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ABSTRACT
Bitcoin and other cryptocurrencies have recently introduced sup-

port for Schnorr signatures whose cleaner algebraic structure, as

compared to ECDSA, allows for simpler andmore practical construc-

tions of highly demanded “𝑡-of-𝑛” threshold signatures. However,

existing Schnorr threshold signature schemes still fall short of the

needs of real-world applications due to their assumption that the

network is synchronous and due to their lack of robustness, i.e., the

guarantee that 𝑡 honest signers are able to obtain a valid signature

even in the presence of other malicious signers who try to disrupt

the protocol. This hinders the adoption of threshold signatures in

the cryptocurrency ecosystem, e.g., in second-layer protocols built

on top of cryptocurrencies.

In this work, we propose ROAST, a simple wrapper that turns a

given threshold signature scheme into a scheme with a robust and
asynchronous signing protocol, as long as the underlying signing
protocol is semi-interactive (i.e., has one preprocessing round and

one actual signing round), provides identifiable aborts, and is un-

forgeable under concurrent signing sessions. When applied to the

state-of-the-art Schnorr threshold signature scheme FROST, which
fulfills these requirements, we obtain a simple, efficient, and highly

practical Schnorr threshold signature scheme.

1 INTRODUCTION
The rise of cryptocurrencies such as Bitcoin has sparked a renewed

interest in threshold signatures in industry and academia. Threshold

signatures are “𝑡-of-𝑛” signatures: After an initial key generation

involving a group of 𝑛 signers, any subgroup of 𝑡 signers (where 𝑛

and 𝑡 are parameters fixed at key generation time) can interactively

create a signature valid under a threshold public key, which repre-

sents the entire group of 𝑛 signers, while an unforgeability property

guarantees that no coalition of (up to) 𝑡 − 1 malicious signers can

create a signature.

These properties make threshold signatures the tool of choice for

secure and reliable storage of cryptographic keys with a high value,

e.g., in cryptocurrencies, because it is possible to share the key and

store the individual shares on multiple devices possibly held by

different signers in geographically distributed locations. Sharing
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the key raises the level of protection against theft and accidental

loss of the key, both of which are catastrophic failures resulting in

an irrecoverable loss of all funds stored under the key.

Bitcoin’s built-in threshold signatures. Bitcoin provides built-in

support for naive linear-size threshold signatures. The threshold

public key is simply a list of 𝑛 individual public keys, and the thresh-

old signature is a list of 𝑡 signatures valid under 𝑡 distinct public

keys chosen from the list of 𝑛 public keys. This solution, called

“multisig” in Bitcoin terminology, is viable for small threshold se-

tups such as the popular “2-of-3”, which are recommended for end

users to store large amounts of coins.

However, due to the linear size of the public key and the sig-

nature, the naive solution does not scale to large threshold setups

as desirable in federated systems such as second-layer payment

applications built on top of Bitcoin. These systems, e.g., federated

sidechains such as Liquid [35] and RSK [29], or federated e-cash on

Bitcoin [41], rely on a federation of geographically distributed nodes

run by different operators which hold custody of some on-chain

funds to make them available in the off-chain system. As some

fraction of federation members is assumed to remain honest and

available, large choices of 𝑡 and𝑛 can increase security and availabil-

ity. But since blockchain space is very precious in cryptocurrency

systems, and the lists of 𝑛 public keys and 𝑡 ≤ 𝑛 signatures need to

be stored on the blockchain, Bitcoin’s naive support for threshold

signatures severely restricts the scalability of the aforementioned

off-chain solutions to large 𝑛 and 𝑡 , e.g., 𝑛 ≈ 100. For example, the

wallets of the Liquid and RSK sidechainscurrently use rather small

11-of-15 and 8-of-15 setups [35, 30], respectively.

Compact threshold signatures as a drop-in solution. To overcome

the scaling problem of the naive threshold signature construction,

the threshold public key and the threshold signature should ide-

ally have the same size and look like a public key and signature

of the underlying single-signer signature scheme, e.g., ECDSA or

Schnorr signatures. This provides numerous advantages: thresh-

old signatures can be used as a drop-in solution in systems that

already support the underlying signature scheme and inherit the

compactness and efficiency of single-signer signatures. Moreover,

verifiers do not need to be concerned with the details of threshold

signatures, and in fact, they may not even learn that a threshold

signature scheme was used behind the scenes.

While ECDSA signatures are supported by a wide range of cryp-

tographic systems, including almost all cryptocurrencies, threshold

ECDSA constructions are notoriously complex due to the algebraic
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non-linearity of ECDSA signing, which requires a field inversion

during signing. As a result, even the most efficient threshold ECDSA

schemes rely on complex MPC techniques, need many communica-

tion rounds, and often need strong honest majority assumptions as

well as assumptions on the reliability of the network [20, 18, 32, 15,

13, 17, 9, 11, 14, 46, 1, 39, 24]. To overcome this and other issues with

ECDSA,many cryptocurrencies such as Bitcoin and Zcash now addi-

tionally support Schnorr signatures (i.e., BIP340 signatures [45] and

EdDSA signatures [7], respectively) whose linear algebraic struc-

ture is expected to allow for simpler and more practical advanced

signature protocols including threshold signatures.
1

Schnorr threshold signatures. A variety of “𝑡-of-𝑛” Schnorr thresh-

old signature schemes [21, 22, 42, 27, 12, 31] can be found in the

literature, some of which were developed in anticipation of their

adoption by cryptocurrencies. A state-of-the-art Schnorr threshold

signature scheme is FROST by Komlo and Goldberg [27]. FROST’s
signing protocol is semi-interactive: it provides optimal round effi-

ciency with one preprocessing and one actual signing round, where

the preprocessing round can be performed before knowing the mes-

sage to be signed. Moreover, FROST is the first Schnorr threshold

signature scheme that supports arbitrary choices of 𝑡 and 𝑛 (as long

as 𝑡 ≤ 𝑛), including choices with 𝑡 − 1 ≥ 𝑛/2, which guarantee

unforgeability even in the presence of 𝑓 malicious signers that

constitute a dishonest majority (𝑛/2 ≤ 𝑓 ≤ 𝑡 − 1).

Robustness. While FROST’s efficiency makes it a candidate for

practical deployment, the FROST signing protocol falls short of

providing the crucial property of robustness, which, for the purpose
of this paper, we define as the guarantee that a signing session (with

up to 𝑛 signers) will succeed and output a valid signature if 𝑡 honest

signers are present in the session, even if all remaining signers in

the session are disruptive (i.e., malicious) and try to prevent the

honest signers from creating a signature.

This generalized form of robustness is meaningful and achievable

even for 𝑡 − 1 ≥ 𝑛/2. Although a scheme might guarantee unforge-

ability for any number of malicious signers 𝑓 up to a maximum

of 𝑡 − 1, our robustness definition will only apply and guarantee

that a signature can be created if 𝑓 ≤ 𝑛 − 𝑡 , i.e., if 𝑡 honest signers
remain. In other words, this generalized form of robustness guar-

antees liveness only in the case of honest majority and not in the

case of dishonest majority; the latter is impossible as is well known

from the literature. (See Section 1.2 for a detailed discussion.)

FROST’s signing protocol does not provide robustness: if there
is a disruptive signer in a signing session, the entire session will

fail. In fact, foregoing robustness was a deliberate design decision

in FROST: one of the key insights of the FROST designers was that

previous protocols [22, 42] are complex and need many rounds be-

cause they need to run a distributed key generation (DKG) protocol

during every signing session to generate the random group element

of a Schnorr signature (instead of running DKG just once at key gen-

eration time). The DKG ensures that a signing session can continue

if some signers disappear in the middle of the session. FROST’s
design eliminates the DKG, trading robustness for a concise and

round-efficient protocol. Nevertheless, FROST provides identifiable

1
Bitcoin Improvement Proposal 340 (BIP340), which specifies Schnorr signatures for

Bitcoin, explicitly calls for further research into Schnorr threshold signatures [45].

aborts (IA), i.e., if a signing session fails, honest signers can identify

at least one malicious signer responsible for the failure.

How can we reobtain robustness? Due to the IA property, FROST
can be trivially turned into a robust protocol by excluding the identi-

fied malicious signers after a failed run, replacing them by different

signers, and restarting from scratch.
2
However, the resulting robust

protocol requires multiple sequential runs of FROST and is thus

necessarily synchronous.

A different but still trivial way to convert FROST into a robust

protocol is to construct a wrapper protocol that runs

(𝑛
𝑡

)
FROST ses-

sions concurrently, one session for each subset of 𝑡 signers. Because

FROST guarantees unforgeability even for concurrent sessions, the

wrapper protocol will still be unforgeable, and robustness holds

immediately: If 𝑡 honest signers are present, the session that in-

cludes exactly these 𝑡 will succeed. Even better, each of the FROST
sessions is effectively an asynchronous protocol: Since each session

includes only 𝑡 signers, raising a timeout on a seemingly unrespon-

sive signer and declaring it offline is not necessary because the

protocol cannot move on with fewer than 𝑡 signers in any case. As

a result, the trivial wrapper protocol is robust and asynchronous.

Still, its obvious drawback is that it requires an exponential number(𝑛
𝑡

)
of sessions and thus is practical at most for very small groups.

This inefficiency is exactly the problem we tackle in this paper.

1.1 Contributions
We provide a wrapper protocol ROAST (RObust ASynchronous

Threshold signatures) which overcomes the inefficiency of the triv-

ial exponential protocol. ROAST starts at most 𝑛 − 𝑡 + 1 concurrent
signing sessions of an underlying semi-interactive threshold signa-

ture scheme Σ, making it practical even for large choices of 𝑛 and

𝑡 . Assuming that Σ is unforgeable under concurrent sessions and

provides identifiable aborts, the application of ROAST to Σ yields a

robust and asynchronous signing protocol.
By applying ROAST to Σ = FROST, we obtain the first (non-

trivial) asynchronous Schnorr threshold signature protocol. More-

over, since ROAST inherits FROST’s support for arbitrary choices

of 𝑡 and 𝑛, it is also the first robust protocol that can be setup to

guarantee unforgeability against a dishonest majority (𝑡 − 1 ≥ 𝑛/2).
Our empirical performance evaluation shows that ROAST scales

well to large signer groups, e.g., a 67-of-100 setup, and is practical

even in the presence of many disruptive signers. From an engineer-

ing point of view, ROAST is a simple wrapper around Σ, making it

easy to implement as an independent layer that only calls Σ in a

black-box manner.

1.2 Background and Related Work
Our approach to robustness differs substantially from existing work.

Broadcast channel vs. semi-trusted coordinator. Instead of relying

on the availability of a broadcast channel as necessary in existing

robust Schnorr threshold protocols, the robustness of ROAST relies

on a semi-trusted coordinator node, which takes care of coordinat-

ing signing sessions of Σ in addition to just broadcasting messages

and can be run on the same machine as one of the signers.

2
See González et al. [23, Section 6] for a detailed analysis of this approach in the case

that the initial set of signers and new signers are chosen randomly.
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We stress that the coordinator is semi-trusted; namely, it is

trusted merely for robustness but not for unforgeability. This means

that coordinators can be chosen optimistically in practice: If the

chosen coordinator turns out to be unreliable or malicious, it can

be replaced by a new coordinator. We believe this is a valuable

practical improvement over existing protocols [e.g., 21, 22, 42, 20,

18, 9, 17, 24] which require a secure broadcast channel even for

unforgeability. In these existing protocols, the broadcast channel

cannot simply be implemented via a centralized coordinator (or

relay) node: This node would then be trusted for robustness and

unforgeability and thus effectively be a fully trusted third party

(who could just be given the full signing key instead of running a

threshold signature protocol).

Nevertheless, for use cases where the availability of a semi-

trusted coordinator cannot be assumed, we describe a straightfor-

ward method to eliminate the coordinator by letting the signers run

enough instances of the coordinator process at the cost of increasing

the communication of our protocol by a factor of 𝑛 − 𝑡 + 1.

Robustness under a dishonest majority. Informally speaking, we

call a signing protocol (run with up to 𝑛 signers) robust if it is
guaranteed to output a valid signature in the presence of 𝑡 honest

signers, even if the remaining signers try to prevent the protocol

from completing. As described above, this is a generalized notion of

robustness that is meaningful and achievable even for choices of 𝑡

that guarantee unforgeability against a dishonest majority (𝑡 − 1 ≥
𝑛/2) of signers.3 However, for those choices the narrower property
of liveness cannot be guaranteed in all corruption scenarios in which
unforgeability is guaranteed: If indeed 𝑓 = 𝑡−1 signers aremalicious

and try to disrupt the signing process, then only 𝑛 − (𝑡 − 1) ≤ 𝑡 − 1
honest signers remain and cannot produce a signature.

This treatment effectively decouples the corruption threshold for

unforgeability from the corruption threshold for liveness, and gives

applications the choice to favor unforgeability over liveness by

setting 𝑡 − 1 ≥ 𝑛/2, which provides a defense-in-depth mechanism

against catastrophic breaks of unforgeability. For an exemplary

wallet with parameters 𝑡 = 11 and 𝑛 = 15 (inspired by the federated

wallet of Liquid sidechain [35]), we can distinguish three cases

depending on the number 𝑓 of malicious signers:

Normal operation. If 𝑓 ≤ 4 signers are malicious (or merely

offline), then robustness guarantees that the remaining at

least 11 members can still operate the wallet.

Partial failure. If 5 ≤ 𝑓 < 11 signers are malicious, they can pre-

vent the honest signers from operating the wallet, and break

liveness. Then manual intervention may be necessary (e.g.,

in the case of Liquid, taking multiple backup recovery keys,

which can only be used after the coins in the wallet have not

been moved for 28 days, out of physical safes in geographi-

cally distributed locations [35]). Moreover, other guarantees

(e.g., in the case of Liquid, the security of the consensus

mechanism used for producing blocks on the sidechain),

may be affected depending on the corruption thresholds of

the other components of system. However, unforgeability

3
Robustness is vacuously fulfilled and thus not a concern when 𝑛 = 𝑡 because a

single disruptive signer can inherently prevent the creation of a signature. Conse-

quently, our work is mainly concerned with 𝑡 < 𝑛. We also note that dedicated

“multi-signature”schemes [5, 3, 8, 34, 16, 2, 37, 36] exist for the case 𝑡 = 𝑛.

is still guaranteed and ensures that the 𝑓 malicious signers

cannot access the coins in the wallet directly.

Game over. If 𝑓 ≥ 11 federation members are malicious, not even

unforgeability is guaranteed, and the malicious signers can

sign arbitrary messages, e.g., by simply running the honest

signing protocol, and thus steal all the coins in the wallet.

This is a catastrophic and non-recoverable failure.

The power of robustness and asynchrony. Thus far, almost all

threshold signature schemes that can be used as a drop-in solution

for pure discrete-logarithm signatures without pairings (whether

they are robust or not), i.e., for ECDSA [20, 18, 32, 15, 13, 17, 9, 11,

14, 46, 1, 39] or for Schnorr signatures [21, 22, 42, 27, 12, 31], assume

a synchronous network. This network model sends messages in syn-

chronized rounds and arrive within a given time bound. However,

as is well known, the Internet does not provide these guarantees in

practice.

Even if one is willing to accept the assumption that messages

from honest signers always arrive within a certain time, a trivial

strategy for malicious signers trying to disrupt the signing protocol

is to send theirmessages very late, i.e., just before the timeout,which

will delay every synchronous round maximally. Smaller timeouts

will mitigate the disruption but will introduce a risk that messages

from honest signers will arrive late and be ignored.

Themain benefit ofROAST over existing work is that it combines

robustness with the compatibility with an asynchronous network,
i.e., it is only assumed that messages between honest parties arrive

eventually. This combination of robustness and asynchrony is par-

ticularly powerful. An asynchronous protocol avoids the dilemma

of setting timeouts simply because there are no timeouts, and the

protocol can make progress without waiting for disruptive signers.

Robust asynchronous ECDSA threshold signatures. The only exist-

ing threshold signature scheme that can used as a drop-in solution

for pure discrete-logarithm signatures and that works in an asyn-

chronous network is the threshold ECDSA signature protocol by

Groth and Shoup [24], which appeared concurrently to our work

and also achieves robustness. It is based on entirely different design

principles than ours.

As compared to our work, their protocol assumes an honest

supermajority (𝑡 − 1 < 𝑛/3) and requires an Asynchronous Com-

mon Subset (ACS) protocol (a specific formulation of asynchronous

consensus) as a building block, whereas our scheme, when used

with FROST, supports any choice of 𝑡 and avoids the complexity of

consensus entirely.

Assuming that the ACS protocols needs 𝑟 asynchronous rounds,

their protocol needs 6+𝑟 = 𝑂 (1) asynchronous rounds in the worst

case, of which all but one can be preprocessed, whereas our protocol

needs 𝑛 − 𝑡 + 1 = 𝑂 (𝑛) asynchronous rounds, of which only one

can be preprocessed. The total communication complexity of their

protocol is 𝑂 (𝑛3𝜆) for the security parameter 𝜆, whereas that of

our protocol is 𝑂 (𝑡𝑛3 + 𝑡𝑛2𝜆) in a comparable network setup, i.e.,

without a semi-trusted coordinator (see Section 4.4), and when used

with Σ = FROST as the underlying threshold signature scheme.

The GJKR paradigm. Among the threshold Schnorr signatures

schemes in the literature [21, 22, 42, 27, 12, 31], only few provide

robustness, and these can be classified based on their paradigm for

3
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achieving robustness. When the first distributed key generation

(DKG) protocols in the discrete logarithm setting were proposed [21,

22], Schnorr threshold signature schemes were the canonical exam-

ple application, and Gennaro et al. [21, 22] proposed two Schnorr

threshold signature schemes TSch and new-TSch based on two dif-

ferent DKGs; we call these schemes the “GJKR schemes” in the

following, and note that the TSch scheme has been restated by

Stinson and Strobl [42].

Notably, these early schemes already provide a robust signing

protocol. Thus far, they remain the only Schnorr threshold signature

schemes in the literature for which robust signing terminates in

a constant number of synchronous broadcast rounds (namely 5

rounds in case of TSch and more in the case of new-TSch).
Themain paradigm for achieving robustness in theGJKR schemes

is to run a DKG protocol during every signing session (instead of just
once at key generation time) to create the random group element

(sometimes called “nonce”) that is part of a Schnorr signature. If

some of the signers go offline during the signing session, the use of

the DKG guarantees that other signers can reconstruct their secret

contributions to the nonce, and the session can continue. However,

this design paradigm comes at a high cost, and the GJKR schemes

fall short of practical requirements that prohibit their deployment

in real-world systems:

First, the GJKR schemes are restricted to honest majority settings

(𝑡 − 1 < 𝑛/2), but real-world applications often desire higher values

of 𝑡 which favor unforgeability over robustness, as we explained in

the previous subsection.

Second, even if an honest majority is desired, the GJKR schemes

are not suitable for a practical deployment over the Internet due to

their strong assumptions on both the reliability of the network and

the endpoints: The protocols assume the synchronous communica-
tion model, i.e., network messages are sent in synchronized rounds

and arrive within a given time bound, but the Internet does not

provide these guarantees in practice.

Third and closely related, the protocols do not differentiate be-

tween benign and malicious (byzantine) failures. Suppose a signer

appears to have failed to send a message in a round (e.g., when the

broadcast mechanism fails). In that case, this signer will be assumed

malicious, and depending on the round, the other signers will have

to reconstruct its secret key share in public to make progress. A

direct implication is that malicious signers learn the secret key

shares of honest signers experiencing benign failures (e.g., crashes

or network outages), and thus honest signers count as malicious

towards the unforgeability corruption threshold 𝑡 − 1 as soon as

they fail to send a single message in some session.

We stress that this is true for unforgeability (and not just for

robustness): For example, even in the presence of only a single ma-

licious signer, the scheme is resilient to at most 𝑡 − 2 further signers
with benign failures, even if these failures occur in different signing

sessions. Suppose instead 𝑡 − 1 honest signers experience crashes.
In that case, the single malicious peer will be able to reconstruct

the 𝑡 − 1 secret shares of the crashed peers from the transcripts of

the sessions in which the failures occurred and, together with their

own share, will be able to forge signatures trivially.

In contrast, our approach avoids all the issues mentioned above:

It supports arbitrary choices of 𝑡 ≤ 𝑛 (including 𝑡 − 1 ≥ 𝑛/2,
i.e., dishonest majority), works with asynchronous networks, and

does not count signers experiencing benign failures towards the

corruption threshold for unforgeability. Moreover, whereas the

GJKR protocols require a broadcast channel for robustness and

unforgeability, the coordinator in our protocol, which is responsible

for broadcasts, is only trusted for robustness.

We remark that Joshi et al. [26] present a variant ATSSIA of TSch,
which avoids some of the aforementioned issues, e.g., it supports

a dishonest majority and does not crucially rely on a broadcast

channel. However, while the actual signing step of their protocol is

robust and non-interactive (and hence trivially asynchronous)when
considered on its own, the signing protocol still has a non-robust

and synchronous preprocessing step involving multiple rounds.

The new paradigm. To avoid the issues mentioned above with

the GJKR schemes, recent schemes such as FROST [27] and the

scheme by Lindell [31] refrain from using a DKG in every signing

session and are thus much simpler and need fewer signing rounds:

FROST needs two rounds, one of which is a preprocessing round

that can be performed without knowing the message to sign, and

the scheme by Lindell [31] requires three rounds.

While this paradigm does not yield robust signing directly, the

signing protocols still guarantee the weaker property of identifiable

aborts, and thus can be trivially turned into robust protocols by

excluding the identified malicious signers after a failed run and

starting from scratch. However, in the presence of 𝑓 malicious

signers, the resulting robust protocols require 𝑓 + 1 sequential runs
of the underlying protocol and are necessarily synchronous.

In contrast, our wrapper protocol ROAST is a superior way to

turn FROST into a robust signing protocol: it still requires 𝑓 + 1
runs of FROST but the resulting signing protocol is asynchronous.

Robust key generation. While our work provides a method to

make FROST’s signing protocol robust, González et al. [23] claim

an orthogonal method to make FROST’s key generation protocol

robust. Since our techniques are in principle compatible with any

correct and secure key generation protocol, it is conceivable that

the two approaches can be combined to achieve both robust key

generation and signing, but a detailed treatment is out of the scope

of this work.

2 PRELIMINARIES
2.1 Semi-interactive Threshold Signatures
Intuitively, a threshold signature scheme is a multi-party signature

scheme with a set of 𝑛 possible signers S1, . . . ,S𝑛 . Computing a

valid signature requires only a subset {S𝑖 }𝑖∈𝑇 of 𝑡 signers, identified

by an index set 𝑇 ⊆ {1, . . . , 𝑛} with |𝑇 | = 𝑡 .
In the following,we provide a formal definition of semi-interactive

threshold signature schemes. We refer to a threshold signature scheme

as semi-interactive if the signing process consists of two separate
steps (or rounds). In the preprocessing step, each signer performs

some preprocessing without knowing the message to sign or the

subset {S𝑖 }𝑖∈𝑇 of participating signers, and the actual signing step.4

After every step, every signer broadcasts the public local output of

the corresponding step to all other signers.

4
The steps are sometimes called “offline” and “online” steps, but we believe this termi-

nology is misleading in the setting of multi-party signature schemes because even the

“offline” round requires message transmission over the network.

4
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S1
(state1, 𝜌1 ) ← PreRound(𝑃𝐾 )

𝜎1 ← SignRound(sk1, 𝑃𝐾, [𝑡 ], state1, 𝜌,𝑚)

C

𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈ [𝑡 ] )

for 𝑖 ∈ [𝑡 ]
if ¬ShareVal(𝑃𝐾, [𝑡 ], 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚)

fail “S𝑖 is disruptive.”
𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜌𝑖 }𝑖∈ [𝑡 ] ,𝑚)

(sk1, 𝑃𝐾,𝑚) (𝑃𝐾,𝑚)

𝜌1

𝜌

𝜎1

𝜌2

𝜌

𝜎2

𝜎

S2
. . .

S𝑡

(sk2, 𝑃𝐾,𝑚) (sk𝑡 , 𝑃𝐾,𝑚)
. . .

𝜌𝑡

𝜌

𝜎𝑡
.
.
.

.

.

.

.

.

.

S2

Figure 1: Example signing session of a threshold signature scheme with signers {S𝑖 }𝑖∈[𝑡 ] and a coordinator C.

We assume that a security parameter 𝜆 is implicitly given to all

algorithms and that the bitstring encoding of an indexed set such

as {𝜌𝑖 }𝑖∈𝑇 or {𝜎𝑖 }𝑖∈𝑇 includes an encoding of the index set 𝑇 .

Definition 2.1 (Threshold signatures). A semi-interactive threshold
signature scheme Σ = (Gen, PreRound, PreAgg, SignRound, SignAgg,
Verify) consists of probabilistic polynomial-time (p.p.t.) algorithms

as follows:

(𝑃𝐾, (sk1, . . . , sk𝑛)) ← ⟨Gen1 (𝑛, 𝑡), . . . ,Gen𝑛 (𝑛, 𝑡)⟩: The key gen-
eration protocol Gen = (Gen1, . . . ,Gen𝑛) is a collection

of interactive algorithms run by signers S1, . . . ,S𝑛 . Con-
cretely, signer S𝑖 runs Gen𝑖 , which gets as input the group

size 𝑛 and the signing threshold 𝑡 and returns the secret key

sk𝑖 of S𝑖 and a public-key object 𝑃𝐾 , which is a common

output to all signers.

(state𝑖 , 𝜌𝑖 ) ← PreRound(𝑃𝐾): The preprocessing algorithm is run

by signer S𝑖 . It takes as input a public-key object 𝑃𝐾 and

outputs a secret state state𝑖 and a presignature share 𝜌𝑖 .

𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 ): The deterministic presignature aggre-
gation algorithm PreAgg takes as input a public-key object

𝑃𝐾 , a set {𝜌𝑖 }𝑖∈𝑇 of presignature shares and outputs a (full)

presignature 𝜌 .

𝜎𝑖 ← SignRound(sk𝑖 , 𝑃𝐾,𝑇 , state𝑖 , 𝜌,𝑚): The signature share algo-
rithm is run by signer S1,It takes as input a secret key, a
public-key object 𝑃𝐾 , an index set 𝑇 ∋ 𝑖 of signers, a secret
state state𝑖 , a presignature 𝜌 , and a message𝑚. It outputs a

signature share 𝜎𝑖 .

𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚): The deterministic signature ag-
gregation algorithm takes a public-key object 𝑃𝐾 , a (full)

presignature 𝜌 , a set {𝜎𝑖 }𝑖∈𝑇 of signature shares and out-

puts a (full) signature 𝜎 .

𝑏 ← Verify(𝑃𝐾,𝑚, 𝜎): The verification algorithm takes as input

a public-key object 𝑃𝐾 , a message 𝑚, and a signature 𝜎 .

It outputs a boolean 𝑏, where 𝑏 = true means that the

signature is valid and false that it is invalid.

Identifying disruptive signers. In order to validate contributions

to a signing session, we require an additional algorithm ShareVal,
which validates the shares that a specific signer S𝑖 contributes in

a signing session, i.e., the presignature share 𝜌𝑖 and the signature

share 𝜎𝑖 . The ShareVal algorithm enables the aggregator node (or

the honest signers) to recognize and blame disruptive signers who

force a signing session to abort by contributing invalid shares. A cor-

responding security property called identifiable aborts will ensure
that ShareVal identifies disruptive signers reliably.

Definition 2.2 (Share validation). A semi-interactive threshold sig-
nature scheme Σ supports share validation if there is an additional

deterministic algorithm ShareVal defined as follows:

𝑏 ← ShareVal(𝑃𝐾,𝑇 , 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚) : The deterministic share val-
idation algorithm takes as input a public-key object 𝑃𝐾 ,

the index 𝑖 of some signer S𝑖 , the presignature 𝜌 , and the

presignature share 𝜌𝑖 as well as the signature share 𝜎𝑖 of

signer S𝑖 . It returns a boolean 𝑏 which is true if and only if

shares 𝜌𝑖 and 𝜎𝑖 are valid contributions of S𝑖 .

We do not specify an algorithm that allows a presignature share

𝜌𝑖 to be validated before the signing step. Instead, we defer the

validation of 𝜌𝑖 until after the signing step, because it may not

be possible to determine the full validity of 𝜌𝑖 without the corre-

sponding signature share 𝜎𝑖 . This simplification to error handling

is without loss of functionality in practice and also covers cases

in which a disruptive signer S𝑖 sends a garbage bitstring for 𝜌𝑖 ,

which is not a valid encoding of any element in the input domain of

SignAgg, and thus cannot be parsed correctly by SignAgg. Instead of
raising a parsing error, an implementation of SignAgg can interpret

all garbage bitstrings, e.g., those exceeding a maximum length or

those which cannot be parsed, as a fixed but arbitrary valid element

𝜌 in the appropriate domain. This treatment effectively presumes

that the disruptive signer S𝑖 has sent 𝜌𝑖 = 𝜌 instead, which does

not constitute a problem for security because S𝑖 could have sent

𝜌𝑖 = 𝜌 anyway.

Aggregation. We are particularly interested in threshold signa-

tures that support non-trivial aggregation of presignatures and sig-

natures, i.e., PreAgg compresses 𝑡 presignature shares to a constant-

size presignature, and analogously SignAgg compresses 𝑡 signature

shares to a constant-size signature.
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Definition 2.3 (Aggregatable). A semi-interactive threshold sig-

nature scheme Σ = (Gen, PreRound, PreAgg, SignRound, SignAgg,
Verify) is aggregatable if |𝜌 | and |𝜎 | are constant in parameters𝑛 and

𝑡 , for 𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 ), 𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚)
and all inputs 𝑃𝐾 and𝑚.

The aggregation of these elements is important for practical

purposes as it reduces the size of the final signature as well as the

amount of data that needs to be broadcast during signing. In each of

the rounds, a coordinator node C [42, 27], which will not be trusted

for unforgeability and can for instance be one of the signers, can

collect the contributions of all signers (i.e., the outputs of PreRound
or SignRound), aggregate them using the respective aggregation

algorithm PreAgg or SignAgg, and broadcast only the aggregate

output back to all signers. Figure 1 depicts a graphical example of a

signing session with a coordinator and 𝑇 = [𝑡] = {1, . . . , 𝑡}.

2.2 Security of Threshold Signatures
Our techniques require threshold signature schemes that fulfill two

security properties, namely identifiable aborts and unforgeability.

Identifiable aborts. The identifiable aborts property ensures that

ShareVal reliably identifies disruptive (i.e., malicious) signers who

send wrong shares. In the IA-CMA game underlying our formal

definition (Figure 2) of identifiable aborts, the adversaryA controls

all but one signer and can ask the remaining honest signer to take

part in an arbitrary number of concurrent signing sessions, andwins

in either of two cases: First,A wins if, in some session, the malicious

signers under its control submit presignature or signature shares

that all pass validation via ShareVal but will lead to the output of

an invalid signature (break of accountability, line 18). Second, A
wins if, in some session, the honest signer outputs presignature and

signature shares that will not pass validation via ShareVal (break
of non-frameability, line 13).

Definition 2.4 (IA-CMA). Given a semi-interactive threshold sig-

nature scheme with share validation Σ = (Gen, PreRound, PreAgg,
SignRound, SignAgg, ShareVal,Verify), let the game IA-CMA

A
Σ be

defined as in Figure 2. Then Σ has identifiable aborts under chosen-
message attack (IA-CMA) if for any stateful two-stage p.p.t. adver-

sary A = (A1,A2), any integers 𝑛 = poly(𝜆) and 𝑡 ∈ [𝑛], and any

honest signer index 𝑖∗ ∈ [𝑡],

AdvIA-CMA

A,Σ,𝑛,𝑡,𝑖∗ (𝜆) ← Pr

[
IA-CMA

A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗) = true
]
≤ negl(𝜆) .

Our definition is the first game-based definition of identifiable

aborts for threshold signatures to the best of our knowledge. There

exists a definition of identifiable aborts for generic MPC in the

UC framework [25] that has been used in the context of threshold

signatures [9, 19]. However, that definition requires an underlying

ideal functionality for threshold signatures and thus does not cleanly

separate identifiable aborts from the syntax and unforgeability of

threshold signatures. We found a game-based definition simpler

and more suitable for our purposes.

Unforgeability. Informally, a threshold signature scheme is exis-
tentially unforgeable under chosen-message attack under concurrent
sessions (or just unforgeable), if no p.p.t. adversary A, which con-

trols 𝑡 − 1 signers during key generation and signing and can ask

Game IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗)
1 : // Game simulates honest signer S𝑖∗ ; A = (A1,A2 ) keeps state implicitly

2 : out𝑖∗ ← ⟨Gen𝑖∗ (𝑡, 𝑛),A1 (𝑡, 𝑛) ⟩ // out𝑖∗ is output of Gen𝑖∗ (𝑡, 𝑛)

3 : if out𝑖∗ = ⊥ then return false

4 : (sk𝑖∗ , 𝑃𝐾 ) ← out𝑖∗

5 : sidctr𝑖∗ ← 0 // honest signer’s session counter

6 : PreStates𝑖∗ [ ] ← array( ) // honest signer’s state for preprocessing round

7 : SignStates𝑖∗ [ ] ← array( ) // honest signer’s state for signing round

8 : (sid, {𝜎𝑖 }𝑖∈𝑇 ′ ) ← A
OPreRound,OSignRound
2

( )
9 : if SignStates𝑖∗ [sid ] = ⊥ then return false // session does not exist

10 : (𝑇, {𝜌𝑖 }𝑖∈𝑇 ,𝑚, 𝜎𝑖∗ ) ← SignStates𝑖∗ [sid ]
11 : if 𝑇 \ {𝑖∗} ≠ 𝑇 ′ then return false // wrong set of signers

12 : 𝜌 ← PreAgg({𝜌𝑖 }𝑖∈𝑇 )
13 : if ShareVal(𝑃𝐾,𝑇 , 𝑖∗, 𝜌, 𝜌𝑖∗ , 𝜎𝑖∗ ,𝑚) = false then

14 : return true // successful framing

15 : if ∃𝑖 ∈ 𝑇 \ {𝑖∗} . ShareVal(𝑃𝐾, 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚) = false then

16 : return false // disruptive signer was caught

17 : 𝜎 ← SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚)
18 : return ¬Verify(𝑃𝐾,𝑚, 𝜎 ) // A wins if signature does not verify

Oracle OPreRound()
1 : sidctr𝑖∗ ← sidctr𝑖∗ + 1 // increment session counter

2 : (𝜌𝑖∗ , state𝑖∗ ) ← PreRound(𝑃𝐾 )
3 : PreStates𝑖∗ [sidctr𝑖∗ ] ← (𝜌𝑖∗ , state𝑖∗ )
4 : SignStates𝑖∗ [sidctr𝑖∗ ] ← ⊥
5 : return 𝜌𝑖∗

Oracle OSignRound(sid,𝑇 ′, {𝜌𝑖 }𝑖∈𝑇 ′ ,𝑚)
1 : if 𝑇 ′ ⊈ ( [𝑛] \ {𝑖∗}) ∨ |𝑇 ′ | ≠ 𝑡 − 1 then return ⊥
2 : if sid ≥ sidctr𝑖∗ ∨ PreStates𝑖∗ [sid ] = ⊥ then return ⊥
3 : (𝜌𝑖∗ , state𝑖∗ ) ← PreStates𝑖∗ [sid ]
4 : 𝑇 ← 𝑇 ′ ∪ {𝑖∗}
5 : 𝜌 ← PreAgg({𝜌𝑖 }𝑖∈𝑇 )
6 : 𝜎𝑖∗ ← SignRound(sk𝑖∗ , 𝑃𝐾,𝑇 , state𝑖∗ , 𝜌,𝑚)
7 : PreStates𝑖∗ [sid ] ← ⊥
8 : SignStates𝑖∗ [sid ] ← (𝑇, {𝜌𝑖 }𝑖∈𝑇 ,𝑚, 𝜎𝑖∗ )
9 : return 𝜎𝑖∗

Figure 2: IA-CMA game for Definition 2.4.

the remaining 𝑛 − 𝑡 + 1 honest signers to take part in arbitrarily

many concurrent signing sessions on messages of its choice (i.e.,

for every honest signer S𝑖 , adversary A has oracles simulating

PreRound(𝑃𝐾) and SignRound(sk𝑖 , 𝑃𝐾, ·, state𝑖,sid , ·) on an already

preprocessed but unfinished session sid of its choice), can produce

a valid signature 𝜎∗ on a message 𝑚∗ that was never used in a

signing session (i.e., Verify(𝑃𝐾,𝑚∗, 𝜎∗) = true and A never asked

any query SignRound(. . . ,𝑚∗)).
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Since the main results in this work are orthogonal to unforge-

ability and hold as long as the underlying unforgeability definition

considers concurrent sessions, we refer the reader to Crites et al.

[12, Section 5.1] or to Bellare et al. [6, Definition of TS-UF-0] for

exact definitions.

2.3 FROST
In this section,we introduce a variant of the semi-interactive Schnorr

threshold signature scheme FROST by Komlo and Goldberg [27].

We suggest calling our variant FROST3 but for the sake of simplicity,

we allow ourselves to write just “FROST” whenever the considered
variant is clear from the context. The scheme assumes a prime or-

der group (G, 𝑝, 𝑔), where 𝑝 = poly(𝜆) is the order of G and 𝑔 is a

generator, and two hash functions Hnon and Hsig mapping to Z𝑝 .
5

Main algorithms. We display the signing, verification, and share

validation algorithms of FROST in Figure 3. A notable property of

FROST is that it outputs ordinary (single-signer) Schnorr signatures

𝜎 = (𝑅, 𝑠) that can be verified using merely the aggregate key 𝑋

stored in 𝑃𝐾 = (𝑋, (𝑋1, . . . , 𝑋𝑛)) by checking 𝑔𝑠 = 𝑅𝑋𝑐 . (Note that

the verification algorithm Verify of FROST does not actually use

the elements 𝑋1, . . . , 𝑋𝑛 and is thus effectively just the verification

algorithm of ordinary Schnorr signatures.) This allows FROST to

be used as a drop-in replacement for system that support ordinary

Schnorr signature verification, e.g., Bitcoin [45].

Key generation. The FROST signing algorithms assumes the sign-

ers S1, . . . ,S𝑛 know Shamir secret shares 𝑥𝑖 of the discrete loga-

rithm 𝑥 of 𝑋 such that shares of any 𝑡 signers could reconstruct 𝑥

(but 𝑥 itself will never be reconstructed during signing). Different

methods can be used to create this setup, e.g., a suitable distributed

key generation (DKG) protocol for the discrete-logarithm setting,

or simply a trusted dealer. The results in this work are indepen-

dent of the specific key generation method, as long as the resulting

keys fulfills some basic correctness condition, which essentially

states that the aggregate public key 𝑋 can be obtained from the

“individual” public keys 𝑋𝑖 for 𝑖 ∈ 𝑇 via the Shamir secret sharing

interpolation in the exponent.

Definition 2.5. Let 𝑛 = poly(𝜆) and 𝑡 ≤ 𝑛. A key generation

protocol Gen is correct for discrete-logarithm based keys in Shamir
secret sharing (dlog-sss-correct) for 𝑛 and 𝑡 if for every honest signer

index 𝑖∗ ∈ [𝑛], and for all p.p.t. adversaries A,

Pr[¬((C1) ∧ (C2)) | (𝑃𝐾, sk𝑖∗ ) ← ⟨Gen𝑖∗ (𝑛, 𝑡),A(𝑛, 𝑡)⟩ ] ≤ negl(𝜆),

where (𝑃𝐾, sk𝑖∗ ) with 𝑃𝐾 = (𝑋, (𝑋1, . . . , 𝑋𝑛)) and sk𝑖∗ = 𝑥𝑖∗ is the
output of Gen𝑖∗ (𝑛, 𝑡), and conditions (C1) and (C2) are defined as

𝑋 =
∏

𝑖∈𝑇 𝑋
Λ𝑇 ,𝑖

𝑖
for all 𝑇 ⊆ [𝑛] s.t. |𝑇 | = 𝑡, (C1)

𝑋𝑖∗ = 𝑔
𝑥𝑖∗ . (C2)

Here, Λ𝑇,𝑖 denotes the Lagrange coefficient for 𝑖 ∈ 𝑇 defined as

Λ𝑇,𝑖 =
∏

𝑗∈𝑇 \{𝑖 } 𝑗/( 𝑗 − 𝑖) .

5
The hash functions are typically assumed to be random oracles in proofs of unforge-

ability. For the purpose of our work, which is mainly orthogonal to unforgeability, the

hash functions can be simply be assumed to be any deterministic function computable

in polynomial-time.

PreRound(𝑃𝐾)
𝑑𝑖 ,←$ Z𝑝 ; 𝑒𝑖 ,←$ Z𝑝

𝐷𝑖 ← 𝑔𝑑𝑖 ; 𝐸𝑖 ← 𝑔𝑒𝑖

state𝑖 ← (𝑑𝑖 , 𝑒𝑖 )
𝜌𝑖 ← (𝐷𝑖 , 𝐸𝑖 )
return (state𝑖 , 𝜌𝑖 )

PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 )
{ (𝐷𝑖 , 𝐸𝑖 ) }𝑖∈𝑇 ← {𝜌𝑖 }𝑖∈𝑇
𝐷 ←∏

𝑖∈𝑇 𝐷𝑖

𝐸 ←∏
𝑖∈𝑇 𝐸𝑖

𝜌 ← (𝐷, 𝐸 )
return 𝜌

Lagrange(𝑇, 𝑖)
Λ𝑖 ←

∏
𝑗 ∈𝑇 \{𝑖} 𝑗/( 𝑗 − 𝑖 )

return Λ𝑖

SignRound(sk𝑖 , 𝑃𝐾,𝑇 , state𝑖 , 𝜌,𝑚)
// Can only be called once per secret state state𝑖

𝑥𝑖 ← sk𝑖
(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

(𝐷, 𝐸 ) ← 𝜌

(𝑑𝑖 , 𝑒𝑖 ) ← state𝑖
𝑏 ← Hnon (𝑋,𝑇 , 𝜌,𝑚)
𝑅 ← 𝐷𝐸𝑏

𝑐 ← Hsig (𝑋,𝑚,𝑅)
Λ𝑖 ← Lagrange(𝑇, 𝑖 )
𝜎𝑖 ← 𝑑𝑖 + 𝑏𝑒𝑖 + 𝑐Λ𝑖𝑥𝑖

return 𝜎𝑖

SignAgg(𝑃𝐾, 𝜌, {𝜎𝑖 }𝑖∈𝑇 ,𝑚)
(𝐷, 𝐸 ) ← 𝜌

(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

𝑏 ← Hnon (𝑋,𝑇 , 𝜌,𝑚)

𝑅 ← 𝐷𝐸𝑏

𝑠 ← ∑
𝑖∈𝑇 𝜎𝑖

𝜎 ← (𝑅, 𝑠 )
return 𝜎

ShareVal(𝑃𝐾,𝑇 , 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚)
(𝐷𝑖 , 𝐸𝑖 ) ← 𝜌𝑖

(𝐷, 𝐸 ) ← 𝜌

(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

𝑏 ← Hnon (𝑋,𝑇 , 𝜌,𝑚)

𝑅 ← 𝐷𝐸𝑏

𝑐 ← Hsig (𝑋,𝑚,𝑅)
Λ𝑖 ← Lagrange(𝑇, 𝑖 )

return (𝑔𝜎𝑖 = 𝐷𝑖𝐸
𝑏
𝑖 𝑋

𝑐Λ𝑖
𝑖
)

Verify(𝑃𝐾,𝑚, 𝜎)
(𝑋, (𝑋1, . . . , 𝑋𝑛 ) ) ← 𝑃𝐾

(𝑅, 𝑠 ) ← 𝜎

𝑐 ← Hsig (𝑋,𝑚,𝑅)
return (𝑔𝑠 = 𝑅𝑋𝑐 )

Figure 3: Main signing algorithms (top) and share validation
and verification algorithms (bottom) of FROST = FROST3.

For the sake of concreteness, the reader may assume that Gen in

instantiated with the PedPop DKG protocol [12], which has been

designed specifically for FROST. This protocol is a variant of Ped-
ersen’s DKG [38, 22] with added proofs of possession, which in this

context mean non-interactive zero-knowledge proofs of knowledge

of the individual secret keys and which are necessary to support

𝑡 ≥ 𝑛/2, see Crites et al. [12] for the protocol description and a de-

tailed discussion. The protocol assumes a reliable broadcast channel

to ensure that signers agree on the public key 𝑃𝐾 . It is easy to verify

that this protocol is perfectly dlog-sss-correct, i.e., the probability

term in Definition 2.5 is 0.

Existing variants of FROST. Multiple variants of FROST appear

in the literature. Komlo and Goldberg [27] proposed the initial

7
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variant, now called FROST1, and gave a heuristic argument for its

unforgeability when used with the PedPop DKG.

Crites et al. [12] and Bellare et al. [6]
6
analyzed an optimized vari-

ant,which reduces the number of exponentiations in the SignRound
algorithm from 𝑡 to 1. The optimized variant as formulated by Crites

et al. [12] (called FROST2-CKM in the following) has an additional

check in the SignRound algorithm, which makes honest signers

abort if two signers submit the same presignature share (i.e., if

𝜌𝑖 = (𝐷𝑖 , 𝐸𝑖 ) = (𝐷 𝑗 , 𝐸 𝑗 ) = 𝜌 𝑗 for 𝑖 ≠ 𝑗 in our notation). Since an

honest signer in general cannot know which signer is to blame for

a duplicate presignature share (because it is impossible to tell who

copied the share from whom), FROST2-CKM does not provide iden-

tifiable aborts, and is thus incompatible with our techniques.
7
Crites

et al. [12] prove that FROST2-CKM with PedPop is unforgeable

in the ROM under the OMDL assumption and under the Schnorr

knowledge of exponent assumption (Schnorr-KoE), which they in-

troduce and justify in the algebraic group model (AGM).

They further conjecture that the duplicate check is an artifact

of their proof technique and can be avoided using techniques by

Bellare et al. [6], who analyze a variant (called FROST2-BTZ in the

following),which does not have the duplicate check but is otherwise

identical to FROST2-CKM. Bellare et al. [6] prove that FROST2-BTZ
with an idealized key generation (i.e., trusted setup) is unforgeable

under the one-more discrete logarithm (OMDL) assumption in the

random oracle model (ROM).

Our variant FROST3. While the techniques presented in this

work are in principle compatible with FROST1 and FROST2-BTZ,
the variant FROST3 presented in this work supports non-trivial

aggregation of presignature shares and thus is fully aggregatable

in the sense of Definition 2.3. The possibility of aggregating presig-

nature shares has also been observed in the context of the (𝑛-of-𝑛)

multi-signatures scheme MuSig2 Nick et al. [36], whose signing

protocol resembles FROST very closely.

In more detail, our PreAgg algorithm (Figure 3) aggregates the

presignatures shares {𝜌𝑖 }𝑖∈𝑇 = {(𝐷𝑖 , 𝐸𝑖 )}𝑖∈𝑇 into a presignature,

which consists only of the two products (𝐷, 𝐸) = (∏𝑖∈𝑇 𝐷𝑖 ,
∏
𝑖∈𝑇 𝐸𝑖 ),

whereas in FROST2-BTZ and FROST2-CKM, the “aggregated” pres-

ignature is simply 𝜌 = {(𝐷𝑖 , 𝐸𝑖 )}𝑖∈𝑇 , i.e., the PreAgg algorithm is

trivial in the sense that PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 ) = {𝜌𝑖 }𝑖∈𝑇 , and the

SignRound algorithm will take care of computing the products

(𝐷, 𝐸) = (∏𝑖∈𝑇 𝐷𝑖 ,
∏
𝑖∈𝑇 𝐸𝑖 ), instead.

Unforgeability of FROST3. Though our variant FROST3 is a mod-

ification of FROST2-BTZ, we do not need to prove unforgeability

from scratch. We show in Appendix A that the unforgeability of

FROST3 with an idealized key setup protocol follows from the un-

forgeability result of FROST2-BTZ by Bellare et al. [6].

Identifiable Aborts. The following proposition states thatFROST3
provides identifiable aborts. Though we are not aware of any prior

formal treatment, we stress that it is a well-known fact that essen-

tially all multi-party Schnorr signature schemes (with the notable

6
A merged version of these two works appeared at CRYPTO 2022 [4].

7
We believe that this problem can be overcome if the signers use authenticated and

confidential point-to-point channels to the coordinator. Then copying is excluded, and

the coordinator can conclude that multiple signers presenting the same presignature

share are all malicious. We do not treat this formally.

exception of FROST2-CKM) offer the possibility to identify disrup-

tive signers [27, p. 10].

Proposition 2.6 . The semi-interactive threshold signature
scheme FROST3 = (Gen, PreRound, PreAgg, SignRound, SignAgg,
ShareVal,Verify), where Gen is any dlog-sss-correct key generation
protocol, is IA-CMA secure.

Proof. There are two possible winning cases for an adver-

sary A in IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗), i.e., the honestly created signa-

ture share 𝜎𝑖∗ does not pass validation via ShareVal (successful
framing, see line 13), or every signature share passes validation

but the honestly aggregated full signature does not verify (break of

accountability, see line 18).

No break of non-frameability. To see that the winning condition

of A in line 13 of IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗) never holds, observe that
by construction, a signature share 𝜎𝑖∗ created by an honest signer

S𝑖∗ is of the form 𝜎𝑖∗ ← 𝑑𝑖∗ + 𝑏𝑒𝑖∗ + 𝑐Λ𝑖∗𝑥𝑖∗ . It passes validation if

𝑔𝜎𝑖∗ = 𝐷𝑖∗𝐸
𝑏
𝑖∗𝑋

𝑐Λ𝑖∗
𝑖∗ , where Λ𝑖∗ , 𝑏, and 𝑐 are computed identically

in SignRound and ShareVal, as well as 𝑔𝑑𝑖∗ = 𝐷𝑖∗ and 𝑔
𝑒𝑖∗ . Thus,

validation passes if 𝑋𝑖∗ = 𝑥𝑖∗ , which holds due to condition (C2) of

the dlog-sss-correctness of Gen.

No break of accountability. To see that the winning condition of

A in line 18 of IA-CMA
A
Σ (1

𝜆, 𝑛, 𝑡, 𝑖∗) never holds, observe SignAgg
obtains value 𝑠 in the output signature 𝜎 = (𝑅, 𝑠) by adding up

signature shares 𝜎𝑖 for 𝑖 ∈ 𝑇 , i.e., 𝑠 =
∑
𝑖∈𝑇 𝜎𝑖 . If all these signa-

ture shares 𝜎 pass validation together with their corresponding

presignature shares 𝜌𝑖 = (𝐷𝑖 , 𝐸𝑖 ), then we get

𝑔𝑠 = 𝑔
∑

𝑖∈𝑇 𝜎𝑖 =
∏

𝑖∈𝑇 𝑔
𝜎𝑖

=
∏

𝑖∈𝑇 𝐷𝑖𝐸
𝑏
𝑖 𝑋

𝑐Λ𝑖

𝑖
(1)

= 𝐷𝐸𝑏
(∏

𝑖∈𝑇 𝑋
Λ𝑖

𝑖

)𝑐
(2)

= 𝑅

(∏
𝑖∈𝑇 𝑋

Λ𝑖

𝑖

)𝑐
(3)

= 𝑅𝑋𝑐 , (4)

where equality (1) follows from the validation condition 𝑔𝜎𝑖 =

𝐷𝑖𝐸
𝑏
𝑖
𝑋
𝑐Λ𝑖

𝑖
in ShareVal, equalities (2) and (3) hold by construction

of PreAgg and SignAgg, respectively, and equality (4) holds due to

condition (C1) of the dlog-sss-correctness of Gen.
Since all our arguments were unconditional except the conditions

(C1) and (C2) of the dlog-sss-correctness of Gen, we obtain

AdvIA-CMA

A,FROST,𝑛,𝑡,𝑖∗ (𝜆) = Pr

[
IA-CMA

A
FROST (1

𝜆, 𝑡, 𝑛, 𝑖∗) = true
]

= Pr[¬((C1) ∧ (C2)) | (𝑃𝐾, sk𝑖∗ ) ← ⟨Gen𝑖∗ (𝑛, 𝑡),A1 (𝑛, 𝑡)⟩ ]
≤ negl(𝜆) . □

3 WARM-UP: FROSTLAND
In the far country of Frostland, a democratic council is responsible

for legislation. The constitution states that for a new bill to pass, a

majority of 𝑡 = 9 of 𝑛 = 15 council members need to sign it.

Readers not familiar with the Frostlandic culture might assume

that the main difficulty in the democratic process is finding a ma-

jority in the council and that signing the bill is only a formality.

8
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However, in Frostland, signing is a complicated task. Frostlanders

are very proud of their aesthetic heritage. Each of the 15 council

members owns a unique and beautiful watermark, and a bill is

only valid if the paper it is written on carries the watermarks of all

signers (and no others).

The signing process is, therefore, as follows: Find a majority

coalition of council members, manufacture a sufficient amount of

paper carrying the watermarks of these council members (but no

other council members’ watermarks), write the contents of the bill

on the watermarked paper, and finally, collect signatures on the

bill from exactly those members.
8
However, if one of the members

of the coalition fails to provide a signature during the final step,

e.g., because she is out of the office for an indefinite period of time,

the process stalls. In particular, it is not possible to ask another

member to sign because the paper carries the disruptive member’s

watermark (instead of the newmember’s watermark). The only way

to move forward is to start an entirely new signing process from

scratch, which involves finding a new majority of council members

and going through the cumbersome process of manufacturing paper

with a new set of watermarks.

This peculiarity makes signing very complicated, and the council

members employ a secretary whose task is to facilitate the process.

Unfortunately for the secretary, it is not clear upfront which council

members support a proposed bill. From time to time,members try to

disrupt the signing process in an attempt to prevent other members

from passing the bill and refuse to sign even though they have

indicated support for a bill. In the worst case, it could even happen

that all 15 council members claim to support the bill, but in fact,

only 9 or fewer of them support it.

The poor secretary has multiple options: First, the secretary

could choose a group of 9 council members who claim to support

the bill, manufacture paper with their watermarks, prepare a single

copy of the bill on that paper, and ask the chosen group to sign

that copy. If any council members in the chosen group actively

refuses to sign correctly (e.g., by giving a wrong signature) and

thereby forces the signing to abort, the secretary can identify the

disruptive members, fret about the dishonesty in the council, replace

the disruptive members with other members, and prepare a new

copy of the bill (which involves manufacturing new paper with

different watermarks). However, the very bureaucratic rules in the

constitution of Frostland mandate that each council member is

given an indefinite amount of time to check a bill before signing or

refusing it, and as a result, the entire signing procedure can take

very long. Some particularly annoying council members sit in front

of the bill for hours and hours, pretending to check that the copy

has been prepared correctly, and the secretary cannot tell whether a

given member will eventually sign or just keep sitting there forever.

As a result, this procedure can even get stuck.

Alternatively, the secretary could prepare a separate copy of the

bill for each group of 9 members and ask all supporting council

members to sign each copy on which their watermark appears.

While this procedure is guaranteed not to get stuck, the secretary,

who is proficient in combinatorics, knows that the procedure is not

8
In Frostland, a valid signature reveals the set of signers who create it, which is in

contrast to digital signatures produced by FROST. However, whether the signature
reveals the set of signers is irrelevant to the techniques presented in this work.

suitable in practice because it requires him to prepare

(𝑛
𝑡

)
=
(
15

9

)
=

5005 copies in total.

As a solution to this problem, the secretary uses the following

procedure: In the beginning, all council members that signal support

for the bill are asked to gather in the council building. The secretary

maintains a list of all these members and whenever there are at

least 9 members on the list (which is also the case in the beginning

of the procedure), he calls a group of 9 members to his office, and

strikes out their names on the list. He then obtains paper with

the watermarks of those 9 members, writes a copy of the bill on

that paper, and asks the council members in the group to sign it.

Whenever a council member has completed signing the copy, they

leave the office and wait for a new call while the secretary adds

their name back to his list.

It is easy for the secretary to see that this procedure will succeed

andnot need toomany copies of the bill: If at least 9 councilmembers

actually support the bill and behave honestly, then at any point

in time, he knows that these 9 members will eventually sign their

currently assigned copy and be re-added to the secretary’s list. Thus

the secretary can always be sure that 9 members will be on his list

again at some point in the future, and so the signing procedure

will not get stuck. Moreover, since members are assigned a new

copy only after correctly signing the previously assigned copy, each

member can hold up the signing of at most one copy at a time. Thus,

even the maximum of 𝑛−𝑡 = 15−9 = 6 disruptive council members

can hold up the signing of at most 6 copies. At the very latest, the

7th copy of the bill will then be assigned only to honest council

members who will complete the signing and produce a correctly

signed bill.

4 ROBUST ASYNCHRONOUS SIGNING
Coming back from Frostland to the real world, the main goal of this

work is to turn semi-interactive signing with identifiable aborts into

robust and asynchronous signing. Our setting consists of 𝑛 signers

(or “council members”) S1, . . . ,S𝑛 that have completed the key

generation protocol Gen(𝑡, 𝑛) of a semi-interactive IA-CMA-secure

threshold signature scheme Σ, and are connected to a coordinator

(or “secretary”)𝐶 . The task of these parties is to sign a givenmessage

(or “bill”)𝑚, given as input to the coordinator.

We aim to design a signing protocol that works in an asynchro-
nous network and is robust against a malicious coalition of signers

whose goal is to prevent the honest signers from completing the

protocol. For simplicity, we are satisfied with a protocol that ensures

that the coordinator outputs a valid signature. Depending on the

application’s needs, the coordinator may relay the signature to the

signers upon successful completion of the signing protocol.

A note on probabilities. Since our techniques in this section are of

a distributed-systems kind and non-cryptographic, we ignore neg-

ligible probabilities and computational restrictions in this section

for the sake of presentation, and make the simplifying assumption

that the adversary cannot break IA-CMA of Σ at all, i.e., that the

probability in Definition 2.4 is zero. (This is true for Σ = FROST
when usedwith a perfectly dlog-sss-correct key generation protocol

such as PedPoP [12], but our results in this section do not depend

on this and can work with a negligible IA-CMA error.) When Σ is

instantiated with a real scheme, where the adversary has a non-zero

9
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but negligible probability of breaking IA-CMA, all statements hold

except with negligible probability.

Network and adversary model. The signers are connected to the

coordinator via reliable and authenticated point-to-point channels.

The network is asynchronous, i.e., we only assume that messages

between honest parties are delivered eventually.

An adversary against robustness aims to prevent the signers

from obtaining a valid signature on a message𝑚 given as input to

the coordinator. We assume the adversary controls 𝑓 ≤ 𝑛−𝑡 signers
both during key generation and signing but not the coordinator.

(We will explain in Section 4.4 how to eliminate the need for a

trusted coordinator.)

Robustness. Informally speaking, a threshold signing protocol is

robust if, under the above network and adversarymodel, for any keys

obtained via a run of the key generation protocol, the coordinator

outputs a valid signature in any execution of the signing protocol.

Definition 4.1 ((𝑛, 𝑡, 𝑓 )-Robustness). Given a set 𝐹 ⊆ [𝑛] of |𝐹 | =
𝑓 indices of malicious signers, let P1, . . . ,P𝑛 be algorithms for key

generation such that P𝑖 = Gen𝑖 for honest indices 𝑖 ∈ [𝑛] \ 𝐹 and

P𝑖 = A formalicious indices 𝑖 ∈ 𝐹 , and letP′
1
, . . . ,P′𝑛 be algorithms

for signing such that P′
𝑖
= S𝑖 for honest indices 𝑖 ∈ [𝑛] \ 𝐹 and

P′
𝑖
= A for malicious indices 𝑖 ∈ 𝐹 .
A threshold signing protocol is (𝑛, 𝑡, 𝑓 )-robust if for any message

𝑚, and for keys (𝑃𝐾, (sk1, . . . , sk𝑛)) ← ⟨P1 (𝑛, 𝑡), . . . ,P𝑛 (𝑛, 𝑡)⟩ ob-
tained via the key generation protocol, it holds that in an execution

of the signing protocol 𝜎 ← ⟨C(𝑃𝐾, 𝑛, 𝑡,𝑚),P′
1
(sk1, pk,𝑚), . . . ,

P′𝑛 (sk𝑛, pk,𝑚)⟩, where the adversary has control over the sched-

uling and delivery of network messages but must deliver network

messages from honest to honest parties (including the coordinator)

eventually, the coordinatorC(𝑃𝐾, 𝑛, 𝑡,𝑚) eventually terminates and

outputs a signature 𝜎 for which Verify(𝑃𝐾, 𝜎,𝑚) = true.

Clearly, 𝑓 = 𝑛 − 𝑡 is optimal: No (unforgeable) threshold signing

protocol is 𝑓 -robust for 𝑓 > 𝑛−𝑡 because 𝑛− 𝑓 ≤ 𝑡 −1 signers alone
cannot create a signature. Since our approach yields an optimal

protocol, we may omit 𝑓 and work with the following definition.

Definition 4.2 (Robustness). A threshold signing protocol is robust
if for all 𝑡 ≤ 𝑛 and 𝑓 = (𝑛 − 𝑡) it is (𝑛, 𝑡, 𝑓 )-robust.

4.1 ROAST
We introduceROAST (RObustASynchronous Threshold signatures),
a generic wrapper that turns any given semi-interactive threshold

signature scheme Σ with identifiable aborts (IA-CMA), e.g., Σ =

FROST, into a robust and asynchronous threshold signature protocol.
Figure 4 displays ROAST’s algorithms for the coordinator C and

the signers S1, . . . ,S𝑛 . The bulk of the work happens in C, whose
task is to maintain a set 𝑅 of responsive signers (corresponding to
the “list” of the secretary), i.e., signers that have responded to all

previous signing requests. As soon as the set 𝑅 contains 𝑡 signers,

C will initiate a new signing session of Σ with them, i.e., ask each

S𝑖 for 𝑖 ∈ 𝑅 to respond with a valid signature share 𝜎𝑖 .

Along with 𝜎𝑖 , each signer S𝑖 is also required to provide a fresh

presignature share 𝜌′
𝑖
in preparation of a possible next signing

session of Σ. Combining both a signature share 𝜎𝑖 for the current

session and a presignature share 𝜌′
𝑖
for a future session in a single

response effectively creates a pipeline of signing sessions.

As we will prove below, one of the signing sessions of Σ will

eventually finish, i.e., the coordinator receives all the signature

shares and can return the final valid signature.

Conventions for pseudocode. We use an event-based program-

ming paradigm to account for the asynchronous network. After

executing the code in the main body of the algorithm, the execution

enters an infinite event loop that processes a queue of incoming net-

work messages. Each message in the queue triggers the execution

of an “upon receive” block. Further incoming network messages in

the queue cannot be processed until after the “upon receive” block
has finished executing (i.e., until the end of the block or a “break”
instruction is reached). Multiple “upon receive” blocks (of the same

algorithm) never run concurrently. If the queue is empty, the execu-

tion waits until a newmessage arrives over the network. The “send”
keyword is used to send outgoing messages. The “return” keyword
breaks the execution of the entire algorithm (i.e., not only the cur-

rent block) and returns the indicated value. The “proc” keyword is

used to define a subprocedure.

Unforgeability. As ROAST initiates multiple concurrent signing

sessions of the underlying threshold signature scheme Σ, ROAST is

unforgeable if Σ is unforgeable under concurrent signing sessions

(see Section 2.2).

We stress that, exactly because ROAST initiates multiple concur-

rent signing sessions, it can provide at most weak unforgeability,

i.e., the adversary may obtain multiple signatures valid for the same

message in a single run of ROAST. For example, a malicious co-

ordinator may simply collect the final signatures from multiple

completed signing sessions of Σ. This may or may not be an issue

for applications, but we note that signature malleability does not

constitute a problem in Bitcoin and applications built on top of it

since the SegWit softfork [33], and many cryptocurrencies have

deployed similar fixes.

4.2 Robustness Analysis
We are ready to prove our main result, the robustness of ROAST.

Theorem 4.3 . LetΣ be a semi-interactive IA-CMA-secure thresh-
old signature scheme. Then ROAST(Σ) is robust and the coordinator
successfully terminates after initiating at most𝑛−𝑡+1 signing sessions
of Σ (i.e., after calling PreAgg at most 𝑛 − 𝑡 + 1 times).

Proof. We first introduce some auxiliary definitions. We call a

reply by a signer in a session (of Σ) valid if it is not unsolicited

(line 11) and if it passes validation via the ShareVal algorithm
(line 18). We say that a session terminates if all replies by all signers
have been received by the coordinator C and they are all valid.

Given a session, we call a signer belonging to this session pending
(at a particular point of time) if it has not yet sent a valid reply in the

session or has sent an invalid reply. Given a trace of a full execution

of the protocol, we call a signer disruptive if there is a session in

the execution for which it never sends a valid message.

We now prove some basic facts about honest signers. By def-

inition, honest signers are not disruptive, and there are at most

𝑓 disruptive signers in any execution of the protocol. Moreover,

10



ROAST: Robust Asynchronous Schnorr Threshold Signatures

C(𝑃𝐾, 𝑛, 𝑡,𝑚)
1 : 𝑅 ← ∅ // S𝑖 is responsive if 𝑖 ∈ 𝑅

2 : 𝑀 ← ∅ // S𝑖 is known to be malicious if 𝑖 ∈ 𝑀

3 : 𝑃 [ ] ← array(𝑛) // 𝑃 [𝑖 ] is the latest presignature share of S𝑖
4 : sidctr ← 0 // Session counter

5 : 𝑆𝐼𝐷 [ ] ← array(𝑛) // 𝑆𝐼𝐷 [𝑖 ] is the session that includes S𝑖
6 : 𝑇 [ ] ← array(𝑛−𝑡+1) // 𝑇 [sid ] is the set of signer indices of session sid

7 : 𝑁 [ ] ← array(𝑛−𝑡+1) // 𝑁 [sid ] is the presignature of session sid

8 : 𝑆 [ ] ← array(𝑛−𝑡+1) // 𝑆 [sid ] is the set of sig. shares for session sid

9 : upon receive (𝜎𝑖 , 𝜌 ′𝑖 ) from S𝑖 , 𝑖 ∉ 𝑀
10 : if 𝑖 ∈ 𝑅 then

11 : MarkMalicious(𝑖 ) ; break // Unsolicited reply

12 : if 𝑆𝐼𝐷 [𝑖 ] ≠ ⊥ then // Unless this is the initial message from S𝑖 :

13 : sid ← 𝑆𝐼𝐷 [𝑖 ] // Look up session of S𝑖
14 : 𝑇sid ← 𝑇 [sid ] // Look up signers of session sid

15 : 𝜌 ← 𝑁 [sid ] // Look up (aggregate) presignature of session sid

16 : 𝜌𝑖 ← 𝑃 [𝑖 ] // Look up presignature share of S𝑖
17 : if ¬ShareVal(𝑃𝐾,𝑇sid , 𝑖, 𝜌, 𝜌𝑖 , 𝜎𝑖 ,𝑚) then
18 : MarkMalicious(𝑖 ) ; break // Invalid sig. share from S𝑖
19 : 𝑆 [sid ] ← 𝑆 [sid ] ∪ {𝜎𝑖 } // Store valid signature share

20 : if |𝑆 [sid ] | = 𝑡 then // If we have 𝑡 valid signature shares:

21 : 𝜎 ← SignAgg(𝑃𝐾, 𝜌, 𝑆 [sid ],𝑚) // Aggregate them

22 : return 𝜎 // and output the final signature.

23 : 𝑃 [𝑖 ] ← 𝜌 ′𝑖 // Store received presignature share of S𝑖
24 : 𝑅 ← 𝑅 ∪ {𝑖 } // Mark S𝑖 as responsive

25 : if |𝑅 | = 𝑡 then // If we now have 𝑡 responsive signers:

26 : sidctr ← sidctr + 1 // Initiate a new session with them

27 : {𝜌𝑖 }𝑖∈𝑅 ← {𝑃 [𝑖 ] }𝑖∈𝑅 // Look up presignature shares

28 : 𝜌 ← PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑅 ) // Build the presignature

29 : foreach 𝑖 ∈ 𝑅
30 : send (𝜌, 𝑅) to S𝑖 // Send the presignature to the signers

31 : 𝑆𝐼𝐷 [𝑖 ] ← sidctr // Remember the session of S𝑖
32 : 𝑇 [sidctr ] ← 𝑅 // Remember the signers

33 : 𝑁 [sidctr ] ← 𝜌 // Remember the presignature

34 : 𝑅 ← ∅ // Mark signers as pending again

35 : procMarkMalicious(𝑖 )
36 : 𝑀 ← 𝑀 ∪ {𝑖 }
37 : if |𝑀 | > 𝑛 − 𝑡 then
38 : fail // Too many malicious signers

S𝑖 (sk𝑖 , 𝑃𝐾,𝑚)
1 : (𝜌𝑖 , state𝑖 ) ← PreRound(𝑃𝐾 )
2 : send (⊥, 𝜌𝑖 ) to C // Send initial message with presignature share only

3 : upon receive (𝜌, 𝑅) from C
4 : 𝜎𝑖 ← SignRound(sk𝑖 , 𝑃𝐾, 𝑅, state𝑖 , 𝜌,𝑚)
5 : (𝜌𝑖 , state𝑖 ) ← PreRound(𝑃𝐾 )
6 : send (𝜎𝑖 , 𝜌𝑖 ) to C

Figure 4: ROAST

honest signers will only send valid replies: By construction, an

honest signer will never send an unsolicited reply (line 11), and by

IA-CMA, an honest signer never sends replies that fail validation

via ShareVal (line 18). As a consequence, lines 11 and 18 are un-

reachable for replies from honest signers, and honest signers will

never be marked malicious by the coordinator C, i.e., they are never
added to the set𝑀 .

Observe that the protocol maintains the invariant that an indi-

vidual signer is pending in at most one session of Σ. This is ensured
by construction because signers which are pending in some session

will not be in the set 𝑅 and thus not be added to newly initiated

sessions (lines 24ff). This invariant is what enables us to show that

the protocol terminates successfully.

Consider any execution of the protocol, and assume towards

contradiction that no session of Σ in this execution terminates.

Consider any point during the execution. We know that honest

signers are not excluded, and valid messages from honest signers

will eventually arrive in their corresponding sessions. Thus, the

honest signers will eventually be added to 𝑅 (line 24). Since there are

at least 𝑡 honest signers, and since, by our assumption, the execution

does not terminate, we will eventually have |𝑅 | ≥ 𝑡 , and a new

session will be initiated. This shows that at any point during the

execution of the protocol, a new session will be initiated eventually

(under our assumption that the execution never terminates). As a

result, there will eventually be 𝑓 + 1 sessions during the execution.

Consider now the point in time at which the (𝑓 + 1)-th session

is initiated. By the invariant, we know that at most 𝑓 disruptive

signers are pending in at most one session. Thus, among the 𝑓 + 1
sessions, there exists a session in which all pending signers are non-

disruptive. This session will eventually terminate. This contradicts

our assumption that no session will terminate. Thus,we have shown

that there is a terminating session in any execution of the protocol.

By definition, we know that in this session, all signature shares

have been received by the coordinator C, and they are all valid,

i.e., they pass validation via the ShareVal algorithm. Thus, by IA-

CMA, the final signature 𝜎 obtained via the SignAgg algorithm and

returned by the protocol (lines 21 and 22), will pass verification, i.e.,

Verify(𝑃𝐾,𝑚, 𝜎) = true.
It remains to show that the protocol will initiate at most 𝑛 − 𝑡 + 1

sessions of Σ. Suppose 𝑛− 𝑡 + 1 sessions have been initiated, but the

protocol has not terminated yet. This means none of the 𝑛 − 𝑡 + 1
sessions have terminated, and there is a pending signer in each of

the 𝑛 − 𝑡 + 1 sessions. By the invariant, these 𝑛 − 𝑡 + 1 pending

signers are distinct, and by construction, they are not in 𝑅. Then we

have |𝑅 | ≤ 𝑛 − (𝑛 − 𝑡 + 1) = 𝑡 − 1, which is not enough to initiate a

further session. We conclude that the protocol can initiate at most

𝑛 − 𝑡 + 1 sessions of Σ before terminating. □

4.3 Complexity Analysis
In this section, we analyze ROAST’s asymptotic performance.

Asynchronous rounds. Under the standard notion of asynchro-

nous rounds [10], both the coordinator sending parallel requests to a

set of signers𝑇 and the honest signers in𝑇 sending their responses

count as a single asynchronous round. A “round trip” consisting

of a set of requests and responses counts as two asynchronous

rounds. After the initial preprocessing step of ROAST, which takes
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one round, the signers respond to subsequent signing requests with

not only a signature share for the current session of Σ, but also
a presignature share for a possible next session. This pipelining

of sessions ensures that each session requires only two additional

asynchronous rounds. Since ROAST initiates at most𝑛−𝑡+1 signing
sessions before successfully producing a signature, the coordinator

will deliver a signature after at most

1 + 2(𝑛 − 𝑡 + 1) = 2(𝑛 − 𝑡) + 3

asynchronous rounds.

Communication. The communication complexity of ROAST de-

pends on the sizes of presignature shares, presignatures, and sig-

nature shares in Σ. As is the case for Σ = FROST, we assume that

the size of presignature shares and signature shares in Σ is 𝑂 (𝜆),
and we assume that Σ is aggregatable (Definition 2.3) such that

the size of presignatures is also 𝑂 (𝜆). Then, per session of Σ, the
coordinator exchanges 𝑂 (𝜆) bits with each signer in the session,

plus 𝑛 bits for the representation of the set 𝑅 ⊆ [𝑛] of signer indices
in the session (if encoded as a bitvector). Since there are at most

(𝑛 − 𝑡 + 1) sessions of Σ, each containing 𝑡 signers, the number of

bits transmitted in a run of ROAST is bounded by

𝑡 (𝑛 − 𝑡 + 1) (𝑛 +𝑂 (𝜆)) = 𝑂 (𝑡𝑛2 + 𝑡𝑛𝜆).

Computation. Ignoring the time necessary to maintain state, each

signer will make one call to PreRound and one call to SignRound
per session of Σ, together with an extra redundant PreRound call

after the final session. The coordinator will make one call to PreAgg
and up to 𝑡 calls to ShareVal per session, as well as one final call
to SignAgg to obtain the final signature. Thus, the computational

effort of a run of ROAST is at most

(𝑛 − 𝑡 + 1) (𝜏PreRound + 𝜏SignRound) + 𝜏PreRound
for each of the 𝑡 signers, and

(𝑛 − 𝑡 + 1) (𝜏PreAgg + 𝑡 · 𝜏ShareVal) + 𝜏SignAgg
for the coordinator.

4.4 Eliminating the Semi-trusted Coordinator
ROAST requires a semi-trusted coordinator to guarantee robustness

(but recall that unforgeability will hold even when the coordinator

is malicious). A simple method to eliminate the need for a semi-

trusted coordinator is to let the signers run enough instances of the

coordinator process: The 𝑛 signers choose among themselves any

set of 𝑛− 𝑡 + 1 coordinators, say {S1, . . . ,S𝑛−𝑡+1}, and start 𝑛− 𝑡 + 1
concurrent runs of ROAST such that each of the selected signers S𝑖
will act as coordinator C in one of the runs (in addition to acting as

S𝑖 ). If 𝑡 of the𝑛 signers are honest (which is a necessary condition to
produce a signature at all), then one of the 𝑛−𝑡 +1 coordinators will
be honest, and its run of ROAST will eventually succeed, assuming

that the point-to-point network messages between honest signers

are eventually delivered. Note that if multiple runs succeed, they

will result in different signatures.
9

9
This appears to be inherent: if the signers could agree on a single signature without a

semi-trusted coordinator acting as a reliable broadcast channel, our protocol would

solve byzantine consensus with a dishonest majority in the asynchronous setting,

which is known to be impossible [43, Theorem 4].

Assuming coordinators are supposed to broadcast the final sig-

nature obtained from a successful run back to all 𝑛 signers, total

communication and computation cost can be reduced in the op-

timistic case, at the expense of a higher worst-case latency: The

𝑛 − 𝑡 + 1 concurrent runs of ROAST do not need to be started si-

multaneously, e.g., honest signers can send their first reply in the

run with coordinator S𝑖 (where 𝑖 ∈ {2, . . . , 𝑛 − 𝑡 + 1}) only after

(𝑖 − 1)𝑑 seconds for some suitable value of 𝑑 , and only if they have

not obtained a valid signature from any other run.

4.5 Further Variants and Extensions
Because ROAST is simply a wrapper that runs concurrent sessions

of an underlying signature scheme Σ (which is assumed to be un-

forgeable under concurrent sessions), we can easily engineer vari-

ants and extensions without compromising security. For example, it

is straightforward to extend ROAST to support a batch of multiple

input messages simultaneously, either by replacing𝑚 with a vector

of 𝑘 messages and sending 𝑘 (pre)signature shares at once, or by

runningmultiple instances ofROAST concurrently. We sketch some

further variants and extensions in the remainder of this section.

Preprocessing the first round of presignature shares. Since ROAST
assumes a threshold signature scheme in which the first round

(sending presignatures) can be preprocessed before knowing the

message𝑚 to be signed, ROAST can do the same: instead of pro-

viding 𝑚 to the coordinator and the signers as initial input, the

coordinator could be invoked without 𝑚 and immediately start

receiving presignature shares from signers. Whenever a message

𝑚 to sign arrives, the coordinator will send𝑚 to 𝑡 signers which

have provided presignature shares already, and will ask them for

their signature shares (as well as new presignature shares). This

reduces the latency between the arrival of a message to sign and

the delivery of the signature.

Signing a continuous stream of messages. We have described

ROAST as a one-shot algorithm that is called for exactly one mes-

sage and terminates after delivering a message. However, typical

real-world applications such as sidechains require the ability to

sign a continuous stream of incoming messages, e.g., in fixed time

intervals or reactively whenever a new message to sign appears.

It is straightforward to adapt ROAST to such a setting. Unused

presignature shares can be stored after a successful signing round,

and the next incoming message can be signed starting from these

already provided presignature shares. This effectively pipelines

signing sessions of Σ not only for multiple attempts to sign a single

message but also across multiple messages to sign.

Scoring signers. When one (or both) of the aforementioned vari-

ants is used, the coordinator C may often find itself in a situation

wheremore than 𝑡 signers have already provided presignature shares
when a new message to sign arrives. (In fact, if 𝑡 ≤ 𝑛/2, there may

even be enough responsive signers to initiate multiple signing ses-

sions of Σ immediately.) In this case, the coordinator has the freedom

to select the 𝑡 signers for the next signing session, and it may be

beneficial for the coordinator to keep a simple score per signer to

facilitate the selection, e.g., based on the average response time of

the last few responses or the reliability of the signer.
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Figure 5: Running time of ROAST according to our experiments.

Trading off for latency. In order to reduce latency at the cost of

higher communication and computation, the coordinator can allow

for signers to be in more than one session of Σ at a time, which

increases the probability of quickly finding a terminating session

with only honest signers. As long as the number of simultaneous

sessions for any signer remains a constant 𝑐 , any signer can block

at most 𝑐 sessions, and the protocol will eventually terminate after

initiating at most 𝑐 (𝑛 − 𝑡 + 1) sessions. This approach can also be

combined with the previous idea, i.e., highly reliable signers (with

a high score) will be assigned multiple concurrent sessions.

5 EMPIRICAL PERFORMANCE EVALUATION
In this section, we evaluate ROAST’s performance experimentally

in a realistic Internet setting.

Implementation. We implemented both FROST and the ROAST
wrapper in Python 3. The source code and the raw benchmark

results are available [40] under an open-source license. The imple-

mentation consists of a coordinator module C and a signer module

S. The coordinator C communicates with signers S𝑖 over TCP
sockets with Nagle’s algorithm disabled, and performs validation

of incoming shares in separate processes (one per signer) to make

use of multiple CPU cores.

Our FROST implementation produces Schnorr signatures on the

secp256k1 elliptic curve as used in Bitcoin. We used the fastecdsa
library [28], which exposes low level elliptic curves operations,

for ease of integration with a Python 3 program. Using a faster

library such as libsecp256k1 [44] will reduce the computation

time considerably.

We make use of two additional optimizations to the algorithms

given in Figure 3 and Figure 4. The signers S𝑖 each precompute a

batch of 𝜌𝑖 values rather than generating a single 𝜌𝑖 value during

each preprocessing step, while the coordinator caches the value

of 𝐷𝐸𝑏 for a given FROST session rather than recomputing it on

each ShareVal call. These optimizations would be realistic for a

production implementation, and allow us to emphasize the impact

of the wrapper protocol (rather than the overhead of elliptic curve

operations) in our benchmarks. However, we did not implement

the optimization that preprocesses the first message of the initial

FROST session (see Section 4.5).

Setup. The coordinator C ran on a server in San Francisco, while

the signers S𝑖 ran on a server in Frankfurt; both servers have 48

cores. We measured a round-trip time (RTT) of 𝛿 = 153ms between

the two servers. Note that because there is no communication

among signers (only between the coordinator and signers), running

multiple signers on the same server does not reduce the effect of

network latency and still provides realistic benchmark results.

We ran ROAST for a variety of configurations (𝑡, 𝑛, 𝑓 ) where
𝑡 honest signers out of 𝑛 total signers are required to produce a

signature and 𝑓 is the number of simulated malicious signers.

Our prototype simulates malicious signers by simply letting

them fail to respond to signing requests, which is very similar to

providing an invalid response (one that fails ShareVal) because in
the latter case, the coordinator simply discards the response and

ignores all subsequent responses from that signer.

We ran the experiments for three different adversary strategies:

Under the “static/non-coordinating” strategy, 𝑓 malicious signers

are chosen randomly at the beginning of the run and will simply fail

to respond for any signing request; this models signers with benign

failures. Under the “static/coordinating” strategy, the 𝑓 malicious

signers are again chosen randomly at the beginning of the run, but

they will coordinate to ensure that in every FROST session con-

taining malicious signers, only one of them will disrupt the session

by the ignoring signing request; this models that some signers are

controlled by a single adversary. Under the “adaptive” strategy, all

𝑛 signers coordinate to ensure that exactly 𝑓 will become malicious

adaptively such that there is exactly one malicious signer in each

of the first 𝑓 sessions; this models the worst case, in which the

adversary can crash up to 𝑓 signers adaptively.

For each configuration, we ran 10 trials to obtain an average

running time.

Results. The plot in Figure 5 shows how the average running time

scales with the fraction of malicious signers, for all considered ad-

versary strategies. The running times for the “static/coordinating”
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strategy and the “adaptive” strategy are very similar, and as ex-

pected, there is slightly more variance in the running time for the

“static/coordinating” strategy due to the possibility that the coordi-

nator is lucky and selects a set containing only honest signers early.

In the worst-case configuration (𝑛 = 100, 𝑡 = 67, 𝑓 = 33, “adap-

tive”), we measured a running time of 6,43 s, whereas the theoretical

maximum (ignoring computation time and transmission delay) un-

der a propagation delay assumed to be 𝛿/2 in each direction is

(1 + 2(𝑓 + 1)) (𝛿/2) = 5,28 s.

We did not optimize the wire protocol to minimize bandwidth;

however, the sum of incoming and outgoing bandwidth usage on

the coordinator never exceeded 4Mb/s in any configuration, even

when repeatedly running the protocol in a loop.

Conclusion. The results show that using the ROAST protocol is

practical in production: even with a large number of signers, high

latency (coordinator C and signers S𝑖 on different continents), and

a very powerful adversary, the protocol only takes a few seconds

to complete, and bandwidth usage is low for modern networks.

Moreover, our results confirm that robustness is particularly

powerful when combined with an asynchronous protocol, because

honest signers can always make progress and never need to wait

for disruptive signers. For the parameters we considered in our

evaluation, any signing protocol with multiple synchronous rounds

would need timeouts to be set on the order of a second or lower

to have a signing performance competitive to ROAST, but such
aggressive timeouts will introduce a significant risk that messages

from honest signers will sometimes arrive late in open networks

such as the Internet.
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A UNFORGEABILITY OF FROST3
In this section, we argue the unforgeability of FROST3 based on a

result by Bellare et al. [6]. Concretely, Bellare et al. [6] prove that

FROST2-BTZ with an idealized key generation (i.e., trusted setup)

achieves TS-UF-0 security under the one-more discrete logarithm

(OMDL) assumption in the random oracle model (ROM), where

TS-UF-0 security is an unforgeability notion they formally define

and which corresponds to unforgeability as informally described in

Section 2.2.
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In the following, we explain how their result carries

over to FROST3.
Recall that in FROST2-BTZ, the “aggregated” presignature is

simply 𝜌 = {(𝐷𝑖 , 𝐸𝑖 )}𝑖∈𝑇 , i.e., the PreAgg algorithm is trivial in

the sense that PreAgg(𝑃𝐾, {𝜌𝑖 }𝑖∈𝑇 ) = {𝜌𝑖 }𝑖∈𝑇 , and the SignRound
algorithm will take care of computing the two products (𝐷, 𝐸) =
(∏𝑖∈𝑇 𝐷𝑖 ,

∏
𝑖∈𝑇 𝐸𝑖 ). This makes it possible to use the value 𝜌 also

for signalling a signer S𝑖 which of possibly multiple unused secret

states state𝑖 (resulting from multiple invocations of PreRound) it
should use in an invocation of SignRound: In the formalization

of FROST2-BTZ by Bellare et al. [6], the coordinator simply in-

cludes the corresponding presignature (𝐷𝑖 , 𝐸𝑖 ) at index 𝑖 in 𝜌 . Given
(𝐷𝑖 , 𝐸𝑖 ), the signerS𝑖 can then look up thematching state𝑖 = (𝑑𝑖 , 𝑒𝑖 )
(such that (𝑔𝑑𝑖 , 𝑔𝑒𝑖 ) = (𝐷𝑖 , 𝐸𝑖 )) and use it for signing. If (𝐷𝑖 , 𝐸𝑖 ) is
not a presignature share previously output by S𝑖 , or an already

used presignature share, SignRound will return ⊥.
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In fact, they show that FROST2-BTZ fulfills a stronger security notion but this is

not relevant to our work.

In order to make FROST2-BTZ compatible to our formalization

of semi-interactive threshold signature schemes (see Section 2),

we consider in the following a modified version FROST2-BTZ′,
in which a signer S𝑖 is signalled explicitly which secret state it

should via an incrementing session sid maintained separately for

each signer: Let (state𝑖,sid , 𝜌𝑖,sid ) be the output of the sid-th invo-

cation of PreRound(𝑃𝐾) by S𝑖 . Then a particular value sid must

be provided explicitly to S𝑖 when asking for a signature (i.e., in

the unforgeability game, the adversary must provide the value sid
as part of a query to the oracle simulating SignRound(. . .)). The
signer S𝑖 will then use state𝑖,sid as input to SignRound(. . .).

The main result of this modification is that S𝑖 in FROST2-BTZ′

will always use the sid-th secret state state𝑖,sid = (𝑑𝑖,sid , 𝑒𝑖,sid )
for signing if asked to do so explicitly, even if the presignature

𝜌 = {(𝐷𝑖 , 𝐸𝑖 )}𝑖∈𝑇 contains a non-matching presignature share

(𝐷𝑖 , 𝐸𝑖 ) ≠ (𝑔𝑑𝑖,sid , 𝑔𝑒𝑖,sid ). While this constitutes a modification to

the scheme, an inspection of the unforgeability proof by Bellare

et al. [6] shows that the proof remains valid and TS-UF-0 secu-

rity is not affected. Thus we can work with the modified variant

FROST2-BTZ′ in the following.

We now reduce the unforgeability of FROST3 to the unforgeabil-
ity of FROST2-BTZ′.

Proposition A.1 . In the random oracle model, FROST3 with
any key generation protocol Gen is TS-UF-0 if FROST2-BTZ′ is TS-
UF-0 with the same Gen.

Proof. The reduction simulates the TS-UF-0 game of FROST3
to the adversary by relaying all communication from and to the

TS-UF-0 game of FROST2-BTZ′, except for the modifications de-

scribed as follows: The reduction translates any adversarial sign-

ing query FROST3.SignRound(. . . ,𝑇 , 𝜌, . . . ) or adversarial query
FROST3.Hnon (. . . ,𝑇 , 𝜌, . . . ) with a presignature 𝜌 = (𝐷, 𝐸) into the
corresponding query FROST2-BTZ′ .SignRound(. . . ,𝑇 , . . . , 𝜙 (𝑇, 𝜌),
. . . ) or FROST2-BTZ′ .Hnon (. . . , 𝜙 (𝑇, 𝜌), . . . ) with the presignature
𝜌′ = 𝜙 (𝑇, 𝜌) =

{
(𝐷′
𝑖
, 𝐸′
𝑖
)
}
𝑖∈𝑇 , where 𝜙 is any injective polynomial-

time computable function such that𝐷 =
∏
𝑖∈𝑇 𝐷

′
𝑖
and 𝐸 =

∏
𝑖∈𝑇 𝐸

′
𝑖
,

e.g., 𝜙 sets 𝐷′
𝐼
← 𝐷 and 𝐸′

𝐼
← 𝐸 for 𝐼 = min(𝑇 ), and 𝐷′

𝑖
← 1G and

𝐸′
𝑖
← 1G for 𝑖 ≠ 𝐼 .

FROST2-BTZ′ uses the value 𝜌′ =
{
(𝐷′
𝑖
, 𝐸′
𝑖
)
}
𝑖∈𝑇 only for com-

puting the products

∏
𝑖∈𝑇 𝐷

′
𝑖
and

∏
𝑖∈𝑇 𝐸

′
𝑖
, and as input to Hnon.

Since by construction

∏
𝑖∈𝑇 𝐷

′
𝑖
= 𝐷 and

∏
𝑖∈𝑇 𝐸

′
𝑖
= 𝐸, the reduc-

tion simulates TS-UF-0 game of FROST3 perfectly. By inspection

of TS-UF-0, it can be verified that a valid FROST3 forgery output

by the adversary is a valid FROST2-BTZ′ forgery. □
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