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Abstract. Partially blind signatures, an extension of ordinary blind sig-
natures, are a primitive with wide applications in e-cash and electronic
voting. One of the most efficient schemes to date is the one by Abe
and Okamoto (CRYPTO 2000), whose underlying idea — the OR-proof
technique — has served as the basis for several works.
We point out several subtle flaws in the original proof of security, and
provide a new detailed and rigorous proof, achieving similar bounds as
the original work. We believe our insights on the proof strategy will find
useful in the security analyses of other OR-proof-based schemes.

1 Introduction

Blind signatures, first introduced by Chaum [13], are a fundamental crypto-
graphic primitive. They allow two parties, a signer who holds the secret key and
a user who holds the message, to jointly generate a signature. Roughly speaking,
security requires that the signer learns nothing about the message nor the signa-
ture (blindness), and the user cannot forge a signature that does not result from
its interaction with the signer (one-more unforgeability). Blind signatures have
found extensive applications in settings where anonymity is of great concern,
such as e-cash [13, 15, 21, 42] and electronic voting [14, 20].

However, in a blind signature scheme, the signer has absolutely no control
over the message it signs. This leads to various shortcomings in practice. First,
in an e-cash system where a bank uses blind signatures to issue its coins, to avoid
the double spending problem, the bank has to keep record of all coins that have
been spent; to prevent the ledger from growing unlimitedly, old coins need to
expire after a period of time, so that the corresponding entries in the ledger can
be deleted. Second, there is no way to inscribe the value or expiration date of a
coin. Thus, the bank has to use a different public key for each value/expiration
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date, and anyone who spends or receives these coins has to maintain a list of
all public keys, which has to evolve over time when old coins expire and are
replaced by new ones. Similarly, in electronic voting, voters have to download a
new public key for each election.

To address these issues, Abe & Fujisaki [2] proposed an extension called
partially blind signatures, which allow a signer to explicitly include some common
information (called the tag) in the signature. The tag is agreed upon by the
signer and the user in advance and remains unblinded throughout the signing
procedure; for example, it can be the date of issue or the value of the electronic
coin. Setting the tag to the empty string yields an ordinary blind signature
scheme. Informally, a partially blind signature scheme is secure if it satisfies (1)
partial blindness: for multiple signatures that use the same tag, an adversarial
signer cannot link these signatures to the signing sessions they originate from;
and (2) one-more-unforgeability, or OMUF security : an adversarial user that
interacts with the signer in at most ` many sessions, cannot output more than `
valid message-signature pairs.

Despite 25 years of research, there have been very few partially blind sig-
nature schemes ever proposed. The most efficient scheme up to date is the one
proposed by Abe and Okamoto (AO) [4], which involves only 2 group (multi-)
exponentiations for the signer and 4 (multi-)exponentiations for the user. The
scheme is based on the classical OR-proof technique for obtaining witness indis-
tinguishable protocols by Cramer et al. [17], and its security proof involves an
intricate rewinding argument. The ideas behind both the scheme and its security
proof repeatedly appear in blind signatures [1, 5, 7, 40].

Unfortunately, close scrutiny shows that there are a number of critical issues
with the proof of one-more-unforgeability in AO and in some other subsequent
works. In particular, the analysis of the reduction’s success probability is based
on a problematic counting argument. In this paper, we revisit the AO partially
blind signature scheme and present a new comprehensive analysis of its one-
more-unforgeability, which addresses all issues in the original security proof.
(The proof of partial blindness in AO is correct and is not the focus of this
paper.) The contributions of this paper are two-fold. First, we identify the flaws
in the proof of AO, which we elaborate on in Section 1.1. Second, we overcome
these issues by resorting to a more involved and rigorous counting argument. Our
insights lead to new proof techniques and a much better understanding of AO’s
ideas. While we focus on the AO partially blind signature scheme, we believe
that our techniques are applicable to other blind signature schemes based on the
OR-proof technique.

1.1 Technical Overview

In this section we provide an overview of our security proof of the AO partially
blind signature scheme, and explain the issues in the original work [4]. Similar to
AO, our proof is done in two steps. First we consider the simplified case where
there is only a single tag. This is the most technically involved part of the entire
security analysis, and contains essential modifications to the proof in AO. Then
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we generalize it to the multi-tag case. This part of the proof is straightforward
and mostly follows [4]. For simplicity, we only discuss the case of a single tag in
this technical overview.

Forking: A Recap. The reduction in our security proof uses the forking tech-
nique to rewind the adversary and solve the discrete logarithm problem [36]. As
is standard in a forking argument, we first define what we call a deterministic
wrapper which provides a simplified, non-interactive interface to the reduction.
More precisely, the wrapper takes as input an instance I (containing a public
key and the internal values used to generate the signer’s first messages of all
signing sessions), a random tape rand (containing the random tape of the actual

adversary), and a random hash vector
−→
h (to be used as outputs of random or-

acle queries). The reduction forks the wrapper instead of forking the adversary
directly. In more concrete terms, this means that the reduction runs the wrap-

per once on inputs I, rand,
−→
h and obtains an output which implicitly defines

an index J ∈ [|
−→
h |]. It then generates a vector

−→
h ′ by resampling the vector

−→
h

uniformly at random from position J , and keeping the first J − 1 entries the

same. It reruns the wrapper on inputs I, rand,
−→
h ′, which will generate a run that

is identical up the point where the reduction answers the J-th random oracle
query. In particular, the input to this query remains identical in both runs. The
goal of the reduction is to infer some equality from these relations so as to solve
a discrete logarithm instance that it suitably embeds in its interaction with the
adversary (see below).

Dealing with OR-Proofs in Forking. The AO scheme uses the classical
OR-proof strategy of [17] to combine two Schnorr-style signatures into one. The
witness for one branch of the proof is the actual secret key x of the scheme; the
other branch corresponds to the tag key z which is obtained through hashing
the tag info. On the signer’s side, the protocol is a witness indistinguishable
(WI) proof of knowledge of at least one witness, either the secret key x or the
discrete logarithm of the tag key dlog z. This gives rise to the following proof
strategy, which was also used in [7]: The reduction can choose these tag keys
such that it knows a witness and sign without knowing the secret key (so it
can embed a discrete logarithm challenge in the public key), or it can embed
its discrete logarithm challenge in a tag key and sign using the actual secret
key. The intuitive idea here is that for each run of the protocol, the witness
used internally by the reduction is perfectly hidden from the adversary (due to
WI). Thus, the probability that the reduction is able to extract the “opposing”
witness (i.e., the one it is not using itself for answering signing queries) from two
forking runs of the adversary should be high.

Unfortunately, this intuition proves incorrect upon closer inspection. While
WI perfectly hides the witness during any single run of the protocol, the tran-
scripts of two executions of the protocol with the adversary (as performed by the
reduction) can depend on the witness internally used by the reduction. There-
fore, arguing that the reduction indeed extracts the opposing witness from two
runs of the adversary turns out to be highly non-trivial.
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Partnering Runs. We now describe the general idea for proving that the re-
duction has a significant probability to extract the witness it needs. For now we

fix an instance I and a random tape rand, and consider the hash vector
−→
h as the

only varying parameter of the reduction. Using a simple counting argument, one
can show that for a significant portion of pairs I, rand, there must exist two hash

vectors
−→
h ,
−→
h ′ that lead to the same transcript between the wrapper and the ad-

versary when the wrapper is run on (I, rand,
−→
h ) or (I, rand,

−→
h ′), respectively. Bor-

rowing the terminology from [4], we refer to such triples (I, rand,
−→
h ), (I, rand,

−→
h ′)

as partners. The key observation is that the witness extracted from partnering
runs is independent of which witness was used by the reduction as part of the
instance I, and thus the reduction has a significant probability of extracting the
desired witness (i.e., the witness not used by the reduction).4 Unfortunately,

given I, rand, finding a pair of partners (I, rand,
−→
h ) and (I, rand,

−→
h ′) might not

be efficiently possible, as in general, only few of them may exist. Hence it re-
quires an additional argument to ensure that the reduction produces forks from
which the desired witness can be efficiently extracted.

From Partners to Triangles. The next step in our chain of reasoning is to
apply the strategy of AO for “amplifying” the number of forking runs from which
the desired witness can be extracted. Thus, analogous to AO, we define triangles

as follows. The corners of a triangle will be three triples (I, rand,
−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′), which produce successful runs for the wrapper. In addition,

−→
h ,
−→
h ′,
−→
h ′′ all share a common prefix of some i − 1 entries and start to fork

from each other at the i-th entry. The most important property of a triangle,

however, is that (I, rand,
−→
h ) and (I, rand,

−→
h ′) be partnering runs, i.e., produce

the same transcript for the wrapper. (AO refer to the pair of partnering runs
as the “triangle base” and to the remaining pairs of triples as the “triangle
sides”.) We illustrate this in fig. 1. As observed by AO, if the forked runs cor-

responding to (I, rand,
−→
h ) and (I, rand,

−→
h ′) yield the desired witness (i.e., the

one not stored inside I), then either of the forked runs (I, rand,
−→
h ), (I, rand,

−→
h ′′)

or (I, rand,
−→
h ′), (I, rand,

−→
h ′′) yield the same witness. Their key insight is that

the number of triangles should be far greater than the number of triangle bases

formed by partnering runs (I, rand,
−→
h ) and (I, rand,

−→
h ′). Intuitively, this is the

case because a single pair of triples (I, rand,
−→
h ), (I, rand,

−→
h ′) can serve as the

base in many different triangles.

A Gap in AO. The next step in the analysis of AO is to count the number
of triangles for which at least one side yields the desired witness. (We call such

4 Due to the WI property of the scheme, for any (I, rand,
−→
h ), there exists a corre-

sponding triple (I′, rand,
−→
h ) that contains the other witness and produces the same

transcript as (I, rand,
−→
h ). This means that the same witness w could have been ex-

tracted from a pair of partnering runs (I, rand,
−→
h ), (I, rand,

−→
h ′), or from (I′, rand,

−→
h ),

(I′, rand,
−→
h ′), where one of I and I′ contains w, and the other instance does not.
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(I, rand,
−→
h ) (I, rand,

−→
h ′)

(I, rand,
−→
h ′′)

base/partners

sidesid
e

(a) A triangle consists of a pair of part-
ners (the base) and one additional tu-
ple (the top). A pair consisting of the
top and one of the base corners is called
a side.

−→
h

−→
h ′

−→
h ′′

−→
h

−→
h ′−→

h ′′

(b) Left: forking as in a triangle (solid
lines are the base, dashed lines are the
top); right: not a triangle (forking at
wrong point).

Fig. 1: Triangles

triangle sides “successful”.) Recall that we keep I, rand fixed throughout this
counting argument, and argue only about the number of successful hash vectors
associated with runs using I, rand. If we can show that there are enough of
triangles with a successful side, we might hope that when sampling a random

pair (I, rand,
−→
h ), (I, rand,

−→
h ′′) during forking, the reduction will hit a successful

triangle side, from which the desired witness can be extracted.
This is the point where our analysis diverges significantly from [4]. As noted

above, many triangles may share a base; that is, for any given base, there exist
many possible triangle tops. This makes it possible to “amplify” the extractabil-
ity of the desired witness from a single base to extracting it from many possible
triangle sides which are adjacent to this base in some triangle. (Recall that if
a triangle base is successful, then at least one of the two sides must also be
successful.) However, we observe that many triangles may also share a side. If
many triangles overlap on successful sides (but not on unsuccessful sides), it
might happen that the total number of successful sides is much smaller than the
total number of unsuccessful sides.5

Indeed, this is where the most crucial gap occurs in [4]. First, for each triangle

base corner (I, rand,
−→
h ), they assign this corner a partner (I, rand,

−→
h ′) using the

mapping Prt (so (I, rand,
−→
h ′) = Prt(I, rand,

−→
h ) forms a triangle base together

with (I, rand,
−→
h ); see [4, p. 284]). It is, however, unclear if this is intended to be

5 We stress that simply replacing a triple (I, rand,
−→
h ) with an indistinguishable triple

(I′, rand,
−→
h ) is not sufficient to solve this problem. Indeed, one might hope that since

the adversary can not detect this change, an unsuccessful side may become successful
when switching from I to I′, as the desired witness would flip. However, a successful

forking pair ((I′, rand,
−→
h ), (I′, rand,

−→
h ′)) need only exist if ((I, rand,

−→
h ), (I, rand,

−→
h ′))

is a base. The same is not true, in general, for sides, as their endpoints may not (and
generally do not) yield the same transcript. Because of this, an unsuccessful side

((I, rand,
−→
h ), (I, rand,

−→
h ′)) might not even be part of a triangle side when switching

witnesses from I to I′.
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an injective assignment (i.e., no two base corners can share the same partner).
If so, there is a gap as to why this assignment is possible, i.e., why there are
enough such partners for each of the base corners to find a different partner. In
fact, we provide an argument in our analysis for why such partners — which we
call opposing base corners — are not much fewer than original base corners, but
they do not necessarily need to be equal in size.

On the other hand, if the assignment Prt is not injective, then different
triangles may share the same side. This is also problematic, as we explain now.
[4] proceeds to claim that if (for a fixed pair I, rand) at least 4

5 of triangle sides
are unsuccessful, then at least 3

5 of triangle bases are also unsuccessful, i.e.,
they yield the undesired witness that is used by the reduction. (See the proof of
the last claim on [4, p. 284].) Although this claim is not explicitly argued, the
underlying reasoning seems to be as follows: since every triangle has two sides
and one base, if 4

5 of all sides are unsuccessful, then at least 4
5 + 4

5−1 = 3
5 fraction

of triangles have two unsuccessful sides, which implies that their bases must also
be unsuccessful. However, this argument implicitly assumes that no triangles
ever share a base or a side, which, as we have mentioned, is not necessarily the
case.

Concrete Counterexamples and Additional Issues. We now provide con-
crete counterexamples to show why the claim above is false if triangles may
share sides, or even just bases. For triangles sharing sides, consider the example
in the middle of fig. 2, where 8 out of the 10 triangle sides are unsuccessful, yet
only 2 out of the 6 triangle bases are unsuccessful. For triangles sharing only
bases (recall that in this case there is already a gap as to why there exists an
assignment Prt such that triangles do not share sides), the claim is also untrue:
see the rightmost part of fig. 2 for an example where 5 out of the 6 triangle sides
are unsuccessful, yet only 1 out of the 2 triangle bases are unsuccessful.

¬× ¬× ¬×

¬× ¬×

¬×

¬×

¬×

¬×

¬×

¬×

×

×

×

×

× ×

×

× ×

×

¬× ¬×

¬×
¬× ¬×

¬×

¬×
¬×

¬×

¬×

¬× ×¬×

¬×

¬×

¬×

¬×

×

Fig. 2: Claim in [4] that if at least 4
5 of triangle sides are unsuccessful (i.e., yield

the undesirable witness ¬×), then at least 3
5 of bases (incident to two square

nodes) also yield this witness. This holds for non-overlapping triangles (left), but
not for triangles overlapping in sides (middle) or in bases (right).

We further note that there are some relatively minor gaps that are easier to
fix. In particular, it is incorrect to assert that the probability to extract either
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witness from a triangle base is close to 1
2 — we refer here to the last sentence in

the proof of the last claim on [4, p. 284]:

Since the information of a base, (−→ε ,−→ε ′)[(
−→
h ,
−→
h ′)], is independent of the

witness the simulator already has as a part of Ω [I, rand], this contradicts
that a biased result should occur with probability (over Ω [I, rand]) less
than 1/2 + 1/poly(n) for any polynomial poly.

(The expressions in brackets are a translation to our notation.)
To see why this claim is incorrect, imagine a computationally unbounded

adversary that finds the secret key x = dlog y by brute force, and wins the
OMUF game by running the real signer’s code. Then the signatures produced
by this adversary — including pairs of signatures obtained from triangle bases
— will always yield the same witness (the secret key x), rather than yielding
either witness with probability close to 1

2 . Our approach to deal with this issue
is to define a “majority witness” × which can be extracted from many triangle
bases (for a suitable definition of many). We then show that it is possible to
extract ×, using a suitable counting argument.

Resolving the issues from earlier works. We now provide an overview of
our strategy to bridge the gaps in [4], achieving the same result. We first recall

that for any triple (I, rand,
−→
h ), there is a corresponding instance I′ that contains

the other branch of witness, such that (I, rand,
−→
h ) and (I′, rand,

−→
h ) yield the

same transcript. This naturally leads to the concept of both-sided triangle bases,

namely triangle bases ((I, rand,
−→
h ), (I, rand,

−→
h ′)) that are also the base of some

triangle when I is replaced by I′. Using several counting arguments, we show that
the set of both-sided base corners must be large. While our counting arguments
are more detailed and rigorous, they are in the same spirit as those of [4].

We now bridge the gap in [4], by showing that there cannot be too large of
an overlap between triangle sides such that the absolute amount of successful
triangle sides would get small. We define good base corners as triples that are
incident to many successful both-sided triangle bases, as well as many successful
triangle sides. We further require that these triangle sides and bases must exist
at the good base corner’s maximum branching index — the index at which the
largest number of partners fork from it. Similarly, we define good opposing corners
that are incident to a successful both-sided triangle base and many successful
sides, but the triangle base and sides are located at the maximum branching
index of the triple at the other end of the base.

Our crucial observation is that if there are not too many good base cor-
ners, then there must be many good opposing corners. To see this, consider a

base corner (I, rand,
−→
h ′) that is not good, and consider all triples (I, rand,

−→
h )

that are partners of (I, rand,
−→
h ′). Let i denote the maximum branching index

of (I, rand,
−→
h ′); by definition, a significant portion of these partners (I, rand,

−→
h )

fork with (I, rand,
−→
h ′) at index i. Recall that if a triangle base is successful, then

at least one of its sides must also be successful. Since most of the triangle sides
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involving (I, rand,
−→
h ′) are unsuccessful at index i, this means that many of the

other triangle sides, i.e., those involving the partners (I, rand,
−→
h ), are success-

ful at index i. In other words, a significant portion of a non-good base corner

(I, rand,
−→
h ′)’s partners, are good opposing corners. (In the formal proof, we will

also rule out the possibility that different non-good base corners’ corresponding
good opposing corners overlap too much.)

The above conclusion means that, when the reduction samples the triple
for the first forking run, with significant probability the triple is either a good
base corner or a good opposing corner. Then, due to the definitions of these
good triangle corners, it is not hard to show that with significant probability the
reduction hits a successful triangle side while sampling the second triple — that
is, the desired witness can be extracted from the two forking runs.

Finally, we remark that our reduction guesses in advance which hash values
the adversary will actually use to produce its signatures. This introduces a loss
of
(
Qh
`+1

)
in the reduction’s advantage, where Qh is the number of the adversary’s

hash queries and ` is the number of signing sessions closed. This step is necessary
in our analysis as we need all possible forking indices to have a signature attached
to them in order to lower-bound the set of good opposing base corners. (See
Remark 2 in Section 4.4.) We notice that a loss in this order of magnitude seems
inherent due to the recent polynomial-time ROS-attack [8], and that we achieve
comparable bounds to the original work of Abe & Okamoto [4].6

Other OR-Proof Based Blind Signature Schemes. While our focus is on
proving one-more unforgeability of the scheme by Abe & Okamoto [4], here we
briefly discuss other schemes that use a similar approach. One example is the
scheme by Abe [1] which uses a similar approach to AO, but in such a way
that the “tag key” is blinded by the user, yielding a ordinary blind signature
scheme under the DDH assumption. However, as later pointed out by Ohkubo
& Abe [32], the forking-based proof in the original work contains a flaw when
it comes to arguing why the desired witness can be extracted, and up to this
point, security analyses were given only in the generic group model [32] and the
algebraic group model [26]. In appendix F we provide a sketch of how to apply
our proof technique to Abe’s scheme, and leave its full analysis to future work.

[7] proposed a blind signature scheme with attributes, whose construction
idea is similar to [1]. Using our terminology, in their security analysis only one
triangle is considered for which there is at least one successful side. Their argu-
ment critically relies on the claim that it must be equally as likely to sample a
successful side as it is to sample an unsuccessful one. While this holds true for a
single triangle, as discussed above, the overall set of unsuccessful sides may be
far larger and thus far more likely to be sampled at random.

Another scheme that uses the OR-proof technique is the BlindOR scheme by
Alkadri et al. [5] (also see the full version [6]), based on the module learning with
error (MLWE) assumption. [6, Lemma 3.5] argues that the desired witness can

6 See the top of [4, p. 285], where the reduction’s advantage includes a term η21 , where
η1 = η/2Q`+1

h and η is the adversary’s advantage.
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be extracted with a significant probability: An MLWE distinguisher flips a coin
to decide which branch to use for generating signatures, and embeds its MLWE
challenge in the opposing branch. Then, if the opposing witness can be extracted
from two forking runs of the adversary, the MLWE challenge must have been
a yes-instance; otherwise the distinguisher flips another coin as its output, as
either the MLWE challenge was a no-instance, or the adversary happened to use
the same branch as the distinguisher for generating its signatures.

However, this argument seems circular, as it already assumes that if both
branches contain a yes-instance, then the opposing witness can be extracted
from a significant portion of forking runs, which is the statement of the lemma.
We leave it as future work to explore the application of our method to the
BlindOR scheme.

The above discussion illustrates that the security analyses of OR-proof based
(partially) blind signature schemes are extremely hard and subtle, and require
large amounts of rigor and caution.

1.2 Related Work

Partially blind signatures were introduced in [2], which also presented a scheme
based on a non-standard RSA-type assumption. Cao et al. [11] proposed another
construction based on the RSA assumption, but their scheme was cryptoanalyzed
in [31]. Zhang et al. [43], as well as Chow et al. [16], proposed schemes based
on bilinear pairings, and Papachristoudis et al. [34] proposed a scheme based on
lattice assumptions. Okamoto [33] proposed a theoretical construction that does
not rely on the random oracle model. Finally, Maitland & Boyd [30] considered a
restrictive partially blind signature scheme, where the user’s choice of messages
must follow certain rules.

There is a rich literature on (ordinary) blind signatures and their applications.
Its security notion was formalized by Pointcheval & Stern [35] and Juels et al.
[25], and later strengthened by Schröder & Unruh [39]. Fischlin [18] and Abe &
Ohkubo [3] considered security definitions in the universal composability (UC)
framework. Camenisch et al. [10] and Fischlin & Schröder [19] considered a
stronger notion of blindness called selective-failure blindness. There are a large
number of blind signature schemes based on various assumptions and in various
models; a very incomplete list includes [1, 9, 12, 22–24, 27–29, 33, 35, 37, 38].

We notice that the security analyses of (partially) blind signature schemes
are usually extremely involved, with the original security proofs sometimes be-
ing flawed. Apart from the schemes already discussed, we give two additional
examples here. The security of the Schnorr blind signature [38] relies on the
hardness of the ROS problem, which was recently shown to be easy [8]; a new
security proof in the weaker sequential setting appears in [26]. For partially blind
signature schemes, the aforementioned Zhang et al. scheme [43] has an issue in
its security proof, and the full analysis came much later [41]. This paper can
be seen as yet another attempt of spotting and fixing issues in previous works;
however, we stress that the underlying OR-proof technique of the Abe-Okamoto
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scheme is widely used in blind signatures, and we believe that our techniques
will find applications in the security analyses of other schemes as well.

2 Preliminaries

2.1 Notation

We denote by [`] := {1, . . . , `}. For a vector
−→
h , its i-th entry is denoted by hi,

and the vector of its first i entries is denoted by
−→
h [i]. We denote by x $← X that

x is sampled uniformly at random from set X. For a vector −→x ∈ Xn, we denote
by −→x ′ $← Xn

|−→x [i]
that −→x ′ is sampled uniformly at random from {−→x ′ ∈ Xn|−→x ′[i] =

−→x [i]}. For an algorithm A, we use tA to denote its running time.

2.2 Computational Problems

Definition 1 (Discrete Logarithm Problem). For public parameters pp =
(G, q,g) for a group G with order q and generator g, we describe the discrete
logarithm game DLOGG with adversary A as follows:

Setup. Sample x $← Zq and set y := gx. Output (pp,y) to A.

Output Determination. When A outputs x′ ∈ Zq, return 1 if gx
′

= y and 0
otherwise.

We define the advantage of A as

advDLOGG
A := Pr[DLOGA

G = 1]

where the probability goes over the randomness of the game as well as the ran-
domness of the adversary A. We say that the discrete logarithm problem is (t, ε)-
hard in G if for any adversary A that runs in time at most t, it holds that

advDLOGG
A ≤ ε.

(When it is clear from context, we may omit G and only write DLOG for the
game.)

2.3 Partially Blind Signatures

The definitions in this section mostly follow [4].

Definition 2 (Partially Blind Signature scheme). A three-move partially
blind signature scheme PBS = (KeyGen,Sign = (Sign1,Sign2),User = (User1,
User2),Verify) consists of the following ppt algorithms:

Key Generation. On input public parameters pp, the probabilistic algorithm
KeyGen outputs a public key pk and a secret key sk. Henceforth we assume
that pp is provided to all parties (including the adversary) as an input, and
do not explicitly write it.
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Signer: The interactive signer Sign = (Sign1,Sign2) has two phases:
Sign1: On input a tag info and a secret key sk, the probabilistic algorithm

Sign1 outputs an internal signer state stSign, and a response R.
Sign2: On input the secret key sk, a challenge value e, and the corresponding

internal state stSign, the deterministic algorithm Sign2 outputs a response
S.

User. The interactive user User = (User1,User2) has two phases:
User1: On input a public key pk, a tag info, a message m, and a Sign1 re-

sponse R, the probabilistic algorithm User1 outputs a challenge value e
and an internal user state stUser.

User2: On input a public key pk, a Sign2 response S, and the corresponding
internal user state stUser, the deterministic algorithm User2 outputs a
signature sig on message m along with the tag info.

Verification. On input a public key pk, a message m, a signature sig, and a
tag info, the deterministic algorithm Verify outputs either 1 or 0, where 1
indicates that the signature is valid, and 0 that it is not.

We say a partially blind signature scheme PBS is (perfectly) correct if for all
pk,m, sig, info that result from an honest interaction between signer and user,
Verify(pk,m, sig, info) = 1.

We now define the one-more-unforgeability of a partially blind signature
scheme. We do not focus on partial blindness in this paper; we include the defi-
nition in Appendix A for completeness, and for a proof that the Abe-Okamoto
scheme is partially blind, see the original paper [4].

Definition 3 (One-more-unforgeability). For a three-move partially blind
signature scheme PBS, we define the `-one more unforgeability (`-OMUF) game
`-OMUFPBS with an adversary U (in the role of the user) as follows:

Setup. Sample a pair of keys (pk, sk) $← PBS.KeyGen(pp). Initialize `closed := 0
and run U on input pk.

Online Phase. U is given access to oracles sign1 and sign2, which behave as
follows.
Oracle sign1: On input info, the oracle samples a fresh session identifier sid.

It sets opensid := true and generates (Rsid, stsid)
$← PBS.Sign1(sk, info).

Then it returns the response Rsid together with sid to U.
Oracle sign2: If `closed < `, the oracle takes as input a challenge e and

a session identifier sid. If opensid = false, it returns ⊥. Otherwise,
it sets `closed++ and opensid := false. Then it computes the response
S $← PBS.Sign2(sk, stsid, e) and returns S to U.

Output Determination. When U outputs distinct tuples (m1, sig1, info1), . . . ,
(mk, sigk, infok), return 1 if k ≥ `closed+1 and for all i ∈ [k] : PBS.Verify(pk,
σi,mi, infoi) = 1. Otherwise, return 0.

We define the advantage of U as

adv`-OMUFPBS

U = Pr
[
`-OMUFU

PBS = 1
]
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where the probability goes over the randomness of the game as well as the ran-
domness of the adversary U. We say the scheme PBS is (t, ε, `)-one-more un-
forgeable if for any adversary U that runs in time at most t and makes at most
` queries to sign2,

adv`-OMUFPBS

U ≤ ε.

If U always queries the same tag to oracle sign1, we denote the game as `-1-info-
OMUFPBS and say that PBS is (t, ε, `)-single-tag one-more unforgeable.

3 The Abe-Okamoto Partially Blind Signature Scheme

In this section we describe the partially blind signature scheme by Abe &
Okamoto [4]. The idea of the scheme relies on the OR-Proof technique by Cramer
et al. [17]. It runs a proof of knowledge that the signer knows either the secret
key x or the discrete logarithm of the so-called tag key z, which is obtained
through hashing the tag info. In this way we obtain a witness indistinguishable
scheme: an honest signer does not know dlog z and is forced to use x for issuing
signatures; while the reduction may program the random oracle so that it knows
the dlog z and can then simulate the signer without knowing the secret key x.

Key Generation. On input public parameters pp = (G,g, q,H∗,H) (where H∗

and H are random oracles with ranges G and Zq, respectively), KeyGen sam-
ples x $← Zq and sets y := gx. It then outputs (pk, sk) := (y, x).

Signer. Sign = (Sign1,Sign2) behaves as follows:

Sign1: On input info and sk, Sign1 computes the tag key z := H∗(info) and
samples u, s, d $← Zq. It then computes the commitments a := gu,b :=
gs · zd. It outputs the response (a,b) to the user and an internal state
stSign := (u, s, d).

Sign2: On input e ∈ Zq, stSign = (u, s, d), sk = x, Sign2 computes c := e − d
and r := u− cx. It outputs the response (r, c, s, d) to the user.

User. User = (User1,User2) behaves as follows:

User1: On input pk,m, info,a,b, User1 computes the tag key z := H∗(info)
and samples t1, t2, t3, t4

$← Zq. It then computes α := gt1 · yt2 · a and
β := gt3 · zt4 · b, queries h := H(α,β, z,m) for the message m it wants
to sign, and computes the blinded challenge e := h− t2 − t4. It outputs
e to the signer and an internal state stUser := (t1, t2, t3, t4).

User2: On input pk, (r, c, s, d), stUser = (t1, t2, t3, t4), User1 computes ρ :=
r + t1, ω := c + t2, σ := s + t3, and δ := d + t4. It then verifies that
ω+ δ = H(gρ ·yω,gσ ·zδ, z,m); if so, it outputs the signature (ρ, ω, σ, δ).
(Otherwise, it outputs ⊥.)

Verification. On input y,m, info, (ρ, ω, σ, δ), Verify computes z := H∗(info). It
outputs 1 if ω + δ = H(gρ · yω,gσ · zδ, z,m) and 0 otherwise.

For a graphic illustration of the scheme, see Figure 6 on page 50.
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4 Computing the probability for extracting the “good”
witness

As mentioned in the introduction, our analysis of the Abe-Okamoto scheme is
done in two steps. In this section, we deal with the case that the adversary U
only uses a single tag, i.e., U plays the `-1-info-OMUFAO game.

4.1 The Deterministic OMUF Wrapper

Restricting the adversary to making ` + 1 hash queries. Suppose that
the adversary U makes ` queries to sign2 (henceforth “signing queries”) and Qh
queries to H (henceforth “hash queries”), and uses a single tag info. Below we
assume w.l.o.g. that U never makes the same query to H twice.

We say that a message-signature pair (m, (ρ, ω, σ, δ)) corresponds to an index
i ∈ [Qh], or corresponds to the adversary U’s i-th hash query, if this query was
H(yωgρ, zδgσ, z,m). (When the message m is clear from context, we may say
that the signature (ρ, ω, σ, δ) corresponds to index i.) We remark that we can
further assume w.l.o.g. that there exist ` + 1 hash queries of U, each of which
corresponds to a distinct message-signature pair in the output of U (in particular,
Qh ≥ `+ 1). This is because otherwise one of the following must hold (assuming
that U succeeds):

– There exists a pair (m, (ω, ρ, δ, σ)) that does not correspond to any hash
query, i.e., H(yωgρ, zδgσ, z,m) has never been queried. In this case, U can
be turned into another adversary U′ that runs the code of U and additionally
makes such a hash query; obviously U and U′ have the same advantage.

– There exist two distinct pairs (m1, (ω1, ρ1, δ1, σ1)), (m2, (ω2, ρ2, δ2, σ2)) that
correspond to the same hash query. In this case, we have that m1 = m2,
yω1gρ1 = yω2gρ2 , and zδ1gσ1 = zδ2gσ2 . Then a reduction to the discrete
logarithm problem can easily compute both x and w as x = (ω1 − ω2)−1 ·
(ρ2 − ρ2) and w = (δ1 − δ2)−1 · (σ2 − σ1).

It is not hard to see that any adversary U can be turned into another ad-
versary that makes exactly ` + 1 hash queries, with a factor of

(
Qh
`+1

)
loss in

advantage. Formally, we define an adversary M := MU that works as follows. M,
on input of a public key pk, chooses a random subset I of [Qh] with |I| = `+ 1,
and invokes U(pk). For U’s i-th query to H, if i /∈ I, M responds with a random
integer in Zq. For any other query (including queries to signing oracles, queries to
H∗, and the i-th query to H for i ∈ I), M forwards it to the corresponding oracle
of M’s own challenger, and forwards the response back to U. When U outputs a
set of `+ 1 message-signature pairs, M checks if every pair (m, (ρ, ω, σ, δ)) corre-
sponds to some index i ∈ I, that is, U’s i-th hash query was H(yωgρ, zδgσ, z,m).
If so, M copies U’s output (and outputs ⊥ otherwise).

Lemma 1. For M described above, we have that

adv`-1-info-OMUFAO

M ≥
adv`-1-info-OMUFAO

U (
Qh
`+1

) .
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Proof. It is straightforward that M simulates the OMUF game to U perfectly.
Assume that U succeeds. By our assumption on U, there is a set of indices
I∗ ⊂ [Qh] corresponding to the message-signature pairs in U’s output, with
|I∗| = `+ 1. If I∗ = I, then M also succeeds. Since I is a random subset of size
`+ 1 of [Qh], the probability that I∗ = I is 1

(Qh`+1)
. The lemma follows. ut

The lemma above implies that it is sufficient to consider an adversary that
makes exactly `+ 1 (distinct) hash queries, since an upper bound of the adver-
sary’s advantage in this specific case immediately translates to such an upper
bound in the general case. Below we simply assume that the adversary makes
`+ 1 hash queries.

The deterministic wrapper. For any adversary M that makes exactly ` + 1
distinct hash queries, we define a deterministic wrapper A that, given the witness
and random coin tosses for one side, simulates the view of M. The wrapper uses
either the y-side witness (i.e., the secret key) x or the z-side witness w = dlog z
to respond to sign2 queries, and simulates the other side of the OR-proof using
fixed values. We begin with the formal definition of an instance:

Definition 4 (Instances). For the deterministic wrapper simulating the OMUF-
game to the adversary we define two types of instances I. A y-side (a.k.a. honest)
instance consists of the following components:

b = 0: bit indicating that the secret key x will be used for simulation
x: the secret key, also referred to as the y-side witness
z: the tag key, to be returned by oracle H∗ for requested info
di, si: simulator choices for z-side part corresponding to the i-th signing session
ui: discrete logarithm of the y-side commitment ai in the i-th signing session

A z-side instance consists of the following components:

b = 1: bit indicating that the tag witness w will be used for simulation
y: the public key
w: the discrete logarithm of the tag key z as above
ci, ri: simulator choices for y-side part corresponding to the i-th signing session
vi: discrete logarithm of the z-side commitment bi in the i-th signing session

Let
−→
h be the vector of responses returned by random oracle H (so

∣∣∣−→h ∣∣∣ =

`+1), rand be the randomness used by the adversary M, and info be the tag used
in the OMUF game. We define a deterministic wrapper A := AM

info
that runs on

(I, rand,
−→
h ) as shown in Figure 3. The wrapper allows us to argue about which

(I, rand,
−→
h ) tuples cause the adversary to succeed.

A has two simulation modes. For b = 0, it runs the honest signer’s algorithm
to simulate both sign1 and sign2 oracle queries; for H∗ queries, it responds with
z if the input is info and ⊥ for all other inputs. In mode b = 1, A knows w and
not x. It therefore runs the so-called z-side signer (see Figure 7 in Appendix E),
which is the honest signer’s algorithm except that w is treated as the secret key.
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A responds to queries to H∗ with gw for info and ⊥ otherwise. In both modes,

A responds to queries to H using entries in the hash vector
−→
h . Finally, upon

receiving M’s output message-signature pairs, A checks if they are all valid, and
if so, A copies M’s output (and outputs ⊥ otherwise).

It is easy to see that

tA = tM + O(`) = tU + O(`) + O(Qh
2) = tU + O(`) + O(Qh

2),

where the term O(`) comes from verifying ` + 1 signatures, and O(Qh
2) comes

from identifying the hash indices that correspond to signatures.

A(I, rand,
−→
h )

00 parse b from I
01 if b = 0
02 parse (b, x, z,

−→
d ,−→s ,−→u ) := I

03 pk := gx

04 else
05 parse (b,y, w,−→c ,−→r ,−→v ) := I
06 pk := y
07 sid := 0
08 j := 0
09 (mi, (ρi, ωi, σi, δi))

`+1
i=1 := Msign1,sign2,H,H

∗
(pk; rand)

10 if ∀i : Verify(pk,mi, (ρi, ωi, σi, δi))
11 return (mi, (ρi, ωi, σi, δi))

`+1
i=1

12 else
13 return ⊥

H(ξ)
14 j++
15 return hj

H∗(info)

16 if info = info
17 if b = 0 return z
18 else return gw

19 else return ⊥

sign1(info)

20 if info = info
21 sid++
22 open(sid) := true

23 if b = 0
24 asid := gusid

25 bsid := gssid · zdsid
26 else
27 asid := grsid · ycsid
28 bsid := gvsid

29 return (sid,asid,bsid)
30 else return ⊥

sign2(sid, esid)
31 if open(sid)
32 if b = 0
33 csid := esid − dsid
34 rsid := usid − csid · x
35 else
36 dsid := esid − csid
37 ssid := vsid − dsid · w
38 else
39 return ⊥
40 open(sid) := false

41 return (csid, rsid, dsid, ssid)

Fig. 3: Wrapper A that simulates the OMUF game to the adversary M

The set of successful tuples. Let

Succ := {(I, rand,
−→
h )|A(I, rand,

−→
h ) 6= ⊥}

be the set of all “successful” input tuples to the wrapper A. For a pair of instance
and randomness I, rand, it is also useful to define SuccI,rand as the set of successful
input tuples with instance I and randomness rand, i.e.,

SuccI,rand :=

{
(I′, rand′,

−→
h ) ∈ Succ

∣∣∣∣ I′ = I
rand′ = rand

}
.

In the following we further denote by I the set of all possible instances, by
R the set of all possible randomness of A, and by ε the success probability of A,



16 Julia Kastner, Julian Loss, Jiayu Xu

i.e.,

ε :=
|Succ|∣∣I ×R× Z`+1

q

∣∣
We show in Lemma 2 below (in Section 4.3) that the simulation using the

z-side witness is perfectly indistinguishable from the real execution where the y-
side witness is used (this is called the witness indistinguishability of the scheme),
i.e., A simulates the OMUF game to M perfectly. Furthermore, if M succeeds,
then so does A, since A copies M’s output in this case (see lines 10–11 of Figure 3).
Therefore,

ε = adv`-1-info-OMUFAO

M .

4.2 Basic Definitions

We first define some concepts related to the wrapper A’s input tuple (I, rand,
−→
h ),

that will be used throughout the security proof.

Transcripts. We begin with the definition of the query transcript, which consists
of the adversary’s signing queries:

Definition 5 (Query Transcript). Consider the wrapper A running on input

tuple (I, rand,
−→
h ). The query transcript, denoted −→e (I, rand,

−→
h ), is the vector of

queries esid made to the sign2 oracle (simulated by A) by the adversary M, ordered
by sid.

Next, we define (full) interaction transcripts between adversary M and wrap-

per A. These contain, in addition to −→e (I, rand,
−→
h ), also M’s sign1 queries and the

signatures from the output of M. This will be useful to argue about A’s behavior

on different inputs (I, rand,
−→
h ). Looking ahead, we will see that it is possible

to deterministically transform (I, rand,
−→
h ) into a dual input Φ

rand,
−→
h

(I, rand,
−→
h )

that results in the same behavior as (I, rand,
−→
h ) (i.e., produces the same full

transcript as (I, rand,
−→
h )), but inverts the type of the witness I from y-side to

z-side (or vice-versa).

Definition 6 (Full Transcripts). Consider the wrapper A running on input

tuple (I, rand,
−→
h ). We denote by tr(I, rand,

−→
h ) the transcript produced between A

and the adversary M, i.e., all messages sent between the user (played by M) and
the signer (played by A). Concretely,

tr(I, rand,
−→
h ) =

(
info, (−→a ,

−→
b ),−→e , (−→c ,−→r ,

−→
d ,−→s ), sig1, . . . sig`+1

)
,

where sig1, . . . , sig`+1 are the signatures output by M. (If M aborts at any point
during the protocol or outputs fewer than ` + 1 signatures, we consider any
undefined entry to be ⊥.)
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Forking, partners, and triangles. We next define what it means for two input
tuples to fork successfully — this corresponds to all cases where the reduction
would be able to compute at least one of the two witnesses from the resulting
signatures. However, without further work, the witness that can be computed
might be the one that the reduction already knows.

Definition 7 (Successful forking). We say two successful input tuples (I,

rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ fork from each other at index i ∈ [`+1] if

−→
h [i−1] =

−→
h ′[i−1] but hi 6= hi. We denote the set of hash vector pairs (

−→
h ,
−→
h ′) such that

(I, rand,
−→
h ), (I, rand,

−→
h ′) fork at index i as Fi(I, rand).

We now define partners, which will play a key role in our analysis. Informally,

two tuples (I, rand,
−→
h ) and (I, rand,

−→
h ′) are partners at some index i if they fork

from this index and produce the same query transcript (but not necessarily the
same full transcript).

Definition 8 (Partners). We say two (successful) tuples (I, rand,
−→
h ), (I, rand,

−→
h ′) are partners at index i ∈ [`+ 1] if the followings hold:

– (I, rand,
−→
h ) and (I, rand,

−→
h ′) fork at index i

– −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′)

We denote the set of (
−→
h ,
−→
h ′) such that (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners

at index i by prti(I, rand). We further denote by PI,rand the following set:

PI,rand =
{

(I, rand,
−→
h ) ∈ SuccI,rand

∣∣∣∃−→h ′, i ∈ [`+ 1] : (
−→
h ,
−→
h ′) ∈ prti(I, rand)

}
We define triangles in order to extend the nice properties of partners to more

general forking tuples. Informally, a triangle consists of three vectors
−→
h ,
−→
h′ ,
−→
h′′

which all fork from each other at the same index, and also have the property

that
−→
h and

−→
h′ are partners at this index. This way, it is natural to view these

vectors as corners of the triangle and any pair of two vectors as the sides.

Definition 9 (Triangles). A triangle at index i ∈ [`+1] with respect to I, rand
is a tuple of three (successful) tuples in the following set:

4i(I, rand) =


((I, rand,

−→
h ),

(I, rand,
−→
h ′),

(I, rand,
−→
h ′′))

∣∣∣∣∣∣∣
(
−→
h ,
−→
h ′) ∈ prti(I, rand)

(
−→
h ,
−→
h ′′) ∈ Fi(I, rand)

(
−→
h ′,
−→
h ′′) ∈ Fi(I, rand)


For a triangle ((I, rand,

−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ 4i(I, rand), we call the

pair of tuples ((I, rand,
−→
h ), (I, rand,

−→
h ′)) the base, and ((I, rand,

−→
h ), (I, rand,

−→
h ′′))

and ((I, rand,
−→
h ′), (I, rand,

−→
h ′′)) the sides. We further refer to the tuples (I, rand,

−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′) as corners, where the two corners incident to the

base are called base corners, and the third corner is called the top. We will

sometimes write (
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4i(I, rand) for compactness.
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Maximum branching index and set. In the following we define two im-
portant characteristics of partner tuples. We begin by defining the maximum

branching index, which is the index at which a partner tuple (I, rand,
−→
h ) ∈ PI,rand

has the most partners.

Definition 10 (Maximum Branching Index). Fix a pair I, rand. The max-

imum branching index of a partner tuple (I, rand,
−→
h ) ∈ PI,rand is the index at

which (I, rand,
−→
h ) has the most partners, i.e.,

Brmax(I, rand,
−→
h ) = argmaxi∈[`+1]

∣∣∣{−→h ′∣∣∣(−→h ,−→h ′) ∈ prti(I, rand)
}∣∣∣ .

In case of ties, we pick the lowest such index.

The maximum branching index naturally defines a partition of any non-empty
set of partnered tuples PI,rand, where the i-th set of the partition contains all
tuples with maximum branching index i. We define the maximum branching set
as the largest part of this partition, i.e., the largest subset of tuples that share
a common maximum branching index.

Definition 11 (Maximum Branching Set). For a pair I, rand, consider the
partition of partner tuples according to their maximal branching indices:

Bi(I, rand) =
{

(I, rand,
−→
h )
∣∣∣Brmax(I, rand,

−→
h ) = i

}
.

The maximum branching set of I, rand is defined as the largest set among them,
i.e.,

Bmax(I, rand) = Bimax(I,rand)(I, rand),

where
imax(I, rand) = argmaxi∈[`+1] |Bi(I, rand)| .

In case of ties, we pick the lowest such index.

Note in particular that B
Brmax(I,rand,

−→
h )

(I, rand) (henceforth BBrmax
(I, rand,

−→
h )

for simplicity) is the set of all tuples (I, rand,
−→
h ′) which have the same maximum

branching index as (I, rand,
−→
h ) (so (I, rand,

−→
h ) ∈ BBrmax(I, rand,

−→
h )).

4.3 The Mapping Φ

For any successful tuple (I, rand,
−→
h ), we now define the mapping Φ

rand,
−→
h

and

prove its transcript preserving properties in Lemma 2. We remark that this
mapping is not efficiently computable and will merely serve as a technical tool
in our analysis.

Definition 12 (Mapping instances via transcript). For (I, rand,
−→
h ) ∈

Succ, we define Φ
rand,

−→
h

(I) as follows. For a y-side instance I = (1, w,y,−→c ,−→r ,
−→u ), Φ

rand,
−→
h

(I) is a z-side instance that consists of

b = 0 x = dlog y z = gw ∀i ∈ [`] : di = ei − ci
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∀i ∈ [`] : si = ui − di · w ∀i ∈ [`] : vi = ci · x+ ri

For a z-side instance I = (0, x, z, d, s, v), Φ
rand,

−→
h

(I) is a y-side instance that

consists of

b = 1 w = dlog z y = gx ∀i ∈ [`] : ci = ei − di
∀i ∈ [`] : ri = vi − ci · x ∀i ∈ [`] : ui = di · w + si

(where −→e is the query vector produced by rand,
−→
h using instance I). We will

sometimes use the notation Φ−→e instead of Φ
rand,

−→
h

for a given (I, rand,
−→
h ). We

also define Φ(I, rand,
−→
h ) = (Φ

rand,
−→
h

(I), rand,
−→
h ).

Lemma 2 (Φ
rand,

−→
h

is a bijection that preserves transcripts). Fix rand,
−→
h .

For all tuples (I, rand,
−→
h ) ∈ Succ, Φ

rand,
−→
h

is a self-inverse bijection and

tr(I, rand,
−→
h ) = tr(Φ

rand,
−→
h

(I), rand,
−→
h )

The proof is deferred to Appendix C.3.
The lemma above shows that the Abe-Okamoto scheme is witness indistin-

guishable, i.e., a simulator that uses the z-side witness to sign (see Figure 7
in Appendix E) creates a view identical to the real view to the adversary. In
particular, this implies that the wrapper A simulates the `-OMUF game to the
adversary M perfectly.

Corollary 1. (I, rand,
−→
h ) ∈ Succ⇔ (Φ

rand,
−→
h

(I), rand,
−→
h ) ∈ Succ.

We look into the effect of the transcript mapping function on partner tuples.
We have proven that Φ

rand,
−→
h

preserves the transcript (and hence success) of

(I, rand,
−→
h ). However, note that this does not (by itself) imply that partnering

tuples (I, rand,
−→
h ) and (I, rand,

−→
h ′) result in partnering tuples (Φ

rand,
−→
h

(I), rand,
−→
h ) and (Φ

rand,
−→
h

(I), rand,
−→
h ′), or (Φ

rand,
−→
h ′

(I), rand,
−→
h ) and (Φ

rand,
−→
h ′

(I), rand,
−→
h ′), respectively. Lemma 3 asserts that this is indeed the case.

Lemma 3 (Partners stay partners through Φ). For all I, rand, and vectors
−→
h ,
−→
h ′,

(
−→
h ,
−→
h ′) ∈ prti(I, rand)⇔ (

−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h

(I), rand)

⇔ (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h ′

(I), rand)

Proof. Suppose (
−→
h ,
−→
h ′) ∈ prti(I, rand) ⊂ Fi(I, rand); we have that (I, rand,

−→
h ),

(I, rand,
−→
h ′) ∈ Succ. Then by Corollary 1, (Φ

rand,
−→
h

(I), rand,
−→
h ), (Φ

rand,
−→
h ′

(I),

rand,
−→
h ′) ∈ Succ.
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Furthermore, as
−→
h ,
−→
h ′ are partners for I, rand, they produce the same query

vector −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′). Thus Φ

rand,
−→
h

(I) = Φ−→e (I) = Φ
rand,

−→
h ′

(I).

Using this fact, we obtain

−→e (Φ
rand,

−→
h

(I), rand,
−→
h ) = −→e (I, rand,

−→
h ) = −→e (I, rand,

−→
h ′)

= −→e (Φ
rand,

−→
h ′

(I), rand,
−→
h ′) = −→e (Φ

rand,
−→
h

(I), rand,
−→
h ′)

as follows. The first equality follows because −→e (I, rand,
−→
h ) is contained in tr(I,

rand,
−→
h ) and by Lemma 2, we have that tr(I, rand,

−→
h ) = tr(Φ

rand,
−→
h

(I), rand,
−→
h ).

The second equality holds because
−→
h and

−→
h ′ are partners. The third equality

follows because −→e (I, rand,
−→
h ′) is contained in tr(I, rand,

−→
h ′) and from Lemma 2,

we have that tr(I, rand,
−→
h ′) = tr(Φ

rand,
−→
h

(I), rand,
−→
h ′). The fourth equality holds

by another application of Lemma 2 which yields tr(I, rand,
−→
h ′) = tr(Φ

rand,
−→
h ′

(I),

rand,
−→
h ′) = tr(Φ

rand,
−→
h

(I), rand,
−→
h ′).

Combining the two paragraphs above, we get (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h

(I), rand).

Using a similar argument, (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h ′

(I), rand). The inverse direc-

tion follows from the self-inverse property of Φ
rand,

−→
h

. ut

Corollary 2. Brmax(I, rand,
−→
h ) = Brmax(Φ

rand,
−→
h

(I), rand,
−→
h ).

4.4 Extracting a Witness from a Fork

Witness Extraction. We briefly recall how the reduction can compute a wit-
ness from two signatures from forking runs of the wrapper A. We say a signature

(ρ, ω, σ, δ) on a message m in the output of A on input (I, rand,
−→
h ) corresponds

to a hash value hi, if H(gρyω,gσzδ, z,m) was the i-th hash query made to the
random oracle H in this run of A. Informally we say that a witness can be ex-

tracted from I, rand, and a pair of forking hash vectors (
−→
h ,
−→
h ′) ∈ Fi(I, rand), if

it can be efficiently computed from the two signatures corresponding to hi and
h′i. We make this formal in the following definition.

Definition 13 (Witness Extraction). Fix I, rand and let (
−→
h ,
−→
h ′) ∈ Fi(I,

rand) for some i ∈ [` + 1]. Moreover, denote sigi, sig
′
i the signatures that corre-

spond to hi and h′i, respectively. Consider the two witness extraction algorithms
Ey,Ez as described in Figure 4. For × ∈ {y, z}, we say that the ×-side witness

can be extracted from (I, rand,
−→
h ) and (I, rand,

−→
h ′) at index i if E× on input

(sigi, sig
′
i) does not return ⊥.

Lemma 4. Let I, rand, i, (
−→
h ,
−→
h ′) ∈ Fi(I, rand), sigi, sig

′
i, and algorithms Ey,Ez

be as in Definition 13. Then at least one of Ey and Ez outputs a correct witness
on input the two signatures sigi = (ρi, ωi, σi, δi) and sig′i = (ρ′i, ω

′
i, σ
′
i, δ
′
i) corre-

sponding to hi and h′i. More specifically, Ey outputs the y-side witness if and
only if ωi 6= ω′i, otherwise Ez outputs the z-side witness.
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The proof is a standard forking argument and is deferred to Appendix C.5.

Ey((ρi, ωi, σi, δi), (ρ
′
i, ω
′
i, σ
′
i, δ
′
i))

42 if (ωi 6= ω′i)

43 return x :=
ρi−ρ′i
ω′i−ωi

44 else
45 return ⊥

Ez((ρi, ωi, σi, δi), (ρ
′
i, ω
′
i, σ
′
i, δ
′
i))

46 if (δi 6= δ′i)

47 return w :=
σi−σ′i
δ′i−δi

48 else
49 return ⊥

Fig. 4: The two witness extraction algorithms from Definition 13

Remark 1. We note that the witness may be contained in the instance I, in which
case the witness can be trivially extracted. For the purposes of the lemma we
only consider the more interesting case that the witness can be computed from
the two signatures directly, regardless of which witness was used for simulating
the signing oracles.

Witnesses in triangles. We now show that if a witness can be extracted from
the base of a triangle, it can also be extracted from at least one of the sides.
This was previously shown in [4].

Corollary 3. Fix I, rand and let (
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4i(I, rand) for some i ∈ [` +

1]. Moreover, suppose that the y-side witness can be extracted from the base

(I, rand,
−→
h ), (I, rand,

−→
h ′) of the triangle at index i. Then the y-side witness

can also be extracted from at least one of the sides (I, rand,
−→
h ), (I, rand,

−→
h ′′)

or (I, rand,
−→
h ′), (I, rand,

−→
h ′′) at index i. An analogous statement holds for the

z-side witness.

Proof. Toward a contradiction, suppose that the y-side witness can be extracted

from the base (I, rand,
−→
h ), (I, rand,

−→
h ′) at index i, but can not be extracted at

index i for either of the sides (I, rand,
−→
h ), (I, rand,

−→
h ′′) or (I, rand,

−→
h ′), (I, rand,

−→
h ′′). Then, by Lemma 4, ωi = ω′′i and ω′i = ω′′i , so ωi = ω′i. By Lemma 4

again, the y-side witness can not be extracted from (I, rand,
−→
h ), (I, rand,

−→
h ′), a

contradiction. An analogous argument can be made for the z-side. ut

We now define both-sided triangle base corners as triangle base corners (I,

rand,
−→
h ) which remain base corners of some triangle at their maximal branch-

ing index when mapped via Φ
rand,

−→
h

. (Recall that by Corollary 2, the maximal

branching index is preserved under Φ.) On top of this, if (I, rand,
−→
h ) is a both-

sided triangle base corner, and forms a triangle base with (I, rand,
−→
h ′) at index

Brmax(I, rand,
−→
h ), then (Φ

rand,
−→
h

(I), rand,
−→
h ) and (Φ

rand,
−→
h
, rand,

−→
h ′) also form a

triangle base.
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For every such tuple (I, rand,
−→
h ), we further define the set Dy

i (I, rand,
−→
h )

of tuples that form a both-sided triangle base with (I, rand,
−→
h ) at index i from

which the y-side witness can be extracted, and an analogous set Dz
i (I, rand,

−→
h )

for the z-side witness. This allows us to then define sets By
T and Bz

T that contain
tuples where the majority of both-sided triangle bases incident to the tuple allow
for extraction of the y-side or z-side witness, respectively.

Definition 14 (Both-sided Triangle Base Corners). We call elements of
the set

BT :=

{
(I, rand,

−→
h )

∣∣∣∣∣ ∃
−→
h ′,

−→
h ′′,
−→
h ′′′

:
(
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4

Brmax(I,rand,
−→
h )

(I, rand)

(
−→
h ,
−→
h ′,
−→
h ′′′) ∈ 4

Brmax(I,rand,
−→
h )

(Φ
rand,

−→
h

(I), rand)

}

both-sided triangle base corners. For any index i ∈ [`+ 1], we define sets

Dy
i (I, rand,

−→
h ) :=


(I, rand,

−→
h ′)

∣∣∣∣∣∣∣∣∣∣∣
∃
−→
h ′′,
−→
h ′′′

:

(
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4i(I, rand)

(
−→
h ,
−→
h ′,
−→
h ′′′) ∈ 4i(Φrand,

−→
h

(I), rand)

The y-side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at index i


and By

T ⊂ BT as

By
T :=

(I, rand,
−→
h )

∣∣∣∣∣∣∣∣∣
Dy

Brmax(I,rand,
−→
h )

(I, rand,
−→
h ) 6= ∅∣∣∣Dy

Brmax(I,rand,
−→
h )

(I, rand,
−→
h )
∣∣∣

≥
∣∣∣Dz

Brmax(I,rand,
−→
h )

(I, rand,
−→
h )
∣∣∣


We define sets Dz

i (I, rand,
−→
h ) and Bz

T analogously.

Lemma 5 (Both-sided triangle bases produce the same witness on
both sides).

1. Φ(By
T ) = By

T and Φ(Bz
T ) = Bz

T ;
2. By

T ∪Bz
T = BT .

We defer the proof to Appendix C.5.
We define B×T as the larger set of By

T and Bz
T . By the second item of Lemma 5,∣∣B×T ∣∣ ≥ 1

2 |BT |.
Let B×T,y (resp. B×T,z) be the subset of B×T with y-side instances (resp. z-side

instances). We stress that By
T and B×T,y are two different sets: (I, rand,

−→
h ) ∈

By
T means that more both-sided triangle bases (with (I, rand,

−→
h ) as one of its

corners) allow for extracting the y-side witness than the z-side witness; whereas

(I, rand,
−→
h ) ∈ B×T,y means that (I, rand,

−→
h ) ∈ B×T and I is a y-side witness.
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Lemma 6.
∣∣∣B×T,y∣∣∣ =

∣∣∣B×T,z∣∣∣ = 1
2

∣∣B×T ∣∣.
Proof. By the first item of Lemma 5, Φ is a bijection within B×T , and since
Φ maps a tuple with a y-side instance to a tuple with a z-side instance (and
vice versa), we know that Φ is a bijection between B×T,y and B×T,z; therefore,∣∣∣B×T,y∣∣∣ =

∣∣∣B×T,z∣∣∣. Since B×T,y and B×T,z form a partition of B×T , we know that∣∣∣B×T,y∣∣∣+
∣∣∣B×T,z∣∣∣ =

∣∣B×T ∣∣, and the lemma follows. ut

We now give a lower bound of the size of B×T . Let εB×T
be the probability of

getting a tuple in B×T while sampling uniformly at random, i.e.,

εB×T
:=

∣∣B×T ∣∣∣∣∣I ×R× Zq`+1
∣∣∣ .

Lemma 7 (Lower-bounding the size of B×T ). Assume ε ≥
432
(
1− 1

(`+1)2

)
q .

Then

εB×T
≥ ε

96
.

We defer the proof to Appendix C.5.

Finding triangle tops. In order for our security proof to go through, a key step
is to compute the probability that the reduction hits a triangle side from which
the ×-side witness can be extracted when forking the wrapper, independently
of the witness that is being used by the reduction. This event is crucial in our
proof because, assuming that the reduction samples one of these sides, it is
likely that it did so with the witness opposite of ×, meaning that it extracts the
witness × it does not already know with significant probability, hence solving the
discrete logarithm problem. In order to lower bound the probability of the event
above, we first define relevant triangle tops for a both-sided triangle base corner

(I, rand,
−→
h ) ∈ B×T . These are all the tuples (I, rand,

−→
h ′′) such that (

−→
h ,
−→
h ′,
−→
h ′′)

forms triangles at index i (where
−→
h ′ is as in the definition of both-sided triangle

tops (Definition 14)).

Definition 15 (Relevant triangle tops). For a tuple (I, rand,
−→
h ), define its

relevant triangle tops at index i as tuples in the following set:

T×T,i(I, rand,
−→
h ) :=

(I, rand,
−→
h ′′)

∣∣∣∣∣∣∣∣∣∃
−→
h ′ :

(
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4i(I, rand)

The × -side witness

can be extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at i





24 Julia Kastner, Julian Loss, Jiayu Xu

We will mostly consider relevant triangle tops at the maximum branching index

Brmax(I, rand,
−→
h ) and we thus define T×T (I, rand,

−→
h ) := T×

T,Brmax(I,rand,
−→
h )

(I, rand,
−→
h ).

What remains to be shown is that many elements of B×T actually have many
relevant triangle tops, regardless of whether they reside in B×T,y or B×T,z, i.e., in-
dependently of the witness that they store. This ensures that when the reduction
samples and then (partially) resamples the vectors during the forking process, it
will hit a side from which the desired witness can be extracted with significant
probability, as explained above.

Lemma 8 (There are enough relevant triangle tops). There exists a

subset Gy ⊂ B×T,y with |Gy| ≥ 3
8

∣∣∣B×T,y∣∣∣ such that for each (I, rand,
−→
h ) ∈ Gy,∣∣∣T×T (I, rand,

−→
h )
∣∣∣ ≥ εB×T

16(`+ 1)
· q`−Brmax(I,rand,

−→
h )+2 − 2q`−Brmax(I,rand,

−→
h )+1.

An analogous statement holds for B×T,z.

The proof is deferred to Appendix C.5.

Corollary 4. Let Gy be as in Lemma 8. Then

Pr
(I,rand,

−→
h )

$←I×R×Zq`+1

i
$←[`+1],

−→
h ′

$←Zq`+1

|
−→
h [i−1]

[
(I, rand,

−→
h ′) ∈ T×T (I, rand,

−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Gy

Brmax(I, rand,
−→
h ) = i

]

≥
εB×T

16(`+ 1)
− 2

q
.

An analogous statement holds for Gz.

Proof. Suppose (I, rand,
−→
h ) ∈ Gy and Brmax(I, rand,

−→
h ) = i. Note that

∣∣∣∣Zq`+1

|
−→
h [i−1]

∣∣∣∣ =

q`−i+2. Therefore, the probability of sampling an
−→
h ′ such that (I, rand,

−→
h ′) ∈

T×T (I, rand,
−→
h ) is∣∣∣T×T (I, rand,

−→
h )
∣∣∣

q`−i+2
≥

ε
B
×
T

16(`+1) · q
`−i+2 − 2q`−i+1

q`−i+2
=

εB×T
16(`+ 1)

− 2

q
.

ut

Opposing base corners. By Corollary 3 we know that each triangle with
a relevant base has at least one relevant side. We now want to consider the
probability of finding such a relevant side in the forking proof.

To this end, we consider opposing base corners — corners of relevant bases
whose partners are in Gy or Gz. See Figure 5a for a graphic illustration. (Keep
in mind that the sets Gy and Gz are the sets of both sided triangle base corners
for which there exist many triangle tops.)
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(I, rand,
−→
h ′)

∈ Gy ∪Gz

(I, rand,
−→
h )

∈ O×T

(I, rand,
−→
h ′′)

∈ T×T,i(I, rand,
−→
h ′)

∩T×T,i(I, rand,
−→
h )

extract × at i

(a) Definition of (I, rand,
−→
h ) ∈ O×T

where i = Brmax(I, rand,
−→
h ′).

(I, rand,
−→
h ) (I, rand,

−→
h ′)

(I, rand,
−→
h ′′)

∈ A×T,i(I, rand,
−→
h )

/∈ A×T,i(I, rand,
−→
h ′)

×

×

¬×

(b) A useful triangle top for a base cor-
ner is one where the ×-side witness can
be extracted. The × (resp. ¬×) on an
edge means that the ×-side witness can
(resp. cannot) be extracted at index i.

Fig. 5: Opposing base corners and useful triangle tops

Definition 16 (Opposing base corners).

O×T :=


(I, rand,

−→
h )

∣∣∣∣∣∣∣∣∣∣∣∣
∃
−→
h ′ :

(I, rand,
−→
h ′) ∈ Gy ∪Gz

(
−→
h ,
−→
h ′) ∈ prt

Brmax(I,rand,
−→
h ′)

(I, rand)

the × -side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at Brmax(I, rand,

−→
h ′)


Good corners with useful tops. For each tuple (I, rand,

−→
h ) in O×T or B×T

we define useful triangle tops — triangle tops that allow for extraction of the

×-side witness when combined with the base corner (I, rand,
−→
h ) (see Figure 5b

for a graphic illustration):

Definition 17 (Useful triangle tops). For any (I, rand,
−→
h ) ∈ O×T ∪B

×
T , define

A×T,i(I, rand,
−→
h ) :=

 (I, rand,
−→
h ′′)

∈ T×T,i(I, rand,
−→
h )

∣∣∣∣∣∣∣
the × -side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′′) at index i


Recall that relevant base corners — those in Gy or Gz — are tuples in B×T for

which many triangle tops are relevant (i.e., the corresponding T×T set is large).
We now consider a subset of these relevant base corners for which a lot of the
relevant triangle tops are useful (i.e., the corresponding A×T set is large). We call
these base corners good.
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Definition 18 (Good base corners). We say that a base corner in Gy ∪Gz

is good if it lies within the following set:

B̂×T :=

(I, rand,
−→
h ) ∈ Gy ∪Gz

∣∣∣∣∣∣∣∣
∣∣∣A×T (I, rand,

−→
h )
∣∣∣

≥ 1
2

∣∣∣T×T (I, rand,
−→
h )
∣∣∣

−q`−Brmax(I,rand,
−→
h )+1


We now want to show that if the set of good base corners is small, then there

exist a lot of opposing base corners — which we call good opposing base corners
— that fulfill a property analogous to good base corners.

Definition 19 (Good opposing base corners).

Ô×T :=



(I, rand,
−→
h )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃
−→
h ′ :

(I, rand,
−→
h ′) ∈ Gy ∪Gz

(
−→
h ,
−→
h ′) ∈ prt

Brmax(I,rand,
−→
h ′)

(I, rand)

the × -side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at Brmax(I, rand,

−→
h ′)∣∣∣A×

T,Brmax(I,rand,
−→
h ′)

(I, rand,
−→
h )
∣∣∣

≥ 1
2

∣∣∣T×
T,Brmax(I,rand,

−→
h ′)

(I, rand,
−→
h )
∣∣∣

−q`−Brmax(I,rand,
−→
h ′)+1


Let B̂×T,y ⊂ B̂

×
T and Ô×T,y ⊂ Ô

×
T be analogous to B×T,y ⊂ B

×
T , i.e., the subset

of tuples with y-side instances. We define B̂×T,z and Ô×T,z similarly.

Lemma 9. If
∣∣∣B̂×T,y∣∣∣ < 1

2 |Gy|, then
∣∣∣Ô×T,y∣∣∣ ≥ 1

8(`+1) |Gy|. An analogous state-

ment holds for z.

Proof. Let F = Gy \ B̂×T,y (so |F | ≥ 1
2 |Gy|). Consider any (I, rand,

−→
h ′) ∈ F , and

let i = Brmax(I, rand,
−→
h ′). Then∣∣∣A×T,i(I, rand,−→h ′)∣∣∣ < 1

2

∣∣∣T×T,i(I, rand,−→h ′)∣∣∣− q`−i+1.

By Corollary 3, for any (
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4i(I, rand) such that the ×-side witness

can be extracted from the base (I, rand,
−→
h ), (I, rand,

−→
h ′), if the ×-side witness

cannot be extracted from (I, rand,
−→
h ′), (I, rand,

−→
h ′′), then it can be extracted

from (I, rand,
−→
h ), (I, rand,

−→
h ′′). (All extractions mentioned above are at index

i.) Therefore,∣∣∣A×T,i(I, rand,−→h )
∣∣∣+
∣∣∣A×T,i(I, rand,−→h ′)∣∣∣ ≥ ∣∣∣T×T,i(I, rand,−→h ′)∣∣∣ .
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We note that all but q`−i+1 elements of T×T,i(I, rand,
−→
h ) are also elements of

T×T,i(I, rand,
−→
h ′). This is because (I, rand,

−→
h ∗) ∈ T×T,i(I, rand,

−→
h )\T×T,i(I, rand,

−→
h ′)

implies that (
−→
h ,
−→
h ∗) ∈ Fi(I, rand) but (

−→
h ′,
−→
h ∗) /∈ Fi(I, rand), which means that

−→
h ∗ must share its first i entries with

−→
h ′ (recall that

−→
h and

−→
h ′ share the first

i− 1 entries), so there are at most q`−i+1 such vectors. We get that∣∣∣T×T,i(I, rand,−→h ′)∣∣∣ ≥ ∣∣∣T×T,i(I, rand,−→h )
∣∣∣− q`−i+1.

Combining all inequalities above, we get∣∣∣A×T,i(I, rand,−→h )
∣∣∣ ≥ ∣∣∣T×T,i(I, rand,−→h ′)∣∣∣− ∣∣∣A×T,i(I, rand,−→h ′)∣∣∣
>
∣∣∣T×T,i(I, rand,−→h ′)∣∣∣− (1

2

∣∣∣T×T,i(I, rand,−→h ′)∣∣∣− q`−i+1

)
=

1

2

∣∣∣T×T,i(I, rand,−→h ′)∣∣∣+ q`−i+1

≥ 1

2

(∣∣∣T×T,i(I, rand,−→h )
∣∣∣− q`−i+1

)
+ q`−i+1

>
1

2

∣∣∣T×T,i(I, rand,−→h )
∣∣∣− q`−i+1

I.e., if (I, rand,
−→
h ′) ∈ F , then all of its partners (I, rand,

−→
h ) at index i with which

it forms triangle bases from which the ×-side witness can be extracted, are in

Ô×T,y.

We now lower-bound the number of such partners (I, rand,
−→
h ). Define the set

of tuples that yield the same query transcript with (I, rand,
−→
h ′) as

E(I, rand,
−→
h ′) = {(I, rand,

−→
h ?)|−→e (I, rand,

−→
h ?) = −→e (I, rand,

−→
h ′)}.

Note that E(I, rand,
−→
h ′) is the set of partners of (I, rand,

−→
h ) at any index. Con-

sider a subset Ei(I, rand,
−→
h ′) of all tuples that fork from (I, rand,

−→
h ′) at index

i, i.e., Ei(I, rand,
−→
h ′) = {(I, rand,

−→
h ?)|(

−→
h ?,
−→
h ′) ∈ prti(I, rand)}. Recall that i =

Brmax(I, rand,
−→
h ′). By the definition of maximum branching index, we have∣∣∣Ei(I, rand,−→h ′)∣∣∣ ≥ 1

`+ 1

(∣∣∣E(I, rand,
−→
h ′)
∣∣∣− 1

)
≥ 1

2(`+ 1)

∣∣∣E(I, rand,
−→
h ′)
∣∣∣

(where the −1 comes from excluding (I, rand,
−→
h ′) itself). As (I, rand,

−→
h ′) ∈

B×T , it holds that at least half of the tuples in Ei(I, rand,
−→
h ′), together with

(I, rand,
−→
h ′), allow for the extraction of the ×-side witness. This means that at

least half of the tuples in Ei(I, rand,
−→
h ′) are in Ô×T,y.

We have shown that for any (I, rand,
−→
h ′) ∈ F , at least 1

4(`+1) of tuples

in E(I, rand,
−→
h ′) are in Ô×T,y. Further note that for any (I1, rand1,

−→
h 1) and
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(I2, rand2,
−→
h 2), either E(I1, rand1,

−→
h 1) = E(I2, rand2,

−→
h 2) or E(I1, rand1,

−→
h 1)∩

E(I2, rand2,
−→
h 2) = ∅. 7 Summing over all E(I, rand,

−→
h ′) for some (I, rand,

−→
h ′) ∈

F , we get∣∣O×T ∣∣ ≥ 1

4(`+ 1)

∑
E s.t. E=E(I,rand,

−→
h ′)

for some (I,rand,
−→
h ′)∈F

|E| ≥ 1

4(`+ 1)

∑
E s.t. E=E(I,rand,

−→
h ′)

for some (I,rand,
−→
h ′)∈F

|E ∩ F |

=
1

4(`+ 1)

∣∣∣∣∣∣∣∣∣∣
⋃

E s.t. E=E(I,rand,
−→
h ′)

for some (I,rand,
−→
h ′)∈F

(E ∩ F )

∣∣∣∣∣∣∣∣∣∣
=

1

4(`+ 1)
|F | ≥ 1

8(`+ 1)
|Gy| .

ut

Remark 2. We point out that it is at this point that we need to require the
adversary to make exactly ` + 1 hash queries (and thus lose a

(
Qh
`+1

)
factor in

advantage). The proof of Lemma 9 would not go through with Qh > `+ 1 hash
queries, as hash vectors in this case may fork at arbitrary indices that do not
have a corresponding signature. Therefore, not every tuple in an E-set would
also be a partner of every other tuple in the same E-set (with the definition of
partners adapted to this setting, i.e., two tuples can only be partners if they
both have a signature at their forking index).

In the following, we want to avoid the case distinction of whether triangle corners
come from the B-sets or the O-sets. We therefore define good triangle corners:

Definition 20. Let Ĝy be the larger set of B̂×T,y and Ô×T,y. Furthermore, for

a tuple (I, rand,
−→
h ) ∈ Ĝy, let t(I, rand,

−→
h ) be an index at which many relevant

triangle tops exist, i.e.,

t(I, rand,
−→
h ) =

Brmax(I, rand,
−→
h ) (if Ĝy = B̂×T,y)

Brmax(I, rand,
−→
h ′) (if Ĝy = Ô×T,y)

(where
−→
h ′ is as in the definition of Ô×T,y). If multiple such

−→
h ′ (and thus multiple

choices for t) exist, choose one that results in the smallest value of t. Define set

Ĝz analogously, and for a tuple (I, rand,
−→
h ) ∈ Ĝz, define t(I, rand,

−→
h ) analo-

gously.

7 This is because E(I1, rand1,
−→
h 1) ∩ E(I2, rand2,

−→
h 2) 6= ∅ implies that I1 = I2,

rand1 = rand2, and −→e (I1, rand1,
−→
h 1) = −→e (I2, rand2,

−→
h 2), which in turn implies that

E(I1, rand1,
−→
h 1) = E(I2, rand2,

−→
h 2).
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It is easy to see that for a good opposing base corner, the number of triangle
tops is the same as for the corresponding tuple from Gy ∪Gz. We state this as
a lemma.

Lemma 10.

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq`+1

i
$←[`+1],

−→
h ′

$←Zq`+1

|
−→
h [i−1]

[
−→
h ′ ∈ T×T,i(I, rand,

−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝy

t(I, rand,
−→
h ) = i

]
≥

εB×T
16(`+ 1)

−2

q

An analogous statement holds for Ĝz.

Proof. If Ĝy = B̂×T,y, then the lower bound is implied by Corollary 4. If Ĝy =

Ô×T,y, setting the partner from the proof of Lemma 8 to the triangle corner from

Ô×T,y yields this lower bound. ut

We furthermore note the following regarding the probability of sampling a
tuple in Ĝy and Ĝz:

Lemma 11.

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq`+1

i
$←[`+1],

−→
h ′

$←Zq`+1

|
−→
h [i−1]

Pr
[
(I, rand,

−→
h ) ∈ Ĝy

]
≥ 3

128(`+ 1)
εB×T

The same holds for Ĝz.

Proof. We prove the lemma for Ĝy; the argument for Ĝz is analogous. By

Lemma 9, either
∣∣∣B̂×T,y∣∣∣ ≥ 1

2 |Gy| or
∣∣∣Ô×T,y∣∣∣ ≥ 1

8(`+1) |Gy|, so
∣∣∣Ĝy

∣∣∣ = max
{∣∣∣B̂×T,y∣∣∣ ,∣∣∣Ô×T,y∣∣∣} ≥ 1

8(`+1) |Gy|. By Lemma 8, |Gy| ≥ 3
8

∣∣∣B×T,y∣∣∣; by Lemma 6,
∣∣∣B×T,y∣∣∣ =

1
2

∣∣B×T ∣∣. Combining these three inequalities yields∣∣∣Ĝy

∣∣∣ ≥ 3

128(`+ 1)

∣∣B×T ∣∣ ,
and the lemma follows. ut

We will use the sets Ĝy and Ĝz for simplicity in the forking proof to avoid case

distinctions over whether B̂×T,y or Ô×T,y (or B̂×T,z or Ô×T,z) are larger.
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4.5 Forking Proof for concurrent OMUF

In this section, we show that the Abe-Okamoto partially blind signature scheme
AO is single-tag one-more unforgeable. We extend the proof to multiple tags in
Section 4.6.

Theorem 1 (OMUF security for single-tag adversaries). For all ` ∈ N, if
there exists an adversary U that makes Qh hash queries to random oracle H and

(tU, εU, `)-breaks 1-info-OMUFAO with εU ≥
432
(
1− 1

(`+1)2

)
q ·

(
Qh
`+1

)
, then there ex-

ists an algorithm B that

(
tB = 2tU + O(Qh

2), εB ≈ 3ε2U

75423744·(Qh`+1)
2·(`+1)3

)
-breaks

DLOG.

Proof. We use the wrapper A as described in Figure 3. We now construct a
reduction B that plays the DLOG game as follows.

After B receives its discrete logarithm challenge U, it samples a bit b $←
{0, 1}. It then samples an instance I of type b where it sets z := U if b = 0 and
y := U if b = 1, and all other items uniformly at random from Zq. Furthermore,

B samples a random tape rand for A and a random hash vector
−→
h . After that,

B runs A on (I, rand,
−→
h ). If A returns a set of ` + 1 valid message-signature

pairs, B chooses a random index i $← [` + 1]. B then re-samples the vector
−→
h ′ $← Zq`+1

|
−→
h [i−1]

and runs A on (I, rand,
−→
h ′). If A outputs a second set of ` + 1

valid message-signature pairs, B identifies the signature matching the hash value
hi and h′i respectively in both pair (it aborts if there exists no such signature
for h′i). Denote the corresponding signature components to the ith hash query
by ρi, ρ

′
i, ωi, ω

′
i, σi, σ

′
i, δi, δ

′
i (see Figure 6 on page 50).

If ωi 6= ω′i and b = 1, B computes

x := (ωi − ω′i)−1 · (ρ′i − ρi)

as its output; if δi 6= δ′i and b = 0, B computes

w := (δi − δ′i)−1 · (σ′i − σi)

as its output. Otherwise B aborts. (If A fails to return a set of ` + 1 valid
message-signature pairs either time, B also aborts.)

B runs A twice, and performs Θ(`) additional computation (in particular, B
verifies up to 2(`+ 1) signatures). Plugging in tA = tU + O(Qh

2), we get that

tB = 2tU + O(Qh
2).

We now analyze the advantage of reduction B. Let εU be the advantage of
U in the OMUF game, and ε be the probability that A outputs ` + 1 valid
message-signature pairs. By Lemma 1 and subsequent analysis in Section 4.1,

ε ≥ εU(
Qh
`+1

) .
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We can see that B internally runs the witness extracting algorithm Ey or Ez

in Definition 13. Therefore, by Lemma 4, we have that

advDLOG
B = Pr

b
$←{0,1}

(I,rand,
−→
h )

$←Ib×R×Zq [`+1]

i
$←[`+1],

−→
h ′

$←Zq [`+1]

|
−→
h [i−1]

[
(I, rand,

−→
h ) ∈ Succ ∧ (I, rand,

−→
h ′) ∈ Succ

(b = 0 ∧ δi 6= δ′i) ∨ (b = 1 ∧ ωi 6= ω′i)

]

≥Pr


(I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i(

(b = 0 ∧ δi 6= δ′i)
∨(b = 1 ∧ ωi 6= ω′i)

)

 ≥ Pr


(I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i(

(b = 0 ∧ × = z ∧ δi 6= δ′i)
∨(b = 1 ∧ × = y ∧ ωi 6= ω′i)

)


= Pr

 (b = 0 ∧ × = z ∧ δi 6= δ′i)
∨(b = 1 ∧ × = y ∧ ωi 6= ω′i)

∣∣∣∣∣∣∣
(I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


· Pr

 (I, rand,
−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


We now lower-bound the first term, where we abbreviate the event (I, rand,

−→
h ) ∈ Ĝy∪Ĝz∧(I, rand,

−→
h ′) ∈ T×T,i(I, rand,

−→
h )∧t(I, rand,

−→
h ) = i as E(I, rand,

−→
h ):

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq [`+1]

i
$←[`+1],

−→
h ′

$←Zq [`+1]

|
−→
h [i−1]

[
(b = 0 ∧ × = z ∧ δi 6= δ′i)
∨(b = 1 ∧ × = y ∧ ωi 6= ω′i)

∣∣∣∣E(I, rand,
−→
h )

]

= Pr

[
b = 1 ∧ × = y

ωi 6= ω′i

∣∣∣∣E(I, rand,
−→
h )

]
+ Pr

[
b = 0 ∧ × = z

δi 6= δ′i

∣∣∣∣E(I, rand,
−→
h )

]
= Pr[b = 1] · Pr

[
× = y ∧ ωi 6= ω′i

∣∣∣ b = 1 ∧E(I, rand,
−→
h )
]

+ Pr[b = 0] · Pr
[
× = z ∧ δi 6= δ′i

∣∣∣ b = 0 ∧E(I, rand,
−→
h )
]

=
1

2

(
Pr
[
× = y ∧ ωi 6= ω′i

∣∣∣ b = 1 ∧E(I, rand,
−→
h )
]

+ Pr
[
× = z ∧ δi 6= δ′i

∣∣∣ b = 0 ∧E(I, rand,
−→
h )
])

=
1

2

(
Pr[× = y] · Pr

[
ωi 6= ω′i

∣∣∣ b = 1 ∧ × = y ∧E(I, rand,
−→
h )
]

+ Pr[× = z] · Pr
[
δi 6= δ′i

∣∣∣ b = 0 ∧ × = z ∧E(I, rand,
−→
h )
])

=
1

2

(
Pr[× = y] · Pr

[
(I, rand,

−→
h ′) ∈ A×T,i(I, rand,

−→
h )

∣∣∣∣ b = 1 ∧ × = y

∧E(I, rand,
−→
h )

]
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+ Pr[× = z] · Pr

[
(I, rand,

−→
h ′) ∈ A×T,i(I, rand,

−→
h )

∣∣∣∣ b = 0 ∧ × = z

∧E(I, rand,
−→
h )

])
≥1

2

(
Pr[× = y] ·

(
1

2
− 1

q

)
+ Pr[× = z] ·

(
1

2
− 1

q

))
=

(
1

4
− 1

2q

)
· (Pr[× = y] + Pr[× = z]) =

1

4
− 1

2q
,

where the inequality is due to the following: since (I, rand,
−→
h ) ∈ Ĝy ∪ Ĝz, we

have that ∣∣∣A×T,i(I, rand,−→h )
∣∣∣ ≥ 1

2

∣∣∣T×T,i(I, rand,−→h )
∣∣∣− q`−i+1.

Since we conditioned on (I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h ), the probability in ques-

tion is ∣∣∣A×T,i(I, rand,−→h )
∣∣∣∣∣∣T×T,i(I, rand,−→h )
∣∣∣ ≥ 1

2
− q`−i+1∣∣∣T×T,i(I, rand,−→h )

∣∣∣ ≥ 1

2
− q`−i+1

q`−i+2
=

1

2
− 1

q
.

In the following we denote by Ĝb the set Ĝy if b = 1 and the set Ĝz if b = 0.
Plugging the result back into the previous lower bound of B’s advantage yields

advDLOG
B ≥

(
1

4
− 1

2q

)
· Pr

 (I, rand,
−→
h ) ∈ Ĝb

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


=

(
1

4
− 1

2q

)
· Pr

[
(I, rand,

−→
h ′) ∈ T×T,i(I, rand,

−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝb

t(I, rand,
−→
h ) = i

]
· Pr

[
(I, rand,

−→
h ) ∈ Ĝb

]
· Pr

[
t(I, rand,

−→
h ) = i

∣∣∣(I, rand,−→h ) ∈ Ĝb
]

≥
(

1

4
− 1

2q

)
·
( εB×T

16(`+ 1)
− 2

q

)
·

3εB×T
128(`+ 1)

· 1

`+ 1

(where the last inequality is due to Lemma 10 and Lemma 11). Plugging in

εB×T
≥ ε

96 for ε ≥
432
(
1− 1

(`+1)2

)
q (see Lemma 7) and ε = εU

(Qh`+1)
yields the theorem

statement. ut

4.6 Extension to multiple tags

Theorem 2. Let U be an adversary against `-OMUFAO that runs in time tU,
closes at most `info signing sessions per tag info, closes at most ` signing sessions
in total, and queries at most Qinfo tags info to oracle H∗. Let advOMUFAO

Qinfo,`info,U
be U’s
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advantage. Then there exists a reduction B against 1-info-OMUFAO that runs
in time tB ≈ tU and makes at most `info signing queries and has advantage

adv`info-1-info-OMUFAO

B ≥
adv`−OMUFAO

Qinfo,`info,A
− `
q

Qinfo
.

The proof of this theorem mostly follows that in [4]. We provide it in Appendix D
for completeness.
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Supplementary Material

A Definition of Partial Blindness

Definition 21 (Partial Blindness). For a three-move partially blind signa-
ture scheme PBS, we define the partial blindness game PBLINDPBS with an
adversary S (in the role of the signer) as follows:

Setup. The game samples b $← {0, 1}. It then runs S on input pp.
Online Phase. When S outputs messages m̃0 and m̃1, a tag info, and a public

key pk, the game checks if pk is a valid public key if so, it assigns m0 := m̃b,
m1 := m̃1−b. If pk is not a valid public key, the game aborts and outputs 0.
S is given access to oracles user1 and user2, which behave as follows.
Oracle user1: On input a bit b′ and a Sign1 response R, if the session b′ is

not yet open, the oracle marks session b′ as open and generates a state
and a challenge as (stb′ , e)

$← PBS.User1(pk,mb′ , R, info). It returns e to
S. Otherwise, it returns ⊥.

Oracle user2: On input of a Sign2 response S and a bit b′, if the session b′

is open, the oracle computes the signature sigb′ := PBS.User2(pk, stb′ , R).
It marks session b′ as closed and saves sigb′ . If both sessions are closed
and produced signatures, the oracle outputs the two signatures sig0, sig1
to S.

Output Determination. If both sessions are closed and produced signatures,
the game outputs 1 iff S outputs a bit b∗ s.t. b∗ = b. Otherwise, it outputs 0.

We define the advantage of S as

advPBLINDPBS

S =

∣∣∣∣Pr
[
PBLINDS

PBS = 1
]
− 1

2

∣∣∣∣
where the probability goes over the randomness of the game as well as the ran-
domness of the adversary S. We say the scheme PBS is (t, ε)-partially blind if for
any adversary S running in time at most t,

advPBLINDPBS

S ≤ ε.

B Important Lemmata

In this section, we review the classical splitting lemma and introduce what we
call the bucket lemma, which will help facilitate our proofs in Appendix C.

Lemma 12 (Splitting Lemma [36]). Let A ⊂ X × Y such that

Pr
(x,y)

$←X×Y
[(x, y) ∈ A] ≥ ε.
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For any α ∈ [0, ε) define

B =

{
(x, y) ∈ X × Y

∣∣∣∣∣ Pr
y′

$←Y

[(x, y′) ∈ A] ≥ ε− α

}
.

(B is sometimes called the heavy row of A.) Then the following statements hold:

1. Pr
(x,y)

$←X×Y [(x, y) ∈ B] ≥ α
2. ∀(x, y) ∈ B : Pr

y′
$←Y

[(x, y′) ∈ A] ≥ ε− α
3. Pr

(x,y)
$←X×Y [(x, y) ∈ B|(x, y) ∈ A] ≥ α

ε

Lemma 13 (Bucket Lemma). Let X be a finite set, b ∈ Z+, and let B1, . . . ,

Bb ⊂ X s.t.
⋃b
i=1Bi = X. Then for all α ∈ (0, 1) there exists a set Gα ⊂ X

such that

1. |Gα| > (1− α) · |X|.
2. For all x ∈ Gα, there exists i ∈ [b] s.t. x ∈ Bi and |Bi| ≥ α · |X|b .

Proof. Fix α. Let Fα ⊂ X be the set of elements that do not belong to any Bi
(i ∈ [b]) with |Bi| ≥ α · |X|b . It therefore holds that Fα ⊂

⋃
Bi:|Bi|<α· |X|b

Bi. We

now compute an upper bound for the size of Fα as

|Fα| ≤

∣∣∣∣∣∣∣
⋃

i:|Bi|<α· |X|b

Bi

∣∣∣∣∣∣∣ ≤
∑

i:|Bi|<α· |X|b

|Bi|

<
∑

i:|Bi|<α· |X|b

α · |X|
b
≤ b ·

(
α · |X|

b

)
= α · |X|

Setting Gα = X \ Fα yields the statement. ut

C Deferred Proofs and Definitions from the Main body

C.1 Additional Definitions

We define the heavy row of the set of successful tuples Succ as

HR(Succ) :=
{

(I, rand,
−→
h ) ∈ Succ

∣∣∣|SuccI,rand| ≥ ε

2
· q`+1

}
By Lemma 12, |HR(Succ)| ≥ 1

2 |Succ|.
In the following we define a subset P ⊂ HR(Succ) of “partner tuples” which

have a partner at some index. We also define a “good” subset PG of P and

its “bad” complement PB . Intuitively, PG consists of those tuples (I, rand,
−→
h )

in P which have many partnering tuples at at least one index, i.e., for which

BBrmax(I, rand,
−→
h ) is large (relative to the number of all tuples (I, rand, ·) in P ).
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Definition 22 (Partner Tuples). We call (I, rand,
−→
h ) ∈ HR(Succ) a partner

tuple if
−→
h has a partner with respect to I, rand (at any index i ∈ [`+ 1]), i.e., if

(I, rand,
−→
h ) ∈ P where

P =
{

(I, rand,
−→
h ) ∈ HR(Succ)

∣∣∣(I, rand,−→h ) ∈ PI,rand

}
.

We further define the set of good partner tuples as

PG =

{
(I, rand,

−→
h ) ∈ P

∣∣∣∣ ∣∣∣BBrmax(I,rand,
−→
h )

∣∣∣ ≥ 1

(`+ 1)3
|P ∩ PI,rand|

}
.

The set of bad partner tuples is defined as PB = P \ PG.

Finally, we introduce the notion of S-suffixes (at some index j). For a suc-

cessful tuple (I, rand,
−→
h ) ∈ S ⊂ SuccI,rand we consider all hash vectors that share

a j-prefix (i.e., up to index j − 1) with
−→
h and also lie in S. We define the set

Γj,S(I, rand,
−→
h ) of its S-suffixes at index j as the set of all the j-th entries h∗ of

such vectors.

Definition 23 (S-Suffixes). Fix I, rand and some S ⊂ SuccI,rand. For a hash

vector
−→
h with (I, rand,

−→
h ) ∈ S and all j ∈ [`+ 1], we define its set of S-suffixes

at index j as

Γj,S(I, rand,
−→
h ) :=

h∗
∣∣∣∣∣∣∣∃
−→
h ′ :

(I, rand,
−→
h ′) ∈ S

−→
h ′[j−1] =

−→
h [j−1]

h′j = h∗


C.2 Counting Partners and Triangles

Having defined our basic objects of interest, we now move to lower bounding
their numbers. We start by considering the sizes of sets P and PG.

The following lemma asserts that if the set SuccI,rand is sufficiently large

for some fixed I, rand (i.e., many different vectors
−→
h lead to success together

with I, rand), then the set PI,rand of tuples (I, rand,
−→
h ) that have some partner

(I, rand,
−→
h ′), is large.

Lemma 14. For I, rand such that |SuccI,rand| > q`, there exist at least |SuccI,rand|−
q` + 1 hash vectors

−→
h such that (I, rand,

−→
h ) ∈ PI,rand.

Proof. There are at most q` possible query transcripts. Thus, by pigeon hole-
principle, for |SuccI,rand| > q` there can be at most q` − 1 hash vectors that do
not have a partner. This yields the statement. ut

We have proven above that the number of partner tuples with respect to

a sufficiently good pair I, rand (i.e., one for which many
−→
h lead to success) is

large. The following simple corollaries combine the above with the properties of
HR(Succ) to ensure that the set P of heavy-row partner tuples (i.e., over all
pairs I, rand ∈ HR(Succ)) is also large.
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Corollary 5. For I, rand such that ∃
−→
h : (I, rand,

−→
h ) ∈ HR(Succ) and ε ≥ 4

q , it

holds that |PI,rand| ≥ 1
2 |SuccI,rand|.

Corollary 6. For ε as in Corollary 5, |P | ≥ 1
4 |Succ| .

Proof. By Corollary 5, |PI,rand| ≥ 1
2 |SuccI,rand| for I, rand with (I, rand,

−→
h ) ∈

HR(Succ) for some
−→
h . Summing over all such (I, rand) pairs yields that |P | ≥

1
2 |HR(Succ)|. As |HR(Succ)| ≥ 1

2 |Succ|, the statement follows. ut

Next, we also show that the subset PG of good tuples is large within P .

Lemma 15 (Many partner tuples are good).

|PG| ≥
(

1− 1

(`+ 1)2

)
|P | .

Proof. Fix I, rand such that PI,rand∩P 6= ∅. For all i ∈ [`+1], let Bi = Bi(I, rand)
(as in Definition 11) and α = 1

(`+1)2 . We note here that P ∩ PI,rand = PI,rand for

I, rand as above and thus the Bi are a partition of P ∩ PI,rand. By Lemma 13,

there exists a subset G(I, rand) of size at least
(

1− 1
(`+1)2

)
|P ∩ PI,rand|, such

that all tuples (I, rand,
−→
h ) ∈ G(I, rand) lie in a set Bi of size at least |Bi| ≥

1
(`+1)3 |P ∩ PI,rand|, where by definition i = Brmax(I, rand,

−→
h ). By definition of

PG, (I, rand,
−→
h ) ∈ PG. Since this holds for any (I, rand,

−→
h ) ∈ G(I, rand), we have

that G(I, rand) ⊂ PG. Hence, ⋃
I,rand:

P∩PI,rand 6=∅

G(I, rand) ⊂ PG,

and since the sets G(I, rand) ⊂ PI,rand are disjoint for distinct I, rand,

|PG| ≥
∑

I,rand:
P∩PI,rand 6=∅

|G(I, rand)|

≥
∑

I,rand:
P∩PI,rand 6=∅

(
1− 1

(`+ 1)2

)
|P ∩ PI,rand|

=

(
1− 1

(`+ 1)2

)
|P | .

ut

We now want to argue that for sufficiently large sets of vectors, there must
be a sufficiently large set of possible suffixes for many vectors within the set. In
particular, this will help us find triangles.
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Lemma 16 (Lower-bounding the amount of possible suffixes). Fix I,

rand and ζ ∈ [0, 1]. Let H ⊂ Z`+1
q with |H| ≥ ζ · q`+1, such that for all

−→
h ∈ H,

(I, rand,
−→
h ) ∈ S ⊂ Succ for some set S ⊃ H. Then for any constant c ∈ (0, 1)

the following holds: for each index j ∈ [`+ 1], there exists a subset Hj ⊂ H with

|Hj | > c · |H|, such that for any
−→
h ∈ Hj,∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ ≥ (1− c) · ζ · q

Proof. Assume toward a contradiction that for some c ∈ (0, 1) and index j ∈ [`+
1], no such Hj ⊂ H exists. This can be rephrased as: there exists a subset F ⊂ H
such that |F | > (1− c) · |H| and for all

−→
h ∈ F ,

∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ < (1− c) · ζ · q.

For any
−→
h ∈ F , consider all successful vectors

−→
h ′ with

−→
h ′[j−1] =

−→
h [j−1]. The

j-th entry of
−→
h ′ takes

∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ possible values, and all of the remaining

`− j + 1 entries take (up to) q possible values. Therefore,∣∣∣∣∣
{
−→
h ′ ∈ Zq`+1

∣∣∣∣∣ (I, rand,
−→
h ′) ∈ Succ

−→
h ′[j−1] =

−→
h [j−1]

}∣∣∣∣∣ ≤ ∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣·q`−j+1 < (1−c)·ζ·q`−j+2

Then we have

|F | ≤
∑
−→
h [j−1]

s.t.
−→
h∈F

∣∣∣∣∣
{
−→
h ′ ∈ Zq`+1

∣∣∣∣∣ (I, rand,
−→
h ′) ∈ Succ

−→
h ′[j−1] =

−→
h [j−1]

}∣∣∣∣∣
≤ qj−1 · max−→

h∈F

∣∣∣∣∣
{
−→
h ′ ∈ Zq`+1

∣∣∣∣∣ (I, rand,
−→
h ′) ∈ Succ

−→
h ′[j−1] =

−→
h [j−1]

}∣∣∣∣∣
< (1− c) · ζ · q(`+1) ≤ (1− c) · |H| ,

which is a contradiction to the assumption that |F | > (1− c) · |H|. ut

We apply the lower bound for suffixes from above to lower bound the number
of triangle base corners that lie within PG. We begin by proving the following
technical lemma.

Lemma 17 (Many good partner tuples are triangle base corners).

Assume ε ≥ 72(`+1)3

q and fix I, rand such that (I, rand,
−→
h ) ∈ HR(Succ) for some

−→
h . Then at least 5

6 of tuples in PG ∩ PI,rand are triangle base corners at index

Brmax(I, rand,
−→
h ). That is, there exists a subset T ⊂ PG ∩ PI,rand with |T | ≥

5
6 |PG ∩ PI,rand| such that all tuples (I, rand,

−→
h ′) ∈ T are base corners of a triangle

at index Brmax(I, rand,
−→
h ).

Proof. Take any I, rand as in the lemma statement. Then

|P ∩ PI,rand| ≥
1

2
|SuccI,rand| ≥

ε

4
· q`+1,
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where the first inequality is due to Corollary 5, and the second inequality is due
to the definition of HR(Succ). (Corollary 5 requires that ε ≥ 4

q , which is implied

by our assumption on ε here.)
Consider any index ν for which Bν(I, rand) ∩ PG 6= ∅. Then, by definition of

PG it holds that

|Bν(I, rand)| ≥ 1

(`+ 1)3
|P ∩ PI,rand| ≥

ε

4(`+ 1)3
· q`+1.

Applying Lemma 16 with H = S = Bν(I, rand), ζ = ε
4(`+1)3 , and c = 5

6 , we get:

for any index j ∈ [` + 1], there exists a subset Tj(I, rand) ⊂ Bν(I, rand) with

|Tj(I, rand)| ≥ 5
6 |Bν | such that for all (I, rand,

−→
h ) ∈ Tj(I, rand),∣∣∣Γj,Bν (I, rand,

−→
h )
∣∣∣ ≥ (1− 5

6

)
· ε

4(`+ 1)3
· q ≥ 3.

The set Tν(I, rand) yields a set of triangle corners at index ν, which can be

seen as follows. First, for any tuple (I, rand,
−→
h ) ∈ Tν(I, rand), there is a part-

ner tuple (I, rand,
−→
h ′) at index ν (by definition of Bν(I, rand)). Hence, hj , h

′
j ∈

Γj,Bν (I, rand,
−→
h ) = Γj,Bν (I, rand,

−→
h ′). As

∣∣∣Γj,Bν (I, rand,
−→
h )
∣∣∣ ≥ 3, there exists

at least one further entry h′′j which lies in Γj,Bν (I, rand,
−→
h ). Thus, (I, rand,

−→
h ),

(I, rand,
−→
h ′), (I, rand,

−→
h ′′) mutually fork from each other at index ν. Moreover,

the first two among them are partners and at least one of them lies in Tν(I, rand).
Hence, the three of them satisfy the definition of a triangle at index ν and at
least one of the triangle base corners lies in Tν(I, rand). Finally, by definition of

the set Bν(I, rand), Brmax(I, rand,
−→
h ) = ν as required.

Now define
T :=

⋃
ν : Bν(I,rand)∩PG 6=∅

Tν(I, rand).

Using that the sets Bν(I, rand) s.t. Bν(I, rand)∩PG form a partition of PI,rand∩PG

|T | =

∣∣∣∣∣∣
⋃

ν : Bν(I,rand)∩PG 6=∅

Tν

∣∣∣∣∣∣ =
∑

ν : Bν(I,rand)∩PG 6=∅

|Tν |

≥
∑

ν : Bν(I,rand)∩PG 6=∅

5

6
|Bν(I, rand)| ≥ 5

6
|PI,rand ∩ PG| ,

where the second equality follows from disjointness of the sets Tν . This yields
the statement of the Lemma. ut

Corollary 7. Assume ε as in Lemma 17. Then at least 5
6 of all tuples in PG

are triangle base corners.

Proof. Consider I, rand such that (I, rand,
−→
h ) ∈ PG for some

−→
h . By definition,

PG ⊂ HR(Succ), so (I, rand,
−→
h ) ∈ HR(Succ) for some

−→
h . By Lemma 17, at
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least 5
6 of vectors in PG ∩ SuccI,rand are triangle base corners. Summing over all

such (I, rand) pairs yields the result. ut

Lemma 18. If (I, rand,
−→
h ),(I, rand,

−→
h ′) are a triangle base at index i, and (I,

rand,
−→
h ′′) is a partner of (I, rand,

−→
h ) at index i, then (I, rand,

−→
h ), (I, rand,

−→
h ′′)

are also a triangle base at index i.

Proof. We distinguish between two cases:

Case h′i = h′′i : Let
−→
h ′′′ be such that (I, rand,

−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′′)

form a triangle at index i (such
−→
h ′′′ must exist because (I, rand,

−→
h ), (I, rand,

−→
h ′) form a triangle base at index i). Then (I, rand,

−→
h ), (I, rand,

−→
h ′′), (I, rand,

−→
h ′′′) also form a triangle at index i.

Case h′i 6= h′′i : in this case (I, rand,
−→
h ), (I, rand,

−→
h ′′), (I, rand,

−→
h ′) form a trian-

gle at index i where (I, rand,
−→
h ′) takes the role of the triangle top.

ut

C.3 Deferred Proof from Section 4.3

Proof (of Lemma 2). We show the lemma for a z-side instance I = (1, w,y,−→c ,
−→r ,−→u ); the argument for y-side instances works analogously.

Let (0, x, z,
−→
d ,−→s ,−→v ) = Φ

rand,
−→
h

(I) and −→e be the vector of queries to Sign2

made by the adversary U on input (I, rand,
−→
h ). We first show that I and Φ

rand,
−→
h

(I)

produce the same transcript. The bit b is not used actively in the simulation and
thus does not affect the transcript. As the public key y = gx is the same in both
instances from the view of U, and U is running on the same randomness rand, the
info used will be the same for both instances. The tag key z = gw is the same in
both instances. We now look at a single session of the protocol. For any i it holds
that: The commitments ai,bi are computed as ai = gvi = gri+c·x = gri · yci
and bi = gsi ·zdi = gui−di·w ·gdi·w = gui which are the same group elements for
both instances. We now use induction on the signing sessions in the order of the
Sign2 requests. Let therefore ik be the session index of the kth closed session.
As the instances provide the same response to Sign1, the view up until the first
query to Sign2 is identical for U and thus it makes the same first Sign2 query
in both runs. Analogously, if the transcript is identical up to the kth request to
Sign2, the kth query eik will also be identical. We now argue that for the kth
closed session, if the views have been identical before, the kth response to Sign2
is also identical. Thus, U makes the same query eik to Sign2. As dik = eik−cik , it
holds that c′ik = eik − (eik − cik) = cik , where c′ik is the cik computed in the run
with Φ

rand,
−→
h

(I). Thus r′ik = vik − cik ·x = (rik + cik ·x)− cik ·x = rik where r′ik is

the rik computed in the run with Φ
rand,

−→
h

(I). Thus, the response rik , cik , sik , dik
of the oracle Sign2 is identical. As the view as the adversary is identical for the
entire run of the protocol, it must also output the same signatures in both runs.
Thus, the two transcripts are identical.
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We thus use −→e to denote the queries to Sign2 in both runs. We now show that
Φ
rand,

−→
h

is a self-inverse bijection. For an instance I, we show that Φ
rand,

−→
h

(Φ
rand,

−→
h

(I)) =

I (denote with ’ the components of Φ
rand,

−→
h

(Φ
rand,

−→
h

(I))):

– w′ = dlog z = dlog gw = w
– y′ = gx = y
– ∀i ∈ [`] : c′i = ei − di = ei − (ei − ci) = ci
– ∀i ∈ [`] : r′i = vi − ci · x = (ci · x+ ri)− ci · x = ri
– ∀i ∈ [`] : u′i = di · w + si = (ei − ci) · w + [ui − (ei − ci) · w] = ui

Thus, Φ
rand,

−→
h

is a bijection and its own inverse. ut

C.4 Counting The Image of Φ

In the following, we consider the image of the set PG of all partners under Φ8.
Recall that (roughly speaking) we defined PG as the set of all ‘good’ partner
tuples, i.e., tuples with many partner tuples. The goal of the next lemma is to
lower bound the number of ‘doubly good’ tuples in PG who retain a large number
of partners after being mapped with Φ, i.e., good partner tuples whose image
under Φ remains ‘good’. Below, we implicitly use the fact that Φ(P ) yields a set
of partner tuples (due to Lemma 3).

Lemma 19 (Many good partner tuples have a good image). Let

P ′G =

{
(I, rand,

−→
h ) ∈ Φ(P )

∣∣∣∣∣∣∣BBrmax(I,rand,
−→
h )
∩ Φ(P )

∣∣∣ ≥ 1

(`+ 1)3
|Φ(P ) ∩ SuccI,rand|

}
.

Then

|Φ(PG) ∩ P ′G| ≥
(

1− 2

(`+ 1)2

)
|P | .

Proof. Fix I, rand with Φ(P ) ∩ SuccI,rand 6= ∅. Then it holds that each (I, rand,
−→
h ) ∈ SuccI,rand ∩Φ(P ) lies in one set Bi ∩Φ(P ) (namely i = Brmax(I, rand,

−→
h )).

As there are (` + 1) hash queries, there are at most (` + 1) such sets. Thus, by

lemma 13 with α = 1
(`+1) , there exists a set Gα such that for all (I, rand,

−→
h ) ∈ Gα

it holds that
∣∣∣B

Brmax(I,rand,
−→
h )
∩ Φ(P )

∣∣∣ ≥ 1
(`+1)3 |Φ(P ) ∩ SuccI,rand| and |Gα| ≥(

1− 1
(`+1)

)
· |SuccI,rand| ∩Φ(P ). Taking the Gα of all SuccI,rand with SuccI,rand ∩

Φ(P ) 6= ∅ yields that |P ′G| ≥
(

1− 1
(`+1)2

)
· |P |. Since Φ(PG) ⊂ Φ(P ) and P ′G ⊂

Φ(P ), it holds, using lemma 15 and the inclusion-exclusion principle that

|Φ(PG) ∩ P ′G| ≥
(

1− 2

(`+ 1)2

)
· |P | .

ut
8 We have defined Φ(I, rand,

−→
h ) = (Φ

rand,
−→
h

(I), rand,
−→
h ), hence Φ(P ) is well-defined.
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We now turn to lower bounding the number of triangle base corner within
the set P ′G from Lemma 19. Together with the fact that PG has many triangle
base-corners, we will then be able to conclude that the images of many triangle
base-corners remain base-corners in some other triangle at the same index.

Lemma 20 (Many images of good partner tuples are triangle base

corners). Assume ε ≥
3·144· (`+1)2−1

(`+1)2

q as well as ε as in Corollary 5 (whichever

is larger). Then at least 11
18 of tuples (I, rand,

−→
h ) ∈ P ′G are base corners of a

triangle at Brmax(I, rand,
−→
h ).

Proof. Let εP ′G =
|P ′G|

|I×R×Zq(`+1)| be the probability of getting a tuple in P ′G when

sampling a tuple uniformly at random. Then

εP ′G ≥
(

1− 1

(`+ 1)2

)
· εP ≥

(
1− 1

(`+ 1)2

)
· ε

4
, (∗)

where the first inequality is due to the fact that |P ′G| ≥
(

1− 1
(`+1)2

)
|P | (see the

proof of Lemma 19), and the second inequality is due to Corollary 6.
Define the heavy row of P ′G as

HR(P ′G) =
{

(I, rand,
−→
h ) ∈ P ′G

∣∣∣|P ′G ∩ SuccI,rand| ≥
εP ′G
3
· q(`+1)

}
.

By Lemma 12, |HR(P ′G)| ≥ 2
3 |P

′
G|. Now consider any tuple (I, rand,

−→
h ) ∈

HR(P ′G). From the definition of P ′G it follows that∣∣∣B
Brmax(I,rand,

−→
h )
∩ P ′G

∣∣∣ ≥ 1

(`+ 1)3
|Φ(P ) ∩ SuccI,rand|

P ′G⊂Φ(P )

≥ 1

(`+ 1)3
|P ′G ∩ SuccI,rand| ≥

εP ′G
3(`+ 1)3

· q(`+1).

Similar to the proof of Lemma 17, we apply Lemma 16 withH = B
Brmax(I,rand,

−→
h )
∩

P ′G, S = S
Brmax(I,rand,

−→
h )
∩ P ′G, ζ =

εP ′
G

3(`+1)3 , and c = 11
12 . This yields that for all

indices j ∈ [` + 1], there exists a subset Hj(I, rand) ⊂ B
Brmax(I,rand,

−→
h )
∩ P ′G

with |Hj(I, rand)| ≥ 11
12

∣∣∣B
Brmax(I,rand,

−→
h )
∩ P ′G

∣∣∣ such that for all (I, rand,
−→
h ′) ∈

Hj(I, rand),∣∣∣Γj,S(I, rand,
−→
h ′)
∣∣∣ ≥ (1− 11

12

)
·

εP ′G
3(`+ 1)3

·q
(∗)
≥
(

1− 1

(`+ 1)2

)
· ε

144(`+ 1)3
·q ≥ 3

where the last step is obtained by plugging in ε as in the lemma statement.

Setting j = Brmax(I, rand,
−→
h ), we obtain a subset H

Brmax(I,rand,
−→
h )

(I, rand) of

triangle base corners at index Brmax(I, rand,
−→
h ) by a similar argument as in



Abe-Okamoto, Revisited 45

lemma 17. (Henceforth we simplify it to H
Brmax(I,rand,

−→
h )

.) Let T be the union of

all such sets, i.e.,

T =
⋃

(I,rand,
−→
h )∈HR(P ′G)

H
Brmax(I,rand,

−→
h )

Then all vectors in T are triangle base corners, and

|T | =

∣∣∣∣∣∣∣
⋃

(I,rand,
−→
h )∈HR(P ′G)

H
Brmax(I,rand,

−→
h )

∣∣∣∣∣∣∣ ≥
11

12

∣∣∣∣∣∣
⋃

(I,rand,
−→
h )

(
B

Brmax(I,rand,
−→
h )
∩ P ′G

)∣∣∣∣∣∣
(∗∗)
≥ 11

12
|HR(P ′G)| ≥ 11

12
· 2

3
|P ′G| =

11

18
|P ′G| ,

where (∗∗) is because for any (I, rand,
−→
h ′) ∈ HR(P ′G) it holds that (I, rand,

−→
h ′) ∈

B
Brmax(I,rand,

−→
h ′)
∩P ′G ⊂

⋃
(I,rand,

−→
h )∈HR(P ′G)

(
B

Brmax(I,rand,
−→
h )
∩ P ′G

)
, henceHR(P ′G) ⊂⋃

(I,rand,
−→
h )∈HR(P ′G)

(
B

Brmax(I,rand,
−→
h )
∩ P ′G

)
. ut

Having bounded the number of triangle corners within both PG and P ′G, we
now compute their overlap. More precisely, we show that there is a large set T

such that all tuples (I, rand,
−→
h ) ∈ T are triangle base corners and, moreover,

Φ(I, rand,
−→
h ) is also a triangle base-corner at the same index.

Lemma 21. Assume ε as in Lemma 20. Then there exists a set T ⊂ P with
|T | ≥ 1

12 |P | such that for all (I, rand,
−→
h ) ∈ T it holds that both (I, rand,

−→
h ) and

Φ(I, rand,
−→
h ) are triangle base-corners at index Brmax(I, rand,

−→
h ).9

Proof. Let C denote the set of triangle base corners at their maximal branching
index, i.e.,

C :=
{

(I, rand,
−→
h )
∣∣∣∃−→h ′,−→h ′′ : (

−→
h ,
−→
h ′,
−→
h ′′) ∈ 4

Brmax(I,rand,
−→
h )

}
.

Then

|P ′G ∩ C|
Lemma 20
≥ 11

18
|P ′G|

Lemma 19
≥ 11

18
·
(

1− 1

(`+ 1)2

)
|P |

`≥1
≥ 11

24
|P | ;

|PG ∩ C|
Lemma 17
≥ 5

6
|PG|

Lemma 15
≥

(
1− 1

(`+ 1)2

)
· 5

6
|P |

(`≥1
≥ 5

8
|P | .

Let T = Φ(PG ∩C)∩ (P ′G ∩C). Clearly T ⊂ C ∩Φ(C), implying that the tuples
in T satisfy the requirements of the lemma. Moreover, T ⊂ Φ(PG)∩P ′G ⊂ P . By
inclusion-exclusion, this yields

|T | ≥ |Φ(PG ∩ C)|+ |P ′G ∩ C| − |P | = |PG ∩ C|+ |P ′G ∩ C| − |P |

≥ 5

8
|P |+ 11

24
|P | − |P | = 1

12
|P |

ut
9 Note that Brmax(I, rand,

−→
h ) = Brmax(Φ

rand,
−→
h

(I), rand,
−→
h ) due to corollary 2.



46 Julia Kastner, Julian Loss, Jiayu Xu

C.5 Proofs from Section 4.4

Proof (of Lemma 7).

∣∣B×T ∣∣ ≥ 1

2
|BT | ≥

1

2
· 1

12
|P | ≥ 1

2
· 1

12
· 1

4
|Succ| = ε

96

∣∣∣I ×R× Zq`+1
∣∣∣,

where the steps follow (in this order) from Lemma 5, Corollary 8, Corollary 6,

and the definition of ε. Thus, εB×T
=

|B×T |
|I×R×Zq`+1| ≥

ε
96 . ut

Proof (of Lemma 4). Suppose ωj 6= ω′j . Let A make two runs, one on (I, rand,
−→
h )

and one on (I, rand,
−→
h ′). As the two runs were identical up to the point when A

makes its j-th query to H, this query αj ,βj , zj ,mj was also identical (note that

rand is fixed and thus A is deterministic). Since (
−→
h ,
−→
h ′) ∈ Fj(I, rand), we know

that (I, rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ, i.e., A outputs ` + 1 valid signatures in

both runs. This means that the two sigma protocol transcripts (αj , ωj , ρj) and

(αj , ω
′
j , ρ
′
j) are both accepting, so we have αj = gρj · gωj ·x = gρ

′
j · gω

′
j ·x Thus,

x can be computed as x = (ω′j − ωj)−1 · (ρj − ρ′j). Now suppose that ωj = ω′j .
In this case, since ωj + δj = hj 6= h′j = ω′j + δ′j , δj 6= δ′j . For δj 6= δ′j we have

βj = gσj · gδj ·w = gσ
′
j · gδ

′
j ·w and thus w = (δ′j − δj)−1 · (σj − σ′j). ut

Proof (of Lemma 5).
1. We show the equation for By

T ; the one for Bz
T can be proved similarly. By

definition of BT and the self-inverse property of Φ, it follows that Φ(BT ) =

BT and thus Φ(By
T ) ⊂ BT . Fix any (I, rand,

−→
h ) ∈ By

T . Further, fix a vec-

tor
−→
h ′ with (

−→
h ,
−→
h ′) ∈ prt

Brmax(I,rand,
−→
h )

(I, rand) for which there exist
−→
h ′′,
−→
h ′′′

with (
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4

Brmax(I,rand,
−→
h )

(I, rand), (
−→
h ,
−→
h ′,
−→
h ′′′) ∈ 4

Brmax(I,rand,
−→
h )

(

Φ
rand,

−→
h

(I), rand) and such that the y-side witness can be extracted from (I, rand,
−→
h ) and (I, rand,

−→
h ′) at Brmax(I, rand,

−→
h ) (i.e., as guaranteed the definition of

By
T ).

By Lemma 2, the signatures resulting from the tuple (I, rand,
−→
h ) and (I, rand,

−→
h ′) are the same as the signatures resulting from (Φ

rand,
−→
h

(I), rand,
−→
h ) and

(Φ
rand,

−→
h ′

(I), rand,
−→
h ′), respectively. As

−→
h and

−→
h ′ are partners, Lemma 3 im-

plies that (Φ
rand,

−→
h ′

(I), rand,
−→
h ′) = (Φ

rand,
−→
h

(I), rand,
−→
h ′) and by Corollary 2,

Brmax(I, rand,
−→
h ) = Brmax(Φ

rand,
−→
h

(I), rand,
−→
h ). Hence, the signatures that re-

sult from (Φ
rand,

−→
h

(I), rand,
−→
h ), (Φ

rand,
−→
h

(I), rand,
−→
h ′) are the same signatures that

result from (I, rand,
−→
h ) and (I, rand,

−→
h ′). As the witness that can be extracted

from (I, rand,
−→
h ) and (I, rand,

−→
h ′) at index Brmax(I, rand,

−→
h ) is completely deter-

mined by the signatures corresponding to h
Brmax(I,rand,

−→
h )

and h′
Brmax(I,rand,

−→
h )

, the

same witness can be extracted from (Φ
rand,

−→
h

(I), rand,
−→
h ), (Φ

rand,
−→
h

(I), rand,
−→
h ′)
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at index i. By assumption, (
−→
h ,
−→
h ′,
−→
h ′′′) ∈ 4

Brmax(I,rand,
−→
h )

(Φ
rand,

−→
h

(I), rand) and

(
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4

Brmax(I,rand,
−→
h )

(I, rand) = 4
Brmax(I,rand,

−→
h )

(Φ
rand,

−→
h

(Φ
rand,

−→
h

(I)), rand),

where we have applied the self-inverse property of Φ
rand,

−→
h

. So (Φ
rand,

−→
h

(I), rand,
−→
h )

meets the requirements of the definition of By
T , and thus (Φ

rand,
−→
h

(I), rand,
−→
h ) ∈

By
T . As (I, rand,

−→
h ) ∈ By

T was chosen arbitrarily, we obtain that Φ(By
T ) ⊂ By

T .
Using the self-inverse property of the bijection Φ once more, we immediately
obtain the converse inclusion By

T ⊂ Φ(By
T ). Thus Φ(By

T ) = By
T .

2. Consider any tuple (I, rand,
−→
h ) ∈ BT . By Lemma 4, at least one witness

can be extracted from each triangle base.Let i = Brmax(I, rand,
−→
h ). For any

−→
h ′

as in Definition 14, we know that (
−→
h ,
−→
h ′) ∈ Fi(I, rand). By Lemma 4, at least

one witness can be extracted from (I, rand,
−→
h ) and (I, rand,

−→
h ′), so at least one

of Dy
i (I, rand,

−→
h ), Dz

i (I, rand,
−→
h ) is not ∅. Suppose D×i (I, rand,

−→
h ) is the larger

of the two sets; then D×i (I, rand,
−→
h ) 6= ∅ and thus (I, rand,

−→
h ) ∈ B×T . This shows

that any tuple in BT is in By
T or Bz

T , so By
T ∪Bz

T = BT . ut

We now relate the sets T from Lemma 21 and BT . Recall that elements of the set

T are triangle base-corners (I, rand,
−→
h ) at Brmax(I, rand,

−→
h ) s.t. (Φ

rand,
−→
h

(I), rand,
−→
h ) remains a triangle base-corner at index Brmax(I, rand,

−→
h ). Concretely, we

show that T ⊂ BT . This establishes, for one, that BT is large (because T is
large, as we have shown).

Lemma 22. Let T be as in Lemma 21. Then T ⊂ BT .

Proof. Fix some (I, rand,
−→
h ) ∈ T . Then there exist

−→
h ′,
−→
h ′′,
−→
h ′′′,
−→
h ′′′′ such that

(
−→
h ,
−→
h ′,
−→
h ′′′) ∈ 4

Brmax(I,rand,
−→
h )

(I, rand) and (
−→
h ,
−→
h ′′,
−→
h ′′′′) ∈ 4

Brmax(Φrand,
−→
h
(I),rand,

−→
h )

(Φ
rand,

−→
h

(I), rand). By Corollary 2, Brmax(Φ
rand,

−→
h

(I), rand,
−→
h ) = Brmax(I, rand,

−→
h ); let this index be i. In the following, we also use that (

−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h

(I),

rand) which follows from Lemma 3.

– If h′i = h′′i , then we can replace
−→
h ′′ by

−→
h ′ in the triangle (

−→
h ,
−→
h ′′,
−→
h ′′′′)

as h′i = h′′i 6= h′′′′i . Since (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h

(I), rand), (
−→
h ,
−→
h ′,
−→
h ′′′′) ∈

4i(Φrand,
−→
h

(I), rand) and thus,
−→
h ,
−→
h ′,
−→
h ′′ and

−→
h ′′′′ meet the definition of

BT . Hence, (I, rand,
−→
h ) ∈ BT .

– If h′i 6= h′′i , then, since (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h

(I), rand), (
−→
h ′,
−→
h ′′) ∈ prti

(Φ
rand,

−→
h

(I), rand), and hi 6= h′′i , it must also be the case that (
−→
h ,
−→
h ′′) ∈

prti(Φrand,
−→
h

(I), rand). This implies that (
−→
h ,
−→
h ′,
−→
h ′′) ∈ 4i(Φrand,

−→
h

(I), rand)

and thus (I, rand,
−→
h ) ∈ BT .

Either way, (I, rand,
−→
h ) ∈ BT , so T ⊂ BT . ut
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Corollary 8. |BT | ≥ 1
12 |P |.

Proof (of Lemma 8). We show this for Gy; the proof for Gz works analogously.

By Lemma 6 it holds that
∣∣∣B×T,y∣∣∣ = 1

2

∣∣B×T ∣∣.
For i ∈ [` + 1] we define a subset of B×T,y that are both-sided triangle base

corners at index i as follows:

Gi,y :=
{

(I, rand,
−→
h ) ∈ B×T,y

∣∣∣ i = Brmax(I, rand,
−→
h )
}

It is easy to see that Gi,y (i ∈ [`+ 1]) form a partition of B×T,y. We note that
membership in Gi,y is symmetrical, i.e., the other base corner of a both-sided
triangle is always also contained in Gi,y.

Denote the set of indices i ∈ [` + 1] such that |Gi,y| ≥ 1
4(`+1)

∣∣∣B×T,y∣∣∣ as J .

We now apply Lemma 13 with Bi = Gi,y, b = `+ 1, α = 1
4 , and X = B×T,y. Due

to Lemma 13, at least 3
4 of the tuples (I, rand,

−→
h ) in B×T,y has the property that

there exists i ∈ J such that (I, rand,
−→
h ) ∈ Gi,y. For each Gi,y with i ∈ J , define

HR(Gi,y) =

{
(I, rand,

−→
h ) ∈ Gi,y

∣∣∣∣∣∣∣Gi,y ∩ Succ
I,rand,

−→
h [i−1]

∣∣∣ ≥ 1

8
· 1

`+ 1
εB×T,y

· q`−i+2

}
where εB×T,y

:=
|B×T,y|

|I×R×Zq`+1| = 1
2εB×T

. Then, by Lemma 12, |HR(Gi,y)| ≥ 1
2 |Gi,y|

for each Gi,y with i ∈ J . Now, fix some arbitrary i ∈ J and (I, rand,
−→
h ) ∈

HR(Gi,y) ⊂ Gi,y. Furthermore, fix a partner (I, rand,
−→
h ′) ∈ D×i (I, rand,

−→
h )´.

Then, there exist at most q`+1−i vectors in Gi,y ∩ Succ
I,rand,

−→
h [i−1]

that share

the first i entries with
−→
h and at most q`+1−i vectors in Gi,y ∩ Succ

I,rand,
−→
h [i−1]

that share the first i entries with its designated partner
−→
h ′. These vectors do

not form triangles at index i with (I, rand,
−→
h ) and (I, rand,

−→
h ′). We denote

this set of non-triangle-tops by N(I, rand,
−→
h ,
−→
h ′) and by the above reasoning,∣∣∣N(I, rand,

−→
h ,
−→
h ′)
∣∣∣ ≤ 2·q`+1−i. We note that Succ

I,rand,
−→
h [i−1]

\N(I, rand,
−→
h ,
−→
h ′) ⊂

T×T,i(I, rand,
−→
h ). Thus, the amount of triangle tops for (I, rand,

−→
h ) is at least∣∣∣T×T,i(I, rand,−→h )

∣∣∣ ≥ ∣∣∣Succ
I,rand,

−→
h [i−1]

\N(I, rand,
−→
h ,
−→
h ′)
∣∣∣

≥
∣∣∣Succ

I,rand,
−→
h [i−1]

∣∣∣− ∣∣∣N(I, rand,
−→
h ,
−→
h ′)
∣∣∣

≥ 1

8
· 1

`+ 1
εB×T,y

· q`+1−i+1 − 2 · q`+1−i

≥ 1

16
· 1

`+ 1
εB×T
· q`+1−i+1 − 2 · q`+1−i

Since (I, rand,
−→
h ) ∈ HR(Gi,y) was arbitrarily chosen, taking the union over all

HR(Gi,y) s.t. i ∈ J yields the statement.
ut
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D Proof of Theorem 2

Proof. Without loss of generality, assume that U’s queries to H∗ are all distinct.
We first describe a game-hop.

G0: This is the original `-OMUFAO game.
G1: This game outputs 0 if U outputs a valid tuple (m, sig, info) where info has

never been queried to H∗.

Claim.
∣∣Pr[GU

0 = 1]− Pr[GU
1 = 1]

∣∣ ≤ `
q .

Proof. Let Valid be the event that U outputs a valid tuple (m, sig = (ρ, ω, σ, δ), info)
where info has never been queried to H∗; G0 and G1 are identical unless Valid
happens. For each output (m, sig, info) of U, if H∗(info) has never been queried,
z = H∗(info) is a random element in G independent of all other random vari-
ables in U’s view. Hence, H(gρyω,gσzδ, z,m) is a random integer in Zq, and the
probability that it equals ω + δ is 1/q. Since there are at most ` such output
tuples in total, we have that

Pr[Valid] ≤ `

q
,

and the claim follows. ut

The reduction B against 1-info-OMUFAO behaves as follows.

Setup: On input a public key pk = y, B forwards it to U and samples J $← [Qinfo]
(a guess that U’s J-th H∗ query is part of its final output).

Online Phase: B answers signing and hash queries as follows.
Queries to H∗: For the J-th query infoJ to H∗, B forwards the query to

its challenger and forwards the response back to U. For any other query
info, B lazily samples winfo

$← Zq and sets H∗(info) := gwinfo .
Queries to H: B forwards these queries to its challenger and forwards the

responses back to U.
Queries to sign1: On input info, if info = infoJ , B forwards the query to its

challenger and forwards the response back to U. Otherwise B behaves as
the z-side signer. That is, it increments the session id sid, sets infosid :=
info, samples csid, rsid, vsid

$← Zq, and sets a := ycsid · grsid and b := gvsid .
It saves the internal state csid, rsid, vsid and outputs sid,a,b to U.

Queries to sign2: On input (sid, e), B checks if infosid = infoJ . If so, it
forwards the query to its challenger. Otherwise it computes dsid := e−csid
and ssid := vsid − dsidwinfo. It outputs csid, rsid, dsid, ssid to U.

Output determination: When U outputs a list of signatures (mi, sigi, infoi)
`+1
i=1 ,

B checks that all info were queried toH∗ by U. If so, B outputs all (mi, sigi, infoi)
tuples with infoi = infoJ . Otherwise B aborts.

We now analyze the advantage of the reduction B. Due to the witness-
indistinguishability of the scheme (see Lemma 2 in Section 4.3), B simulates
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game G1 perfectly to U. If U wins G1, there must be one tag for which U has
output more signatures than closed signing sessions. By the definition of G1,
this tag was queried to H∗ by U. Therefore, with probability 1

Qinfo
, this tag is

infoJ .
We conclude that

adv`info-1-info-OMUFAO

B ≥ Pr[GU
1 = 1]

Qinfo
≥

Pr[GU
0 = 1]− `

q

Qinfo
=

adv`−OMUFAO

Qinfo,`info,A
− `
q

Qinfo
.

ut

E Deferred Figures from the Main body

Signer
sk = x

pk = (y = gx), z = H∗(info)

User
pk = y

m, info, z = H∗(info)

u, s, d $← Zq
a := gu

b := gs · zd

t1, t2, t3, t4
$← Zq

α := gt1 · yt2 · a
β := gt3 · yt4 · b
h := H(α,β, z,m)
e := h− t2 − t4

c := e− d
r := u− cx

ρ := r + t1
ω := c+ t2
σ := s+ t3
δ := d+ t4

ω + δ
?
= H(gρ · yω,gσ · zδ, z,m)

⇓
sig := (ρ, ω, σ, δ)

a,b

e

c, r, s, d

Fig. 6: The Abe-Okamoto scheme

F Applying our Techniques to Abe’s Blind Signature
Scheme

In this section, we briefly sketch how the technique described in the main body
can be applied to the blind signature scheme by Abe [1]. We note that Abe’s
blind signature scheme is believed to be immune to the ROS-attack, and thus
could be secure even in a setting with polynomially many signing sessions, but
our security reduction yields a large loss in that setting.
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Signer
w ∈ Zq

pk = y, z = gw =: H∗(info)

User
pk = y

m, info, z = H∗(info)

v, r, c $← Zq
a := gs · yc
b := gv

t1, t2, t3, t4
$← Zq

α := gt1 · yt2 · a
β := gt3 · zt4 · b
h := H(α,β, z,m)
e := h− t2 − t4

d := e− c
s := v − dw

ρ := r + t1
ω := c+ t2
σ := s+ t3
δ := d+ t4

ω + δ
?
= H(gρyω,gσzδ, z,m)

⇓
sig = (ρ, ω, σ, δ)

a,b

e

c, r, s, d

Fig. 7: The Abe-Okamoto scheme using the z-side witness w to sign

F.1 Abe’s Blind Signature Scheme

We recall how the blind signature scheme from [1] works.

Key Generation. On input pp, KeyGen samples h $← G, x $← Zq and sets
y← gx, It sets z← H1(g,h,y). It sets sk← x, pk← (g,h,y, z) and returns
(sk, pk).

Signer. The signer Sign = (Sign1,Sign2) behaves as follows:
Sign1: On input sk, Sign1 samples rnd $← {0, 1}λ and u, d, s1, s2

$← Zq. It
computes z1 ← H2(rnd), z2 ← z/z1, a← gu, b1 ← gs1 ·zd1, b2 ← hs2 ·zd2.
It returns a commitment (rnd,a,b1,b2) and a state stS = (u, d, s1, s2).

Sign2: On input a secret key sk, a challenge e, and state stS = (u, d, s1, s2),
Sign2 computes c← e− d mod q, r ← u− c · sk mod q and returns the
response (c, d, r, s1, s2).

User. The user User = (User1,User2) behaves as follows:
User1: On input a public key pk and a commitment (rnd,a,b1,b2), and

messagem, User1 does the following. It samples γ $← Z∗q and τ, t1, t2, t3, t4, t5
$←

Zq. Then, it computes z1 ← H2(rnd), α ← a · gt1 · yt2 , ζ ← zγ ,
ζ1 ← zγ1 , ζ2 ← ζ/ζ1. Next, it sets β1 ← bγ1 · gt3 · ζ

t4
1 , β2 ← bγ2 · ht5 · ζ

t4
2 ,

η ← zτ , and h ← H3(ζ, ζ1, α, β1, β2, η,m). Finally, it computes a chal-
lenge e ← h − t2 − t4 mod q, the state StU ← (γ, τ, t1, t2, t3, t4, t5,m)
and returns e, StU .

User2: On input a public key pk, a response (c, d, r, s1, s2) and a state
(γ, τ, t1, t2, t3, t4, t5,m), User2 first computes ρ ← r + t1, ω ← c + t2,
σ1 ← γ · s1 + t3, σ2 ← γ · s2 + t5, and δ ← d + t4. Then, it computes
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µ ← τ − δ · γ and h ← H3(ζ, ζ1,g
ρyω,gσ1ζδ1 ,h

σ2ζδ2 , z
µζδ,m). It returns

the signature σ ← (ζ, ζ1, ω, δ, ρ, σ1, σ2, µ) if δ + ω = h; otherwise, it
returns ⊥.

Verification. On input a public key pk, a signature (ζ, ζ1, ω, δ, ρ, σ1, σ2, µ) and a
message m, Verify computes first h := H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m).
It returns 1 if δ + ω = h; otherwise, it returns 0.

F.2 The deterministic wrapper

We describe the reduction strategy.

Restricting the hash queries to ` + 1. For an adversary U that makes `
signing queries (i.e. closes ` signing sessions) and Qh hash queries we make use
of the same hash query guessing strategy as before, i.e. we use a wrapper M
that restricts the adversary to exactly ` + 1 hash queries and introduces a loss
of 1

(Qh`+)
.

The Deterministic Wrapper We describe the inputs of the deterministic
wrapper A First, we define y-side instances, i.e. instances that use the y-side
witness x for simulation.

– b = 0
– x ∈ Zq
– h ∈ G
– w1, w2 ∈ Zq
– z = gw1 · hw2

– for i ∈ [`] : rndi ∈ {0, 1}λ
– for i ∈ [`] : z1,i = gw1,i with w1,i ∈ Zq
– for i ∈ [`] : ui, di, s1,i, s2,i ∈ Zq

We further describe the z-side instances:

– b = 1
– y ∈ G
– w,w1, w2 ∈ Zq
– w0 := w1 + w2 · w ∈ Zq
– for i ∈ [`] : rndi ∈ {0, 1}λ
– for i ∈ [`] : w1,i ∈ Zq implicitly defines w2,i :=

w0−w1,i

w
– for i ∈ [`] : ci, ri, v1,i, v2,i ∈ Zq

The wrapper additionally takes as input a set of random coins rand = (rB, rA)

as well as a vector of hash responses
−→
h ∈ ZqQh . We show the wrapper as

pseudocode in fig. 8
Analogous to before, we can define forking tuples, partners, and triangles in

an analogous way to before. We can use the same definition for the maximum
branching index and apply the same counting arguments to count the set PG
and show that many of the tuples in PG are triangle base corners.
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AM(I, rand,
−→
h ) :

50 L1 = L2 = L3 = ∅
51 sid, hind← 0
52 parse I = (b, . . .)
53 if b = 0
54 parse I =

(0, x,h, w1, w2, z,
−→
rnd,−→z1,−→u ,

−→
d ,−→s1 ,−→s2)

55 pk← (g,y = gx,h, z)
56 L1 ← L1 ∪ {((g,h,y), z)}
57 for i ∈ [`]
58 L2 ← L2 ∪ {(rndi, z1,i)}
59 else
60 parse I =

(1,y, w, w0,
−→
rnd,−→w1,

−→c ,−→r ,−→v1 ,−→v2)
61 pk← (g,y,h = gw, z = gw0)
62 L1 ← L1 ∪ {((g,h,y), z)}
63 for i ∈ [`]
64 L2 ← L2 ∪ {(rndi,g

w1,i)}
65 (mi, sigi)

`+1
i=1

$←
MSign1,Sign2,H1,H2,H3(pk)
66 for i = 1 . . . `+ 1
67 if Verify(pk,mi, sigi) = 0
68 output ⊥
69 output (mi, sigi)

`+1
i=1

H1(ξ) :
70 if (ξ, z̃) /∈ L1

71 z̃ $← G
72 L1 ← L1 ∪ {(ξ, z̃)}
73 lookup (ξ, z̃) ∈ L1

74 return z̃

H2(ξ) :
75 if (ξ, ·) /∈ L2

76 z̃ $← G
77 L2 ← L2 ∪ {(ξ, z̃)}
78 lookup (ξ, z̃) ∈ L2

79 return z̃

H3(ξ) :
80 if (ξ, ·) /∈ L3

81 hind + +
82 L3 ← L3 ∪ {(ξ, hhind)}
83 lookup (ξ, h̃) ∈ L3

84 return h̃

Sign1() :
85 sid + +
86 k.open = true

87 if b = 0
88 a← gusid

89 b1 ← gs1,sid · zdsid1,sid

90 b2 ← hs2,sid · (z/z1,sid)dsid
91 else
92 a← grsid · ycsid
93 b1 ← gv1,sid

94 b2 ← hv2,sid

95 return rndsid,a,b1,b2

Sign2(s̃id, e) :

96 if s̃id.open = false

97 return ⊥
98 s̃id.open← false

99 if b = 0
100 cs̃id ← e− ds̃id
101 rsid ← us̃id − cs̃id · x
102 else
103 ds̃id ← e− cs̃id
104 s1,s̃id ← v1,s̃id − ds̃id · w1,s̃id

105 w2,s̃id ← (w0 − w1,s̃id)/w
106 s2,s̃id ← v2,s̃id − ds̃id · w2,s̃id

107 return cs̃id, rs̃id, ds̃id, s1,s̃id, s2,s̃id

Fig. 8: Deterministic wrapper for Abe’s blind signature scheme
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F.3 The Transcript Mapping Function and Its Image

We describe the transcript mapping function Φ for Abe’s scheme:

Definition 24 (Mapping Instances of Abe’s scheme). The transcript map-

ping function Φ is defined like this. For an instance I = (0, x,h, w1, w2, z,
−→
rnd,−→z1,−→u ,

−→
d ,−→s 1,

−→s 2),

mapping Φ(I, rand,
−→
h ) with the query transcript −→e generated by running the

wrapper AU(I, rand,
−→
h ) does the following:

– b← 1

– y← gx

– w ← dlogg h

– w′1 ← w1

– w′2 ← w2

–
−→
rnd′ ←

−→
rnd

– ∀i ∈ [`] : w1,i ← dlogg z1,i
– ∀i ∈ [`] : ci ← ei − di
– ∀i ∈ [`] : ri ← ui − ci · x
– ∀i ∈ [`] : v1,i ← w1,i · di + s1,i
– ∀i ∈ [`] : v2,i ← w2,i · di + s2,i

For an instance I = (1,y, w, w1, w2,
−→
rnd,−→w 1,

−→c ,−→r ,−→v1,−→v2) the mapping does
the following:

– b← 0

– x← dlogg y

– h← gw

– w′1 ← w1

– w′2 ← w2

–
−→
rnd′ ←

−→
rnd

– ∀i ∈ [`] : z1,i ← gw1,i

– ∀i ∈ [`] : ui ← ci · x+ ri
– ∀i ∈ [`] : di ← ei − ci
– ∀i ∈ [`] : s1,i ← v1,i − di · w1,i

– ∀i ∈ [`] : s2,i ← v2,i − di · w2,i

Analogously to before, we can show that Φ is a self-inverse bijection that
preserves the partner relation. We can then lower-bound the sizes of relevant
sets in the image of Φ to finally show that there is a large enough set of both-
sided triangle corners.

Using the analogous definition of B×T and B̂×T , as well as Ô×T , we can obtain
that there must be a “good set” G for which forking is likely to result in the
desired witness.
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F.4 Forking Reduction

Theorem 3 (OMUF security of Abe’s scheme). For all ` ∈ N, if there
exists an adversary U that makes Qh hash queries to random oracle H3 and

(tU, εU, `)-breaks OMUFAbe with εU ≥
432
(
1− 1

(`+1)2

)
q ·

(
Qh
`+1

)
, then there exists an

algorithm B that

(
tB ≈ 2tU + O(`+ 1) + O(Qh

2), εB ≈ 3ε2U

75423744·(Qh`+1)
2·(`+1)3

)
-breaks

DLOG.

Proof. We give a sketch of the main parts of the proof that work slightly different
from the AO scheme.

We describe the reduction R. On input of a discrete logarithm challenge U,
R first samples a bit b. If b = 0 it samples a y-side instance I with h = U,
otherwise it samples a z-side instance I with y = U. It furthermore samples

rand and a hash vector
−→
h $← Zq`+1. It then runs the wrapper BM(I, rand,

−→
h ).

Where M is the hash query reduction wrapper around U as described in the
previous subsection.

R then samples i $← [` + 1] and re-samples
−→
h ′ $← Zq`+1

|
−→
h [i]

. The reduction R

then re-runs BA(I, rand,
−→
h ′).

We denote by (ζi, ζ1,i, ωi, δi, ρi, σ1,i, σ2,i, µi) and (ζ ′i, ζ
′
1,i, ω

′
i, δ
′
i, ρ
′
i, σ
′
1,i, σ

′
2,i, µ

′
i)

the signature at hash index i in the first and second run respectively. If both
runs are successful and produced a signature for index i, the reduction attempts
to solve its discrete logarithm challenge as follows:

If the reduction chose b = 0: First compute

dlogg ζ1,i = dlogg ζ
′
1,i =

σ′1,i − σ1,i
δi − δ′i

and

dlogh ζ2,i = dlogh ζ
′
2,i =

σ′2,i − σ2,i
δi − δ′i

and

dlogz ζi = dlogz ζ
′
i =

µ′i − µi
δi − δ′i

.

Then, compute

dlogg z∗1 =
dlogg ζ1,i

dlogz ζi

and

dlogh z∗2 =
dlogh ζ2,i
dlogz ζi

to finally obtain

dlogg h =
w1 − dlogg z∗1
dlogh z∗2 − w2
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If the reduction chose b = 1 it merely computes

dlogg y =
ρ′i − ρi
ω′i − ωi

.

We note that if b = 0, extraction works if δi 6= δ′i and if dlogh z∗2 6= w2. We
denote the event that dlogh z∗2 = w2 with F . We further note that this event is
only dependent on the first run, as this run fixes ζi, ζ1,i, and ζ2,i already (it is
only that the reduction needs the second run to compute)

In particular, this event can occur and is well-defined regardless of whether
b = 0 or b = 1, as w2 is also included in the b = 1 instance type, it is just not
relevant for extraction in that case.

Claim 1.

Pr

F
∣∣∣∣∣∣∣

(I, rand,
−→
h ) ∈ Ĝb

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i

 ≤ `+ 1

q

Proof. This follows from the fact that w1, w2 are information-theoretically hid-
den from the adversary even in forking runs. ut

In the case that b = 1, the reduction succeeds in solving its dlog challenge if
ωi 6= ω′i.

We can thus apply a similar analysis as for the Abe-Okamoto scheme and
obtain the following.

advDLOG
R ≥

(
1

4
− 1

2q

)
· Pr


(I, rand,

−→
h ) ∈ Ĝb

(I, rand,
−→
h ′) ∈ T×T,iI, rand,

−→
h

t(I, rand,
−→
h ) = i

¬F


=

(
1

4
− 1

2q

)
· Pr

¬F
∣∣∣∣∣∣∣

(I, rand,
−→
h ) ∈ Ĝb

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


· Pr

[
(I, rand,

−→
h ′) ∈ T×T,iI, rand,

−→
h

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝb

t(I, rand,
−→
h ) = i

]
· Pr

[
(I, rand,

−→
h ) ∈ Ĝb

]
· Pr

[
t(I, rand,

−→
h ) = i

∣∣∣(I, rand,−→h ) ∈ Ĝb
]

≥
(

1

4
− 1

2q

)
·
(

1− `+ 1

q

)( εB×T
16(`+ 1)

− 2

q

)
·

3εB×T
128(`+ 1)

· 1

`+ 1

(where the last inequality is due to Claim 1, Lemma 10, and Lemma 11). Plugging

in εB×T
≥ εM

96 for εM ≥
432
(
1− 1

(`+1)2

)
q and εM = εU

(Qh`+1)
(see Lemma 7) yields the

theorem statement. ut
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Discussion. We note that Abe’s scheme is believed to be immune to the ROS-
attack and thus the bounds induced by the recent polynomial-time ROS-solver [8]
do not apply to this scheme. This means that unlike for the Abe-Okamoto
scheme, the gap between our proof of security and the best possible bound one
could hope for is rather large. In fact, Abe’s scheme can be proven secure in the
AGM for polynomially many concurrent signing sessions [26] whereas our proof
of security only allows for a fairly small number of signing sessions. It therefore
remains an interesting open question whether this gap can be bridged using the
random oracle model alone.
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