
On the Adaptive Security of the Threshold BLS Signature Scheme
Renas Bacho

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

renas.bacho@cispa.de

Julian Loss

CISPA Helmholtz Center for Information Security

Saarbrücken, Germany

lossjulian@gmail.com

ABSTRACT
Threshold signatures are a crucial tool for many distributed proto-

cols. As shown byCachin, Kursawe, and Shoup (PODC ‘00), schemes

with unique signatures are of particular importance, as they allow

to implement distributed coin flipping very efficiently and without

any timing assumptions. This makes them an ideal building block

for (inherently randomized) asynchronous consensus protocols.

The threshold-BLS signature of Boldyreva (PKC ‘03) is both unique

and very compact, but unfortunately lacks a security proof against

adaptive adversaries. Thus, current consensus protocols either rely

on less efficient alternatives or are not adaptively secure. In this

work, we revisit the security of the threshold BLS signature by

showing the following results, assuming 𝑡 adaptive corruptions:

- We give a modular security proof that follows a two-step approach:

1)We introduce a new security notion for distributed key generation

protocols (DKG). We show that it is satisfied by several protocols

that previously only had a static security proof. 2) Assuming any
DKG protocol with this property, we then prove unforgeability of

the threshold BLS scheme. Our reductions are tight and can be used

to substantiate real-world parameter choices.

- To justify our use of strong assumptions such as the algebraic group

model (AGM) and the hardness of one-more-discrete logarithm

(OMDL), we prove an impossibility result: Even in the AGM, a strong

interactive assumption is required in order to prove the scheme

secure.

CCS CONCEPTS
• Security and Privacy→ Cryptography.

KEYWORDS
Threshold Signatures; BLS Signatures; Algebraic Group Model

ACM Reference Format:
Renas Bacho and Julian Loss. 2022. On the Adaptive Security of the Thresh-

old BLS Signature Scheme. In Proceedings of Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’22).
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3548606.3560656

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9450-5/22/11. . . $15.00

https://doi.org/10.1145/3548606.3560656

1 INTRODUCTION
Threshold signatures are a special type of digital signature that

allows a sufficiently large set of 𝑡 + 1 signers to jointly create a

compact signature 𝜎 on a message𝑚. At the same time, it should

be infeasible for 𝑡 or less signers to create a signature on𝑚. For

this reason, 𝑡 is usually referred to as the threshold of the scheme.

In this manner, one can create a very size-efficient proof that at

least 𝑡 + 1 parties have signed𝑚. This makes threshold signatures

an important building block for storage-sensitive systems such as

blockchain protocols. Another intriguing application of threshold

signatures is distributed coin flipping. Using a threshold signature

scheme with unique signatures (per message𝑚 and public key pk)
and a non-interactive signing procedure, one can efficiently agree

on an unpredictable and unbiasable coin 𝑏 ∈ {0, 1} among 𝑛 parties

𝑃1, ..., 𝑃𝑛 as follows:

• Each party 𝑃𝑖 (non-interactively) creates a share 𝜎𝑖 of some

predetermined message𝑚 and sends 𝜎𝑖 to everybody.

• Upon collecting 𝑡 + 1 shares 𝜎𝑖 , a party locally reconstructs

the signature 𝜎 for𝑚.

• All parties can now derive the coin via 𝑏 := LSB(H(𝜎)),
where H is a suitable randomness extractor, e.g., a hash

function (modelled as a random oracle).

Note that in the above construction, the uniqueness property is

crucially used in two places. First, it ensures that all parties agree

on the same signature 𝜎 , and, by extension, on the same coin 𝑏.

Second, uniqueness prevents a malicious adversary from biasing

the outcome of the coin 𝑏 by sending or withholding particular

signature shares. Finally, 𝜎 (and therefore 𝑏) remains unpredictable

to an adversary controlling at most 𝑡 parties up until the point

where the first honest party 𝑃𝑖 participates in the coin flip by send-

ing its share 𝜎𝑖 . These combined features make (unique and non-

interactive) threshold signatures a crucial tool for the design of

efficient randomized consensus protocols [3, 5, 16, 34, 47]. This ap-

plies particularly to the fully asynchronous network setting, where

consensus is known to be impossible unless randomized protocols

are used [28].

Static vs. Adaptive Corruptions. Cachin et al. [16] were the first

to realize the enormous potential of unique threshold signatures for

building efficient asynchronous consensus algorithms. Their signa-

ture of choice was the threshold version of the full-domain-hash

RSA signature [54]. However, this scheme is only secure against

a static adversary who chooses all corrupted parties at the begin-

ning of the protocol (after observing their public keys). Modern

systems, on the other hand, often require security against a much

more powerful adaptive adversary who dynamically corrupts par-

ties over time by observing the flow of the protocol execution.

In addition, RSA signatures are rather large, taking up an order

of magnitude more storage space than schemes based on elliptic

https://doi.org/10.1145/3548606.3560656
https://doi.org/10.1145/3548606.3560656

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

curve cryptography. Therefore, an appealing alternative is the much

more size-efficient scheme of Boldyreva [12], which is based on

the BLS signature scheme. Unfortunately, however, Boldyreva’s

scheme also lacks an adaptive security proof. To overcome these

limitations, Libert et al. [41] proposed an adaptively secure con-

struction based on Boldyreva’s scheme, which, thus far, has served

as the state-of-the-art for building adaptively secure consensus

protocols [3, 5, 34, 47]. While their construction is still far more

size-efficient than an RSA signature, it is roughly twice as expensive

to store and verify as signatures in Boldyreva’s original scheme. In

addition, while Boldyreva’s signature is compatible with modern

BLS libraries [1], Libert et al.’s scheme lacks such a compatibility.

(There is, however, an efficient implementation of their scheme

available at [50].) Motivated by the above discussion, we ask:What
are the adaptive security guarantees of the threshold BLS signature
scheme?

1.1 Handling Adaptive Corruptions
Our starting point is the construction of Libert et al. who gave

the first adaptively secure, non-interactive, and unique threshold

signature scheme in the random oracle model. Their adaptive secu-

rity argument also extends to the distributed key generation (DKG)

phase that sets up the shared keys for parties in the system. The

established way of proving security for a DKG protocol is to ar-

gue that the messages that are exchanged as part of the protocol

reveal nothing further about the distributed secret key sk (beyond

what is already revealed by pk) [33]. This can be done by providing

an efficient simulator Sim that, on input pk, provides a properly
distributed view of an execution of the DKG protocol in which

parties agree on the public key pk. In case corruptions are static,

Sim also gets the set of corrupted parties as input. Assuming that

Sim provides a perfect simulation (as indeed is often the case), this

technique works even against an information-theoretic adversary

who can compute sk from pk by brute force. Clearly, such an ad-

versary could easily forge a signature with respect to sk, so what
does this mean?

The Challenge of Adaptive Corruptions. One of the main in-

sights of Libert et al. is to prove unforgeability of their scheme

directly by reducing from a computational assumption. In this man-

ner, their proof bypasses many of the issues encountered in the DKG

literature when having to deal with adaptive corruptions. However,

one central issue still remains: Sim needs to simulate correctly

distributed internal states (including secret keys) of parties upon

corruption. Existing DKG protocols overcome this problem by rely-

ing on heavy tools such as non-committing encryption and erasures

[19], [35]. This is a common and often frustrating issue to deal with

in the context of simulation based security proofs. Namely, even if

a statically secure protocol can not be simulated, it is far from clear

wether it would actually be insecure in the presence of adaptive

corruptions. This issue is also quite prominent in the context of

Threshold BLS signatures, even when a trusted dealer distributes

the keys. Recall that in order to create a signature share 𝜎𝑖 on mes-

sage𝑚, party 𝑃𝑖 computesH(𝑚)sk𝑖 . Here,H : {0, 1}∗ → G is a hash

function that is modelled as a random oracle, G is a cyclic group of

known prime order 𝑝 , and sk𝑖 ∈ Z𝑝 denotes 𝑃𝑖 ’s secret key share.

The corresponding public key shares of parties are 𝑔sk𝑖 , where 𝑔 is

a known generator of G. Now, assume that keys have been set up

in such a way that for all 𝑖 ∈ [𝑛], sk𝑖 = 𝑓 (𝑖) and sk = 𝑓 (0) for some

suitable polynomial 𝑓 ∈ Z𝑝 [𝑋] of degree 𝑡 . Then one can compute

a signature 𝜎 that verifies relative to pk = 𝑔sk from 𝑡 + 1 shares

𝜎1, ..., 𝜎𝑡+1 by interpolating 𝑓 in the exponent of 𝑔. It can be verified

by checking the symmetric pairing equation 𝑒 (𝜎,𝑔) = 𝑒 (H(𝑚), pk).
When dealing with adaptive corruptions, the issue is now that by

sending a share 𝜎𝑖 = H(𝑚)sk𝑖 an honest party 𝑃𝑖 commits itself to
its secret key sk𝑖 . Hence, the simulator Sim must output sk𝑖 upon
𝑃𝑖 being adaptively corrupted. This, however, is challenging: if Sim
knew sk𝑖 for all 𝑖 ∈ [𝑛], then it would also know sk. On the other

hand, if it does not know at least 𝑛 − 𝑡 of the sk𝑖 , then it might fail

during simulation.

Libert et al.’s Approach. Libert et al. circumvent this problem as

follows. Their scheme uses asymmetric pairing groups (G, ˆG,G𝑇) of
order𝑝 . They define their secret keys as sk𝑖 = (𝑓 (𝑖), 𝑔(𝑖), ℎ(𝑖), 𝑗 (𝑖)) ∈
Z4

𝑝 , where 𝑓 , 𝑔, ℎ, 𝑗 are independent polynomials of degree 𝑡 . A

signature share on 𝑚 is then computed as 𝜎𝑖 = (𝑧𝑖 , 𝑟𝑖) ∈ G2
,

where 𝑧𝑖 = H𝑓 (𝑖)
1
(𝑚) · H𝑔 (𝑖)

2
(𝑚) and 𝑟𝑖 = Hℎ (𝑖)

1
(𝑚) · H𝑗 (𝑖)

2
(𝑚)

and H1,H2 are independent random oracles. pk is correspondingly

set as (𝑔1, 𝑔2) =
(
𝑔
𝑓 (0)
𝑧 · 𝑔𝑔 (0)𝑟 , 𝑔

ℎ (0)
𝑧 · 𝑔 𝑗 (0)𝑟

)
∈ ˆG2

, where 𝑔𝑧 and

𝑔𝑟 are two random generators of
ˆG. Similar as for threshold BLS,

one can can compute a signature 𝜎 = (𝑧, 𝑟) from 𝑡 + 1 shares by

interpolation in the exponent and verify it by checking whether

𝑒 (𝑧, 𝑔𝑧) · 𝑒 (𝑟, 𝑔𝑟) · 𝑒 (H1 (𝑚), 𝑔1) · 𝑒 (H2 (𝑚), 𝑔2) = 1. In this manner,

Libert et al.’s signature is computationally unique under the so-called
double-pairing assumption (see [46] for a proof). The latter implies

that it should be hard to find (𝑧′, 𝑟 ′) ≠ (𝑧, 𝑟) which also satisfies

the above equation for the same𝑚. At the same time, this flexibility

is what allows their reduction (to the symmetric external Diffie-

Hellman assumption) to go through. Namely, as their signatures do

not commit the signer to a secret key, they can efficiently simulate

a secret key at the appropriate point in the simulation where a

party becomes corrupted. Unfortunately, the technique of Libert

et al. does not work in the context of the original threshold BLS

signature. Hence, to deal with adaptive corruptions, a completely

new approach is required.

1.2 Adaptive Security from Oracle-Aided
Simulatability

We begin by describing our idea for the simplified case when a

trusted dealer computes and distributes the keys according to

Boldyreva’s original description of the threshold BLS scheme. Let

us briefly recall our desired security notion of unforgeability under
chosen message attacks in the context of threshold signatures. In

this game, the adversary first observes the public key shares pk𝑖
of all parties 𝑃𝑖 . (In case the keys are distributed via some DKG

protocol, the adversary also observes its execution as part of the

game). Next, it repeatedly gets access to a signing oracle, which

takes in a pair (𝑖,𝑚) and returns a signature share 𝜎𝑖 that is valid

under pk𝑖 . The adversary can also adaptively corrupt any hitherto

uncorrupted party 𝑃𝑖 , upon which it learns 𝑃𝑖 ’s secret key sk𝑖 (and
any other internal variables held by 𝑃𝑖 at the point of corruption).

The adversary is considered successful if it can produce a forgery

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

on a message𝑚∗ for which it has observed a total of fewer than

𝑡 + 1 shares from corruptions and signing queries.

Reducing from One-More Discrete Logarithm. As already ex-

plained, the critical difficulty is to simulate the values of sk𝑖 upon
an adaptive corruption. Our key idea is to aid the simulator by

giving it 𝑡-time access to a discrete logarithm oracle DL𝑔 (·) which,
on input ℎ = 𝑔𝑥 ∈ G, returns the discrete logarithm 𝑥 of ℎ to base

𝑔. To facilitate such an oracle in our simulation, we reduce from

the one-more discrete logarithm (OMDL) assumption of degree 𝑡 + 1.

Recall that in the OMDL assumption of degree 𝑘 , the adversary

is given an instance (𝑔𝑥1 , ..., 𝑔𝑥𝑘) and gets (𝑘 − 1)-time access to

DL𝑔 (·). It is considered successful if it can produce the values of

𝑥1, ..., 𝑥𝑘 ∈ Z𝑝 . Moreover, we rely on the algebraic group model

(AGM) [29] to obtain a suitable system of linear equations that allow

to solve the OMDL instance. Both of these tools have recently been

popular choices for proving involved cryptosystems [30, 37, 51, 56].

However, one might wonder whether such strong assumptions are

truly necessary for proving adaptive security of the threshold BLS

signature.

The Necessity of Strong Assumptions. We answer this ques-

tion positively. Concretely, we show that there is no algebraic,

non-rewinding reduction from the OMDL assumption of degree

2 to the adaptive security of the threshold BLS scheme with cor-

ruption threshold 𝑡 . Our impossibility result follows the common

metareduction template [22, 36]: assuming an efficient reduction R
as above, we show that one can obtain an efficient solver M (the

metareduction) for the OMDL problem of degree 2. As OMDL of

degree 2 is assumed to be hard, it follows that such a reduction R
can not exist. Our metareduction also applies to reductions which

are not fully black-box. In particular, we rule out reductions which

themselves may rely on the AGM. We combine this with a sec-

ond impossibility result, which states that there is no algebraic,

non-rewinding reduction from the 𝑞-discrete logarithm (𝑞-DL) as-

sumption to the adaptive security of the threshold BLS scheme with

corruption threshold 𝑡 . For the proof we refer to the full version

of this paper. Recall that in the 𝑞-DL assumption, the adversary is

given an instance (𝑔,𝑔𝑧 , ..., 𝑔𝑧𝑞). It is considered successful if it can

produce the value of 𝑧 ∈ Z𝑝 . Now Bauer et al. [9] show that in the

AGM, any conceivable static assumption (and even some non-static

assumptions) is implied by the 𝑞-DL assumption for a suitable de-

gree 𝑞 ∈ N. Hence, our results show that even in the AGM, the

OMDL assumption of some higher degree is both necessary and suf-

ficient to prove security, unless one uses a rewinding reduction, and

static assumptions also do not suffice to prove security. Rewinding,

however, would have a devastating impact on the tightness of the

reduction, and would require much larger parameters for concrete

security than what is used in real-world implementations for BLS

signatures [1]. In contrast to this, our reduction in the AGM is tight

and hence justifies parameters currently used in practice. To further

justify our reliance on the AGM, we also provide a metareduction

along the lines of Coron [22] to prove that there does not exist a

tight black-box reduction of a certain kind (we call such reductions

naive and define them in chapter 4.4) to the one-more discrete loga-

rithm assumption of degree 𝑡 + 1 in the plain random oracle model.

We remark that Coron’s original metareduction did not consider

reductions from interactive assumptions such as OMDL. Unsurpris-

ingly, giving a reduction R access to the oracle DL𝑔 (·) complicates

matters significantly, as we now have to simulate DL𝑔 (·) to R as

part of our metareductions. For the proof we refer to the full version

of this paper.

Replacing the Trusted Dealer. We now turn our attention to the

more realistic setting in which no trusted dealer is available for

setting up keys. In this setting, existing DKG protocols are either

only statically secure or can be used exclusively with signature

schemes that do not commit a party to her secret key sk𝑖 whenever
she uses it to issue a signature share 𝜎𝑖 . Fortunately, we can ap-

propriately modify our ideas from above so as to handle adaptive

corruptions in the unforgeability game even when it is extended

with a DKG phase. In some more detail, we begin by proposing a

new (and rather weak) security definition for DKG protocols that

we refer to as oracle-aided simulatability. Informally, this definition

asserts the existence of an efficient simulator Sim that can simu-

late an execution of the DKG protocol (with adaptive corruptions),

given some number of queries to a discrete logarithm oracle DL𝑔 (·).
While this definition may seem somewhat artificial at first glance,

we show that it is actually sufficient to prove unforgeability against

chosen message attacks for the threshold BLS scheme with adaptive

corruptions. For the proof, we show a reduction from the OMDL as-

sumption of appropriate degree. The reduction runs Sim internally

so as to provide a simulation of the DKG protocol as part of the

broader simulation of the unforgeability experiment. To emulate

the oracle DL𝑔 (·) toward Sim, the reduction simply forwards any

query Sim directs to DL𝑔 (·) to its own discrete logarithm oracle.

We stress that oracle-aided simulatability is a security notion

for DKG protocols and can be proven completely independently

from the context of threshold BLS signatures. Thus, our definition

adds a useful layer of modularity: it allows future DKG designers

to build protocols that can be directly integrated with our (adap-

tive) security proofs. To motivate our new notion even further, we

show that for several DKG protocols from the literature that do not

satisfy full simulatability with adaptive corruptions, it is possible

to show oracle-aided simulatability. Finally, we show that all of our

metareductions also apply to DKGs with oracle-aided simulability

(recall that our above discussion was for a trusted dealer).

1.3 Related Work
Threshold signatures were first conceived by Desmedt [26]. They

have recently received significant attention [6, 8, 14, 17, 18, 23,

24, 31, 32, 39, 40, 42–44], mainly in the context of blockchain sys-

tems and cryptocurrency wallets. Most of these works focus on

the ECDSA and Schnorr threshold signatures, as these are the

most widely used schemes in major cryptocurrencies. Note how-

ever, that these schemes do not have unique signatures and hence

do not lend themselves to distributed coin flipping. A closely re-

lated (and also very active) line of research has also studied multi-
signatures [7, 10, 13, 23, 27, 51, 52]. These can be seen as a threshold

signature scheme where the threshold 𝑡 is always set to 𝑛 − 1, i.e.,

signing always requires all parties to contribute. In contrast to

threshold signatures, multi-signatures usually focus on obtaining

compact 𝑛-out-of-𝑛 signatures using parties’ native public keys for

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

signing. Thus, no trusted dealer or DKG is necessary to run these

protocols.

Distributed Key Generation. There are numerous DKG protocols

when the underlying network is synchronous [19, 33, 35, 53, 55].

Among these, only the protocols of Canetti et al. [19] and Jarecki and

Lysyanskaya [35] provide adaptive security. Both of these works

rely on heavy assumptions and/or cryptographic tools such as

non-committing encryption. All of these protocols (except that of

Shrestha et al. [55]) rely on public broadcast channels being avail-

able. On the other hand, the asynchronous setting has only recently

been explored by works of Kokoris-Kogias et al. [38], Abraham et

al. [4], and Das et al.[25]. Among these, only the work of Kokoris-

Kogias et al. provides adaptive security, but is substantially less

efficient than its statically secure alternatives. We also remark that

the asynchronous DKG of Abraham et al. [4] produces a group

element as the shared secret key rather than a field element and

hence can not be used for most conventional signature schemes.

This drawback was resolved by Das et al. [25] without increasing

the total communication cost of O(𝜆𝑛3) bits.
VRFs and Distributed Coin Flipping. Distributed randomness

generation is an integral component of many distributed protocols.

This applies in particular to the asynchronous model, where most

distributed protocols of interest are inherently randomized. Asyn-

chronous coin flips rely either on verifiable secret sharing [15, 20]

or threshold signatures [3, 5, 16, 34, 47]. Synchronous protocols [2,

3, 48] can rely on a simpler alternative of flipping coins via verifiable
random functions (VRF) [49]. On input a message𝑚 and a secret key

sk, a VRF 𝐹 produces a pseudorandom string 𝑟 = 𝐹 (sk,𝑚) along
with a proof 𝜚 that can be used to verify correct generation of 𝑟 .

To agree on a single bit among 𝑛 parties in the 𝑘th round, a party

𝑃𝑖 computes 𝑟𝑖 = 𝐹 (sk𝑖 , 𝑘) along with a proof 𝜚𝑖 . It then samples

𝑏𝑖 ← {0, 1} uniformly and sends (𝑏𝑖 , 𝑟𝑖 , 𝜚𝑖) to everybody at the

beginning of the round. Parties wait to receive messages from other

parties until the end of the round. All parties derive the coin as

𝑏 := 𝑏 𝑗 where 𝑗 = min𝑖 {𝑟𝑖 } and the minimum goes over all 𝑟𝑖 for

which 𝜚𝑖 correctly verified. If 𝑗 belongs to an honest party, then all

honest parties indeed agree on a random bit 𝑏. Moreover, since 𝐹

produces pseudorandom outputs and there is a unique output per

party and coin flip 𝑗 , this happens with probability 𝑝 ≥ 1

2
when

the majority of the parties is honest, i.e., 𝑏 can not be biased.
1
In

an asynchronous network, however, this approach utterly fails, as

there is no notion of a synchronous round. Note that in order to

guarantee liveness of the protocol, every honest party can only

wait for up to 2𝑛/3 + 1 messages from other parties. But in that

case, the adversary simply delays the 𝑛/3 messages (𝑏𝑖 , 𝑟𝑖 , 𝜚𝑖) of
honest parties with the lowest 𝑟𝑖 values. The honest parties receive

the remaining 𝑛/3 + 1 messages from honest parties and 𝑛/3 − 1

messages from the adversary. Now, with overwhelming probability

in 𝑛, the smallest 𝑟𝑖 always belong to a corrupt party and hence the

coin is almost completely under the control of the adversary. Note

that this issue does not occur for threshold signatures, as parties

can all reconstruct the same coin after receiving only 𝑡 +1 messages

from other parties. Some works such as [11, 21] have shown how to

1
We remark that for most consensus protocols, it is sufficient to agree on 𝑏 with some

constant probability. Threshold signatures let parties agree on coins with probably

close to 1.

circumvent this issue by either relying on strong setup assumptions

or assuming a non-standard version of the asynchronous model in

which the adversary can not reorder messages of honest parties

arbitrarily.

2 PRELIMINARIES AND DEFINITIONS
In this chapter, we introduce basic notation, definitions, and the

model in which we will work.

2.1 General Notation
Let 𝜆 denote the security parameter. Throughout this paper, we

assume that global parameters 𝑝𝑎𝑟 = (G,G𝑇 , 𝑝, 𝑔, 𝑒) are fixed and

known to all parties. Here, G is a cyclic group of prime order 𝑝

generated by 𝑔 and endowed with a symmetric bilinear pairing

𝑒 : G ×G→ G𝑇 . For concrete choices, we will assume 𝜆 = 128 and

that G is instantiated with a 256-bit elliptic curve. We denote by G∗

the set G \ {1} where 1 is the neutral element of G. We denote the

set of integers by Z, the set of positive integers by N, the group of

integers modulo 𝑝 by Z𝑝 = Z/𝑝Z and its multiplicative unit group

by Z∗𝑝 . We denote the set of integers from 𝑎 to 𝑏 by [𝑎, 𝑏] and the set
of positive integers from 1 to 𝑎 by [𝑎]. We define the Vandermonde

matrix 𝑉 (𝑥1, . . . , 𝑥𝑟) for the 𝑟 ≥ 1 numbers 𝑥1, . . . , 𝑥𝑟 ∈ Z𝑝 as

𝑉 (𝑥1, . . . , 𝑥𝑟) :=
©­­«
1 𝑥1

1
𝑥2

1
· · · 𝑥𝑟−1

1

.

.

.
.
.
.

.

.

.
.
.
.

1 𝑥1

𝑟 𝑥2

𝑟 · · · 𝑥𝑟−1

𝑟

ª®®¬ ,
which is known to be invertible if and only if the 𝑥𝑖 are pairwise

distinct. For an element 𝑥 in a set 𝑆 , we write 𝑥 ← 𝑆 to indicate that

𝑥 was sampled from 𝑆 uniformly at random. All our algorithms may

be randomized (unless stated otherwise) and written in uppercase

letters. By 𝑥 ← A(𝑥1, . . . , 𝑥𝑛) we mean running algorithm A on

inputs (𝑥1, . . . , 𝑥𝑛) and uniformly random coins and then assigning

the output to 𝑥 . If A has oracle access to some algorithm B during

its execution, we write 𝑥 ← AB (𝑥1, . . . , 𝑥𝑛). Finally, we write GA

to denote the output of the experiment G involving algorithm A.

2.2 Assumptions and Definitions
In this section, we introduce our model and the one-more discrete

logarithm assumption, which will be the hardness assumption on

which some of our results are based.

The Communication Model.We consider a set of 𝑛 parties 𝑃1,

. . . , 𝑃𝑛 (modelled as PPT machines). We assume that the parties are

connected by a complete network of bilateral private and authenti-

cated channels. Additionally, the parties have access to a dedicated

broadcast channel. We assume synchronous communication: par-

ties have access to a global clock and computation proceeds in

synchronized rounds of known length Δ. When an honest party

sends a message𝑚 at the beginning of a round (over either a bi-

lateral channel or via broadcast), the message is guaranteed to be

received by the end of the round.

We note that we focus on synchronous protocols only in this work,

sincemany of themost well-knownDKGprotocols are synchronous.

However, we stress that our methods are equally applicable to

asynchronous DKG protocols, such as the ADKG protocol of Das

et al. [25].

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

The Adversary. We assume an adversary (also modelled as a PPT

machine) who can corrupt up to 𝑡 < 𝑛/2 out of the 𝑛 parties in

the network. We consider a malicious adversary that may cause

corrupted parties to deviate from the protocol arbitrarily. Our ad-

versary is adaptive, i.e., it chooses the corrupted parties at any time

during the execution of the protocol. When it corrupts a party, we

assume that it can delete or substitute any undelivered messages

that this party previously sent (while being honest). We assume

that the adversary has full control over the network, subject to the

worst-case network delay Δ. This means that it can observe and

deliver messages sent to and from honest parties far quicker than

in time Δ. In particular, we assume the adversary to be rushing:
in any synchronous round of a protocol execution, it can observe

the messages of all the uncorrupted parties and then decide what

messages it wants to deliver to honest parties for that round.

The Random Oracle Model (ROM). We assume the random

oracle model. In this model, a hash function H is treated as an

idealized random function. Concretely, H is modelled as an oracle

with the following properties. The oracle internally keeps a list 𝐻

for bookkeeping purposes. At the beginning, all entries of 𝐻 are

set to ⊥. On input𝑚 from the domain of H, the oracle first checks
whether 𝐻 [𝑚] ≠ ⊥. If so, it returns 𝐻 [𝑚]. Otherwise, it sets 𝐻 [𝑚]
to a uniformly random value in the codomain of H and then returns

𝐻 [𝑚]. We write 𝑞ℎ to denote the maximum number of allowed

hash queries, i.e., the number of times the adversary may query the

oracle H.

The Algebraic Group Model (AGM). The algebraic group model

was introduced by Fuchsbauer, Kiltz, and Loss [29] as a model in

between the generic group model (GGM) and the standard model.

In the AGM, all algorithms are treated as algebraic. This means that

whenever an algorithm outputs a group element, it must also output

a representation of that element relative to all of the inputs the

algorithm has received up to that point. This captures the intuition

that any reasonable algorithm should know how it computes its

outputs from its inputs.

Definition 2.1 (Algebraic algorithm). An algorithm A is called

algebraic (over group G) if for all group elements 𝜁 ∈ G that A
outputs, it additionally outputs a vector ®𝑧 = (𝑧0, . . . , 𝑧𝑚) of inte-
gers such that 𝜁 =

∏
𝑖 𝑔

𝑧𝑖
𝑖
, where (𝑔0, . . . , 𝑔𝑚) is the list of group

elements A has received so far (w.l.o.g. 𝑔0 = 𝑔).

Algebraic Black-Box Reductions. An algorithm R is called a

black-box reduction from problem P2 to problem P1 if for any algo-

rithm A solving P1, algorithm RA solves P2 with black-box/oracle

access to A during its execution. If the algorithm A happens to be

algebraic, then R (called an algebraic black-box reduction) addition-
ally has access to the representation of the output elements of A
(relative to all of the inputs A has received up to that point). We as-

sume algebraic black-box reductions for our metareduction results.

Such reductions have previously been introduced and studied, see

e.g. [9, 37].

The One-More Discrete Logarithm Assumption. A mathemat-

ical hardness assumption that finds wide-ranging application in

modern cryptography is the one-more discrete logarithm (OMDL)

assumption. It is the foundation for the security analysis of identifi-

cation protocols, blind signature and multi-signature schemes, such

as blind Schnorr signatures. Beyond that, OMDL is also assumed for

various impossibility results of certain reductions. In the following,

we denote by DL𝑔 (·) an oracle that on input ℎ = 𝑔𝑥 ∈ G returns

the discrete logarithm 𝑥 of ℎ to base 𝑔.

Definition 2.2 (One-More Discrete Logarithm Problem). For 𝑛 ∈ N
and an algorithm A, define experiment 𝑛-OMDLA as follows:

• Setup. For 𝑖 ∈ [𝑛], sample (𝑧1, . . . , 𝑧𝑛) ← Z𝑛𝑝 and set 𝜉𝑖 :=

𝑔𝑧𝑖 ∈ G.
• Online Phase. Run A on input (𝑝𝑎𝑟, 𝜉1, ..., 𝜉𝑛). A gets access

to oracle DL𝑔 (·).
• Output Determination. When A returns (𝑧′

1
, ..., 𝑧′𝑛), the

experiment returns 1 if the following conditions are satisfied

(otherwise, it returns 0):

– 𝑧′
𝑖
= 𝑧𝑖 for all 𝑖 ∈ [𝑛],

– DL𝑔 (·) was queried at most 𝑛 − 1 times.

We say that the one-more discrete logarithm problem of degree

𝑛 is (𝜀,𝑇)-hard if for all algorithms A running in time at most 𝑇 ,

Pr[𝑛-OMDLA = 1] ≤ 𝜀. Conversely, we say that an algorithm A
(𝜀,𝑇)-solves the one-more discrete logarithm problem of degree 𝑛

if it runs in time at most 𝑇 and Pr[𝑛-OMDLA = 1] > 𝜀.

The 𝑞-Discrete Logarithm Assumption. A non-interactive hard-

ness assumption that is very similar to the OMDL assumption. A

special feature of it is the fact that 𝑞-DL implies every conceiv-

able hardness assumption in the AGM (and even some non-static

assumptions) [9].

Definition 2.3 (𝑞-Discrete Logarithm Problem). For 𝑞 ∈ N and an

algorithm A, define experiment 𝑞-DLA as follows:

• Setup. Sample 𝑧 ← Z𝑝 and set 𝜉𝑖 := 𝑔𝑧
𝑖 ∈ G for all 𝑖 ∈ [𝑞].

• Online Phase. Run A on input (𝑝𝑎𝑟, 𝜉1, ..., 𝜉𝑞).
• Output Determination.When A returns 𝑧′, the experiment

returns 1 if 𝑧′ = 𝑧, otherwise it returns 0.

We say that the 𝑞-discrete logarithm (𝑞-DL) problem is (𝜀,𝑇)-hard
if for all algorithms A running in time at most 𝑇 , Pr[𝑞-DLA = 1] ≤
𝜀. Conversely, we say that an algorithm A (𝜀,𝑇)-solves the 𝑞-DL
problem if it runs in time at most 𝑇 and Pr[𝑞-DLA = 1] > 𝜀.

3 THRESHOLD SIGNATURES
Threshold cryptography is a fundamental multiparty paradigm

for enhancing the security and the availability of cryptographic

schemes. It achieves this by dividing secret keys into 𝑛 shares dis-

tributed across a network of parties (or servers). In (𝑡, 𝑛)-threshold
cryptosystems, secret key operations require the cooperation of at

least 𝑡 + 1 out of 𝑛 parties. In this way the system remains secure

against adversaries that corrupt up to 𝑡 parties.

3.1 Distributed Key Generation
Distributed key generation (DKG) protocols are an essential com-

ponent of threshold cryptosystems. The purpose of a DKG protocol

is to distribute the shared keys of parties securely without relying

on a trusted dealer. At the end of the protocol, the public key is

output in the clear, whereas the secret key is kept as a virtual secret

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

shared among all parties. The secret key is never explicitly com-

puted, reconstructed or stored in any single location. This shared

secret key can then be used later for threshold cryptosystems, such

as threshold signatures or threshold encryption, without ever being

explicitly reconstructed.

Definition 3.1 (Distributed Key Generation Protocol). Let Π be a

protocol executed among 𝑛 parties 𝑃1, . . . , 𝑃𝑛 , where 𝑃𝑖 outputs a

secret key share sk𝑖 , a vector of public key shares (pk1
, . . . , pk𝑛), a

public key pk, and parties terminate upon generating output. We

define the following security and correctness properties for Π:

• Consistency: Π is 𝑡-consistent if the following holds when-

ever at most 𝑡 parties are corrupted: all honest parties output

the same public key 𝑦 = 𝑔𝑥 and the same vector of public

key shares (pk
1
, . . . , pk𝑛).

• Correctness: Π is 𝑡-correct if the following holds whenever

at most 𝑡 parties are corrupted: there exists a polynomial

𝑓 ∈ Z𝑝 [𝑋] of degree 𝑡 such that, for all 𝑖 ∈ [𝑛], sk𝑖 = 𝑓 (𝑖)
and pk𝑖 = 𝑔sk𝑖 . Moreover, pk = 𝑔𝑓 (0) .
• Oracle-aided Algebraic Simulatability. Π has (𝑡, 𝑘,𝑇A,
𝑇Sim)-oracle-aided algebraic simulatability if for every algo-

rithm A that runs in time at most 𝑇A and corrupts at most 𝑡

parties, there exists an algebraic simulator Sim that runs in

time at most 𝑇Sim, makes 𝑘 − 1 queries to oracle DL𝑔 (·), and
satisfies the following properties:

– On input 𝜉 = 𝑔𝑧1 , . . . , 𝑔𝑧𝑘 ∈ G, Sim simulates the role

of the honest parties in an execution of Π. At the end of
the simulation, Sim outputs the public key pk = 𝑔𝑥 . If

corruptions are static, Sim gets a set of corrupted parties

C ⊂ {1, . . . , 𝑛} of size at most 𝑡 as an additional input.

– On input 𝜉 = 𝑔𝑧1 , . . . , 𝑔𝑧𝑘 ∈ G and for 𝑖 ∈ [𝑘−1], let𝑔𝑖 ∈ G
denote the 𝑖th query to DL𝑔 (·). Let (𝑎𝑖 , 𝑎𝑖,1, . . . , 𝑎𝑖,𝑘) de-
note the corresponding algebraic coefficients, i.e., 𝑔𝑖 =

𝑔𝑎𝑖 · ∏𝑘
𝑗=1
(𝑔𝑧 𝑗)𝑎𝑖,𝑗 and set (𝑎, 𝑎0,1, . . . , 𝑎0,𝑘) as the alge-

braic coefficients corresponding to pk. Then the following

matrix over Z𝑝 is invertible

𝐿 B

©­­­­«
𝑎0,1 𝑎0,2 · · · 𝑎

0,𝑘

𝑎1,1 𝑎1,2 · · · 𝑎
1,𝑘

.

.

.
.
.
.

.

.

.

𝑎𝑘−1,1 𝑎𝑘−1,2 · · · 𝑎𝑘−1,𝑘

ª®®®®¬
.

Whenever Sim completes a simulation of an execution

of Π, we call 𝐿 the simulatability matrix of Sim (for this

particular simulation).

– Denote by viewA,𝑦,Π the view of A in an execution of Π
conditioned on all honest parties outputting pk = 𝑦. Simi-

larly, denote by viewA,𝜉,𝑦,Sim the view of A when interact-

ing with Sim on input 𝜉 , conditioned on Sim outputting

pk = 𝑦. (For convenience, Sim’s final output pk is omitted

from viewA,𝜉,𝑦,Sim). Then, for all 𝑦 and all 𝜉 , viewA,𝜉,𝑦,Sim
and viewA,𝑦,Π are identically distributed.

Let 𝑘 ∈ N be the minimum 𝑘 such that Π has (𝑡, 𝑘,𝑇A,𝑇Sim)-
oracle-aided algebraic simulatability. Then we call 𝑘 the

(𝑡,𝑇A,𝑇Sim)-simulatability factor of Π.

We say that Π has (𝑡, 𝑘,𝑇A,𝑇Sim)-oracle-aided algebraic security if it

is 𝑡-consistent, 𝑡-correct, and has (𝑡,𝑇A,𝑇Sim)-simulatability factor

𝑘 .

For informal discussions, we sometimes abbreviate our notation

by ommitting 𝑇A and 𝑇Sim from our notation (we simply assume

both A and Sim to be some PPT algorithms).

Discussion.We give a brief discussion of our security properties for

distributed key generation protocols. Consistency and correctness

notions are in line with what is achieved by most conventional

DKG protocols.

We note that we could easily weaken the requirement of Sim
being fully algebraic to Sim behaving algebraic only with respect to

the elements pk, 𝑔1, . . . , 𝑔𝑘−1
. (In other words, only these elements

come with an algebraic representation.) All our results remain true

for this weaker notion of oracle-aided algebraic security. We stress

that this weaker notion is a direct generalization of the usual notion

of secrecy which requires a (not necessarily algebraic) simulator

Sim that on input 𝑦 ∈ G perfectly simulates an execution of Π in

which 𝑦 is determined as the public key pk. Setting 𝑘 = 1 in our

(relaxed) definition, we see that Sim queriesDL𝑔 (·) exactly 𝑘−1 = 0

times, is trivially algebraic towards the output element pk (since

the input is just pk itself) and the simulatability matrix is 𝐿 = (1),
which is trivially invertible. Therefore, one can view the degree 𝑘

of Π’s oracle-aided algebraic security as a measure of how far away

Π is from being fully secret.

As already observed in [41], full secrecy is not inherently required
in the context of threshold signing. This is not particularly sur-

prising, as one might expect any reasonable signature scheme to

remain unforgeable even when some information about the secret

key is leaked. This observation is also the motivation behind our

notion of oracle-aided algebraic simulatability. While this notion

might look somewhat artificial at first glance, we will show that it is

sufficient to provide unforgeability for the threshold BLS signature

scheme against an adaptive adversary (in the AGM). Moreover, we

prove in chapter 4 that several well-known DKG protocols includ-

ing JF-DKG (proposed by Pedersen [53]) and New-DKG (proposed

by Gennaro et al. [33]) have oracle-aided algebraic simulatability,

also against adaptive adversaries. We stress that neither of these

protocols satisfies secrecy against an adaptive adversary. In fact, it

has been noted many times in the literature that JF-DKG does not

even achieve full secrecy against a static adversary that corrupts a

mere two parties!

Finally, we remark that we require perfect simulatability only

for convenience; it is straight forward to adjust our definition so as

to allow for statistical or even computationally indistinguishable

simulations.

3.2 Threshold Signature Scheme
In this section, we introduce the syntax and security notions for

threshold signature schemes. We remark that we focus on non-
interactive schemes for this work.

Definition 3.2 (Non-Interactive Threshold Signature). A non-inter-
active (𝑡, 𝑛)-threshold signature scheme is a tuple of efficient al-

gorithms Σ = (DKG, SSign, SVer,Ver,Comb) with the following

properties:

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

• DKG: This is a distributed key generation protocol in the

sense of Definition 3.1.

• SSign: The share signing algorithm is a possibly randomized

algorithm that takes as input a message𝑚 and a secret key

share sk𝑖 . It outputs a signature share 𝜎𝑖 .
• SVer: The signature share verification algorithm is a deter-

ministic algorithm that takes as input a message𝑚, a public

key share pk𝑖 , and a signature share 𝜎𝑖 . It outputs 1 (accept)

or 0 (reject).

• Comb: The signature share combining algorithm is a deter-

ministic algorithm that takes as input the public key pk, a
vector of public key shares (pk

1
, . . . , pk𝑛), a message𝑚, and

a set S of 𝑡 + 1 signature shares (𝜎𝑖 , 𝑖) (with corresponding

indices). It outputs either a signature 𝜎 or ⊥.
• Ver: The signature verification algorithm is a deterministic

algorithm that takes as input a public key pk, a message𝑚,

and a signature 𝜎 . It outputs 1 (accept) or 0 (reject).

Let H : {0, 1}∗ → G be a cryptographic hash function (modelled

as a random oracle). We define the security of a non-interactive

threshold signature scheme in the adaptive corruption setting as

follows.

Definition 3.3 (Unforgeability Under Chosen Message Attack). Let
Σ = (DKG, SSign, SVer,Ver,Comb) be a non-interactive (𝑡, 𝑛)-threshold
signature scheme. For an algorithmA, define experimentUF-CMAA

Σ,𝑡
as follows:

• Setup. Initialize setsH := {1, . . . , 𝑛}, C := ∅. Run A on input

𝑝𝑎𝑟 .

• Corruption Queries. At any point of the experiment, A
may corrupt a party 𝑃𝑖 by submitting an index 𝑖 . In this

case, return the internal state of 𝑃𝑖 and set H = H \ {𝑖},
C = C ∪ {𝑖}. Henceforth, A controls 𝑃𝑖 .

• Distributed Key Generation. Initiate an execution of DKG
among parties 𝑃1, ..., 𝑃𝑛 . Denote by (sk1, . . . , sk𝑛), pk, and
(pk

1
, . . . , pk𝑛) the secret and public key shares determined

by DKG. ({sk𝑖 }𝑖∈C are known to A.)
• Online Phase. During this phase, A gets additional access

to oracles that answer queries of the following types:

– Signing Queries.When A submits a pair (𝑖,𝑚) for 𝑖 ∈ H ,

return 𝜎 ← SSign(sk𝑖 ,𝑚).
– Random Oracle Queries. When A submits a query𝑚,

check if𝐻 [𝑚] = ⊥ and if so, set𝐻 [𝑚] ← G. Return𝐻 [𝑚].
• Output Determination. When A outputs a message 𝑚∗

and a signature 𝜎∗, let S ⊂ {1, . . . , 𝑛} denote the subset of
parties for which Amade a signing query of the form (𝑖,𝑚∗).
Output 1 if |C∪S| ≤ 𝑡+1 andVer(pk,𝑚∗, 𝜎∗) = 1. Otherwise,

output 0.

We say that Σ is (𝜀,𝑇 , 𝑞ℎ, 𝑞𝑠)-unforgeable under chosen message at-
tacks (UF-CMA) if for all algorithms A running in time at most

𝑇 , making at most 𝑞ℎ random oracle queries, and making at most

𝑞𝑠 signing queries, Pr[UF-CMAA
Σ,𝑡 = 1] ≤ 𝜀. Conversely, we say

that A (𝜀,𝑇 , 𝑞ℎ, 𝑞𝑠)-breaks unforgeability of Σ under chosen mes-

sage attacks if it runs in time at most 𝑇 , makes at most 𝑞ℎ to the

random oracle, makes at most 𝑞𝑠 queries to the signing oracle, and

Pr[UF-CMAA
Σ,𝑡 = 1] > 𝜀

3.3 Threshold BLS Signature Scheme Th-BLSDKG
In this section, we recall Boldyreva’s BLS-based threshold signature
scheme. We write Th-BLSDKG to denote the scheme when setup is

done using the distributed key generation algorithm DKG.

Definition 3.4 (Threshold BLS Signature Scheme [12].). Let DKG
be a distributed key generation protocol. The algorithms of the

(𝑡, 𝑛)-threshold signature scheme Th-BLSDKG = (DKG, SSignBLS,
SVerBLS,CombBLS,VerBLS) are defined as follows:

• SSignBLS: On input a secret key share sk𝑖 ∈ Z𝑝 and a mes-

sage𝑚 ∈ {0, 1}∗ return the signature share 𝜎𝑖 := H(𝑚)sk𝑖 ∈
G.
• SVerBLS: On input a public key share pk𝑖 ∈ G, a signature
share 𝜎𝑖 , and a message𝑚, return 1 if 𝑒 (𝑔, 𝜎𝑖) = 𝑒 (pk𝑖 ,H(𝑚))
and 0 otherwise.

• CombBLS: On input a vector of public key shares (pk1
, ..., pk𝑛),

a set S of 𝑡 + 1 signature shares (and corresponding in-

dices) (𝜎𝑖 , 𝑖), and a message𝑚, run SVerBLS (𝜎𝑖 , pk𝑖) for all
𝑖 ∈ S0 := {𝑖 ∈ [𝑛] | (𝜎𝑖 , 𝑖) ∈ S}. If any of these calls re-

turns 0, return ⊥. Otherwise, return 𝜎 =
∏

𝑖∈S0
𝜎
𝐿𝑖
𝑖
, where

𝐿𝑖 =
∏

𝑗∈S0\{𝑖 }
(

𝑗
𝑗−𝑖

)
denotes the 𝑖th Lagrange coefficient

for the set S0.

• VerBLS: On input a public key pk, a signature 𝜎 , and a mes-

sage𝑚, return 1 if 𝑒 (𝑔, 𝜎) = 𝑒 (pk,H(𝑚)) and 0 otherwise.

4 SECURITY ANALYSIS OF Th-BLSDKG
In this chapter, we analyze the security of Th-BLSDKG in the case

whereDKG has (𝑡, 𝑘)-oracle-aided algebraic security. First, we show
a tight reduction to the OMDL assumption of degree 𝑘 . Second,

we show that there is no algebraic black-box reduction from the

OMDL assumption of degree 2 and from the 𝑞-DL assumption to

the security of Th-BLSDKG with corruption threshold 𝑡 . On the

other hand, we show that the trusted dealer key generation algo-

rithm TD-DKG [see chapter 4.3] has (𝑡, 𝑘)-oracle-aided algebraic

security with 𝑘 = 𝑡 + 1. In particular, there is a reduction from the

(𝑡 + 1)-OMDL assumption to the security of Th-BLSTD-DKG (with

corruption threshold 𝑡). Apart from that, we show oracle-aided al-

gebraic security for JF-DKG and New-DKG, but stress that several
other DKG protocols such as ADKG [25] also have this security.

2

Finally, we show that any algebraic black-box reduction of a certain

kind (which will be defined in chapter 4.4) from the (𝑡 + 1)-OMDL

assumption to the security of Th-BLSDKG loses a factor of 𝑞𝑠 and

can not possibly be improved, in the plain ROM.

4.1 Security proof of Th-BLSDKG in the AGM
For DKG with (𝑡, 𝑘)-oracle-aided algebraic security, our first theo-

rem asserts the security of Th-BLSDKG (in the AGM+ROM) under

the assumption that the 𝑘-OMDL problem is hard. Our proof fol-

lows the tight security proof for the (standard) BLS scheme [29, 45].

The key idea is to embed an OMDL challenge 𝜉 in either the secret

key shares or inside the random oracle queries, a choice that re-

mains hidden from the adversary. In the former case, we simulate

by using the oracle-aided algebraic simulator coming from DKG.

2
In fact, the proof for the oracle-aided algebraic security of ADKG easily follows from

the security of JF-DKG.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

In the latter case, we solve 𝜉 directly from the algebraic equation

that comes from the forgery (with its representation).

Theorem 4.1. If 𝑘-OMDL is (𝜀,𝑇)-hard in the AGM and DKG
has (𝑡, 𝑘,𝑇 ′,𝑇Sim)-oracle-aided algebraic security, then Th-BLSDKG
is (𝜀′,𝑇 ′, 𝑞ℎ, 𝑞𝑠)-secure in the AGM+ROM, where

𝜀 ≥ 𝜀′

4

−
𝑞2

ℎ

4𝑝
, 𝑇 ≤ 𝑇 ′ +𝑇Sim + 3𝑞ℎ + 𝑞𝑠 .

Proof. We prove the theorem via a sequence of games. Let A
be an algebraic algorithm that (𝜀′,𝑇 ′, 𝑞ℎ, 𝑞𝑠)-breaks unforgeability
of Th-BLSDKG under chosen message attacks. W.l.o.g. we assume

that A always queries the random oracle H before any signing

query for the same message𝑚. (Note that the challenger can always

enforce this by making appropriate random oracle queries for itself.)

Similarly, we may assume that queries to the random oracle are

distinct and that A queries the random oracle H on𝑚∗ (the forgery
message) before producing its forgery.

GameG0: This is the real game. The challenger runsDKG on behalf

of the honest parties. Whenever A decides to corrupt a party 𝑃𝑖 ,

the challenger faithfully returns the internal state of that party and

sets C = C ∪ {𝑖},H = H \ {𝑖}. In addition, A gets full control over

𝑃𝑖 . For all 𝑖 ∈ [𝑛], let 𝑦𝑖 ∈ G denote the public key share assigned

to 𝑃𝑖 by DKG and let 𝑥𝑖 denote 𝑃𝑖 ’s secret key share. Moreover, let

𝑥 ∈ Z𝑝 and𝑦 = 𝑔𝑥 denote the secret key and public key, respectively.

Random oracle queries are answered by sampling 𝑟𝑖 ← Z∗𝑝 and

returning ℎ𝑖 = 𝑔𝑟𝑖 ∈ G. Partial signing queries (𝑗,𝑚) are answered
by returning 𝐻 [𝑚]𝑥 𝑗

. At the end of the game, A outputs a message-

signature pair (𝑚∗, 𝜎∗).
Game G1: This game is identical to the game before, except that

the game aborts and the adversary loses when there is a collision

𝐻 [𝑚1] = 𝐻 [𝑚2] among distinct random oracle queries𝑚1 ≠ 𝑚2

from A. By a standard argument, Pr[GA
0
= 1] ≤ Pr[GA

1
= 1] + 𝑞2

ℎ
/𝑝 .

Let V = C ∪ S, where S ⊂ {1, . . . , 𝑛} is the subset of parties
for which A made a signing query of the form (𝑖,𝑚∗). As A is an

algebraic adversary, at the end of G1 it returns a forgery 𝜎∗ on a

message𝑚∗ together with a representation

𝑎 = (𝑎, 𝑎′, 𝑎1, . . . , 𝑎𝑛, 𝑎1, . . . , 𝑎𝑞ℎ , 𝑎1,1, . . . , 𝑎1,𝑛, . . . , 𝑎𝑞𝑠 ,1, . . . , 𝑎𝑞𝑠 ,𝑛)

of elements in Z𝑝 such that

𝜎∗ = 𝐻 [𝑚∗] = 𝑔𝑎 · 𝑦𝑎
′
· 𝑦𝑎̆1

1
· . . . · 𝑦𝑎̆𝑛𝑛 ·

𝑞ℎ∏
𝑖=1

ℎ
𝑎𝑖
𝑖
·
𝑞𝑠∏
𝑖=1

𝜎
𝑎̃𝑖,1
𝑖,1
· . . . · 𝜎𝑎̃𝑖,𝑛

𝑖,𝑛
.

Here, the representation is split (from left to right) into powers

of the generator 𝑔, the public key 𝑦 = 𝑔𝑥 , the public key shares

𝑦 𝑗 = 𝑔𝑥 𝑗
, 𝑗 ∈ [𝑛], all of the answers to hash queries ℎ𝑖 , 𝑖 ∈ [𝑞ℎ],

and the partial signatures 𝜎𝑖, 𝑗 , 𝑖 ∈ [𝑞𝑠] and 𝑗 ∈ [𝑛], returned
by the random oracle and the partial signing oracle, respectively.

Note that we have tacitly combined the other elements that are

publicly communicated during the key generation phase into the

term 𝑔𝑎 . We will clarify later why this is possible. In the following,

let𝑚𝑖 denote the 𝑖th query to H and let 𝑖∗ ∈ [𝑞ℎ] denote the index
corresponding to the forgery message𝑚∗. Recall that we write 𝑟∗

and 𝑟𝑖 for 𝑖 ∈ [𝑞ℎ] to denote the values such that 𝐻 [𝑚∗] = 𝑔𝑟
∗
and

𝐻 [𝑚𝑖] = 𝑔𝑟𝑖 . Having said that, the above equation is equivalent to

𝑟∗𝑥 = 𝑎 + 𝑥𝑎′ +
𝑛∑︁
𝑖=1

𝑎𝑖𝑥𝑖 +
𝑞ℎ∑︁
𝑖=1

𝑟𝑖𝑎𝑖 +
𝑞𝑠∑︁
𝑖=1

𝑟𝑖 (𝑎𝑖,1𝑥1 + . . . + 𝑎𝑖,𝑛𝑥𝑛)

= 𝑎 + 𝑥𝑎′ +
𝑛∑︁
𝑖=1

𝑎𝑖𝑥𝑖 +
∑︁
𝑖∈𝑄ℎ

𝑟𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑟𝑖 (𝑎𝑖,1𝑥1 + . . . + 𝑎𝑖,𝑛𝑥𝑛)

+ 𝑟∗𝑎∗ + 𝑟∗ (𝑎∗
1
𝑥1 + . . . + 𝑎∗𝑛𝑥𝑛), (♠)

where in the last equation we split the answers to the (hash and

partial signing) queries for𝑚∗ from those of the other messages,

with appropriate sets𝑄ℎ and𝑄𝑠 (to be precise,𝑄ℎ = [𝑞ℎ] \ {𝑖∗} and
𝑄𝑠 = [𝑞𝑠] \ {𝑖∗}) and the notation 𝑎∗

𝑗
= 𝑎∗

𝑖∗, 𝑗 for all 𝑗 ∈ [𝑛]. Since A
wins G1, we remark that neither

∑
𝑖∈𝑄ℎ

𝑟𝑖𝑎𝑖 nor
∑
𝑖∈𝑄𝑠

𝑟𝑖 (𝑎𝑖,1𝑥1 +
. . . + 𝑎𝑖,𝑛𝑥𝑛) may include the terms 𝑟∗𝑎∗ or 𝑟∗ (𝑎∗

1
𝑥1 + . . . + 𝑎∗𝑛𝑥𝑛),

respectively.
3
We define event 𝐸 as the event that 𝑥 ≠ 𝑎∗ + 𝑎∗

1
𝑥1 +

. . . + 𝑎∗𝑛𝑥𝑛 . We have the following lemma.

Lemma 4.2. Let G1 and 𝐸 be as defined above. Then there exist
(algebraic) algorithms A1 and A2 playing in game 𝑘-OMDL that run
in time at most 𝑇 such that:

Pr[𝑘-OMDLA1 = 1] = Pr[GA
1
= 1 ∧ ¬𝐸],

Pr[𝑘-OMDLA2 = 1] ≥
(
1 − 1

𝑝

)
· Pr[GA

1
= 1 ∧ 𝐸] .

Moreover, 𝑇 ≤ 𝑇 ′ +𝑇Sim + 3𝑞ℎ + 𝑞𝑠 .

Proof. Let 𝜉 = 𝜉1, . . . , 𝜉𝑘 ∈ G with 𝜉𝑖 = 𝑔𝑧𝑖 , 𝑖 ∈ [𝑘], be the

OMDL instance. A1 and A2 both have access to a discrete logarithm

oracle DL𝑔 (·) which they can query at most 𝑘 − 1 times. Both

simulate G1, as we now describe.

Algorithm A1 (𝜉, 𝑝𝑎𝑟): Algorithm A1 works as follows. Since DKG
has (𝑡, 𝑘,𝑇 ′,𝑇Sim)-oracle-aided algebraic security, there exists an

algebraic simulator Sim that runs in time at most𝑇Sim with (𝑘 − 1)-
time access to a discrete logarithm oracle. Sim takes as input the 𝑘-

OMDL instance 𝜉1 = 𝑔𝑧1 , . . . , 𝜉𝑘 = 𝑔𝑧𝑘 ∈ G and perfectly simulates

an execution of DKG, where at most 𝑡 parties can be corrupted.

A1 simulates the key generation phase by running Sim on input 𝜉 .

Whenever Sim queries its discrete logarithm oracle, A1 forwards

this query to its own oracle DL𝑔 (·). Random oracle queries are

answered by sampling 𝑟𝑖 ← Z∗𝑝 and returning ℎ𝑖 = 𝑔𝑟𝑖 ∈ G. A1

aborts when there is a collision 𝐻 [𝑚1] = 𝐻 [𝑚2] among different

random oracle queries𝑚1 ≠𝑚2 from A. Signing queries (𝑗,𝑚𝑖) are
answered by returning ℎ

𝑥 𝑗

𝑖
via the algebraic identity

𝐻 [𝑚𝑖]𝑥 𝑗 =
(
𝑔𝑟𝑖

)𝑥 𝑗 =
(
𝑔𝑥 𝑗

)𝑟𝑖 = 𝑦
𝑟𝑖
𝑗
.

Corruption queries are handled by Sim, which allows A1 to return

the internal state of up to 𝑡 parties correctly. It is not hard to see that

A1’s simulation of G1 is perfect and that A1 can correctly answer

Sim’s (at most) 𝑘 − 1 oracle queries.

Suppose that A wins G1 and that event ¬𝐸 happens, i.e. 𝑥 = 𝑎∗ +
𝑎∗

1
𝑥1+ . . .+𝑎∗𝑛𝑥𝑛 . We note that the partial signing queries of the form

(𝑖,𝑚∗) do not reveal any more information than if the challenger

were simply handing over the corresponding private key share 𝑥𝑖 .

3
Here, we consider 𝑟 ∗ and 𝑟𝑖 , 𝑖 ∈ [𝑛] as formal variables over Z𝑝 rather than the

concrete value that they may take. Note that it is indeed possible that for some 𝑖 ,

𝑟𝑖𝑎𝑖 = 𝑟 ∗𝑎∗ or 𝑟 ∗ (𝑎̃∗
1
𝑥1 + . . . + 𝑎̃∗𝑛𝑥𝑛) = 𝑟𝑖 (𝑎̃𝑖,1𝑥1 + . . . + 𝑎̃𝑖,𝑛𝑥𝑛) when considering

concrete values in Z𝑝 for 𝑟 ∗, 𝑟𝑖 .

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

We thus treat these partial signing queries for 𝑚∗ as corruption
queries. We may also assume w.l.o.g. that |C| = 𝑡 . Otherwise, A1

simulates, for itself, 𝑡 − |C| corruption queries for random parties

from the set of uncorrupted partiesH after receiving the forgery,

as if these were regular queries from A. (It does so by querying Sim.)

Since A1 knows all values {𝑥𝑖 }𝑖∈V , it can compute the secret key 𝑥

efficiently via the identity𝑥 = 𝑎∗+𝑎∗
1
𝑥1+. . .+𝑎∗𝑛𝑥𝑛 . Let𝑔𝑎1 , . . . , 𝑔𝑎𝑘−1

denote the discrete logarithm oracle queries made by Sim. As Sim is

algebraic, it also outputs a representation (𝑎𝑖 , 𝑎𝑖,1, . . . , 𝑎𝑖,𝑘) for each
of these queries, 𝑖 ∈ [𝑘 − 1]. Similarly, let 𝑦 = 𝑔𝑥 be the public key

output by Sim together with its representation (𝑎0, 𝑎0,1, . . . , 𝑎0,𝑘).
Then A1 obtains the following system of linear equations in the

variables 𝑧1, . . . , 𝑧𝑘 :

𝑥 = 𝑎0 + 𝑎0,1𝑧1 + . . . + 𝑎0,𝑘𝑧𝑘

𝑎1 = 𝑎1 + 𝑎1,1𝑧1 + . . . + 𝑎1,𝑘𝑧𝑘

.

.

.

𝑎𝑘−1
= 𝑎𝑘−1

+ 𝑎𝑘−1,1𝑧1 + . . . + 𝑎𝑘−1,𝑘𝑧𝑘 ,

which in matrix form is equivalent to

©­­­­«
𝑥 − 𝑎0

𝑎1 − 𝑎1

.

.

.

𝑎𝑘−1
− 𝑎𝑘−1

ª®®®®¬
=

©­­­­«
𝑎0,1 𝑎0,2 · · · 𝑎

0,𝑘

𝑎1,1 𝑎1,2 · · · 𝑎
1,𝑘

.

.

.
.
.
.

.

.

.

𝑎𝑘−1,1 𝑎𝑘−1,2 · · · 𝑎𝑘−1,𝑘

ª®®®®¬
©­­­­«
𝑧1

𝑧2

.

.

.

𝑧𝑘

ª®®®®¬
.

By definition, the simulatability matrix of Sim is invertible and

hence A1 can efficiently compute (𝑧1, . . . , 𝑧𝑘) and solve the OMDL

instance. Overall, we obtain

Pr[𝑘-OMDLA1 = 1] = Pr[GA
1
= 1 ∧ ¬𝐸] .

The bound on the running time of A1 (number of group operations

and exponentiations) comes from running the simulator Sim once,

one exponentiation for each random oracle query and one expo-

nentiation for each signing query.

Algorithm A2 (𝜉, 𝑝𝑎𝑟): Algorithm A2 works as follows. It runsDKG
correctly on behalf of the honest parties. In particular, it knows

all the secret key shares 𝑥 𝑗 . Whenever the adversary A decides to

corrupt a party, A2 faithfully reveals the internal state of that party.

Random oracle queries are answered by sampling 𝑏𝑖 , 𝑑𝑖 ← Z∗𝑝 and

returning ℎ𝑖 = 𝑔𝑟𝑖 = 𝜉
𝑏𝑖
1
𝑔𝑑𝑖 , which implicitly sets 𝑟𝑖 = 𝑧1𝑏𝑖 + 𝑑𝑖 .

A2 aborts in case it detects a collision among answers in the list

𝐻 . Partial signing queries (𝑗,𝑚𝑖) are answered by returning ℎ
𝑥 𝑗

𝑖
.

Again, it is not hard to see that A2’s simulation of G1 is perfect.

In case A2 does not abort, let 𝐴̃𝑖 := 𝑎𝑖,1𝑥1 + . . . + 𝑎𝑖,𝑛𝑥𝑛 for all 𝑖 ,

where we write 𝐴̃∗ for 𝐴̃𝑖∗ . Suppose that A wins G1 and that event

𝐸 happens, i.e. 𝑥 ≠ 𝑎∗ + 𝐴̃∗. With our notation, equation (♠) is
equivalent to

𝑧1𝑏
∗𝑥 + 𝑑∗𝑥 = 𝑎 + 𝑥𝑎′ +

𝑛∑︁
𝑖=1

𝑎𝑖𝑥𝑖 +
∑︁
𝑖∈𝑄ℎ

𝑑𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑑𝑖𝐴̃𝑖 + 𝑑∗𝑎 + 𝑑∗𝐴̃∗

+ 𝑧1

©­«
∑︁
𝑖∈𝑄ℎ

𝑏𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑏𝑖𝐴̃𝑖 + 𝑏∗𝑎∗ + 𝑏∗𝐴̃∗ª®¬ .

With the further notations

𝐵 := 𝑏∗𝑥 − ©­«
∑︁
𝑖∈𝑄ℎ

𝑏𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑏𝑖𝐴̃𝑖 + 𝑏∗𝑎∗ + 𝑏∗𝐴̃∗ª®¬ ,
𝐷 := 𝑎 + 𝑥𝑎′ +

𝑛∑︁
𝑖=1

𝑎𝑖𝑥𝑖 +
∑︁
𝑖∈𝑄ℎ

𝑑𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑑𝑖𝐴̃𝑖 + 𝑑∗𝑎 + 𝑑∗𝐴̃∗ − 𝑑∗𝑥,

this reduces to 𝐵𝑧1 = 𝐷 . Recall that we have tacitly combined the

other group elements that were publicly communicated during the

key generation phase into the term 𝑔𝑎 . This is possible because A2

faithfully runs DKG on behalf of the honest parties and therefore

has knowledge of the exponents of those elements relative to the

base 𝑔 and can combine them into the value 𝑎. Let us now consider

the case where 𝐵 = 0. With the definition of event 𝐸 we get

0 = 𝑏∗𝑥 − ©­«
∑︁
𝑖∈𝑄ℎ

𝑏𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑏𝑖𝐴̃𝑖 + 𝑏∗𝑎∗ + 𝑏∗𝐴̃∗ª®¬
⇐⇒ 𝑏∗ (𝑥 − 𝑎∗ − 𝐴̃∗) =

∑︁
𝑖∈𝑄ℎ

𝑏𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑏𝑖𝐴̃𝑖

⇐⇒ 𝑏∗ = ©­«
∑︁
𝑖∈𝑄ℎ

𝑏𝑖𝑎𝑖 +
∑︁
𝑖∈𝑄𝑠

𝑏𝑖𝐴̃𝑖
ª®¬ ·

(
𝑥 − 𝑎∗ − 𝐴̃∗

)−1

.

As already noted,

∑
𝑖∈𝑄ℎ

𝑟𝑖𝑎𝑖 and
∑
𝑖∈𝑄𝑠

𝑟𝑖𝐴̃𝑖 do not include the

terms 𝑟∗𝑎∗ and 𝑟∗𝐴̃∗, respectively. Hence,
∑
𝑖∈𝑄ℎ

𝑏𝑖𝑎𝑖 and
∑
𝑖∈𝑄𝑠

𝑏𝑖𝐴̃𝑖

do not include 𝑏∗𝑎∗ and 𝑏∗𝐴̃∗, respectively.4 As defined by the iden-
tity𝐻 [𝑚∗] = 𝑔𝑧1𝑏

∗+𝑑∗
,𝑏∗ remains information-theoretically hidden

from A. This implies that the right-hand side of the equation is sta-

tistically independent of the uniform value 𝑏∗. Therefore, with
probability 1 − 1/𝑝 we have 𝐵 ≠ 0, and thus A2 can compute 𝑧1

efficiently as 𝑧1 := 𝐵−1𝐷 . Overall, we obtain

Pr[𝑘-OMDLA2 = 1] ≥
(
1 − 1

𝑝

)
· Pr[GA

1
= 1 ∧ 𝐸] .

The bound on the running time of A2 comes from running the

simulator Sim once, three operations for each random oracle query

and one operation for each signing query. □

Consider algorithm B playing in 𝑘-OMDL as follows: B samples

𝑖∗ ← [2] and then internally emulates A𝑖∗ . Clearly, B is an algebraic

algorithm running in time at most 𝑇 (the running time of A1,A2).

An application of the law of total probability yields for 𝑝 ≥ 2,

Pr[𝑘-OMDLB = 1] =
2∑︁

𝑖=1

Pr[𝑘-OMDLB = 1 | 𝑖∗ = 1] · Pr[𝑖∗ = 1]

=
1

2

2∑︁
𝑖=1

Pr[𝑘-OMDLA𝑖 = 1]

≥ 1

2

(
1 − 1

𝑝

) (
Pr[GA

1
= 1 ∧ 𝐸] + Pr[GA

1
= 1 ∧ ¬𝐸]

)
=

1

2

(
1 − 1

𝑝

)
Pr[GA

1
= 1] ≥ 1

4

Pr[GA
1
= 1]

≥ 1

4

· Pr[GA
0
= 1] − 𝑞2

ℎ
/𝑝.

□
4
Here, we consider 𝑏∗ as a formal variable over Z𝑝 rather than its concrete value.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

Remark 4.1. This result, however, does not rule out a tight reduc-

tion from the OMDL assumption of some lower degree < 𝑘 to the

security of Th-BLSDKG (for DKG with (𝑡, 𝑘)-oracle-aided algebraic

security). Indeed, using Th-BLSTD-DKG as an example (see chapter

4.3 for a definition), we find a tight reduction from the OMDL as-

sumption of degree 𝑡 − 𝑟 for any 𝑟 ≥ 0 which is polylogarithmic in

𝑡 to the security of this scheme. Note that in chapter 4.3, Theorem

4.5 we show that TD-DKG has (𝑡, 𝑘)-oracle-aided algebraic security
with 𝑘 = 𝑡 +1. The reason for the existence of a tight reduction from

OMDL of some lower degree < 𝑘 is based on the possibility that a

potential simulator for TD-DKGmight fail during the simulation. In

our definition of (𝑡, 𝑘)-oracle-aided algebraic security, we assume

a perfect (oracle-aided) simulator that never fails. However, there

does exist a simulator for the underlying DKG that fails during

the simulation with some probability > 0, and such a "deficient"

simulator may just be used by the reduction. This does not only

apply to TD-DKG, but possibly also for any other DKG protocol

that is employed in the threshold BLS scheme. Indeed, after our

following explanation it is not hard to see that this also applies to

JF-DKG and New-DKG.
In our proof of the (𝑡, 𝑘)-oracle-aided algebraic security with 𝑘 =

𝑡 +1 of TD-DKG (see proof for Theorem 4.5), on input 𝑡 +1 elements

𝜉 = 𝜉0, . . . , 𝜉𝑡 ∈ G, the simulator Sim chooses the polynomial

𝑓 =
∑𝑡
𝑖=0

𝑎𝑖𝑋
𝑖 ∈ Z𝑝 [𝑋] of degree 𝑡 that determines the secret

key shares by embedding 𝜉𝑖 into the 𝑖th coefficient of 𝑓 for all

𝑖 ∈ [0, 𝑡], that is 𝑔𝑎𝑖 = 𝜉𝑖 ; corruption queries are answered with

the oracle DL𝑔 (·). This simulation is perfect and in line with our

security notion of oracle-aided algebraic simulatability. We now

describe a "deficient" simulator Sim that works for OMDL of some

lower degree < 𝑡 + 1 (that might fail with some probability > 0).

Take the OMDL assumption of degree 𝑡 − 𝑟 with 𝑟 ≥ 0 and let

𝜉 = 𝜉𝑟+1, . . . , 𝜉𝑡 ∈ Gwith 𝜉𝑖 = 𝑔𝑧𝑖 for all 𝑖 ∈ [𝑟+1, 𝑡] (where 𝑧𝑖 ∈ Z𝑝)
be the challenge instance to be solved with (𝑡−𝑟−1)-times access to

an oracle DL𝑔 (·). Firstly, Sim picks a random (𝑟 +1)-element subset

𝑆 ⊂ [𝑛] of 1, . . . , 𝑛 and 𝑟 + 1 numbers 𝑠1, . . . , 𝑠𝑟+1 ∈ Z𝑝 uniformly

at random. For convenience we may assume 𝑆 = {1, . . . , 𝑟 + 1}.
Secondly, Sim chooses the polynomial 𝑓 =

∑𝑡
𝑖=0

𝑎𝑖𝑋
𝑖 ∈ Z𝑝 [𝑋] of

degree 𝑡 that determines the secret key shares such that (i) 𝑔𝑎𝑖 = 𝜉𝑖
for all 𝑖 ∈ [𝑟 + 1, 𝑡] (which implicitly sets 𝑎𝑖 = 𝑧𝑖), and (ii) 𝑓 (𝑖) = 𝑠𝑖
for all 𝑖 ∈ [𝑟 + 1]. This choice determines 𝑓 completely and its

coefficients solely depend on the 𝑧𝑖 . This is the case because the

equations 𝑓 (𝑖) = 𝑠𝑖 for 𝑖 ∈ [𝑟 + 1] give the following system of

linear equations in matrix form

©­­­­«
𝑠1 −

∑𝑡
𝑖=𝑟+1 𝑎𝑖1

𝑖

𝑠2 −
∑𝑡
𝑖=𝑟+1 𝑎𝑖2

𝑖

.

.

.

𝑠𝑟+1 −
∑𝑡
𝑖=𝑟+1 𝑎𝑖 (𝑟 + 1)𝑖

ª®®®®¬
=

©­­­­«
1 1

1 · · · 1
𝑟

1 2
1 · · · 2

𝑟

.

.

.
.
.
.

.

.

.

1 (𝑟 + 1)1 · · · (𝑟 + 1)𝑟

ª®®®®¬
©­­­­«
𝑎0

𝑎1

.

.

.

𝑎𝑟

ª®®®®¬
and the Vandermonde matrix on the right-hand side is invertible.

5

As a result, the polynomial 𝑓 is completely described (even if im-

plicitly). Now, Sim can work properly during a simulation (i.e., it

5
Note that Sim could likewise embed the instance elements 𝜉𝑟+1, . . . , 𝜉𝑡 into some

different (arbitrary) 𝑡 − 𝑟 coefficients of the polynomial 𝑓 , and not necessarily into the

last 𝑡 − 𝑟 ones. Eventually, the matrix on the right-hand side of the above equation

would be a generalized Vandermonde matrix, which is also known to be invertible for

pairwise distinct, positive numbers (which is the case here, since 𝑆 = {1, . . . , 𝑟 + 1}).
Thus, this would also result in a complete determination of 𝑓 .

does not fail) if and only if the adversary chooses a corruption set

𝑆 ⊂ [𝑛] that contains 𝑆 as a subset. Otherwise, Sim would have to

return at least 𝑡 − 𝑟 distinct points on 𝑓 which it does not know a

priori, so that it would ultimately know 𝑡 − 𝑟 + 𝑟 + 1 = 𝑡 + 1 distinct

points on 𝑓 , which conversely means that Sim would have to solve

the (𝑡 − 𝑟)-OMDL problem. On the other hand, the probability that

𝑆 ⊂ 𝑆 is approximately 1/2𝑟+1, and therefore the simulator Sim
might fail with probability 1/2𝑟+1. In the other cases Sim works

perfectly and is able to return the internal states of all the corrupted

parties properly. Finally, the security reduction simply uses such

a "deficient" simulator as described just now and fails with the

additional probability 1/2𝑟+1. The rest of the reduction, however,
proceeds exactly as in the above proof for (𝑡 + 1)-OMDL. Thus, for

(𝑡−𝑟)-OMDL, the reduction has an additional security loss of 1/2𝑟+1
and therefore remains tight as long as 𝑟 ≥ 0 is polylogarithmic in 𝑡 .

4.2 No reduction from 2-OMDL and 𝑞-DL
Our next theorem asserts that the security of Th-BLSDKG (for DKG
with (𝑡, 𝑘)-oracle-aided algebraic security) can not be derived from

the OMDL assumption of degree 2, even in the AGM+ROM. Further-

more, we show that such a reduction can not be derived from the 𝑞-

DL assumption for any 𝑞. In particular, the security of Th-BLSDKG
has to rely on some stronger mathematical assumption such as

OMDL of some higher degree. Our proofs for these impossibility

results follow Coron’s metareduction technique [22]. The idea be-

hind the proof of the first theorem is the following. Upon receiving

an OMDL challenge 𝜉 of degree 2, the metareductionM runs the

reduction R providing it with (𝑝𝑎𝑟, 𝜉). The discrete logarithm oracle

for R is simulated by M’s own oracle DL𝑔 (·). At the end of the key

generation phase, R outputs the public key shares and the public

key with their respective algebraic coefficients. The coefficients

of the public key shares form an (𝑛 × 2) - matrix 𝑄 over Z𝑝 (dis-

regarding the coefficients corresponding to 𝑔). By a mathematical

result, we find that with overwhelming probability (to be precise,

with probability at least 1 − 2
−𝑡+1

) a set of randomly chosen 𝑡 row

vectors of the matrix 𝑄 spans the row space of 𝑄 . This eventually

allowsM to compute all the secret key shares (and hence the secret

key 𝑥) after corrupting some 𝑡 parties. With the knowledge of 𝑥 ,

it can forge on any message and perfectly simulate an algebraic

adversary F for the reduction. We point out that in this step, it is

crucial for the adversary to be allowed to corrupt parties adaptively,

i.e., even after the termination of the DKG protocol. If the adversary

were a static one, R would get the set of corrupted parties as an

input and could take the algebraic coefficients of these parties in

such a way that the corresponding vectors do not span the row

space of 𝑄 . This results inM not being able to compute the secret

key and the proof would fail. We note that the same proof strategy

(for the metareduction) is also applicable to the case where the

underlying hardness assumption is OMDL of some higher degree

𝑟 ≤ 𝑡 instead of degree 2. The problem that arises there, however, is

that the probability that a set of randomly chosen 𝑡 row vectors of

the matrix 𝑄 (which is now an (𝑛 × 𝑟) - matrix over Z𝑝) spans the
whole row space of𝑄 is extremely difficult to determine (especially,

in order to tell something about the existence of a reduction).

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

Theorem 4.3. Let DKG have (𝑡, 𝑘,𝑇Falg ,𝑇Sim)-oracle-aided alge-
braic security. Let R be an algebraic reduction such that for ev-
ery algebraic forger Falg that (𝜀Falg ,𝑇Falg , 𝑞ℎ, 𝑞𝑠)-breaks Th-BLSDKG,
RFalg is an algorithm that (𝜀R,𝑇R)-breaks 2-OMDL. Then there ex-
ists an algorithm M such that MR (𝜀M,𝑇M)-breaks 2-OMDL with
𝜀M ≥ 𝜀R − 2

−𝑡+1, 𝑇M ≤ 𝑇R +𝑇Falg .

Proof. Assume that R is an algebraic reduction as defined above.

We will now build an efficient solverM against 2-OMDL. Let 𝜉 =

𝑔𝑧1 , 𝑔𝑧2 ∈ G be the OMDL instance.M gets access to DL𝑔 (·) at most

one time and his goal is to return (𝑧1, 𝑧2). AlgorithmM works as

follows.

1. M runs the reduction R providing it with (𝑝𝑎𝑟, 𝜉). The dis-
crete logarithm oracle for R is simulated by M’s own oracle

DL𝑔 (·). As R is an algebraic reduction, at the end of the key

generation phase, it returns a vector of public key shares

(𝑔𝑥1 , . . . , 𝑔𝑥𝑛) together with a representation (𝑎𝑖 , 𝑎𝑖,1, 𝑎𝑖,2)
for all 𝑖 ∈ [𝑛] such that 𝑔𝑥𝑖 = 𝑔𝑎𝑖 · (𝑔𝑧1)𝑎𝑖,1 · (𝑔𝑧2)𝑎𝑖,2 .

2. After termination of the key generation protocol,M chooses

a random subset 𝑆 ⊂ {1, . . . , 𝑛} of parties of order 𝑡 . W.l.o.g.

we may assume 𝑆 = {1, . . . , 𝑡}. Then M queries R, on behalf

of a simulated algebraic forger Fsimalg , for corruptions of the
random 𝑡 parties given by 𝑆 , that is 𝑃1, . . . , 𝑃𝑡 . Reduction R
returns the internal states of these parties andM additionally

gets full control over them. We stress that the secret key

shares of parties 𝑃1, . . . , 𝑃𝑡 returned by R are all correct,

which can be checked using the public key shares.

3. Afterwards, M forms the (𝑛 × 2) - matrix over the field Z𝑝

𝑄 B

©­­­­«
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

.

.

.
.
.
.

𝑎𝑛,1 𝑎𝑛,2

ª®®®®¬
and computes its rank efficiently via Gaussian elimination.

We may assume that the rank of this matrix is 2. The other

cases where the rank of 𝑄 is less than 2 work analogously.

Consider the (𝑡 × 2) - matrix 𝑄𝑆 resulting from the 𝑡 rows

of 𝑄 corresponding to the set 𝑆 , i.e.,

𝑄𝑆 B

©­­­­«
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

.

.

.
.
.
.

𝑎𝑡,1 𝑎𝑡,2

ª®®®®¬
.

We consider the following three cases regarding 𝑄 :

(i) There are 𝑡 + 1 row vectors in𝑄 that span a 0-dimensional

space.

(ii) For 𝑛0 ≤ 𝑡 the number of zero row vectors in 𝑄 , there

are 𝑡 + 1 − 𝑛0 non-zero row vectors in 𝑄 that span a 1-

dimensional space.

(iii) For 𝑛0 ≤ 𝑡 the number of zero row vectors in 𝑄 , any

𝑡 + 1−𝑛0 non-zero row vectors in𝑄 span a 2-dimensional

space.

In each of these cases we describe how 𝑀 proceeds. For all

𝑖 ∈ [𝑛], we let ®𝑎𝑖 := (𝑎𝑖,1, 𝑎𝑖,2). For each case, we define

the two events 𝐸 and 𝐹𝑖 , 𝑖 ∈ [3], as follows. 𝐸 is in each

case the event that the reduction 𝑅 is successful upon 𝑀

corrupting these 𝑡 parties. In case (i), 𝐹1 is the event that

there are at most 𝑡 row vectors in 𝑄 that are zero (obviously,

the probability that this happens is zero). In case (ii), 𝐹2 is

the event that all vectors ®𝑎1, . . . , ®𝑎𝑡 (corresponding to the

corrupted parties 𝑃1, . . . , 𝑃𝑡) are zero. In case (iii), 𝐹3 is the

event that the matrix 𝑄𝑆 has rank ≤ 1. In case event 𝐹𝑖 ,

𝑖 ∈ [3], happens, M fails and just aborts. But in case 𝐹𝑖 does

not happen, M is able to determine the secret key 𝑥 in each

of the three cases, as we will see now.

Case (i): In that case, there are 𝑡+1 row vectors, say ®𝑎𝑖1 , . . . , ®𝑎𝑖𝑡+1 ,
such that the corresponding secret key shares are defined

as 𝑥 𝑗 = 𝑎𝑖 𝑗 for 𝑗 ∈ [𝑡 + 1] and 𝑀 efficiently computes the

secret key 𝑥 by Lagrangian interpolation of these 𝑡 +1 points.

𝑀 proceeds with step 4. Case (ii): In that case, there are

𝑡 + 1 row vectors in 𝑄 (and 𝑛0 ≥ 0 of them being zero), say

®𝑎𝑖1 , . . . , ®𝑎𝑖𝑡+1 (w.l.o.g. with ®𝑎𝑖1 , . . . , ®𝑎𝑛0
being zero), that span

a 1-dimensional space, so that for all 𝑗 ∈ [𝑡] it is ®𝑎𝑖 𝑗 = 𝜇 𝑗 ®𝑎𝑖𝑡+1
for some efficiently computable 𝜇 𝑗 ∈ Z𝑝 . Note that we could
replace the role of ®𝑎𝑖𝑡+1 with any other ®𝑎𝑖 𝑗 for 𝑗 ∈ [𝑛0+1, 𝑡+1].

Since 𝑥𝑖 − 𝑎𝑖 = ®𝑎𝑖 ·
(
𝑧1

𝑧2

)
for all 𝑖 ∈ [𝑛], we find that

𝜇 𝑗 (𝑥𝑖𝑡+1 − 𝑎𝑖𝑡+1) = 𝜇 𝑗 ®𝑎𝑖𝑡+1 ·
(
𝑧1

𝑧2

)
= ®𝑎𝑖 𝑗 ·

(
𝑧1

𝑧2

)
= 𝑥𝑖 𝑗 − 𝑎𝑖 𝑗

for all 𝑗 ∈ [𝑡]. This shows that the polynomial 𝑓 ∈ Z𝑝 [𝑋]
of degree 𝑡 that gives the secret key shares is by Lagrangian

interpolation determined by only one point, namely 𝑥𝑖𝑡+1
corresponding to the row vector ®𝑎𝑖𝑡+1 ≠ 0. Note that by

the same argumentation, 𝑓 is determined by any one point

𝑥𝑖 𝑗 for 𝑗 ∈ [𝑛0 + 1, 𝑡 + 1]) corresponding to a row vector

®𝑎𝑖 𝑗 that is not zero. And in particular, any secret key share

is computable via the Lagrangian interpolation formula by

knowledge of 𝑥𝑖𝑡+1 (or alike secret key share corresponding

to a non-zero row vector). We conclude that any secret key

share 𝑥𝑖 = 𝑓 (𝑖) for 𝑖 ∈ [𝑛] has an expression as 𝑙𝑖 + 𝑙 ′𝑖 · 𝑥𝑖𝑡+1
for some efficiently computable constants 𝑙𝑖 , 𝑙

′
𝑖
∈ Z𝑝 , where

𝑙 ′
𝑖
≠ 0 if and only if the 𝑖th row vector of 𝑄 is non-zero.

Hence, knowledge of any 𝑥𝑖 corresponding to a non-zero

row vector of𝑄 determines 𝑓 completely. So in case event 𝐹2

does not happen,M determines 𝑓 as described, computes the

secret key 𝑥 , and proceeds with step 4. Case (iii): In that case,

assuming event 𝐹3 does not happen, 𝑄𝑆 has full rank 2 and

therefore the vectors ®𝑎1, . . . , ®𝑎𝑡 give a generating set for the

row space of𝑄 . In particular, ®𝑎𝑡+1 is linearly dependent from
the other first 𝑡 vectors ®𝑎1, . . . , ®𝑎𝑡 . This yields a linear system
of equations 𝜆1 ®𝑎1 + . . . + 𝜆𝑡 ®𝑎𝑡 = ®𝑎𝑡+1, where 𝜆𝑖 ∈ Z𝑝 for all

𝑖 ∈ [𝑡]. Via Gaussian elimination,M determines the linear

coefficients 𝜆1, . . . , 𝜆𝑡 of this system of equations. Note that

this approach would not work in the static corruption model,

as previously explained. As a result,M obtains the following

system of linear equations in the variables 𝑧1, 𝑧2:

©­­­­«
𝑥1 − 𝑎1

𝑥2 − 𝑎2

.

.

.

𝑥𝑡 − 𝑎𝑡

ª®®®®¬
=

©­­­­«
𝑎1,1 𝑎1,2

𝑎2,1 𝑎2,2

.

.

.
.
.
.

𝑎𝑡,1 𝑎𝑡,2

ª®®®®¬
(
𝑧1

𝑧2

)
.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

Multiplying the 𝑖-th row of the matrix with 𝜆𝑖 for all 𝑖 ∈ [𝑡]
and adding up the equations yields

2∑︁
𝑖=1

𝜆𝑖 (𝑥𝑖 − 𝑎𝑖) = ®𝑎𝑡+1 ·
(
𝑧1

𝑧2

)
=

2∑︁
𝑖=1

𝑎𝑡+1,𝑖𝑧𝑖 .

Since

∑
2

𝑖=1
𝑎𝑡+1,𝑖𝑧𝑖 = 𝑥𝑡+1−𝑎𝑡+1,M efficiently computes 𝑥𝑡+1

via the identity 𝑥𝑡+1 = 𝑎𝑡+1+
∑

2

𝑖=1
𝜆𝑖 (𝑥𝑖−𝑎𝑖) by knowledge of

the secret key shares 𝑥1, . . . , 𝑥𝑡 it got at the beginning of this

step through the corruptions. Using Lagrange interpolation,

M determines the secret key 𝑥 and proceeds with step 4.

4. M picks a setM ⊂ {0, 1}∗ of 𝑞ℎ arbitrary messages (e.g.,

at random or the lexicographically first). Then it samples

𝑚∗ ←M and (𝑚1, . . . ,𝑚𝑞𝑠) ← (M \ {𝑚∗})𝑞𝑠 .
5. M queries the signing oracle, with implicit hash queries, on

the messages𝑚1, . . . ,𝑚𝑞𝑠 . Thereafter,Mmakes a hash query

on𝑚∗ and 𝑞ℎ − 𝑞𝑠 − 1 additional messages from the setM.

In total, M has made exactly 𝑞ℎ hash queries, including the

implicit hash queries from signing, and exactly 𝑞𝑠 signing

queries, so that it corresponds to what the reduction expects.

6. M then tosses a biased coin 𝜁 ∈ {0, 1} that takes the value
1 with probability 𝜀Falg and the value 0 with probability 1 −
𝜀Falg . If 𝜁 = 0, then M sends ⊥ to R. And if 𝜁 = 1, then M
computes 𝜎∗ = 𝐻 [𝑚∗]𝑥 and submits (𝑚∗, 𝜎∗) as a forgery
with algebraic representation (𝑥, 0, . . . , 0), so that 𝜎∗ = 𝑔𝑥

0
·∏

𝑖≥1
𝑔0

𝑖
where (𝑔0, 𝑔1, . . . , 𝑔𝑟) is the list of all group elements

M has received during the execution of R and we assume

w.l.o.g. 𝑔0 = 𝐻 [𝑚∗]. This is done in time 𝑇Falg in order to

correctly simulate an algebraic forger.

7. We see that this constitutes a valid forgery as follows. First,

𝑚∗ was not queried to the signing oracle and 𝜎∗ is indeed
a valid signature on 𝑚∗. Second, consider (as a thought-

experiment) an unbounded algebraic forger Falg = Funbalg that

brute-forces the secret key 𝑥 from the public key 𝑔𝑥 and

outputs a valid forgery 𝜎∗ on 𝑚∗ with probability 𝜀Falg in

case event 𝐹𝑖 for an 𝑖 ∈ [3] from step 3 does not happen. By

assertion of the theorem, R has to work even against such an

unbounded forger. Clearly, the view of R when interacting

with Fsimalg is indistinguishable from its view when interacting

with Funbalg whenever event 𝐹𝑖 does not happen. Hence, 𝜎
∗

is a valid signature on 𝑚∗. Additionally, this yields 𝜀M ≥
𝜀R − Pr[𝐹𝑖] for 𝑖 ∈ [3]. R will then return (𝑧1, 𝑧2), whichM
submits as its solution against 2-OMDL.

Finally, we bound the probability that 𝐹𝑖 happens for each 𝑖 ∈ [3].
In case (i), we clearly have Pr[𝐹1] = 0. In case (ii), since there are

at most 𝑡 row vectors in 𝑄 being zero, the probability that M’s

corruption set 𝑆 contains exactly these parties (corresponding to

zero row vectors in 𝑄) is approximately 2
−𝑡
, i.e., Pr[𝐹2] ≤ 2

−𝑡
. In

case (iii), we have the following assertion.

Claim: The matrix𝑄𝑆 has rank 2 with probability at least 1−2
−𝑡+1

.

Proof: For the proof, we consider the projective 1-space 𝑃1 (F𝑝) over
the finite field F𝑝 = Z𝑝 with 𝑝 elements. The space 𝑃1 (F𝑝) consists
of all 1-dimensional subspaces of F2

𝑝 (considered as a 2-dimensional

vector space over F𝑝). By assumption, there are at most 𝑡 − 𝑛0 non-

zero row vectors in 𝑄 that span a 1-dimensional space. Thus, at

most 𝑡 −𝑛0 non-zero row vectors of𝑄 correspond to one particular

point in 𝑃1 (F𝑝). In order to 𝑄𝑆 to have rank less than 2, the row

vectors corresponding to the (randomly chosen) corruption set

𝑆 = {1, . . . , 𝑡}would precisely have to be the𝑛0 zero row vectors and

remaining 𝑡−𝑛0 (non-zero) vectors that correspond to one particular

point in the projective space, that is these 𝑡 −𝑛0 vectors would span

a 1-dimensional space. Otherwise, there would be at least two row

vectors that correspond to different points in the projective space

and would therefore span a 2-dimensional space. The probability of

this happening is at most
1

2
𝑛

0
· 2

2
𝑡−𝑛

0
= 1

2
𝑡−1

. Therefore,𝑄𝑆 has rank

2 with probability ≥ 1−2
−𝑡+1

. ■ As a result, we get Pr[𝐹3] ≤ 2
−𝑡+1

.

Overall, the bound onM’s success probability in breaking 2-OMDL
is given by 𝜀M ≥ 𝜀R−max𝑖∈[3] {Pr[𝐹𝑖]} ≥ 𝜀R−2

−𝑡+1
. The bound on

M’s time comes from running the reduction R once and simulating

the forger. □

Remark 4.2. In fact, the exact same proof strategy of the metare-

duction M can also be applied to the case where the underlying

hardness assumption is OMDL of some higher degree 𝑟 ≤ 𝑡 instead

of degree 2. The main difference to the former case 2-OMDL is that

the probability that the matrix 𝑄𝑆 (which is now a (𝑡 × 𝑟) - matrix

over Z𝑝) has full rank 𝑟 is no longer 1 − 2
−𝑡+1

, but another expres-

sion that we are not able to determine (and most likely depends on

𝑟). Hence, we are not able so far to say anything concrete about the

higher degree case 𝑟 ≥ 3. Nevertheless, it is possible to extend our

result under certain restrictions. For space reasons we defer this to

the full version of our paper.

For our next impossibility result regarding the existence of a

security reduction from 𝑞-DL, the metareduction uses a very similar

strategy as in the previous proof. The only difference is in how

the metareduction M determines the secret key in step 2 of its

strategy. Essentially, after some 𝑡 corruptions, M obtains a non-

trivial polynomial equation over Z𝑝 in the variable 𝑧 (the sought-for

solution to the given 𝑞-DL instance 𝑔𝑧 , . . . , 𝑔𝑧
𝑞 ∈ G), which it can

solve efficiently by standard techniques. The proof of the theorem

is in the full version of this paper.

Theorem 4.4. Let DKG have (𝑡, 𝑘,𝑇Falg ,𝑇Sim)-oracle-aided alge-
braic security. Let R be an algebraic reduction such that for every al-
gebraic forger Falg that (𝜀Falg ,𝑇Falg , 𝑞ℎ, 𝑞𝑠)-breaks Th-BLSDKG, R

Falg

is an algorithm that (𝜀R,𝑇R)-breaks 𝑞-DL. Then there exists an algo-
rithm M such that MR (𝜀M,𝑇M)-breaks 𝑞-DL with 𝜀M ≥ 𝜀R − 2

−𝑡 ,
𝑇M ≤ 𝑇R +𝑇Falg .

Remark 4.3. An important implication of this theorem is that the

security of Th-BLSDKG can not be derived from a static mathemat-

ical assumption in the AGM (and in particular not in the plain

ROM). This follows from the fact that 𝑞-DL implies every conceiv-

able hardness assumption in the AGM (and even some non-static

assumptions) [9].

4.3 Security of some DKG protocols
Before we proceed with our impossibility result on the tightness of a

security proof for Th-BLSDKG under the (𝑡 + 1)-OMDL assumption,

we focus on some concreteDKG protocols. Concretely, we show the

(𝑡, 𝑘)-oracle-aided algebraic security of several well-known DKG
protocols, so that these can be safely employed into Th-BLSDKG.
We begin our excursion with TD-DKG, which serves as a DKG

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

protocol that represents the traditional trusted dealer scheme. In

this protocol, a trusted dealer TD chooses a random polynomial

𝑓 ∈ Z𝑝 [𝑋] of degree 𝑡 . Then, for all 𝑖 ∈ [𝑛], it secretly sends

the secret key share sk𝑖 = 𝑓 (𝑖), the vector of public key shares

(pk
1
, . . . , pk𝑛) = (𝑔𝑓 (1) , . . . , 𝑔𝑓 (𝑛)), and the public key pk = 𝑔𝑓 (0)

to party 𝑃𝑖 .

Our strategy for the proof is by building an (𝑡, 𝑘)-oracle-aided
algebraic simulator Sim with 𝑘 = 𝑡 + 1 that simulates the role of

the trusted dealer TD in an execution of TD-DKG. On input 𝑡 + 1

elements 𝜉 = 𝜉0, . . . , 𝜉𝑡 ∈ G, Sim defines the polynomial 𝑓 ∈ Z𝑝 [𝑋]
of degree 𝑡 by embedding 𝜉𝑖 into the 𝑖th coefficient of 𝑓 for all

𝑖 ∈ [0, 𝑡]. Corruption queries are answered with the oracle DL𝑔 (·).

Theorem 4.5. Protocol TD-DKG has (𝑡, 𝑘,𝑇A,𝑇Sim)-oracle-aided
algebraic security with 𝑘 = 𝑡 + 1 and 𝑇Sim ≤ 𝑇A + 2𝑛(𝑡 + 1).

Proof. Let A be an adversary that runs in time at most 𝑇A and

corrupts at most 𝑡 parties during an execution of the protocol.

Clearly, TD-DKG is 𝑡-consistent and 𝑡-correct. It remains to show

(𝑡, 𝑘,𝑇A,𝑇Sim)-oracle-aided algebraic simulatability for 𝑘 = 𝑡 + 1.

Theorem 4.3 then implies the simulatability factor 𝑡 + 1. For this, we

build an (𝑡, 𝑡 + 1,𝑇)-oracle-aided algebraic simulator Sim as follows.

On input 𝑡 + 1 elements 𝜉0 = 𝑔𝑧0 , . . . , 𝜉𝑡 = 𝑔𝑧𝑡 ∈ G with 𝑡-time

access to an oracleDL𝑔 (·), Sim lets the polynomial 𝑓 =
∑𝑡
𝑖=0

𝑎𝑖𝑋
𝑖 ∈

Z𝑝 [𝑋] of degree 𝑡 be such that 𝑔𝑎𝑖 = 𝜉𝑖 for all 𝑖 ∈ [0, 𝑡], which
implicitly sets 𝑎𝑖 = 𝑧𝑖 . Then, for all 𝑖 ∈ [𝑛], Sim computes 𝑔𝑓 (𝑖) as

𝑔𝑓 (𝑖) = 𝑔
∑𝑡

𝑗=0
𝑎 𝑗 𝑖

𝑗

=

𝑡∏
𝑗=0

(𝑔𝑎 𝑗)𝑖
𝑗

=

𝑡∏
𝑗=0

𝜉𝑖
𝑗

𝑗

and sends the public key shares (pk
1
, . . . , pk𝑛) = (𝑔𝑓 (1) , . . . , 𝑔𝑓 (𝑛))

along with the public key pk = 𝑔𝑓 (0) = 𝜉0 to party 𝑃𝑖 . Whenever A
decides to corrupt a party 𝑃 𝑗 , Sim queries DL𝑔 (𝑔𝑓 (𝑗)) and returns

sk 𝑗 = 𝑓 (𝑗). Since A makes at most 𝑡 corruption queries, Sim ac-

cesses the oracle DL𝑔 (·) at most 𝑡 times and hence is a well-defined

simulator. Let C ⊂ {1, . . . , 𝑛} denote the subset of corrupted parties
at the end of an execution of Sim. W.l.o.g. we may assume that

|C| = 𝑡 . By construction, the simulatability matrix of Sim is the

square Vandermonde matrix 𝑉 (. . .) for the 𝑡 + 1 distinct numbers

in C ∪ {0}, which is invertible. Finally, 𝑓 is indistinguishable from

a random polynomial over Z𝑝 of degree 𝑡 and Sim’s simulation

of TD-DKG is perfect. The claim on the running time is easy to

verify. □

Now we turn to Pedersen’s JF-DKG protocol. We note that the

public key shares (𝑔𝑥1 , . . . , 𝑔𝑥𝑛) are not output explicitly by JF-DKG,
but can be computed from publicly available information [33].

Therefore, we may assume that these values are publicly known.

The proof of the following theorem is essentially just an adaption

of the preceding proof to the setting where each party 𝑃𝑖 acts as a

dealer with its own polynomial 𝑓𝑖 ∈ Z𝑝 [𝑋]. A proof can be seen in

the full version.

Theorem 4.6. Protocol JF-DKG has (𝑡, 𝑘,𝑇A,𝑇Sim)-oracle-aided
algebraic security with 𝑘 ≤ 𝑛(𝑡 + 1) and 𝑇Sim ≤ 𝑇A + 2𝑛2 (𝑡 + 1) + 𝑛.

The proof for Gennaro et al.’s New-DKG protocol is essentially

the same as the preceding one for JF-DKG, since the „masking“ poly-

nomials 𝑔𝑖 appearing in New-DKG do not contribute to the secret

key shares. For these, Sim simply honestly samples 𝑔𝑖 ← Z𝑝 [𝑋]
at random and proceeds otherwise as in the proof for JF-DKG. See
the full version for the proof.

Theorem 4.7. ProtocolNew-DKG has (𝑡, 𝑘,𝑇A,𝑇Sim)-oracle-aided
algebraic security with 𝑘 ≤ 𝑛(𝑡 + 1) and 𝑇Sim ∈ 𝑇A + O(𝑛3).

4.4 Non-tightness of naive reduction from
(𝑡 + 1)-OMDL in ROM

We close this work with an impossibility result on the tightness

of a security proof for Th-BLSDKG under the (𝑡 + 1)-OMDL in the

plain random oracle model, assuming the reduction is naive. We

define a naive reduction to be an algebraic reduction for which

the 𝑛 × (𝑡 + 1) - matrix 𝑄 formed by the algebraic coefficients of

the public key shares satisfies the following condition: any set of

𝑡 + 1 row vectors of 𝑄 generates a space of dimension 𝑡 + 1. As we

now argue, naive reductions are an interesting class of reductions

that appears difficult to bypass. As we show in the full version, any

generic reduction that embeds the (𝑡 + 1)-element OMDL instance

"fully" into the polynomial 𝑓 ∈ Z𝑝 [𝑋] of degree 𝑡 that determines

the secret key shares is indeed naive. By "fully", we simply mean

that the matrix 𝑄 has full rank 𝑡 + 1. We remark that our tight

reduction from Theorem 4.1 is an example of a naive reduction and

that we do not know of a tighter reduction strategy. An example of

a non-naive reduction would be one that embeds only 𝑡 or fewer

elements of the (𝑡 +1)-element OMDL instance into the polynomial

𝑓 . However, it is unclear in what way this would be helpful.

As before, our proof follows the metareduction technique. In

a typical scenario, the metareductionM rewinds the reduction R
back to a previous state, with the consequence that M gains some

new information from the second run of R which eventually allows

M to simulate a forger to R successfully. In our case, however,

the reduction has access to the DL𝑔 (·) oracle whichM also has to

simulate to R. This comes with a subtle but severe problem: after

rewinding R back to a previous state, M additionally has to answer

the same number of DL𝑔 (·) queries that R has made in its first run.

This is a non-trivial or even impossible task for M, unless R has

made none oracle queries in its first run. But a priori, M can not

predict or control R’s behaviour at all. We resolve this issue by

finding a state IR of R in which R necessarily must have queried the

DL𝑔 (·) oracle 𝑡 times. This state IR will then be the state to which

we rewind R later. In fact, IR will be shortly after the termination

of DKG. The remainder of the proof proceeds as in the spirit of

[22, 36] which equally leads to a security loss linear in the number

of signing queries 𝑞𝑠 . For the proof see the full version.

Theorem 4.8. LetDKG have (𝑡, 𝑘,𝑇F,𝑇Sim)-oracle-aided algebraic
security with 𝑘 = 𝑡 + 1. Let R be a naive reduction as defined above
such that for every forger F that (𝜀F,𝑇F, 𝑞ℎ, 𝑞𝑠)-breaks Th-BLSDKG,
RF is an algorithm that (𝜀R,𝑇R)-breaks (𝑡 + 1)-OMDL. Then there
exists an algorithm M such that MR (𝜀M,𝑇M)-breaks (𝑡 + 1)-OMDL
with 𝜀M ≥ 𝜀R − 𝜀F · 2

𝑒𝑞𝑠
, 𝑇M ≤ 2(𝑇R +𝑇F).

ACKNOWLEDGMENTS
This work is funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) – 507237585.

CCS ’22, November 7–11, 2022, Los Angeles, CA, USA Bacho et al.

REFERENCES
[1] 2022. Chia Network FAQ. (2022). https://www.chia.net/faq/.

[2] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling

Ren, and Elaine Shi. 2019. Communication Complexity of Byzantine Agreement,

Revisited. In 38th ACM Symposium Annual on Principles of Distributed Computing,
Peter Robinson and Faith Ellen (Eds.). Association for Computing Machinery,

Toronto, ON, Canada, 317–326. https://doi.org/10.1145/3293611.3331629

[3] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren.

2019. Synchronous Byzantine Agreement with Expected 𝑂 (1) Rounds, Ex-
pected 𝑂 (𝑛2) Communication, and Optimal Resilience. In FC 2019: 23rd In-
ternational Conference on Financial Cryptography and Data Security (Lecture
Notes in Computer Science), Ian Goldberg and Tyler Moore (Eds.), Vol. 11598.

Springer, Heidelberg, Germany, Frigate Bay, St. Kitts and Nevis, 320–334. https:

//doi.org/10.1007/978-3-030-32101-7_20

[4] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,

and Alin Tomescu. 2021. Reaching Consensus for Asynchronous Distributed

Key Generation. In 40th ACM Symposium Annual on Principles of Distributed
Computing. Association for Computing Machinery, Portland, OR, USA, 363–373.

[5] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. 2019. Asymptotically

Optimal Validated Asynchronous Byzantine Agreement. In 38th ACM Symposium
Annual on Principles of Distributed Computing, Peter Robinson and Faith Ellen

(Eds.). Association for Computing Machinery, Toronto, ON, Canada, 337–346.

https://doi.org/10.1145/3293611.3331612

[6] Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlo-

movits. 2021. Low-Bandwidth Threshold ECDSA via Pseudorandom Corre-

lation Generators. Cryptology ePrint Archive, Report 2021/1587. (2021). https:

//eprint.iacr.org/2021/1587.

[7] Handan Kilinç Alper and Jeffrey Burdges. 2021. Two-Round Trip Schnorr Multi-

signatures via Delinearized Witnesses. In Advances in Cryptology – CRYPTO 2021,
Part I (Lecture Notes in Computer Science), Tal Malkin and Chris Peikert (Eds.),

Vol. 12825. Springer, Heidelberg, Germany, Virtual Event, 157–188. https://doi.

org/10.1007/978-3-030-84242-0_7

[8] Diego F. Aranha, Anders P. K. Dalskov, Daniel Escudero, and Claudio Orlandi.

2021. Improved Threshold Signatures, Proactive Secret Sharing, and Input Certi-

fication from LSS Isomorphisms. In Progress in Cryptology - LATINCRYPT 2021:
7th International Conference on Cryptology and Information Security in Latin
America (Lecture Notes in Computer Science), Patrick Longa and Carla Ràfols

(Eds.), Vol. 12912. Springer, Heidelberg, Germany, Bogotá, Colombia, 382–404.

https://doi.org/10.1007/978-3-030-88238-9_19

[9] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. 2020. A Classification of Com-

putational Assumptions in the Algebraic Group Model. In Advances in Cryptology
– CRYPTO 2020, Part II (Lecture Notes in Computer Science), Daniele Micciancio

and Thomas Ristenpart (Eds.), Vol. 12171. Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 121–151. https://doi.org/10.1007/978-3-030-56880-1_5

[10] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-

Key model and a general forking lemma. In ACM CCS 2006: 13th Conference
on Computer and Communications Security, Ari Juels, Rebecca N. Wright, and

Sabrina De Capitani di Vimercati (Eds.). ACM Press, Alexandria, Virginia, USA,

390–399. https://doi.org/10.1145/1180405.1180453

[11] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. 2020. Asynchro-

nous Byzantine Agreement with Subquadratic Communication. In TCC 2020: 18th
Theory of Cryptography Conference, Part I (Lecture Notes in Computer Science),
Rafael Pass and Krzysztof Pietrzak (Eds.), Vol. 12550. Springer, Heidelberg, Ger-

many, Durham, NC, USA, 353–380. https://doi.org/10.1007/978-3-030-64375-1_13

[12] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind Sig-

natures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In PKC 2003:
6th International Workshop on Theory and Practice in Public Key Cryptography
(Lecture Notes in Computer Science), Yvo Desmedt (Ed.), Vol. 2567. Springer, Heidel-

berg, Germany, Miami, FL, USA, 31–46. https://doi.org/10.1007/3-540-36288-6_3

[13] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-signatures

for Smaller Blockchains. In Advances in Cryptology – ASIACRYPT 2018, Part II
(Lecture Notes in Computer Science), Thomas Peyrin and Steven Galbraith (Eds.),

Vol. 11273. Springer, Heidelberg, Germany, Brisbane, Queensland, Australia, 435–

464. https://doi.org/10.1007/978-3-030-03329-3_15

[14] Dan Boneh, Rosario Gennaro, and Steven Goldfeder. 2017. Using Level-1 Homo-

morphic Encryption to Improve Threshold DSA Signatures for Bitcoin Wallet

Security. In Progress in Cryptology - LATINCRYPT 2017: 5th International Confer-
ence on Cryptology and Information Security in Latin America (Lecture Notes in
Computer Science), Tanja Lange and Orr Dunkelman (Eds.), Vol. 11368. Springer,

Heidelberg, Germany, Havana, Cuba, 352–377. https://doi.org/10.1007/978-3-

030-25283-0_19

[15] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. 2002.

Asynchronous Verifiable Secret Sharing and Proactive Cryptosystems. In ACM
CCS 2002: 9th Conference on Computer and Communications Security, Vijayalak-
shmi Atluri (Ed.). ACM Press, Washington, DC, USA, 88–97. https://doi.org/10.

1145/586110.586124

[16] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2000. Random oracles in

constantipole: practical asynchronous Byzantine agreement using cryptography

(extended abstract). In 19th ACM Symposium Annual on Principles of Distributed
Computing, Gil Neiger (Ed.). Association for Computing Machinery, Portland,

OR, USA, 123–132. https://doi.org/10.1145/343477.343531

[17] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi

Peled. 2020. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable

Aborts. In ACM CCS 2020: 27th Conference on Computer and Communications
Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM

Press, Virtual Event, USA, 1769–1787. https://doi.org/10.1145/3372297.3423367

[18] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi

Peled. 2021. UC Non-Interactive, Proactive, Threshold ECDSA with Identifiable

Aborts. Cryptology ePrint Archive, Report 2021/060. (2021). https://eprint.iacr.

org/2021/060.

[19] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin.

1999. Adaptive Security for Threshold Cryptosystems. InAdvances in Cryptology –
CRYPTO’99 (Lecture Notes in Computer Science), Michael J. Wiener (Ed.), Vol. 1666.

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 98–115. https://doi.org/

10.1007/3-540-48405-1_7

[20] Ran Canetti and Tal Rabin. 1993. Fast asynchronous Byzantine agreement with

optimal resilience. In 25th Annual ACM Symposium on Theory of Computing. ACM
Press, San Diego, CA, USA, 42–51. https://doi.org/10.1145/167088.167105

[21] Shir Cohen, Idit Keidar, and Alexander Spiegelman. 2020. Not a COINcidence:

Sub-Quadratic Asynchronous Byzantine Agreement WHP. In 34th International
Symposium on Distributed Computing (LIPICS), Vol. 25. Schloss Dagstuhl- Leibniz-
Zentrum fur Informatik GmbH, Dagstuhl Publishing, 1–25.

[22] Jean-Sébastien Coron. 2002. Optimal Security Proofs for PSS and Other Signature

Schemes. In Advances in Cryptology – EUROCRYPT 2002 (Lecture Notes in Com-
puter Science), Lars R. Knudsen (Ed.), Vol. 2332. Springer, Heidelberg, Germany,

Amsterdam, The Netherlands, 272–287. https://doi.org/10.1007/3-540-46035-7_18

[23] Elizabeth Crites, Chelsea Komlo, and Mary Maller. 2021. How to Prove Schnorr

Assuming Schnorr: Security of Multi- and Threshold Signatures. Cryptology

ePrint Archive, Report 2021/1375. (2021). https://eprint.iacr.org/2021/1375.

[24] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris Shrishak, and Haya

Shulman. 2020. Securing DNSSEC Keys via Threshold ECDSA from Generic

MPC. In ESORICS 2020: 25th European Symposium on Research in Computer Secu-
rity, Part II (Lecture Notes in Computer Science), Liqun Chen, Ninghui Li, Kaitai

Liang, and Steve A. Schneider (Eds.), Vol. 12309. Springer, Heidelberg, Germany,

Guildford, UK, 654–673. https://doi.org/10.1007/978-3-030-59013-0_32

[25] Sourav Das, Tom Yurek, Zhuolun Xiang, Andrew Miller, Lefteris Kokoris-Kogias,

and Ling Ren. 2022. Practical Asynchronous Distributed Key Generation. In

43rd IEEE Symposium on Security and Privacy (to appear). IEEE Computer Society

Press, San Francisco, CA, USA.

[26] Yvo Desmedt. 1988. Society and Group Oriented Cryptography: A New Concept.

In Advances in Cryptology – CRYPTO’87 (Lecture Notes in Computer Science), Carl
Pomerance (Ed.), Vol. 293. Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 120–127. https://doi.org/10.1007/3-540-48184-2_8

[27] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss, Gre-

gory Neven, and Igors Stepanovs. 2019. On the Security of Two-Round Multi-

Signatures. In 2019 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, San Francisco, CA, USA, 1084–1101. https://doi.org/10.1109/SP.

2019.00050

[28] Michael Fischer, Nancy A. Lynch, and Robert Patterson. 1985. Impossibility of

Distributed Consensus with One Faulty Process. J. ACM 32, 2 (1985), 374–382.

[29] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. 2018. The Algebraic Group Model

and its Applications. In Advances in Cryptology – CRYPTO 2018, Part II (Lecture
Notes in Computer Science), Hovav Shacham and Alexandra Boldyreva (Eds.),

Vol. 10992. Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 33–62. https:

//doi.org/10.1007/978-3-319-96881-0_2

[30] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. 2020. Blind Schnorr

Signatures and Signed ElGamal Encryption in the Algebraic Group Model. In

Advances in Cryptology – EUROCRYPT 2020, Part II (Lecture Notes in Computer
Science), Anne Canteaut and Yuval Ishai (Eds.), Vol. 12106. Springer, Heidelberg,

Germany, Zagreb, Croatia, 63–95. https://doi.org/10.1007/978-3-030-45724-2_3

[31] Rosario Gennaro and Steven Goldfeder. 2018. Fast Multiparty Threshold ECDSA

with Fast Trustless Setup. In ACM CCS 2018: 25th Conference on Computer and
Communications Security, David Lie, Mohammad Mannan, Michael Backes, and

XiaoFeng Wang (Eds.). ACM Press, Toronto, ON, Canada, 1179–1194. https:

//doi.org/10.1145/3243734.3243859

[32] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-

Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security.

In ACNS 16: 14th International Conference on Applied Cryptography and Network
Security (Lecture Notes in Computer Science), Mark Manulis, Ahmad-Reza Sadeghi,

and Steve Schneider (Eds.), Vol. 9696. Springer, Heidelberg, Germany, Guildford,

UK, 156–174. https://doi.org/10.1007/978-3-319-39555-5_9

[33] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology 20, 1 (Jan. 2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

https://www.chia.net/faq/
https://doi.org/10.1145/3293611.3331629
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1007/978-3-030-32101-7_20
https://doi.org/10.1145/3293611.3331612
https://eprint.iacr.org/2021/1587
https://eprint.iacr.org/2021/1587
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-88238-9_19
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-030-64375-1_13
https://doi.org/10.1007/3-540-36288-6_3
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1007/978-3-030-25283-0_19
https://doi.org/10.1145/586110.586124
https://doi.org/10.1145/586110.586124
https://doi.org/10.1145/343477.343531
https://doi.org/10.1145/3372297.3423367
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1007/3-540-48405-1_7
https://doi.org/10.1145/167088.167105
https://doi.org/10.1007/3-540-46035-7_18
https://eprint.iacr.org/2021/1375
https://doi.org/10.1007/978-3-030-59013-0_32
https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1109/SP.2019.00050
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/s00145-006-0347-3

On the Adaptive Security of the Threshold BLS Signature Scheme CCS ’22, November 7–11, 2022, Los Angeles, CA, USA

[34] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. 2020.

Dumbo: Faster Asynchronous BFT Protocols. In ACM CCS 2020: 27th Conference
on Computer and Communications Security, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 803–818. https:

//doi.org/10.1145/3372297.3417262

[35] Stanislaw Jarecki and Anna Lysyanskaya. 2000. Adaptively Secure Threshold

Cryptography: Introducing Concurrency, Removing Erasures. In Advances in
Cryptology – EUROCRYPT 2000 (Lecture Notes in Computer Science), Bart Preneel
(Ed.), Vol. 1807. Springer, Heidelberg, Germany, Bruges, Belgium, 221–242. https:

//doi.org/10.1007/3-540-45539-6_16

[36] Saqib A. Kakvi and Eike Kiltz. 2018. Optimal Security Proofs for Full Domain

Hash, Revisited. Journal of Cryptology 31, 1 (Jan. 2018), 276–306. https://doi.org/

10.1007/s00145-017-9257-9

[37] Julia Kastner, Julian Loss, and Jiayu Xu. 2022. On pairing-free blind signature

schemes in the algebraic group model. In International Conference on Public-Key
Cryptography-PKC (LNCS), Vol. 2. Springer, 468–497.

[38] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. 2020.

Asynchronous Distributed Key Generation for Computationally-Secure Random-

ness, Consensus, and Threshold Signatures. In ACM CCS 2020: 27th Conference
on Computer and Communications Security, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA, 1751–1767.

https://doi.org/10.1145/3372297.3423364

[39] Chelsea Komlo and Ian Goldberg. 2020. FROST: Flexible Round-Optimized

Schnorr Threshold Signatures. In Selected Areas in Cryptography-SAC. 34–65.
[40] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlomovits. 2021.

Refresh When You Wake Up: Proactive Threshold Wallets with Offline Devices.

In 2021 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,

San Francisco, CA, USA, 608–625. https://doi.org/10.1109/SP40001.2021.00067

[41] Benoît Libert, Marc Joye, andMoti Yung. 2014. Born and raised distributively: fully

distributed non-interactive adaptively-secure threshold signatures with short

shares. In 33rd ACM Symposium Annual on Principles of Distributed Computing,
Magnús M. Halldórsson and Shlomi Dolev (Eds.). Association for Computing

Machinery, Paris, France, 303–312. https://doi.org/10.1145/2611462.2611498

[42] Yehuda Lindell. 2017. Fast Secure Two-Party ECDSA Signing. In Advances in
Cryptology – CRYPTO 2017, Part II (Lecture Notes in Computer Science), Jonathan
Katz and Hovav Shacham (Eds.), Vol. 10402. Springer, Heidelberg, Germany, Santa

Barbara, CA, USA, 613–644. https://doi.org/10.1007/978-3-319-63715-0_21

[43] Yehuda Lindell. 2022. Simple Three-Round Multiparty Schnorr Signing with Full

Simulatability. Cryptology ePrint Archive, Report 2022/374. (March 2022).

[44] Yehuda Lindell and Ariel Nof. 2018. Fast Secure Multiparty ECDSA with Practical

Distributed Key Generation and Applications to Cryptocurrency Custody. In

ACM CCS 2018: 25th Conference on Computer and Communications Security, David
Lie, MohammadMannan, Michael Backes, and XiaoFengWang (Eds.). ACM Press,

Toronto, ON, Canada, 1837–1854. https://doi.org/10.1145/3243734.3243788

[45] Julian Loss. 2019. New techniques for the modular analysis of digital signature
schemes. Ph.D. Dissertation. Ruhr University Bochum, Germany.

[46] Julian Loss and Tal Moran. 2018. Combining Asynchronous and Synchronous

Byzantine Agreement: The Best of Both Worlds. Cryptology ePrint Archive,

Report 2018/235. (2018). https://eprint.iacr.org/2018/235.

[47] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. 2020. Dumbo-MVBA:

Optimal Multi-Valued Validated Asynchronous Byzantine Agreement, Revisited.

In 39th ACM Symposium Annual on Principles of Distributed Computing, Yuval
Emek and Christian Cachin (Eds.). Association for Computing Machinery, Virtual

Event, Italy, 129–138. https://doi.org/10.1145/3382734.3405707

[48] Silvio Micali. 2017. Very Simple and Efficient Byzantine Agreement. In ITCS
2017: 8th Innovations in Theoretical Computer Science Conference, Christos H.
Papadimitriou (Ed.), Vol. 4266. LIPIcs, Berkeley, CA, USA, 6:1–6:1. https://doi.

org/10.4230/LIPIcs.ITCS.2017.6

[49] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random

Functions. In 40th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, New York, NY, USA, 120–130. https://doi.org/10.1109/

SFFCS.1999.814584

[50] Fabrice Mouhartem. 2018. Implementation of Libert et al.’s Threshold BLS Signa-

ture. (2018). https://gitlab.inria.fr/fmouhart/threshold-signature.

[51] Jonas Nick, Tim Ruffing, and Yannick Seurin. 2021. MuSig2: Simple Two-Round

Schnorr Multi-signatures. In Advances in Cryptology – CRYPTO 2021, Part I
(Lecture Notes in Computer Science), Tal Malkin and Chris Peikert (Eds.), Vol. 12825.

Springer, Heidelberg, Germany, Virtual Event, 189–221. https://doi.org/10.1007/

978-3-030-84242-0_8

[52] Jonas Nick, Tim Ruffing, Yannick Seurin, and Pieter Wuille. 2020. MuSig-DN:

SchnorrMulti-Signatures with Verifiably Deterministic Nonces. InACMCCS 2020:
27th Conference on Computer and Communications Security, Jay Ligatti, Xinming

Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM Press, Virtual Event, USA,

1717–1731. https://doi.org/10.1145/3372297.3417236

[53] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In Advances in Cryptology – CRYPTO’91 (Lecture Notes
in Computer Science), Joan Feigenbaum (Ed.), Vol. 576. Springer, Heidelberg,

Germany, Santa Barbara, CA, USA, 129–140. https://doi.org/10.1007/3-540-46766-

1_9

[54] Victor Shoup. 2000. Practical Threshold Signatures. In Advances in Cryptology –
EUROCRYPT 2000 (Lecture Notes in Computer Science), Bart Preneel (Ed.), Vol. 1807.
Springer, Heidelberg, Germany, Bruges, Belgium, 207–220. https://doi.org/10.

1007/3-540-45539-6_15

[55] Nibesh Shrestha, Adithya Bhat, Aniket Kate, and Kartik Nayak. 2021. Synchro-

nous Distributed Key Generation without Broadcasts. Cryptology ePrint Archive,

Report 2021/1635. (2021). https://eprint.iacr.org/2021/1635.

[56] Stefano Tessaro and Chenzhi Zhu. 2022. Short Pairing-Free Blind Signatures

with Exponential Security. In Advances in Cryptology - EUROCRYPT (to appear).

https://doi.org/10.1145/3372297.3417262
https://doi.org/10.1145/3372297.3417262
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/3-540-45539-6_16
https://doi.org/10.1007/s00145-017-9257-9
https://doi.org/10.1007/s00145-017-9257-9
https://doi.org/10.1145/3372297.3423364
https://doi.org/10.1109/SP40001.2021.00067
https://doi.org/10.1145/2611462.2611498
https://doi.org/10.1007/978-3-319-63715-0_21
https://doi.org/10.1145/3243734.3243788
https://eprint.iacr.org/2018/235
https://doi.org/10.1145/3382734.3405707
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
https://doi.org/10.4230/LIPIcs.ITCS.2017.6
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://gitlab.inria.fr/fmouhart/threshold-signature
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1145/3372297.3417236
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://eprint.iacr.org/2021/1635

	Abstract
	1 Introduction
	1.1 Handling Adaptive Corruptions
	1.2 Adaptive Security from Oracle-Aided Simulatability
	1.3 Related Work

	2 Preliminaries and Definitions
	2.1 General Notation
	2.2 Assumptions and Definitions

	3 Threshold Signatures
	3.1 Distributed Key Generation
	3.2 Threshold Signature Scheme
	3.3 Threshold BLS Signature Scheme Th-BLSDKG

	4 Security Analysis of Th-BLSDKG
	4.1 Security proof of Th-BLSDKG in the AGM
	4.2 No reduction from 2-OMDL and q-DL
	4.3 Security of some DKG protocols
	4.4 Non-tightness of naive reduction from (t+1)-OMDL in ROM

	Acknowledgments
	References

