)]

if self.geo_int == True:

self.geo-int = ’from horizons’
else:

pass

handle_.CV (self , name, CV):

handles cross—validation result

Parameters

name : str

file
CV : dict

path to save the CV result.

results .

dictionary of cross—wvalidation

Returns
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231

251
252
253
254

256
257
258
259
260
261
262
263
264
265
266
267

269
270
271

281
282
283
284

285

best

str

string of the best parameters.

best. list
list of the best parameters.
e
uf = usefull_functions ()
best-, self.neg-mse = uf.save_cv(name + 7 .pkl”,
best = best-.split(’/’)
file = open(name + ” .pkl”, 7rb”)
CV_KNNoutput = pickle.load (file)
return best, best-
load-sections (self , plot=True, scaling=False):
load the cross—sections

Parameters

plot
i
scali

s

str, optional

f true plot the sections. The default is True.

ng : str, optional

hould the sections be standardized (mot working

Returns

None .

# get impedance

ext = seismic.ext (self. file_ai)

self.grid2, self.extent2 = ext.syn._seismic (plot=plot,
# get porosity

if self.file_por

pass
else:
ext = seismic-ext (self.file_-por)
self.grid3, self.extent3 = ext.syn_seismic (

# get petrel solution
if self.petrel_solution == None:
pass
else:
ext = seismic_ext (self.petrel_solution)
self.grid_pet , self.extent_pet = ext.syn_seismic/(
plot=plot, scaling=False)
if self.case == ’case F3’:

plot=plot , scaling=False)

self.grid_pet = np.flip (self.grid_pet ,

107

self .ML_method,

0)

currently ).

cv)

The

default

scaling=scaling)

i

s

False .



287 # get maz and min depth

288 self . max TWT = self.extent2 [3]

289 self . min.TWT = self.extent2 [2]

290

291 # slice the sections based on the case

292 if self.case == ’case 3a fault’ or self.case == ’case 3b fault ’:

293 self.grid2 = self.grid2[:, 0:135]

294 elif self.case == ’case 2a wedge hetero’ or self.case == ’case 2b wedge hetero’:

295 # self.gridl = self.gridl [:, 0:75]

296 self.grid2 = self.grid2[:, 0:75]

297 self.grid3 = self.grid3[:, 0:75]

298

299 def load_wells_and_predictors_ext (self, well_files , win_names=[’imp’], well_paths_horizons=None):

300 L

301 load the well—logs as predictors and target , then perform predictor exztraction

302 on the real data—set

303

304 Parameters

305

306 well-files : TYPE

307 DESCRIPTION .

308 win-names : TYPE, optional

309 DESCRIPTION. The default is [’imp '].

310 well-paths_-horizons : TYPE, optional

311 DESCRIPTION. The default is None.

312

313 Returns

314

315 None .

316

317 v

318

319 if well_paths_horizons == None:

320 well_paths_horizons = np.linspace (0, 1, len(well_files))

321

322 grid_list = [self.grid2]

323 self.grid-list = grid_list

324 grid_names = [ ’imp’]

325 self.grid-names = grid-names

326

327 well = well_files [0]

328 logl = load-well(file_.name=well)

329

330 data, MD = logl.from_csv ()

331

332 Por = data [’ por’].to_numpy ()

333 Por_df = pd.DataFrame(Por, columns=[’Por’])

334

335 data.drop(’por’, axis=1, inplace=True)

336

337 new.-pred = predictor_ext (data)

338

339 for name in win_-names:

340 new_pred.roll_and_win_sel_well (data_name=name, win=self.win,

341 geo_int=self.geo-int , grid=self.grid2, horizons-_-list=self.
horizons_list , MD=MD, well_path=well_paths_horizons [0])

342 new-pred2 = predictor_-ext (Por_df)
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344
345
346
347

361

363
364
365
366
367

369
370
371

381
382
383
384

386
387
388
389
390
391
392
393
394
395
396
397

new-pred2.remove_outside_window (win=self .win)

datal = new.pred2.data
data2 = new.pred.data
response = datal.to_numpy ()
pred = data2.to_-numpy ()
for n, well in enumerate(well_files):
if n == 0:
pass
else:
logl = load_well (file_name=well)

data, MD = logl.from_csv ()

Por = data[’'por

Por_df

data.drop(’'por’

1. to_numpy ()

pd.DataFrame (Por,

axis=1,

columns=[’Por’])

inplace=True)

new_pred = predictor_ext (data)

for name

new_pred.roll_and_win_sel_well (data_name=name,

new_pred2 =

in win_-names:

predictor_ext (Por_df)

geo_-int=self.geo_int ,

self.horizons_list

grid=self.grid2,

win=self.win,

MD=MD,

well_paths_horizons [n])

new_pred2.remove_outside_-window (win=self.win)

datal

data2

new-pred2.data

new._pred .data

response2 =

datal.to-numpy ()

pred2 = data2.to-numpy ()
response = np.vstack ((response ,
pred = np.vstack ((pred, pred2))

# standardize

pred

# randomize

idx

, self.mean_arr,

= np.random.rand (*response .

print (pred)

resp

pred

onse

= np.take_along_-axis (pred,

= np.take_along._axis (response , idx,

print (pred)

self.response

indexr to

self.std_arr

scramble the

response

self.pred = pred

shape)

idx ,

= new_pred.stand_pred (pred)

data

response2))

Largsort (axis=0)

axis=0)

axis=0)

load-synthetic_.wells_and_-predictors_ext (self):

load

the

wells

from

the

synthetic

sections

as predictors

109
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399
400
401
402
403

405
406
407

409
410
411
412
413
414
415
416
417
418
419

421

427
428
429

431
432
433
434
435

437
438
439
440
441

Returns

None .

#

logl = load_well(file_name="data_2d_wedge_F3\F03_2_por_eff.xlsx’)
grid_list = [self.grid2, self.grid3]

self.grid-list = grid-list

grid_names = [’imp’, ’'Por’]

self.grid-names = grid_-names

# get the impedance and porosity at the trace ==

df = logl.from_synthetic(grid_list , grid_names,

col

col=self.wells_loc [0])

# move the porosity to a different dataframe as it is the target

Por = df[’Por’].to-numpy ()

Por_.df = pd.DataFrame(Por, columns=[’'Por’'])

df.drop(’Por’, axis=1, inplace=True)

#

name = ’imp’

new_pred = predictor_ext (df)

# select walues in window , get window mean and median and add all these as predictors

new.-pred.roll_and_-win-sel (data-name=name, win=self.win,

geo-int=self.geo_int ,
w_start=self.w_start ,

w-end_base ,

grid=self.grid2, col=self.wells_-loc[0],

w_end_top=self.w_end_top, w_end_base=self.

horizons_list=self.horizons_list , max TWT=self . max TWT, min. TWT=self .

min . TWT)

new_pred2 = predictor_ext (Por_df)
# remove target values outside the window

new_pred2.remove_outside_window (win=self .win)

datal = new.pred2.data
data2 = new.pred.data
response = datal.to_-numpy ()
pred = data2.to_numpy ()

#

if len(self.wells_loc) > 1:
# for each well location perform the same
for i in range(len(self.wells_loc)):
if i = 0:

pass
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447 else:

448 #

449 log2 = load_-well(

450 file_name='data_-2d_-wedge-F3\F03_2_por_eff.xlsx’)

451

452 df2 = log2.from._synthetic (

453 grid-list , grid-names, col=self.wells_loc[i])

454

455 Por2 = df2[’'Por’].to_numpy ()

456 Por_df2 = pd.DataFrame(Por2, columns=[’Por’])

457

458 df2.drop(’Por’, axis=1, inplace=True)

459 #

460 new_pred = predictor_ext (df2)

461

462 new_pred.roll_and_win_sel (data_name=name, win=self.win,

463 geo_int=self.geo_int , grid=self.grid2, col=self.wells_loc[i
1,

464 w_start=self.w._start, w_end_top=self.w_end_-top, w_end_base=
self.w_end_-base ,

465 horizons_list=self.horizons_list , max TWT=self .max TWT,
min.TWT=self .min.TWT)

466

467 new.-pred2 = predictor_ext (Por_.df2)

468 new.-pred2.remove_outside-window (win=self . win)

469

470 datal = new._pred2.data

471 data2 = new.pred.data

472

473 response2 = datal.to_numpy ()

474

475 pred2 = data2.to_numpy ()

476

477 response = np.vstack ((response, response2))

478 pred = np.vstack ((pred, pred2))

479 #

480 else:

481 pass

482

483 # standardize

484 pred, self.mean_arr, self.std_.arr = new_pred.stand_pred (pred)

485

486 # randomize index to scramble the data

487 idx = np.random.rand(xresponse.shape).argsort (axis=0)

488 print (pred)

489 response = np.take_along.axis(response, idx, axis=0)

490 pred = np.take_-along_axis(pred, idx, axis=0)

491 print (pred)

492

493 self .response = response

494 self.pred = pred
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532
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536
537
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539
540
541
542

def ML_with_cross_val(self ,

1,

ML_method ,

neurons=np.arange (10, 300, 50

epochs=100,

N=np.arange (1, 100, 1),

EERS

Performes machine learning cross—validation and

Parameters

ML_-method str

the machine learning method to be wused.

n-estimators numpy array , optional

number of decision trees. The

maz-depth numpy array , optional

maz depth for each decision tree. The default is np.arange (1, 12,
neurons numpy array , optional

range of number of neurans in every layer considered. The default
layers_list list , optional

range of mumber of hidden layers considered. The default is [1,5,
act-list list , optional

activation functions considered. The default is [’sigmoid ’].
epochs : int , optional

numnber of epochs or cycles of training. The default is 100.
N : numpy array, optional

number of meigbors considered. The default is np.arange (1, 100, 1).
al_array numpy array , optional

penalty coefficients considered. The default is nmp.arange (0, 0.03,
cv : int, optional

number of folds. The default is 10.
plot bool , optional

should the cross walidation scores the plotted by tuning parameter.
Returns
float

cross —validation MSE (CV score).
e
self.ML_method = ML_method
self .ML = Mlearning (self.pred, self.response, self.grid2)
uf = usefull_functions ()
self .LOSS = dict ()
# perform cross—wvalidation , all if sections follow a similar logic

if self.ML_method == ’'Random Forest ’:

CV_RF = self . ML. RF_cross_val(
n_estimators=n_estimators ,

validation

# retreve best cross—wvalidation result
best , best- = self.handle.-CV(’CV_RF’, CV_RF
# fit model according to the best parameter

self .ML.RF_init(n_-estimators=int (best [1]) ,

112

n_estimators=np.arange (4,

default is np.

max_depth=max_depth ,

200, 10),

), layers_list=[1, 3,
al_array=np.arange (0, 0.03,

training .

arange (4, 200, 10).

cv=cv,

)

s

max-depth=int (best [3]))

5],

0.0001) ,

plot=plot)

max._depth=np.arange (1, 12

act_list=['sigmoid’],

cv=10,

1).

is np.arange (10, 300, 50).
5].
0.0001) .
The default is True.
# perform cross

plot=True) :
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588
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591
592
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594
595
596
597

598

599

elif self.ML.method == ’'Neural Net’:
CV_net = self .ML.n_net_-cross-val(
N=neurons, layers_list=layers_list , act_-list=act_-list , epochs=epochs, cv=cv, plot=plot) #
perform cross walidation
# retreve best cross—validation result

best , best. = self.handle.CV(’CV_net’, CV_net)

self .ML.n_net-init(self.pred, self.response, int(best[5]), int(

best [1]), activation=best[3], epochs=epochs) # fit model according to the best parameters

elif self.ML_method = ’lasso ’:
CV_lasso = self .ML.lasso-cross-val(
al_array=al_array , cv=cv, plot=plot) # perform cross wvalidation

# retreve best cross—validation result
best , best-. = self.handle_.CV(’CV_lasso’, CV_lasso)
# fit model according to the best parameters

self .ML.lasso_-init (float (best [1]))

else:
CV.KNN = self ML. KNN_cross_val(
N=N, cv=cv, plot=plot) # perform cross wvalidation
# retreve best cross—validation result
best , best- = self.handle.CV (’CV.KNN’, CV_KNN)
# fit model according to the best parameters

self .ML. KNN_init(int (best [1]))
self . best- = best- # save the best parameters as class object

return self.neg_mse

s

def predict(self, case_-type=’'synthetic’):

apply trained ML method to case
Parameters

case_type : str, optional
if the model is synthetic uses ML.predict_-syn_-grid , wuses ML.predict_syn_-grid if not. The

s

default is ’synthetic
Returns

None .

if case_type == ’synthetic

if self.ML_method == ’Random Forest  :

pred-map = self . ML.predict_syn_grid(self.grid_list , self.grid-names, self.win, method='RF’
, geo_int=self.geo_int ,
w_start=self.w_start, w-end_-top=self.w_end-top,
w-end_base=self.w_end_base,
horizons_list=self.horizons_-list , maxTWT=self .max.TWT
min. TWT=self . min.TWT,

mean_arr=self.mean_arr, std_-arr=self.std-arr)
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601 else:

602

603 pred-map = self . ML. predict_syn_grid(self.grid_-list , self.grid-names, self.win, method=self
.ML_method, geo_-int=self.geo-int ,

604 w_start=self.w_start, w-end_-top=self.w_end-top,

w-end_base=self.w_end_base,
605 horizons_-list=self. horizons_-list , maxTWT=self .max-TWT
, min.TWT=self .min.TWT,

606 mean_arr=self.mean_arr, std_-arr=self.std-arr)

607

608 else:

609 if self.ML_method == ’Random Forest :

610

611 pred-map = self ML.predict_-grid(self.grid-list , self.grid-names, self.win, method="RF’,
geo_int=self.geo_int ,

612 horizons_list=self.horizons.-list , maxTWT=self .max.TWT,

min. TWT=self .min. TWT,

613 mean_arr=self.mean_arr, std-arr=self.std_arr)

614 else:

615

616 pred_map = self.ML.predict_grid (self.grid_list , self.grid_.names, self.win, method=self.
ML_method, geo_-int=self.geo.int ,

617 horizons_list=self.horizons_list , max.TWT=self .max TWT,

min-TWT=self . min.TWT,

618 mean_arr=self.mean_arr, std_arr=self.std_arr)

619

620 self.pred.map = pred_-map

621

622 def result_eval(self, vcut=False, hcut=False, ylab="TWI’, vminp=0.2, vmaxp=0.4):

623 rn

624 compare the ML prediction against the true porosity , assuming a synthetic model.

625 Returns statistical wvalues of the comparison.

626 Plots the true porosity , predicted porosity and the absolute difference between the two.

627

628 Parameters

629

630 veut : list , optional

631 vertical slice of the array (TWT). The default is False.

632 hcut : list , optional

633 horizontal slice of the array (traces). The default is False.

634 ylab : str, optional

635 y label. The default s 'TWT’ .

636 vminp : float , optional

637 minimum porosity wvalue in colormap. The default is 0.2.

638 vmazp : float , optional

639 mazimum porosity wvalue in colormap. The default is 0.4.

640

641 Returns

642

643 float

644 mean absolute error.

645 float

646 mean squared error.

647 float

648 T2 score.

649 list

650 standard deviation of the absolute error.
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651

652 i

653

654 vmin = np.min(self.grid3)

655 vmax = np.max(self.grid3)

656

657 # in order to take into account the window size if used

658 por_grid = self.grid3[:, self.win:len(self.grid3[0])—self.win]

659

660 pl = plot_results ()

661 # titles = [’using {}, Wells at {}, window = {} . format(self.ML_method, str(self.wells_loc),str(

self.win)),
662 # "Estimate ’, ‘absolute error with {}, Wells at {}, window = {} . format(self.ML_method,
str(self.wells_loc),str(self.win))]

663 titles = [’Prediction on bottom using {}, Wells at {}’.format(self.ML_method, str(self.wells_loc))

664 "Estimate’, 'absolute error with {}, Wells at {}'.format(self.ML_method, str(self.
wells_loc))]

665

666 # file mname

667 best. = self.best_.replace(”/”, »7)

668 file_.name = ’results/{}/figures/{}, using {}, wells at {}, window = {}, geo int = {}’ .format(

669 self.case, self.ML_method, best_, self.wells_loc, str(self.win), self.geo_int)

670 file_.name = file_name.replace(”[”, 77)

671 file.name = file_name.replace(”]”, ”7)

672 file_.name = file_name.replace(”:”7, 77)

673

674 pl.grids.comp (por_grid, self.pred-map, titles=titles , vcut=vcut, hcut=hcut, file_name=file_name ,

675 extent=self.extent2, ylab=ylab, vmin=vminp, vmax=vmaxp)

676

677 r_squared = r2_score (por_grid.flatten (), self.pred_map.flatten ())

678

679 self .LOSS[self.ML_method +

680 > AE_std’] = np.std(abs(por-grid.flatten ()—self.pred-map. flatten ()))

681 self .LOSS[self.ML_method +

682 ’ MAE’] = np.mean(abs(por_grid.flatten ()—self.pred_-map. flatten ()))

683 self .LOSS[self.ML_method+’ MSE’] = np.mean ((por_grid—self.pred_map)x*2)

684 self .LOSS[self.ML_method+’ r2 score’] = r_squared

685

686 res = {’case: ’: [self.case],

687 ‘wells location ’: [str(self.wells_loc)],

688 "method: ’: [self.ML_method],

689 >window for prediction extraction :’: [self.win],

690 "Geological interpretation’: [self.geo_int],

691 "hyperparameter tuning result: ’: [best_],

692 "Cross validation negative MSE ': [self.neg_mse],

693 >validation error MAE: ': [self.LOSS[self.ML_method+’ MAE’]],

694 "validation error MSE: ’: [self.LOSS[self.ML_method+’ MSE’]],

695 ’abs error std’: [self.LOSS[self.ML_method+’ AE_std’]],

696 "r2 score’: [self.LOSS[self.ML_method+’ r2 score’]]

697 }

698 df = pd.DataFrame (res)

699 file_.name = file_name.replace(” figures”, 7info”)

700 df.to_csv (file_name+'.txt’', sep='/’, index=False, encoding='utf—8’)

701

702 return self .LOSS|[self.ML_method+’ MAE’], self.LOSS[self.ML_method+’ MSE’], self.LOSS[self.

ML_method+’ r2 score’], [self.LOSS[self.ML_method+’ AE_std’]]
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718
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720
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747
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750
751

def

result_eval _F3 (self ,

EER)

vcut=False ,

hcut=False ,

ylab="TWT’ ,

vminp=0.2,

vmaxp=0.4) :

compare the ML prediction against the true porosity in the F3 case.
Returns statistical wvalues of the comparison.
Plots the true porosity , predicted porosity and the absolute difference between the two.
veut list , optional
vertical slice of the array (TWT). The default is False.
hcut list , optional
horizontal slice of the array (traces). The default is False.
ylab str, optional
y label. The default is 'TWT’ .
vminp float , optional
minimum porosity wvalue in colormap. The default is 0.2.
vmazp float , optional
mazimum porosity wvalue in colormap. The default is 0.4.
Returns
Tes dict
dictionary of the parameters wused, the cross—wvalidation result and the cross—wvalidation MSE.
EER)
vmin = np.min(self.pred_map)
vmax = np.max(self.pred_map)
# in order to take into account the window size if used
pet-grid = self.grid_-pet[:, self.win:len(self.grid_-pet[0])—self.win]
pl = plot_-results ()
titles = [’Prediction on bottom using {}’.format(self.ML.method),
>Estimate’, ’absolute difference between solutions’]
# file mname
best. = self.best_.replace(”/”, 77)
file_.name = ’results/{}/figures/{}, using {}, window = {}, geo int = {}’.format/(
self.case, self.ML_method, best_, str(self.win), self.geo_int)

file_.name = file_-name.

file_name = file_name.
file_name = file_name

pl.grids_.comp (pet_grid ,

extent=self.extent2 ,

res = {’case: ’': [self.case]
"method :

’window for
"Geological
"hyperparameter
’Cross validation

}

df = pd.DataFrame(res)
file-.name = file-name

df.to_csv (file_name+’'.txt ",

replace (7 [
replace (717,

.replace (7 :”

prediction
interpretation

tuning

[self.ML_method],

result

negative MSE ’:

.replace (” figures” ,

sep="/",

ylab=ylab ,

extraction

» ey
77
ST

self.pred_map,

titles=titles ,

vmin=vminp ,

veut=vcut ,

[self.win],

[self.geo_int],

: 7: [best-],

7info”)

index=False ,
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encoding="utf—8")

hcut=hcut ,

file.name=file_name ,

vmax=vmaxp )



760 return res

761

762 def petrel_solution_eval(self):

763 7

764 Compare the Sequential Gaussian simulation against the true porosity.
765 Returns statistical wvalues of the comparison.

766 Plots the true porosity , predicted porosity and the absolute difference between the two.
767

768 Returns

769 Em—

770 MAE : float

771 mean absolute error.

772 MSE : float

773 mean squared error.

774 r.2 : float
775 r2 score.
776 AE_std : float
T standard deviation of the absolute error.
778
779 v
780 ext = seismic_ext(self.petrel_solution)
781 gridsol = ext.syn_seismic(plot=False, scaling=False) [0]
782
783 if self.case —= ’'case 2a wedge hetero’ or self.case = ’case 2b wedge hetero ’:
784 gridsol = gridsol [:, 0:75]
785
786 pl = plot_results ()
787 titles = [’True porosity: top, classic solution: below’,
788 ’Classical solution’, ’Difference petrel solution ’]
789
790 pl.grids.comp (self.grid3, gridsol, titles=titles , file_name='results/{}/figures/{} Petrel_solution

’.format(self.case, self.case),
791 extent=self.extent2)
792
793 self.gridsol = gridsol
794
795 AE_std = np.std (abs(self.grid3.flatten () — gridsol. flatten ()))
796 r.2 = r2_score(self.grid3.flatten (), gridsol.flatten ())
797 MAE = np.mean(abs(self.grid3. flatten () — gridsol.flatten ()))
798 MSE = np.mean(((self.grid3.flatten () — gridsol.flatten ())*%2))
799
800 return MAE, MSE, r_.2, AE_std
. .
C.4 seismic_ext.py

1 # —%— coding: utf—8 —¥—

P no

3 Created on Sun Dec 19 13:54:10 2021

4

5 @awuthor: Eier

6 no

7

8

9 import segyio

10 import matplotlib.pyplot as plt
11 import numpy as np

12 from scipy import ndimage as ndi
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44
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47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

class seismic.ext:

EEx

Ezctracts sections using segyio

EEx

def __init-_-(self, file—name):
initialise class
Parameters
file_name float
file path of the segy file .
Returns
None .
ErE
self.file = file_name
def syn_seismic(self, plot = False, scaling = False):
uses segyio to get the section as a numpy grid.
also gets the depth ready for the class plot results.
Parameters
plot bool , optional
Should the sections be plotted for evaluation? The default is
scaling bool , optional
should the section numpy grid be standardized? The default is
Returns
grid 2D numpy array
section as numpy array , traces as rows, depth as columns.
extent list
azis extent as traces and TWT, for later plotting.
# open file
f = segyio.open(self.file, ignore_geometry=True)

# get the metadata, incl. TWT
sec = segyio.tools.metadata (f)
TWT = —sec.samples # get depth
TWT.max = TWT.max ()
TWT._min = TWT. min ()

trace-min = f.header [0][segyio

trace_max= f.header[—1][segyio

and trace ranges

data

.TraceField.TraceNumber]

.TraceField . TraceNumber ]
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30
31
32
33

extent = [trace.min, trace.max, TWT.min, TWT.max] # get depth

# get cross—section

and trace

grid = f.trace.raw[:]
f.close ()
if plot == True:
vm = np.percentile (grid, 99.5)
plt.imshow (grid.T, cmap=’jet’, aspect=’auto’, vmin=—vm, vmax=vm)

plt . title (self. file)

plt . show ()

else:
pass
if scaling == True:
grid = (grid — np.mean(grid)) / np.std(grid) # standardize
self.grid = grid
return grid, extent

C.5 load_well.py

# —x— coding: utf—8 —w—

Created on Sun Dec 19 14:26:19 2021

@author: Eier
import pandas as pd
import matplotlib.pyplot as plt

import numpy as np

class load-well:
Handles the exztraction and editing of the well—data.
This can be real well data or synthetic well data from a 2D array
e
def __init-_(self, file_name):

EERS

Handles the emtraction and editing of the well—data.

data

of synthetic data .

numbers

This can be real well data or synthetic well data from a 2D array of synthetic

Parameters

file_name : str

The file location of the well data.

Returns

None .

ErE

self.file = file_name
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def

from_excel (self):

Imports well —log data from an exzcel file.
Returns
data : pandas.DataFrame

dataframe of the well—logs.

one column per well—log .

EERs

data= pd.read_excel (self.file, header = 2) #file_name
data.drop( ’Unnamed: 0’ , inplace = True, axis = 1)
data = data.dropna ()

#data = data.set_indez ('MD’)

data.drop(’MD’, inplace = True, axis = 1)

return data

from_csv(self , drop_.MD = True) :

EER)

Imports well —log data from an csv file.

Parameters

drop_.MD : bool, optional
if True; will drop the ’'MD’ column. The

data : pandas.DataFrame
dataframe of the well—logs.
one column per well—log.
MD : numpy array

the measured depth .

EERs

data = pd.read_csv(self.file)
MD = data[ ’MD’].to-numpy ()
if drop_MD==True :

data.drop ('MD’, inplace = True, axis =

return data, MD

from_synthetic(self, grid_-list , named-list ,

Imports a trace from one or more synthetic

Parameters

grid-list : list

default is
1)

col = 150):
sections as

list of 2d arrays representing the cross—sections .

name-list : list
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123
124
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126
127
128
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#

#

AN R N NI N N

H*

H*

A

list of grid mnames, for example [’imp ', ’por ’].
col int, optional
trace number. The default is 150
Returns
df : pandas.DataFrame
dataframe of the well—logs .
one column per well—log.
e
n =20
1 = len(grid_list [0].T)
data_ar = np.zeros ((1, len(grid_list)))
# get trace = col in every cross—section
for grid in grid_list:
data_ar [: ,n] = grid[col] # row in grid should be wverticle —>
n = nt1
# compile traces into dataframe

df = pd.DataFrame(data_ar ,

return df

def win_-select (data, data-name =

data-col=

win-2 = int (win/2)

I = len(data-col)

for w in range(win-2):

w = w1l

# start with 1 and —1

#

up = np.zeros (1)

up [:] = mp.nan

up [w: 1] = data-col [0:1—w]
down = np.zeros (1)

down [:] = np.nan

down [0:1l—w] =

data ['+{} wind . format (w)]
data[ —{}

data

wind *. format (w) ]

return

df = pd.read_ezcel (’data\ case
df = df.loc[:, ~df.columns.str.
df-por = pd.DataFrame ()

df-por[’MD’] =
df-por [’ Por. Eff. ] =

df [ "MD ]

columns =

df [ Por. Eff. "]

name_list)

"Por. Eff.  ,win =4):

data [data-name ]. to-numpy ()

data-col [0+w:1]

= down

FS\F02.1.zlsz ')

contains (' Unnamed ) ]
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165
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171
172
173
174
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176
177
178
179
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184
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191
192
193
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df-por = df-por.dropna ()

df-imp = pd.DataFrame ()

df_imp ['MD '] = df[’MD.1°]
df-imp [ P—imp . '] = df[ P—imp. ]
df_imp = df_imp.dropna ()
por_MD_lim = [df-por['MD’].min(), df-por[’MD’].maz()]
df_imp = df_imp [df-imp [ MD’]>por_MD_lim [0]]
df_imp = df_imp [df-imp [ 'MD’]< por.MD_lim [1]]
df-imp = df-imp.reset_index ()
df_por = df-por.reset_indez ()
df-well = pd.DataFrame ()
def nearest (number, arr):
Gets index of number nearest the “number”

Parameters

number : TYPE
DESCRIPTION .

arr : TYPE
DESCRIPTION .

DESCRIPTION .

search = abs(arr—number)
m = search.min ()

return np.where (search == m) [0]

md_list = []
imp-list = []

por_list = []

for mn, i in enumerate(df-imp [ MD’]) :

arr = df_-por [’'MD ’]. to_numpy ()

ind = nearest (i, arr)[0]

md = df-imp . iloc [n][ MD’]
md_list.append (md)

imp = df-imp.iloc [n][ P—imp. ]
imp_list.append (imp)

por = df-por.iloc [ind][ Por.Eff. "]

por-list.append(por)
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# df-well ['MD '] =

H*

df -well [ 7imp ] =
# df-well ["por '] =

# plt.

scatter (df-well [ imp ],

md-list
imp_list

por_list

df-well ["por ’])

C.6 predictor_ext.py

# —%— coding: utf—8 —x
Created on Thu Dec 23
@author: Eier

EERd

import numpy as np

import matplotlib.pyplot as

from classes .
import pandas as pd

class predictor_ext:

usefull_functions

16:06:26 2021

plt

import usefull_functions

def __init__(self, data):
Parameters
data pandas DataFrame
predictor data.
Returns
None
»
self.data = data
def add-well_loc(self, well_loc):

adds the well

Only works

Parameters

for

location as a predictor.

synthetic models

well-loc int
trace (well) location .
Returns
None .
self.data[’well location’] = np.repeat(well_loc, len(self.data))

def median_and_mean (self ,

data_name = ’Por.Eff."’ =4):

,win

123



50 EER)

51 adds the rolling mean, median window results as predictors

52

53 Parameters

54

55 data-name : str, optional

56 name of the column that the rolling windows should apply to. The default is ’Por.Eff. .
57 win : int, optional

58 window size. The default is 4.

59

60 Returns

61

62 None .

63

64 7

65 self.roll_mean (data_name = data_name ,win = win)

66 self.roll_median (data_.name = data_name,win = win)

67 self.remove_outside—-window (win = win)

68

69 def roll_and_win_sel(self , data_.name = ’'Por.Eff.’ ,win =4,

70 geo_int = ’none’, horizons_list = None,grid = 1, col = 1,
71 w_start = [267, 178], w-end_-top = [0, 178], w-end_-base = [0, 273],
72 max TWT = —618, min. TWT = —1162):

73 ron

T4 adds the rolling mean, median and selections window results as predictors .

75 also adds the depositional time if apporopriate.

76

7 Parameters

s

79 data-name : str, optional

80 name of the column that the rolling windows should apply to. The default is ’Por.Eff. .
81 win : int, optional

82 window size. The default is 4.

83 geo_int : str, optional

84 Should the depositional time be implemented and if so how?. The default is ’none’
85 horizons_list : TYPE, optional

86 DESCRIPTION. The default is None.

87 grid : mumpy array, optional

88 2D array of a cross—section. The default is 1.

89 col : int, optional

90 trace (well) location. The default is 1.

91 w_start : list, optional

92 the starting position of the wedge: the pinch point. The default is [267, 178].
93 w_end_top : list , optional

94 the end of the top surface of the wedge. The default is [0, 178].

95 w_end_base : list , optional

96 the end of the base surface of the wedge. The default is [0, 273].

97 mazx.TWT : int , optional

98 mazimum value of the TWT. The default is —618.

99 min.TWT : int, optional

100 minimum wvalue of the TWT. The default is —1162.

101

102 Returns

103

104

105

106 ron
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107
108
109
110
111
112
113
114
115
116
117

118
119
120

121
122
123
124
125
126
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

# self.add_well_l

oc(well-loc=col)

# add window functions
self.roll_mean (data_-name = data-name ,win = win)
self.roll_median (data_name = data_-name,win = win)
self.win_select (data_name = data_-name ,win = win)
# add depo—time
if geo_-int == ’wedge’
self.construct_timelines_wedge_df(grid = grid, w.start = w_start, w_end_top=w_end_top ,
w_end_base=w_end_base ,
col = col, win = win)
elif geo.int == ’from horizons’:
self.construct_-timelines_from_horizons (grid, horizons_list , maxTWT = max.TWT, min.TWT
min . TWT)
self.depotime_well(well_loc = col)
# remove data outside of the windows
self.remove_outside_window (win = win)
def roll_and_-win_sel_well(self , data.name = ’Por.Eff.’ , win =4,
geo_int = ’none’, horizons_list = None, grid = 1, MD = None, well_path
)
self.roll_mean (data_name = data_name,win = win)
self.roll_median (data_name = data_-name ,win = win)
self.win_select (data_name = data.name,win = win)
# add depo—time
if geo-int == ’from horizons :
self.depotime_well_path (MD = MD, well_path = well_path)
self.remove_outside_window (win = win)
def roll_mean (self , data_.name = ’'Por.Eff.’ win =4):
applies the rolling mean to a column in the dataframe
Parameters
data_name str, optional
name of the column that the rolling windows should apply to. The default is ’'Por.Eff. .

4.

predictors .

win int, optional
window size. The default 1is
Returns
data pandas DataFrame
full dataframe of the
data = self.data
# failsafe for if no window is wanted
if win == 0:
pass
else:
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161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203

205
206
207
208
209
210
211
212
213
214
215
216

data[’roll mean’] = data[data-name].

self.data = data

return data

roll_median (self , data_name =

applies the rolling median to a column in the

Parameters
data-name

str, optional

rolling (window=win) . mean ()

"Por. Eff. ', win =4):

dataframe

name of the column that the rolling windows should apply to. The default is
win : int, optional
window size. The default 1is 4.
Returns
data pandas DataFrame
full dataframe of the predictors .
data = self.data
# failsafe for if mno window is wanted
if win == 0:
pass
else:
data[’roll median’] = data[data_name].rolling (window=win) .median ()
self.data = data
return data
win_select (self , data_name = ’Por.Eff.’ ,win =4):
e
applies window selection to a predictor.
This means that in a window of [—win/2, +win/2] every data point from the point
is added as a predictor
Parameters
data-name str, optional
name of the column that the rolling windows should apply to. The default is

win : int , optional

window size. The default is 4.

Returns

data pandas DataFrame
full dataframe of the predictors.
EED)
data = self.data
# failsafe for if mno window is wanted
if win == 0:
pass
else:

data_-col= data[data_name].to_numpy ()
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217
218
219

227
228

230
231
232
233
234
235

237
238
239
240
241

243
244
245
246
247

249
250
251
252
253

255
256
257
258
259
260
261
262
263

264
265

266
267
268
269
270
271

win_2 = int (win/2)

1 = len(data-col)

# for every point above and below the point of computation

for w in range(win_2):

w = w+1

# prepare to get higher wvalue
up = np.zeros (1)

up[:] = np.nan

# get wvalue

up[w:l] = data_col [0:1—w]

# prepare to get lower value
down = np.zeros (1)

down [:] = np.nan

# get wvalue

down [0:1-—w] = data_col[04w:1]

# save values

data[’4+{} wind’.format(w)] = up
data[’—{} wind’.format(w)] = down
self.data = data

return data

remove_outside_window (self , win):

Remove the top and bottom rows equal to the window size.

Parameters
win o int

window size .

Returns

None .

self.data = self.data.iloc[win:]

self.data = self.data.iloc [0:len(self.data)—win]

construct_-timelines_wedge (self , grid, w_start = [267,
273]):

EER)

A non—ideal function that constructs an array of the

thinning to the right.

Parameters

grid : numpy array
2D array of a cross—section .

w-start : list , optional
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272 the starting position of the wedge: the pinch point. The default is [267, 178].

273 w_end_top : list, optional
274 the end of the top surface of the wedge. The default is [0, 178].

275 w_end_base : list, optional

276 the end of the base surface of the wedge. The default is [0, 278].

277

278 Returns

279 —_—

280 res : numpy array

281 2D array with the relative depositional time.

282

283 e

284

285 inter = 1

286 if w_start > w_end_top:

287 direction = ’thinning right’

288

289 rows = np.arange (min([w_start[0], w_.end_-top[0]]), max([w_start [0], w_end_top[O0]]), 1) # what rows

are relavant

290

291 if direction == ’thinning right  :

292 # start_-top0 = np.linspace (),len (rows)).round ()

293 start_topl = np.linspace (min(w.start[1], w_end_top[1]) ,max(w_start[1], w_end_top[1]),len (rows)
) .round ()

294

295 # start_-base0 = np.linspace (min(w-start [0], w-end_-base [0]) ,maz(w-start [0], w_-end_-base [0]) ,len(
rows) ). round ()

296 start-basel = np.linspace (max(w.start[1], w_end-base[1]) ,min(w_start[1], w.end-base[1]) ,len(
rows)) .round ()

297

298 else:

299 start-top0 = np.linspace (min(w.start [0], w-end_-top[0]) ,max(w-start[0], w.end-top[0]) ,len(rows)
) .round ()

300 start-topl = np.linspace (min(w.start[1], w-end-top[1l]) ,max(w-start[1], w.end-top[1l]) ,len(rows)
) .round ()

301

302 start_base0 = np.linspace (min(w_start [0], w_end_base[0]) ,max(w_start[0], w_end_base[0]) ,len(
rows) ) .round ()

303 start_basel = np.linspace (min(w_start[1], w_end.base[1]) ,max(w.start[1], w_end_-base[1]) ,len(
rows) ) .round ()

304

305 top_-ts = np.arange (0, int(start_topl [1]), inter) # timelines above wedge

306

307 missing = np.arange (int(start_topl [1]), int(max(start_basel)), inter) # timelines inside wedge

308

309 base_ts = np.arange (int (max(start_basel)),len(grid[0]), inter) # timelines below wedge

310

311 L = abs(w.start[0] —w_end_top [0])

312

313 change_in_inter = np.linspace (inter , 0, L)

314

315 res = np.zeros (np.shape(grid))

316

317 for n, row in enumerate(grid): # vertical , left to right in imshow

318 print (n)

319 1 = len (row)

320 new-row = np.zeros (1)
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321
322
323
324
325
326
327

328
329

330

331
332
333

334

336
337
338
339
340
341
342
343

344
345

347

357
358

360
361
362
363
364

366
367
368
369
370
371

if n in rows:

if direction == ’thinning right  :
change = change_-in_inter [n]
new-row [0:int (start_-topl[n])] = np.linspace(top-ts[0],top-ts[—1], len(rows[0:int(

start_topl[n])]))
11 = len(row[int(start_-topl [n]):int(start_basel[n])])
new_row [int (start_-topl [n]):int(start_basel[n])] = np.linspace (missing[0],
len (new_row [int (start_topl[n]):int(start_basel[n])]))
new_row [int (start_-basel [n]):] = np.linspace(base_ts [0],
start_basel [n]):]), len(new_row[int(start_basel|[n]):]))
else:
new._row [0:int (start_-topl [0])] = np.linspace(top-ts[0], top_-ts[—1],
start_topl [0])]))
new._row [int (start_-topl1 [0]) :] = np.linspace(base_ts [0],

start_topl [0]):]), len(new_row[int (start_topl [0]):] ))

res [n] = new.row
res = res.round ()
# res = (res — np.mean(res)) / np.std(res) # standardizing data

return res

construct-timelines_wedge_df (self , grid , w_start = [267, 178], w-end_-top = [0, 178],
= [0, 273],
col = 100):

Make the relative depositional time for a synthetic wedge,
then ezctract one of the columns as a predictor .
Parameters
grid numpy array

2D array of a cross—section .
w-start : list , optional

the starting position of the wedge: the pinch point. The default is [267, 178].

w-end_-top : list , optional

the end of the top surface of the wedge. The default is [0, 178].
w-end_-base : list , optional

the end of the base surface of the wedge. The default is [0, 278).

col : int, optional

trace (well) location. The default is 100.

Returns

self.data pandas DataFrame

full dataframe of the predictors.

EER)

# get the timelines

self.timelines = self.construct-timelines-wedge (grid , w-start, w-end_-top, w-end_-base)
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372 data = self.timelines[col]

373

374 # save the timelines for one trace

375 self.data[ time lines {}’.format(col)] = data

376

377 # plt.imshow (self.timelines.T, aspect = ’auto’,cmap='jet ’)

378 # plt.title (’Depotime from wedge interpretaion ’)

379 # plt.colorbar ()

380 # plt.show ()

381

382

383 # self.data = (self.data — np.mean(self.data)) / np.std(self.data)

384 return self.data

385 def construct_timelines_from_horizons (self, grid, horizons_list , maxTWT = —618, min.TWT = —1162,
standardizing = True):

386 L

387 make the deopsitiomal time array from where the horizons interect with the cross—sections

388

389 Parameters

390

391 grid : numpy array

392 2D array of a cross—section .

393 horizons_list : list or Nome, optional

394 list of nmnumpy arrays that describe where the horizons intersect with the cross—section. The

default is Nonme.

395 max-TWT : int, optional

396 mazimum value of the TWT. The default is —618.

397 min-TWT : int, optional

398 minimum value of the TWT. The default is —1162.

399 standardizing : bool, optional

400 should the resulting array be standardized ?. The default is True.

401

402 Returns

403

404 res : nmumpy array

405 2D array of the depositional time.

406

407 rn

408 # ordered from mazxz to min

409 n_traces , n_samples= np.shape(grid)

410 interval = —abs ((max.TWT—min.TWT) /n_samples)

411 print (n_samples)

412

413 res = np.zeros (np.shape(grid))

414

415 # for every trace

416 for s in range(n_traces):

417 stack = np.array ([])

418 # for every horizon

419 for i in range(len(horizons_list)):

420 # find the wupper and lower horizons

421 upper-h = horizons_list [i—1]

422 lower-h = horizons_list [i]

423

424 # firs (top) horizon

425 if i == 0:

426 # if the upper horizon eztends beyond the cross—section then skip
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427
428
429

430
431

433
434
435
436
437

439
440
441

447
448
449

451

461

463
464
465
466
467
468

470
471
472
473
474

476
477
478
479
480
481

if upper-h[s] > maxTWT:

pass
# if the upper horizon does no exztend beyond the cross—section then fill in the
missing values above the horizon
else:
upper-h = horizons_list [i]
times = np.arange (max.TWT, upper_h[s], interval)
times = times [times<=max.TWT]
times = np.linspace (i, i+1, len(times))
stack = np.hstack ((stack, times))
else:
times = np.arange (upper-h[s], lower_h[s], interval)
times = times [times<=maxTWT]
times = np.linspace (i, i4+1, len(times))
stack = np.hstack ((stack, times))
if len(stack) < len(res[s]): # happens if the bottom horizon is not beyond the min.TWT,

meaning the remaining time needs to be filled in

diff = abs(len(stack) — len(res([s]))
stack = np.hstack ((stack, np.linspace (i4+1, i+2,
res[s] = stack [0:len(res[s])]

self.times = res

# plt.imshow(res.T, aspect = ’auto ,cmap=_jet ’)
# plt.title (’Depotime from horizons ’)
# plt.colorbar ()
# plt.show ()
if standardizing == True:
pass
# res = (res — mp.mean(res)) / np.std(res) #

cmap="nipy-spectral ’,

# plt.imshow (res. T, aspect="auto ’,

# plt.colorbar ()
# plt.show ()
return

res

depotime_well_path (self , MD = None, well_path = None) :

EER)

Add the depositional time as a predictor.
This is for a real well, not synthetic data.
Parameters
MD : numpy array , optional
measured depth of the well—logs. The default is None.

well-path str, optional
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482 path to a file containing the horizon locations intersecting the cross—section. The default is

None .
483
484 Returns
485
486 None .
487
488 e
489
490 = —MD
491
492 # get the horizon locations in the well
193 well_p = pd.read_csv (well_path)
494 well_p_np = —well_p.to_numpy ()
495
496 well_p_np.sort ()
497 well_p_np = —well_p_np [0]
498
499 uf = usefull_functions ()
500
501 indx_list = []
502
503 # for each horizon
504 for hor_-loc in well_p_np:
505
506 # find the horizon location in the MD—log
507 indx = uf.nearest (hor_loc, MD) [0]
508 indx_-list .append(indx)
509
510 indx_-list.sort ()
511
512 # interpolating the time
513 time = np.zeros (len (MD))
514 i—old = 0
515 n_old = 0
516 for n, i in enumerate(indx_list):
517
518 time[i_old:i] = np.linspace(n-old, n+1,len(time[i_old:i]) )
519
520 i_old = i
521 n-old = n+41
522
523 time[i-old :] = np.linspace(n_-old, n_old+1,len(time[i-old:]) )
524
525 self.time = time
526
527 self.data[ ’depotime’] = self.time
528
529 def depotime_well(self, well_loc):
530 self.data[’depo time at {}’.format(well_loc)] = self.times[well_loc]
531
532 def stand_pred (self, pred, mean_list = None, std_list = None):
533 ron
534 standardize all the predictors and save the standard deviation and mean used for the
standardization .
535
536 Parameters
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557
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C.7

# i

Created

@author :

pred : numpy array

numpy array of predictors.

mean_list : numpy array, optional
array of the mean values to be used in the standization. The default is None.
std-list : numpy array, optional
array of the standard deviation wvalues to be used in the standization. The default is

Returns

pred : numpy array

numpy array of predictors.
mean_arr : numpy array

array of the mean values wused in the standization .
std_arr : numpy array

array of the standard deviation values used in the standization .

# reserving memory
mean_arr = np.zeros (len(pred[0]))

std_arr = np.zeros(len(pred[0]))

# if previous mean and std are to be wused

if type(mean_list)=

np.ndarray and type(std_list) ==np.ndarray:

for n in range(len(pred[0])):

pred[:,n] = ( pred[:,n] mean_list [n]) / std_list [n]

else:

for n in range(len(pred[0])):

mean-arr [n] = np.mean( pred[:,n])

std_arr [n] = np.std( pred[:,n])

= ( pred[:,n] — np.mean( pred[:,n])) / np.std( pred[:,n])

return pred, mean-arr, std-arr

Mlearning.py

coding : utf—8§ —x—

on Mon Dec 27 13:00:06 2021

Eier

from sklearn.neighbors import KNeighborsRegressor

from sklearn.svm import SVR

import

sklearn

from sklearn.model_selection import KFold

import
import

import

pandas as pd
numpy as np

matplotlib.pyplot as plt
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

from sklearn.model_selection import cross_-val_-score
import tensorflow as tf

from sklearn.ensemble import RandomForestRegressor
from classes.load_-well import load._.well

from sklearn import linear_-model

class Mlearning:

EEx

Handels the cross wvalidation , training and application

of the machine learning methods .

def __init_-_(self, pred, response, grid):
Handels the cross wvalidation , training and

of the machine learning methods .

Parameters

pred : nmumpy array
predictors
rTesponse : numpy array

response or target wvalues

grid : numpy array
grid to map the predictions on, for the thesis:
Returns
None .
# set the seeds, means that the result will always
np.random. seed (seed = 1)
tf.random.set_-seed (1)
self.pred =pred
self .response=response
self.grid=grid
def KNN_init(self , k):
Initiallise and fit KNN
Parameters
kE : int
number of mneigbors considered
Returns
None .
EED)
self.model = KNeighborsRegressor(n_-neighbors=k)
self .model. fit (self.pred, self.response)
def RF_init(self, n_estimators = 100,max_-depth = 3):

application
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71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

EER)

initiallise and fit random forest
Parameters
n-estimators int , optional
number of trees. The default is 100.
maz_-depth int , optional
maxz depth of all decision trees. The default is 3.

Returns

None .

EErs

self.model = RandomForestRegressor(n_estimators =
response = np.ravel(self.response)

self.model. fit (self.pred, response)

lasso_init (self, alpha = 0.1):
EER)
initialise and fit lasso
Parameters
alpha float , optional
coefficiant for the penalty term. The default is 0.1
Returns
None
e
self.model = linear_-model.Lasso(alpha = alpha)

self .model. fit (self.pred, self.response)

n_net_init (self , pred, response, n, layers = 1,epochs=10
, verbose=0):
e
initialise and fit mneural network
Parameters
pred numpy array
predictors
response numpy array
response or target wvalues
no:oant
number of neurans in each layer.
layers int , optional
number of hidden layers. The default is 1.

epochs int , optional

number of forward and backward prop. The default is

activation str, optional

transfer function. The default is ’'sigmoid ’

optimizer str, optional

135

s

activation=’'sigmoid’
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B

n_estimators ,max_.depth=max_depth)

optimizer

’adam
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127 optimizer function. The default is ’“adam ’

128 verbose : int, optional

129 if 0: stops the network printouts , if 1 the printouts are enabaled. The default is 0.

130

131 Returns

132 —_—

133 None .

134

135 i

136 # self.n-model = tf.keras.models. Sequential ([

137 # tf.keras.Input (np.shape(self.pred[0])),

138 # tf.keras.layers.Dense(n, activation=activation ),

139 # tf.keras.layers.Dense (1, activation=activation )

140 # 1)

141

142 self.model = tf.keras.models.Sequential ()

143 # add input layer

144 self.model.add(tf.keras.Input(np.shape(self.pred[0])))

145

146 # add hidden layers

147 for i in range(layers):

148 self.model.add(tf.keras.layers.Dense(n, activation=activation))

149

150 # add output layer

151 self.model.add (tf.keras.layers.Dense(l, activation=activation))

152

153 self.model.compile(optimizer=optimizer ,

154 loss="MeanSquaredError’ ,# mean-squared_-logarithmic_.error ',#’

categorical_crossentropy ',# MeanSquaredError ',

155 #loss="MeanAbsoluteError ',

156 metrics=["'mse’])

157

158 self.model. fit (self.pred, self.response, epochs=epochs, verbose=0)

159

160

161 def RF_cross_val(self, n_estimators = np.arange (100, 250, 1) ,max_-depth = np.arange(2, 5, 1), cv = 10,
plot = True):

162 rn

163 Random forest cross walidation

164

165 Parameters

166

167 n-estimators : numpy array , optional

168 number of decision trees. The default is np.arange (100, 250, 1).

169 max-depth : numpy array , optional

170 maz depth for each decision tree. The default is np.arange (2, 5, 1).

171 cv : int, optional

172 number of folds. The default is 10.

173 plot : bool, optional

174 should the cross validation scores the plotted by tuning parameter. The default is True.

175

176 Returns

177

178 res : dictionary

179 resutls of the cross walidation by the tuning parameters.

180

181 i

136



182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

199

201
202
203
204
205

207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

227
228
229
230
231
232
233
234
235
236
237

# prepare to store data
res = dict ()

i =0

scores

estimators_-scores

# for all

for k, n

parameters in

depth_scores =
for 1, d
print (i)
n =

int(n)

RF =

= np.zeros (len(n_-estimators))

range

in enumerate(n_estimators):
np.zeros (len(max-depth))

in enumerate(max_depth) :

np.zeros (len(n_estimators)x+len (max_depth))

RandomForestRegressor(n_estimators=n, max_depth=d)

# perform cross walidation
score = cross_val_score (RF, self.pred, self.response, cv = cv,
neg_-mean_squared_error ’) .mean ()
# store data
scores [i] = score
depth_scores[1] = score
i = i+41
res[’'n_estimators: /{}/, max_depth: /{}/’.format(n,d)] = score
estimators_scores [k] = depth_scores.mean ()
# plot cross walidation result
if plot == True:
plt .plot (max_depth, depth_scores)
plt.xlabel ('max depth’)
plt.ylabel(’scores’)
plt.title ('CV scores RF’)
plt .show ()
plt.plot (n_estimators, estimators_scores)
plt.xlabel( ' n_estimators’)
plt.ylabel(’scores’)
plt . title (’CV scores RF’)
plt .show ()
return res
KNN_cross-val(self , N = np.arange (100, 250, 1), cv = 10, plot = True):
KNN cross wvalidation
Parameters
N : numpy array, optional
number of mneigbors considered. The default is np.arange (100, 250,

cv : int, optional

number of folds. The default is 10.
plot bool , optional

should the cross walidation scores the plotted
Returns
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by
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1).

tuning parameter .

The

default
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239
240
241

251
252
253
254

255

257
258
259
260
261

263
264
265
266
267

269
270
271
272
273

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292

res : dictionary

resutls of the cross walidation by the tuning parameters.

# prepare to store data

res = dict ()
i =0
scores = np.zeros (len(N))

# for all parameters in range
for n in N:

print (i)

n = int(n)

KNN = KNeighborsRegressor(n_-neighbors=n)

# perform cross walidation

score = cross_val_score (KNN, self.pred, self.response, cv = cv, scoring=’

neg_-mean_squared_error ’) .mean ()

# store data

scores[i] = score
i= i+l
res[’'k: /{}/’ .format(n)] = score

# plot cross walidation result
if plot == True:
plt.plot (N, scores)
plt.xlabel (k)
plt.ylabel(’scores’)
plt.title ('CV scores KNN’)
plt .show ()

return res

lasso_-cross_-val(self, al_array = np.arange(0.01, 10, 0.01), cv = 10, plot =

Lasso—regression cross validation

Parameters

al_array : numpy array , optional

penalty coefficients considered. The default is np.arange (0.01, 10,
cv : int, optional

number of folds. The default is 10.
plot : bool, optional

should the cross walidation scores the plotted by tuning parameter.

Returns

res : dictionary

resutls of the cross wvalidation by the tuning parameters.

# prepare to store data

res = dict ()
i =0
scores = np.zeros(len(al_array))

138

True) :
0.01) .
The default

is

True .



295
296
297
298
299

301
302
303
304

306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322

324
325
326
327
328

330
331
332
333
334
335

337
338
339
340
341

# for all parameters in range
for alpha in al_array:
print (i)

lasso = linear_model.Lasso(alpha = alpha)
# perform cross walidation
score = cross.val_score (lasso, self.pred, self.response, cv = cv, scoring="’

neg-mean-squared_error’) .mean ()

# store data

scores[i] = score
i = i41
res[’alpha: /{}/'.format(alpha)] = score

# plot cross walidation result

if plot == True:
plt.plot(al_array , scores)
plt.xlabel (’alpha’)
plt.ylabel(’scores’)
plt.title ('CV scores lasso’)
plt .show ()

return res

n_net_cross_val(self, N = np.arange (10, 500, 100),layers_list = [1,2, 3], act_list = [’sigmoid’],
cv = 10,epochs=10, plot = True):

Neural Network cross wvalidation

Parameters

N : numpy array, optional
range of number of mneurans in every layer considered. The default is np.arange (10, 500, 100).
layers-list : list , optional

range of mnumber of hidden layers considered. The default is [1,2, 3].

act_list : list , optional
activation functions considered. The default is [’ sigmoid ’].
cv : int, optional

number of folds. The default is 10.

epochs : int, optional
numnber of epochs or cycles of training. The default is 10.
plot : bool, optional

should the cross walidation scores the plotted by tuning parameter.
Returns

res : dictionary

resutls of the cross wvalidation by the tuning parameters.

# prepare to store data

res = dict ()

kf = KFold(n_.splits=cv)
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357
358
359
360
361
362
363
364

365
366
367

368
369
370
371

373

374
375
376
377
378
379
380
381
382

384
385
386
387
388
389

391
392
393
394

396
397
398
399
400
401

# for all parameters in range

for act in act_list:

layers_scores = np.zeros(len(layers_list))
for 1, layers in enumerate(layers_list):
N_scores = np.zeros (len(N))

for m, n in enumerate(N):
i =0

scores = np.zeros(cv)

# perform cross wvalidation

# split the data and loop for ecach split

for train, test in kf.split(self.pred,

self.n_net_init(self.pred[train], self.response[train],n = n, layers = layers,
activation = act,epochs=epochs)

# store data

scores [i] = self.model.evaluate(self.pred[test], self.response[test], verbose=0)

[o]
it=1

# store data

self.response):

»

score = scores.mean ()
N_scores [m] = score
res[’layers: /{}/, activation: /{}/, neurons: /{}/’.format(layers ,act, n)] = scores.
mean ()
tf.keras.backend.clear_session ()
layers_scores [1] = N_scores.mean ()
# plot cross walidation result
if plot == True:
plt.plot (N, N_scores)
plt.xlabel (’neurons’)
plt.ylabel(’scores’)
plt.title (’CV scores N-—net’)
plt .show ()
plt .plot(np.array(layers_list), layers_scores)
plt.xlabel(’layers’)
plt.ylabel(’scores’)
plt.title (’CV scores N—net ')
plt .show ()
return res
predict_syn_grid (self ,grid_list ,grid_.names, win, method = 'KNN’, grid_ext = ’casel’, geo-int =
none ’ ,
w_start = [267, 178], w-end-top = [0, 178], w-end-base = [0, 273],
max TWT = —618, min. TWT = —~1162,horizons_list = None,
mean_arr = None, std-arr = None):
Use Trained ML model to predict the target wvalues of the synthetic cross—section (grid)

Parameters
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403
404
405
406
407

409
410
411
412
413
414
415
416
417
418
419

421
422
423
424
425

427
428
429
430
431

433
434
435
436
437

439
440
441

447
448
449
450
451

grid_list : list
list of 2d arrays representing the cross—sections .
grid-names : list
list of grid mames, for example [’imp ', ’por ’].
win @ int
window size for mean and median rolling window and window selection .
method : str, optional

machine learning method. The default is ’'KNN .

grid_ext : str, optional
predictor extraction preset. The default is ’casel ’
geo_int : str, optional

Should the depositional time be implemented and if so how?. The defau

w-start : list , optional

It is ’mone

the starting position of the wedge: the pinch point. The default is [267, 178].

w-end_-top : list , optional

the end of the top surface of the wedge. The default is [0, 178].
w-end_-base : list , optional

the end of the base surface of the wedge. The default is [0, 278).
max-TWT : int, optional

mazimum value of the TWT. The default is —618.
min.TWT : int, optional

minimum value of the TWT. The default is —1162.

horizons-list : list or None, optional
list of numpy arrays that describe where the horizons intersect with
default is None.
mean_arr : float , optional
the mean wvalue wused in the standardization. The default is None.
std_arr : float , optional
the standard deviation wused in the standardization. The default is No
Returns
pred-map : numpy array
result of the prediction .
v, h = np.shape(self.grid)
# reserve memory for result
pred_-map = np.zeros ((v, h—winx2))
# plt.imshow (self.grid.T)
# plt.show ()
# for every trace
for col in range(len(self.grid)):
print (’col = ’, col)
# ¢ = self.grid[col]
# data = pd.DataFrame(c, columns = [7AI ’])
Load well
logl = load_well(file_name = ’data_2d_wedge_.F3\F03_2_por_eff.xlsx’) #
data = logl.from_synthetic(grid-list , grid-names, col = col)
data.drop(’Por’, axis=1, inplace=True)

# predictor extraction
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459
460
461
462
463

465
466
467
468
469

471
472
473
474
475
476

477
478
479

480
481
482
483
484
485
486
487
488
489
490
491
492

494
495
496
497
498
499

501
502
503
504
505

507
508
509
510
511

from classes.predictor_ext

new.pred = predictor_ext (data)
name = ’imp’

# new_pred.

import predictor_ext

add_well_loc (well_-loc=col)

if grid_ext == ’casel ’:

new-pred.roll_mean (data_-name =
new_pred.roll_median (data_name

new-pred .

elif grid_ext = ‘case2 :

new._pred.roll_mean (data-name =
new_pred.roll_median (data_.name
else:

pass

win_select (data-name =

name, win = win)
= name,win = win)
name, win = win)
name,win = win)
= name,win = win)

if geo_-int == 1

‘wedge
new_pred.construct_timelines_we
w-end_-base=w_end_-base ,

).

elif geo.int ’from horizons

new_pred.construct_timelines_from_horizons (self.grid,

dge_df(self.grid,

col = col,

w_start =

win

min.TWT = min.TWT)
new._pred.depotime_well (well_loc = col)
new.-pred.remove_outside_window (win = win)

self .new._pred = new_pred

pred = new_pred.data.to_numpy ()

# standardize predictor based on

if type(mean_arr)==np.ndarray and t

previous

ype(std_arr)

standardization

pred , dummyl, dummy2 = new_pred.stand_.pred (pred,mean_list = mean_.arr, std_.list = std_arr)
else:
pass
# predict
prediction = self.model.predict (pred)
if method == ’'RF’ or method == ’lasso ’:
pred_map[col] = prediction
else:
pred_map[col] = prediction [:,0]
return pred_-map
predict_grid (self , grid-list ,grid-names, win, method = 'KNN’ grid_-ext = ’casel’, geo_-int =
horizons_-list = None, maxTWT = —618, min.TWT = —1162,
mean_arr = None, std_arr = None):
EED)
Use Trained ML model to predict the target walues of the cross—section (grid)

142
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win)
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s

w_end_top=w_end_top ,

max TWT = max.TWT,
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512
513
514
515
516
517
518
519
520
521

528
529

531
532
533
534
535

537

551
552
553
554

556
557
558
559
560
561
562
563
564
565
566
567

Parameters
grid-list : list

list of 2d arrays representing the cross—sections .

grid-names : list
list of grid mames, for example [’imp’, ’por ’].
win : int

window size for mean and median rolling window and window selection .
method : str, optional

machine learning method. The default is ’'KNN .

grid_ext : str, optional

predictor eatraction preset. The default is ’casel ’
geo_int : str, optional

Should the depositional time be implemented and if so how?. The default is ’'none ’
horizons_list : list or Nome, optional

list of nmnumpy arrays that describe where the horizons intersect with the cross—section.

default is None.
max-TWT : int , optional
mazimum value of the TWT. The default is —618.
min-TWT : int, optional

minimum value of the TWT. The default is —1162.

mean-arr : float , optional

the mean wvalue used in the standardization. The default is None.
std-arr : float , optional

the standard deviation wused in the standardization. The default is None.
Returns
pred_map : numpy array

result of the prediction .

EERS

v, h = np.shape(self.grid)

# reserve memory for result
pred_map = np.zeros ((v, h—winx2))
# plt.imshow(self.grid.T)

# plt.show ()

# for every trace

for col in range(len(self.grid)):

print (’col = 7, col)
# c = self.grid[col]
# data = pd.DataFrame(c, columns = [7AI ’])
Load well
logl = load_well(file_name = ’data_.2d_wedge_F3\FO03_2_por_eff.xlsx’)
data = logl.from_synthetic(grid-list , grid_names, col = col)
# data.drop (' Por’, amis=1, inplace=True)

# predictor extraction

from classes.predictor_-ext import predictor_ext
new.-pred = predictor_ext (data)

name = ’imp’

# nmnew-pred. add_-well_-loc (well_-loc=col)
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569 if grid_ext == ’casel ’:

570 new_-pred.roll_mean (data_-name = name,win = win)
571 new._pred.roll_median (data.name = name,win = win)
572 new.-pred. win_select (data_.name = name,win = win)
573

574 elif grid-ext == ’case2’:

575 new.pred.roll_mean (data.name = name,win = win)
576 new.-pred.roll_median (data_.name = name,win = win)
577 else:

578 pass

579

580 if geo.int == ’'from horizons ’:

581 new._pred.construct_timelines_from_horizons (self.grid, horizons_list , standardizing = False

max TWT = maxTWT, min.TWT = min.TWT)

582 new.-pred.depotime_-well(well_-loc = col)

583

584

585

586

587 new_pred.remove_outside_window (win = win)

588 self .new_pred = new_pred

589

590 pred = new_pred.data.to_numpy ()

591

592 # standardize predictor based on previous standardization
593 if type(mean_arr)==np.ndarray and type(std_arr) ==np.ndarray:
594 pred , dummyl, dummy2 = new._pred.stand.pred (pred, mean_list = mean.arr, std-list = std_arr)
595 else:

596 pass

597

598 # predict

599 prediction = self.model.predict (pred)

600

601 if method == 'RF’ or method == ’lasso’:

602 pred_map[col] = prediction

603 else:

604 pred_map[col] = prediction [:,0]

605

606 return pred_map

C.8 plot_results.py

1 # —%— coding: utf—8 —w—

EERs

Created on Mon Jan 10 11:22:11 2022

2

3

4

5 @awuthor: Eier
6

7 import matplotlib.pyplot as plt
8

import numpy as np

9 from classes.usefull_functions import usefull_functions
10 class plot_results:

11

12 def __init__(self):

13 self.sel = ’placeholder’

14
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def plot_generic(grid,

vecut=F

EER)

Plot omne cross

Parameters

vmin, vmax,

alse , hcut

section

title , xlab

= False):

ed array.

ed array.

grid numpy array

2D array of the cross—section .
vmin float

minimum wvalue of the plott
vmazx float

mazimum wvalue of the plott
title str

title of the plot.
zlab str

z label.

ylab str

y label.
extent list

axris extent as traces and
cmap str, optional

colormap . The

veut list ,
vertical slice
hcut list ,

horizontal

Returns

None .

if vcut == False:

pass

else:

TWT = np.linspace (extent [3],
extent [3] = TWT[vecut [0]:
extent [2] = TWT[veut [0]:

grid = grid [:,
if hcut == False:
pass
else:
grid =

plt .imshow (grid.T,
plt.xlabel (xlab)
plt.ylabel (ylab)
plt.title (title)
plt.colorbar ()

plt .show ()

def grids_comp (self ,

gridl ,

optional

optional

veut [0]:

cmap=cmap ,

grid2 ,

ve

TWT.

veut [1]][0]

ut [1]][ —1]

veut [1]]

grid [hcut [0]: hcut [1] ,:]

aspect=’auto

vcut=False ,

>

default is ’jet’
of the array (TWT). The
slice of the array (traces).

extent [2] ,

ylab ,

default is

The

len (grid [1,

,vmin=vmin ,

hcut =

145

extent ,cmap =

default

False ,

False .

is False .

1))

vmax=vmax ,

cmap =

Tjet

extent=extent)

Tjet



T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

titles = ['True’, Estimate’, 'MSE’], file-name = False,

extent=[—1,1,—1,1], ylab = '"TWT’, vmin =0.2,
plot two 2D arrays and the absolute difference between

The numpy arrays wused in the plotting are saved.

Parameters
gridi1 numpy array

array to be plotted and compared against grid2.
grid2 numpy array

array to be plotted and compared against gridi.

veut : list , optional

vmax = 0.4) :

them .

vertical slice of the array (TWT). The default is False.

heut : list , optional
horizontal slice of the array (traces). The default
cmap : str, optional

colormap . The default is ’jet
titles : list , optional
list of titles for the different plots. The default

file_name : str, optional

file path for the results to be saved to. The default is False.

extent : list, optional

is False .

is [’ True’, Estimate , 'MSE ’].

azis extent as traces and TWT. The default is [—1,1,—1,1].

ylab : str, optional
y label. The default is ’'TWT’.
vmin : float , optional
minimum value of the plotted array. The default is
vmaz : float , optional

mazimum value of the plotted array. The default is
Returns

Nomne .

EERs

if vcut False:

pass
else:
TWT = np.linspace (extent [3], extent[2], len(gridl][1l
extent [3] = TWT[vcut [0]:vcut [1]][0]

extent [2] = TWT[vcut [0]: vcut[1]][—1]

gridl = grid1[:, vcut[0]:vcut[1]]
grid2 = grid2[:, vecut[0]:vcut[1]]
if hcut == False:
pass
else:
gridl = gridl [hcut [0]:hcut [1] ,:]
grid2 = grid2 [hcut [0]: hcut [1],:]

plt.subplot (211)

plt.imshow (gridl.T, cmap=cmap, aspect=’auto’

,vmin=vmin ,
plt.xlabel (’Trace’)

plt.ylabel (ylab)
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129 plt.title (titles [0])

130

131 plt.subplot (212)

132 plt .imshow (grid2.T, cmap=cmap, aspect=’auto’,vmin=vmin, vmax=vmax, extent=extent)

133 plt.xlabel (’Trace’)

134 plt.ylabel (ylab)

135 cax = plt.axes ([0.95, 0.1, 0.075, 0.8]) # https:// matplotlib.org/stable/gallery/
subplots_azes-and_figures/subplots_adjust.htmigsphe—glr —gallery —subplots —azes —and—figures —
subplots —adjust —py

136 plt.colorbar (cax=cax)

137 if file_.name ! False:

138 np.save(file_name+’ gridl’, gridl)

139 np.save (file_name+' grid2’, grid2)

140 plt.savefig (file.name+’.png’, bbox_inches='tight ')

141 plt .show ()

142 plt .subplot (111)

143 uf = usefull_functions ()

144 sim = uf.my_map2(gridl, grid2, uf.diff)

145 plt .imshow (sim.T, cmap='nipy.spectral’, aspect=’auto’, vmin = 0, vmax = 0.15, extent—extent)

146 plt.xlabel (’Trace’)

147 plt.ylabel (ylab)

148 plt.title (titles [2])

149 cax = plt.axes ([0.95, 0.1, 0.075, 0.8])

150 plt.colorbar (cax=cax)

151 if file_name ! False:

152 np.save (file_name+’ difference’, sim)

153 plt .savefig (file_name+’ difference plot.png’, bbox_inches=’tight )

154 plt .show ()

C.9 wusefull_functions.py
1 # —x— coding: utf—8 —*—
2 P
3 Created on Wed Jan 19 15:53:33 2022
4
5 @author: Eier
6 P
7 import pickle
8 import numpy as np
9 import matplotlib.pyplot as plt

10 import scipy.signal

11

12 class usefull_functions:

13

14 def __init__(self):

15 pass

16

17 def save_cv(self, path = 'CV.pkl’, method = 'KNN’, dictionary = ’’):

18

19 # save the cv results

20 a_file = open(path, ”"wb”)

21 pickle .dump(dictionary , a_file)

22 a_file.close ()

23

24 # https://www. tutorialsteacher .com/articles /sort—dict—by—value—in—python

25 marklist=sorted ((value, key) for (key,value) in dictionary.items())

26 sortdict=dict ([(k,v) for v,k in marklist])
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
a7
48
49
50
51
52
53
54

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
76
T
78
79
80
81
82
83

self.cv_-.res = sortdict

# get the best results
if method == ’Neural Net’:
best = list (sortdict) [0]
else:
best = list (sortdict)[—1]

return best, sortdict[best]

nearest (self , number, arr):

EErs

Gets indexz of number nearest the "number”

Parameters

number TYPE
DESCRIPTION .
arr : TYPE

DESCRIPTION .

Returns

TYPE
DESCRIPTION .
»oy
search = abs(arr—number)
m = search.min()
return np.where(search == m) [0]

diff(self, vl, v2):

return abs(vl—v2)

my_map (self , grid, func):

I find the ecwisting map function to be limited , this is an

that applies a function to all elements in a grid/matriz.

n,k = np.shape(grid)

1 list (grid.flatten ())

m

list (map(func, 1))
a = np.array (m)

return a.reshape(n, k)

my-map2(self , gridl, grid2, func, cross = True):

I find the exzisting map function to be limited , this is an

that applies a function to all elements in a grid/matriz.
e

# if cross == True:

# meanl = np.mean(gridl )

# std1 = np.std(gridl)

# mean2 = np.mean(grid2 )

# std2 = np.std(grid2)
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36
37
38
39
40
41
42
43
44
45
46
47
48

n,k = np.shape(gridl)

11 = list (gridl.flatten ())
12 = list (grid2. flatten ())
m = list (map(func, 11, 12))
a = np.array (m)

return a.reshape(n, k)

C.10 section_horizon_coord.py

# —x— coding: utf—8 —x—

Created on Sat Feb 26 20:45:55 2022

@author: Eier

# finds the locations where horizons intersect the
import segyio

import pandas as pd

import numpy as np

#fault seis.segy

#wedge seis.seqgy’

# file-seis = ’'data\case Oseberg\case oseberg LFM

# hor_file = ’data\horizons\ Drake 100ms below ’

# hor_file = ’'data\horizons\ Drake LFM’

# hor_file = ’data\horizons\ Brent LFM’

# hor_file = ’data\horizons\ Shetland LFM’

# hor_file = ’data\horizons\ Shetland 50 ms above ’

# cross section

file.imp = ’data\case F3\Seis Inv depth Random line

f = segyio.open(file_imp , ignore_geometry=True)

#’data\ case F3\F8—Horizon—FS8 (Z) ',

# horizons

hor = [’data\case F3\F3—Horizon—MFS4 (Z)’,
# for each horizons
for hor_file in hor:

# get TWT of section

sec = segyio.tools.metadata (f)

TWT = —sec.samples

top-twt = TWT.max ()
base_twt = TWT.min()

1 = len(f.header)

s = len(f.trace[1])

# inter = (top_twt—base_twt)/161
inter = (top-twt—base_twt)/s
resx = np.zeros ((1, s))

imp.segy

’data\case F3\F3—Horizon—Truncation

cross —section

[2D Converted].segy’
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49 resy = np.zeros ((1, s))

50

51

52 for trace in range(l):

53 scale = f.header[trace][segyio.TraceField.SourceGroupScalar]
54 # get the coordinates of the cross—section

55 if scale <O:

56

57 x = f.header[trace][segyio.TraceField.SourceX]/abs(scale)
58 y = f.header[trace][segyio. TraceField.SourceY]/abs(scale)
59

60 else:

61 x = f.header [trace][segyio.TraceField.SourceX]*abs(scale)
62 y = f.header[trace][segyio.TraceField.SourceY]*abs(scale)
63

64 resx [trace] = x

65 resy [trace] =y

66

67 samples = f.trace[trace]

68

69

70

71

72

73 TWT_array = np.zeros (len(resx))

74

75 # load horizon

76 hor = pd.read.csv(hor_file , header = None, sep = ’ )

77 2z = np.zeros (len (hor))

78

79 for coo in range(len(resx)):

80 print (coo)

81 for i in range(len (hor)):

82 # horizon point

83 point_a = np.array ([hor [0][i], hor[1][i]])

84

85 # cross—section point

86 point_b = np.array ([resx[coo, 0], resy[coo, 0]])

87

88 # distance between points

89 dist = np.sqrt ((point-a[0] —point_-b[0]) *x(point_-a[0] —point_-b[0])+
90 (point_a[l] —point_b[1]) *(point_a[l]— point_b[1]))
91

92 z[i] = dist

93

94 # get smallest distance

95 in.min = np.argmin(z)

96

97 TWT = hor.iloc [in_min][2]

98 TWT_array [coo] = —TWT

99

100 np.save(hor_file4 TWT’ , TWT_array)

101 f.close ()
102
103 # np.load (hor_file+ "TWT + .npz ')
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C.11 make new_wells.py

# —w— coding: utf—8 —w—

Created on Sun Apr 8 20:42:06 2022

@author: Eier

# the logs of a well may not

match

# this script matches the logs

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

well_files = [’data\case F3\F02_.1.xlsx’,

new_well_files = [’data\case

for k,file in enumerate(well_files):

df = pd.read-excel (file)

F3\F02_1_new .

‘data\case

txt’

F3\F03_2.xlsx ']

, 'data\case F3\F03_.2_new.txt ']

df = df.loc[:, “df.columns.str.contains(’ Unnamed’)]

df-por = pd.DataFrame ()
df_por [ 'MD’] = df[ 'MD’]
df_-por['Por.Eff.’] = df[ Por.Eff. "]
df_por = df_por.dropna ()

df_imp = pd.DataFrame ()

df-imp ['MD’] = df[’'MD.1"]

df_imp [ P—imp.’] = df[ 'P—imp.’]

df_imp = df_.imp.dropna ()

por-MD_lim = [df_por[’'MD’].min() ,

df_por [ ’MD’].max() ]

df-imp = df-imp [df-imp [ MD’]>por-MD_lim [0]]

df_imp = df_imp [df_imp [ 'MD’]<por_-MD_lim [1]]
df_imp = df_.imp.reset_index ()

df_por = df_por.reset_index ()

df_well = pd.DataFrame ()

def nearest (number, arr):

EERS

Gets index of number

Parameters

number : TYPE

DESCRIPTION .

arr : TYPE

DESCRIPTION .

Returns

nearest

the

"number”
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57
58

60
61
62
63
64

66
67
68
69
70
71
T2
73
T4
75
76
T
78
79
80
81
82
83
84
85
86
87
88
89

S NN

© N o

11
12
13
14
15
16
17
18
19
20

TYPE

DESCRIPTION .

EERS

search = abs(arr

m = search.min()

return np.where(search

md_list = []
imp_list

[

por_list = []

number)

m) [0]

for n, i in enumerate(df_imp[ 'MD’]) :

arr = df_por [ 'MD’].to_numpy ()

ind = nearest (i,

arr) [0]

md = df_imp.iloc [n][ MD’]

md_list .append (md)

imp = df_imp.iloc [n][ 'P—imp.

imp-list .append (imp)

por = df_por.

por-list .append(por)

df-well ['MD’] =
df_well [’imp’] =

df-well ['por’] =

plt.scatter (df-well [ ’imp '],

df_well.to-csv(new-well_files [k],

md-_list

imp-_list

por_list

C.12 upscale.py

# —x— coding: utf—8 —w—

EERd

Created on Thu Apr 14 13

@author: Eier

EERs

# upscales the well

import pandas as pd

import numpy as np

logs

import matplotlib.pyplot

nearest (number ,

Gets index of number

Parameters

number : float

iloc [ind ][ 'Por.

$18:12 2022

based on

as plt

arr) :

nearest

an

the

"]

Bff. ]

index =

ecxisting

"number”

df-well ["por’])

False)

already upscaled well
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the

v

alue to find in arr.

arr : numpy array

arr

Returns

ey

int
the index where arr is closest to number.
search = abs(arr—number)
m = search .min()
return np.where(search == m) [0]
# get upscaled well log
upscale = ’data\case F3\AI resampled.xlsx’
up-df = pd.read_-excel (upscale)
up.df = up_df.loc[:, “up.df.columns.str.contains(’"Unnamed’) ]

# well logs

well_files

# for each
for k,file

t

of walues .

o be upscaled

[’data\case F3\F02_.1l_new’, ’data\case F3\F03_2_new’]

well

in

enumerate (well_files):

df = pd.read-csv (file+'.txt’)

df = df.loc[:, ~df.columns.str.contains(’" Unnamed’)]
df_por = pd.DataFrame ()

df_por ['MD’] = df[ 'MD’]

df_por[’por’] = df[’por’]

df_por = df_por.dropna()

df_-imp = pd.DataFrame ()

df_imp [ 'MD’] = df[ 'MD’]

df_imp [’imp’] = df[’imp’]

df_imp = df_imp.dropna ()

plt.scatter (df[’imp’], df[’ por’])

plt .show ()

por_-MD_lim = [df_por['MD’].min(), df_por [ ’MD’].max() ]
df_imp = df_imp [df_imp [ 'MD’]>por_MD_lim [0]]

df-imp = df-imp [df-imp [ MD’]<por-MD_lim [1]]

df_imp = df_imp.reset_index ()

df_por df_por.reset_index ()

df_well = pd.DataFrame ()

md_list = []

imp_list = []

por-list = []

# for every point in the upscaled well —log MD
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78 for n, i in enumerate(up-df[’MD’]) :

79

80 arr_por = df_por [ 'MD’].to_numpy ()

81 arr_imp = df_imp [ ’MD’].to_numpy ()

82

83 # find the closest point in the real well—logs and save
84 ind_-por = nearest (i, arr-por)[0]

85 ind_-imp = nearest (i, arr_imp) [0]

86

87 md = up-df.iloc [n][ 'MD’]

88 md_list .append (md)

89

90 imp = df_imp.iloc [ind_imp ][ ’imp’]

91 imp_list .append (imp)

92

93 por = df_por.iloc[ind_-por][ ' por’]

94 por_list .append (por)

95

96 # store the new upscaled well logs in a dataframe
97 df_well ['MD’] = md_list

98 df_well [’imp’] = imp_list

99 df_well[’por’] = por_list

100

101 plt.scatter (df_-well[’imp’], df_-well[ por’])

102 plt .show ()

103 # df-well.to_csv (file+ _upsacale.tzt ', index = False)

C.13 well _paths_horizon.py

1 # —x— coding: utf—8 —w—

3 Created on Fri Mar 11 16:44:24 2022

4

5  @author: Eier

6 rnn

7  # implements the horizon locations to the well.

8 # the well path is given with coordinates (interpolation is requicred)
9 # the horizon point set is given with coordinates

10

11 import pandas as pd
12 import numpy as np

13 import matplotlib.pyplot as plt

15 def TWT_from_MD (MD) :

16 z = np.load ('TDR\ _fit TDR result.npy’)

17 p = np.polyld(z)

18

19 return p(MD)

20

21

22 file = ’data\case F3\F03.2 well path’

23 # file = ’data\case Oseberg\w30-9_.J_18_well_path ’
24 hor_filel = ’data\case F3\F3—Horizon—FS8 (Z)’

25 hor_file2 = ’>data\case F3\F3—Horizon—MFS4 (Z)’

26 hor_file3 = ’data\case F3\F3—Horizon—Truncation (Z)’
27

28 hor_file_list = [hor_filel , hor_file2 , hor_file3]
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29
30
31
32
33
34

35
36
37
38
39
40
41

42
43
44

45
46
47
48
49
50
51
52
53
54

56
57
58
59

60
61
62
63
64
65
66
67
68
69
70
71
T2

73
T4
75

df
df
df

pd.read_csv (file ,

df.loc[:, ~df.columns.str.

df.dropna ()

skiprows=17, sep =

vy

contains (' Unnamed’) ]

HHHHHHAAAHHHHH from hitps ://stackoverflow .

each—row

n =

10

new-index

new_-df = pd.DataFrame(np.nan,

ids

= pd.Rangelndex (len (df) *(n+1))

= np.arange (len (df))*(n+1)

new_df.loc [ids] = df.values

df

new._df

index=new.index ,

com/questions /66466080/python —pandas—insert —empty—rows—after —

df

df =

interpolate

columns=df.columns)

df.interpolate ()

df.reset_index ()

MD to

z = np.polyfit (df[ MD’],
np.save (file[:18]4 'MD to Z

Z in well

path

df[’'z'], 12)
‘+file [18:], z)

hor_location_.58

# for

for

hor_fi

le

each horizon

in hor-file_list:

print (hor_file)

#

= pd.DataFrame ()

hor =

hor [2]

pd.

read-csv (hor_file ,

—hor [2]

header = None, sep

reduce

the

search

area

for

well

location

upperX =

upperY =

lowerX

lowerY =

hor =

hor =

hor =
hor =

hor =

hor .

hor .

hor

hor .

hor .

df[’X’].max()+10
df[’Y’].max()+10

df[’X’].min()—10
df[’Y’].min()—10

drop (hor [(hor [0]
drop (hor [(hor[0]

.drop (hor [(hor[1]
drop (hor [(hor [1]

reset-index ()

<
>

<
>

lowerX) | .

upperX) | .

lowerY) ].

upperY) ].

index)

index)

index)

index)

# df["TWT '] = TWT-from-MD (df [ MD’])
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78
79
80

82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

# reserve memory

z

= np.zeros (len (hor)*len (df))

twt = np.zeros (len (hor)xlen (df))

n

#

=0

follow

for coo

the well path interpolated points

in range(len(df)):

print (coo)

for

i in range(len (hor)):
# horizom point

point_a = np.array ([hor[0][i], hor[1][i], hor[2][i]])

# well point

point_b = np.array ([df[’'X’][coo], df[’Y’][coo], df[’Z’][coo]])

# distance between points
dist = np.sqrt ((point_a[0] —point_b [0]) *(point_a[0]—point_b[0])+
(point-a[l] —point_-b [1]) *x(point-a[l] —point_-b [1])+

(point_a[2] —point_b [2]) *(point_a[2] —point_b [2]))

z[n] = dist
twt[n] = hor [2][i]
n+=1
# find the two closest points
in_min = np.argmin(z)
# record the horizon location in the well path
TWT. loc = twt[in_min]
hor_location_5S [hor_file [14:]] = [TWT.loc]

# compile results

hor_-location.5S .to-csv (file+’ horizon loc’+’.txt’, index = False, encoding =
# plt.plot (df['X '], df['Y])

# plt.show ()

# plt.plot (df['X '], df[’'Z"])

# plt.show ()

# plt.plot (df[7Y ], df[’'Z"])

# plt.show ()
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