
Anti-Factor is FPT Parameterized by Treewidth
and List Size (but Counting is Hard)
Dániel Marx #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Govind S. Sankar #

Duke University, Durham, USA

Philipp Schepper #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract
In the general AntiFactor problem, a graph G and, for every vertex v of G, a set Xv ⊆ N of
forbidden degrees is given. The task is to find a set S of edges such that the degree of v in S is not in
the set Xv. Standard techniques (dynamic programming plus fast convolution) can be used to show
that if M is the largest forbidden degree, then the problem can be solved in time (M + 2)tw · nO(1)

if a tree decomposition of width tw is given. However, significantly faster algorithms are possible
if the sets Xv are sparse: our main algorithmic result shows that if every vertex has at most x

forbidden degrees (we call this special case AntiFactorx), then the problem can be solved in time
(x + 1)O(tw) · nO(1). That is, AntiFactorx is fixed-parameter tractable parameterized by treewidth
tw and the maximum number x of excluded degrees.

Our algorithm uses the technique of representative sets, which can be generalized to the
optimization version, but (as expected) not to the counting version of the problem. In fact, we show
that #AntiFactor1 is already #W[1]-hard parameterized by the width of the given decomposition.
Moreover, we show that, unlike for the decision version, the standard dynamic programming algorithm
is essentially optimal for the counting version. Formally, for a fixed nonempty set X, we denote
by X-AntiFactor the special case where every vertex v has the same set Xv = X of forbidden
degrees. We show the following lower bound for every fixed set X: if there is an ϵ > 0 such that
#X-AntiFactor can be solved in time (max X + 2 − ϵ)tw · nO(1) given a tree decomposition of
width tw, then the Counting Strong Exponential-Time Hypothesis (#SETH) fails.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Anti-Factor, General Factor, Treewidth, Representative Sets, SETH

Digital Object Identifier 10.4230/LIPIcs.IPEC.2022.22

Related Version Full Version: https://arxiv.org/abs/2110.09369 [29]

Funding Research supported by the European Research Council (ERC) consolidator grant No. 725978
SYSTEMATICGRAPH.
Philipp Schepper : Part of Saarbrücken Graduate School of Computer Science, Germany.

© Dániel Marx, Govind S. Sankar, and Philipp Schepper;
licensed under Creative Commons License CC-BY 4.0

17th International Symposium on Parameterized and Exact Computation (IPEC 2022).
Editors: Holger Dell and Jesper Nederlof; Article No. 22; pp. 22:1–22:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marx@cispa.de
https://orcid.org/0000-0002-5686-8314
mailto:govind.subash.sankar@duke.edu
https://orcid.org/0000-0002-7443-9599
mailto:philipp.schepper@cispa.de
https://orcid.org/0000-0002-5810-7949
https://doi.org/10.4230/LIPIcs.IPEC.2022.22
https://arxiv.org/abs/2110.09369
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

1 Introduction

Matching problems and their generalizations form a well studied class of problems in
combinatorial optimization and computer science [26]. A perfect matching is a set S of edges
such that every vertex has degree exactly 1 in S; finding a perfect matching is known to be
polynomial-time solvable [16, 21, 32]. In the f -Factor problem, an integer f(v) is given for
each vertex v and the task is to find a set of edges where every vertex v has degree exactly
f(v). A simple transformation reduces f -Factor to finding a perfect matching. Conversely,
in f -AntiFactor the task is to find a set S of edges where the degree of v is not f(v) [34].

The problems above can be unified under the General Factor (GenFac) problem
[10, 27, 30], where one is given a graph G and an associated set of integers Bv for every
vertex v of G. The objective is to find a subgraph such that every vertex v has its degree
in Bv. Cornuéjols [10] showed that the complexity of GenFac depends on the maximum
gap of the sets Bv. The maximum gap of a set B (denoted by max-gap(B)) is defined as the
largest contiguous sequence of integers not in B but whose boundaries are in B. Cornuéjols
[10] showed that if max-gap(Bv) ≤ 1, then GenFac is polynomial-time solvable. In a sense,
we can say that this case is the only one that is polynomial-time solvable. Formally, for a
fixed, finite set B of integers, B-Factor is the special case of GenFac where every vertex
has the same set Bv = B of allowed degrees. It follows from a result of Dalmau and Ford
[13] that if B is a fixed finite set such that max-gap(B) > 1, then B-Factor is NP-hard.

Given the hardness of B-Factor in general, Marx et al. [30] studied the complexity of
the problem on bounded treewidth graphs. Recall the long history of study on treewidth,
which is a measure for how “tree-like” a graph is, [3, 4, 6]. For a wide range of hard problems,
algorithms with running time of the form f(k)·nO(1) exist if the input graph comes with a tree
decomposition of width k. In many cases even the best possible form of f(k) in the running
time is known (under suitable complexity assumptions, such as the Strong Exponential
Time Hypothesis (SETH) [23]). Marx et al. [30] use a combination of standard dynamic
programming techniques with fast subset convolution (cf. [36]) to give optimal (under SETH)
(max B + 1)twnO(1) time algorithms for the decision, optimization, and counting versions.

▶ Theorem 1.1 (Theorems 1.3–1.6 in [30]). Fix a finite, non-empty set B ⊆ N.
We can count in time (max B + 1)twnO(1) the solutions of a certain size for a B-Factor
instance if we are given a tree decomposition of width tw.
For any ϵ > 0, there is no (max B + 1 − ϵ)pwnO(1) algorithm for the following problems,
even if we are given a path decomposition of width pw, unless SETH (resp. #SETH) fails:

B-Factor and Min-B-Factor if 0 /∈ B and max-gap(B) > 1,
Max-B-Factor if max-gap(B) > 1,
#B-Factor if B ̸= {0}.

We study the complementary problem of X-AntiFactor for finite sets X of excluded
degrees.

▶ Definition 1.2 (X-AntiFactor). Let x ∈ N be fixed. AntiFactorx is the decision
problem of finding for an undirected graph G where all vertices v are assigned a finite set
Xv ⊆ N with |Xv| ≤ x, a set S ⊆ E(G) such that for all v ∈ V we have degS(v) /∈ Xv.

For a fixed X ⊆ N with |X| = x, we define X-AntiFactor as the restriction of
AntiFactorx to those graphs where all vertices are labeled with the same set X.

▶ Note. X-Factor, the special case of GenFac where every vertex has set X, precisely
corresponds to X-AntiFactor where we set X := N \ X.

D. Marx, G.S. Sankar, P. Schepper 22:3

The decision and minimization versions are trivially solvable if 0 /∈ X as the empty set is a
valid solution. Further, if X does not contain two consecutive numbers, then X has no gap
of size at least two. In this case, by results from Cornuéjols [10] and Dudycz and Paluch [15],
the decision, maximization and minimization version of X-Factor are poly-time solvable.

Our Results. One could expect that similar results can be obtained for X-AntiFactor as
for B-Factor, but this is very far from the truth and the exact complexity of X-AntiFactor
is much less clear. In the B-Factor problem, a partial solution (a set of edges that we
intend to further extend to a solution) can have degree at most max B at each vertex, which
is the main reason one needs (max B + 1)twnO(1) running time. For X-AntiFactor, a
vertex can also have degree larger than max X in a (partial) solution, but all degrees larger
than max X are equivalent in some sense. Therefore, the natural running time we expect is
(max X + 2)twnO(1). We show that this running time can be achieved, but requires some
modification of the convolution to handle the state “degree more than max X.”

▶ Theorem 1.3. Let X ⊆ N be finite and fixed. Given an X-AntiFactor instance and its
tree decomposition of width tw. Then we can count the number of solutions of size exactly s

in time (max X + 2)twnO(1) for all s simultaneously.

However, there are many cases where algorithms significantly faster than (max X + 2)twnO(1)

are possible. At first, this may seem unlikely: at each node of the tree decomposition,
the partial solutions can have up to (max X + 2)tw+1 different equivalence classes1 and
it may seem necessary to find a partial solution for each of these classes. Nevertheless,
we show that the technique of representative sets can be used to achieve a running time
lower than the number of potential equivalence classes. Representative sets were defined by
Monien [33] for use in an FPT algorithm for k-Path, and subsequently found use in many
different contexts, including faster dynamic programming algorithms on tree decompositions
[1, 5, 7, 17, 18, 19, 25, 31, 35]. The main idea is that we do not need to find a partial
solution for each equivalence class, but it is sufficient to find a representative set of partial
solutions such that if there is a partial solution that is compatible with some extension, then
there is a partial solution in our set that is also compatible with this extension. Our main
algorithmic result shows that if X is sparse, then this representative set can be much smaller
than (max X + 2)tw+1, yielding improved algorithms. In particular, AntiFactorx is FPT
parameterized by tw and x.

▶ Theorem 1.4. One can decide in time (x + 1)O(tw)nO(1) whether there is a solution of a
certain size for AntiFactorx assuming a tree decomposition of width tw is given.

We note that Theorem 1.4 clearly distinguishes X-AntiFactor from B-Factor. By the
known lower bounds from Marx et al. [30] (cf. Theorem 1.1), a similar result for B-Factor
is not possible. In light of Theorem 1.4, it is also far from obvious to determine, the exact
complexity of X-AntiFactor for a fixed set X. The combinatorial properties of the set
X influence the complexity of the problem in a subtle way and new algorithmic techniques
seem to be needed to fully exploit this. Currently, we do not have a tight bound similar
to Theorem 1.1 for every fixed X. Instead we propose a candidate for the combinatorial
property that influences the complexity: We define a bipartite compatibility graph for every
set X and conjecture that the maximum size of a so-called half-induced matching is the key

1 Recall that in a graph with treewidth tw, the largest bag has size tw + 1.

IPEC 2022

22:4 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

property to obtain a faster algorithm via representative sets. See Conjecture 4.5 for a formal
statement.

We use such half-induced matchings of large size to show a lower bound for AntiFactorx

that, assuming SETH, complements the algorithm in Theorem 1.4 up to constant factors in
the exponent (see Theorem 5.5). Moreover, if there is a half-induced matching of size h, then,
assuming SETH, we show that there is no (h − ϵ)twnO(1) algorithm for X-AntiFactor for
any ϵ > 0 (Theorem 5.4). Although, in this case the representative set cannot be smaller
than (h − ϵ)tw+1 for any ϵ > 0 (Lemma 4.4) we do not have matching upper bounds at this
point. There are two main reasons why it is difficult to obtain tight upper bounds:

Representative set bounds. In Theorem 1.4, the upper bound on the size of represen-
tative sets are based on earlier algebraic techniques [18, 19, 25, 35]. It is not clear how
they can be extended to the combinatorial notion of half-induced matchings.
Join nodes. Even if we have tight bounds on the size of representative sets there
is an additional issue that can increase the running time. At join nodes of the tree
decomposition, we need to compute from two representative sets a third one. Doing this
operation in a naive way results in a running time that is at least the square of the bound
on the size of the representative set. If we want to have a running time that matches the
size of the representative set, we need a more clever way of handling join nodes.

Representative sets of the form we study here could be relevant for other problems and tight
bounds for such representative sets could be of fundamental importance. In particular, the
notion of half-induced matchings could be a key property in other contexts as well.

Counting Problems. We also investigate the #AntiFactor problem, where we need
to count the total number of solutions satisfying the degree constraints. The idea of
representative sets is fundamentally incompatible with exact counting: if we need to count
every solution, then we cannot ignore certain partial solutions even if they can be always
replaced by others. Therefore, the algorithm of Theorem 1.4 cannot be extended to the
counting version.2 In fact, we show that already #AntiFactor1 is unlikely to be FPT by
showing the following stronger statement for path decompositions.

▶ Theorem 1.5. There is a fixed constant c such that #AntiFactor1 cannot be solved
in time O(npw−c) on graphs with n vertices given a path decomposition of width pw, unless
#SETH is false. Furthermore, #AntiFactor1 is #W[1]-hard parameterized by pathwidth.

Recall that #SETH (cf. [11, 14]) is actually a weaker assumption than SETH. Hence, the first
result is stronger than a version based on SETH. Moreover, the algorithm from Theorem 1.3
is essentially optimal for #X-AntiFactor.

▶ Theorem 1.6. Let X ⊆ N be a non-empty, finite and fixed set. For any constant ϵ > 0,
there is no algorithm that can solve #X-AntiFactor in time (max X + 2 − ϵ)pwnO(1) given
a graph along with a path decomposition of width pw, unless #SETH fails.

Organization. Section 2 presents the algorithm of Theorem 1.4 and Section 3 shows how
to compute representative sets. Section 4 introduces half-induced matchings and discusses
some combinatorial properties related to representative sets. Sections 5 and 6 present the
lower bounds for the decision and counting versions, respectively.

2 Counting the solutions approximately is a problem of independent interest.

D. Marx, G.S. Sankar, P. Schepper 22:5

2 Algorithms

In this section, we use without loss of generality “nice” tree decompositions that have
introduce edge nodes (see, e.g., [12] for formal definitions). When given a node t of a tree
decomposition, we denote by Bt the bag of t, by Vt the vertices introduced at the subtree
rooted at t, and by Et the edges introduced in the subtree rooted at t.

We leave the proof of Theorem 1.3 to the full version of this paper, as many of the details
are similar to that in [30].

2.1 Parameterizing by the Number of Excluded Degrees
In this section we prove Theorem 1.4 which shows that AntiFactorx is FPT parameterized
by treewidth and the size x of the set. We first show a naive algorithm, i.e. the standard
dynamic programming approach, solving the problem. In a second step we improve this
algorithm by using representative sets. That is, we do not store all solutions but only so
much information such that we can correctly solve the decision and optimization version.

2.1.1 Naive Algorithm
Let Xv ⊆ N be the set assigned to vertex v with |Xv| ≤ x. Let n be the number of vertices of
G and m the number of edges. Let U = [0, n] be the universe of the values in the following.

The idea is to fill a table ParSol[·, ·] with partial solutions. That is, for all nodes t of the
tree decomposition with bag Bt of size k and all s ∈ [0, m], we have ParSol[t, s] ⊆ UBt and
a ∈ ParSol[t, s] if and only if there is a set S ⊆ Et with |S| = s such that degS(v) /∈ Xv for
all v ∈ Vt \ Bt and degS(v) = a[v] for all v ∈ Bt.

Dynamic Program. Initialize the table ParSol with ∅ for every entry. We fill the table
iteratively for all nodes t of the tree decomposition and all s ∈ [0, m] in the following way,
depending on s and the type of t.
Leaf Node. As Bt = ∅, we set ParSol[t, 0] := {∅}.
Introduce Vertex Node. Assume v is introduced at t, i.e. Bt = Bt′ ∪ {v}. We define

ParSol[t, s] := {av 7→0 | a ∈ ParSol[t′, s]}.

Introduce Edge Node. Assume the edge e = uv is introduced at the node t. We combine
the cases where e is not selected for the solution and where e is selected. Thus, we define:

ParSol[t, s] := ParSol[t′, s] ∪ {au7→a(u)+1,v 7→a(v)+1 | a ∈ ParSol[t′, s − 1]}.

Forget Node. Assume vertex v is forgotten at t, i.e. Bt = Bt′ \ {v}. We define

ParSol[t, s] := {a|Bt
| a ∈ ParSol[t′, s] : a[v] /∈ Xv}.

Join Node Assume t1 and t2 are the two children of t with Bt = Bt1 = Bt2 . Then we define

ParSol[t, s] := {a1 + a2 | a1 ∈ ParSol[t1, s1], a2 ∈ ParSol[t2, s2], s1 + s2 = s}.

Let r be the root of the tree decomposition with Br = ∅. For a given s ∈ [0, m], the algorithm
finally checks if ParSol[r, s] ̸= ∅, i.e. ParSol[r, s] contains the empty vector. Otherwise no
solution exists. The correctness of this algorithm follows directly from its definition. Note
that the computation might take time Ω(ntw+1) since the largest bag has size tw + 1.

IPEC 2022

22:6 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

2.1.2 Improving the Naive Algorithm
The final algorithm is based on the naive algorithm but makes use of so-called representative
sets to keep the size of the set stored for each node of the tree decomposition small.

We first define the notion of representative set to state the final algorithm. In Section 3
we show how to actually compute the representative sets.

▶ Definition 2.1 (H-Compatibility). Let H = (U ∪̇ V, E) be an undirected (potentially
infinite) bipartite graph. We say that a ∈ U is H-compatible with b ∈ V , denoted by a ∼H b,
if (a, b) ∈ E. 3

Based on this compatibility notation, we define the H-representation of a set.

▶ Definition 2.2 (H-Representation). Let H = (U ∪̇ V, E) be an undirected (potentially
infinite) bipartite graph. For any S ⊆ U , we say that S ′ ⊆ S H-represents S, denoted by
S ′ ⊆H-rep S if for every b ∈ V : ∃a ∈ S : a ∼H b ⇐⇒ ∃a′ ∈ S ′ : a′ ∼H b.

For the algorithm we make use of this H-compatibility and H-representation where we use
the following graphs.

▶ Definition 2.3 (Compatibility Graph). For a set B = {v1, . . . , vk} of k vertices with sets
X1, . . . , Xk of excluded degrees, we define the compatibility graph CB as follows:

V (CB) = Uk ∪̇ V k where the elements in U, V are copies of numbers, i.e. U, V = N.
E(CB) = {((i1, . . . , ik), (j1, . . . , jk)) | ∀ ℓ ∈ [k], iℓ + jℓ ̸∈ Xℓ}.

For a node t with bag Bt of the tree decomposition we denote by Ct the graph CBt
.

The intuition is that the vertices in Uk represent the degrees of the constructed partial
solution. The vertices in V k correspond to the degrees of some (disjoint) partial solution one
might see in the future. The edges then “check” whether both solutions can be combined, i.e.
the degree of each vertex is valid with respect to the union of the solutions.

Final Algorithm. The improved algorithm applies the same operations as the naive algorithm
to fill a table c. Then the algorithm computes a Ct-representative set for the table entries
and just stores these values in c. Only these values are used in the next steps to compute
the other table entries. The correctness follows by induction on the tree decomposition.

▷ Claim 2.4. For all t, s: c[t, s] ⊆Ct-rep ParSol[t, s].

▶ Lemma 2.5. Assume there is an algorithm that can, for given B = {v1, . . . , vk} with
|Xv| ≤ x for all v ∈ B, compute for a set S ⊆ [0, n]k a new set S ′ ⊆CB -rep S of size Size(k)
in time Time(k, |S|), where Time and Size are allowed to depend on CB and x.

Then we can decide for a given AntiFactorx instance, whether there is a solution of size
exactly s in time Time(tw+1, (m+1)·Size(tw+1)2)nO(1) and Time(pw+1, 2 Size(pw+1))nO(1)

given a tree and a path decomposition of width tw and pw, respectively.

Proof. We can assume that Time and Size are non-decreasing functions and inductively that
the size of the given table entries is bounded by Size(tw + 1). The running time follows
immediately by bounding the size of c[t, s] and then computing its representative set. The
correctness follows directly from Claim 2.4. ◀

3 Though the graph is undirected, we use tuples to denote the edges. By this the first value denotes the
vertex from U and the second value the vertex from V .

D. Marx, G.S. Sankar, P. Schepper 22:7

3 Computing Representative Sets

As mentioned in the previous section, one can think of Ct-compatibility as checking whether
the given partial solution of degree a fits together with some partial solution of degree c

arriving in the future. This is done via the bipartition of the compatibility graph and the
(non-)existence of the edges, i.e. checking if a + c is not in X. To compute the representative
set we avoid this two step procedure by defining the more standard k-q-compatibility.

▶ Definition 3.1 (k-q-Compatibility). Let k, q be positive integers. For an a ∈ Nk and a
b ∈

(N
q

)k, we say a is k-q-compatible with b, denoted by a ∼k
q b, if and only if for all i ∈ [k]

it holds that a[i] /∈ b[i].

For our purposes we can relate the two compatibility definitions as follows: In Ct-compatibility
one computes a + c and checks if a + c /∈ X. Instead k-q-compatibility checks if a /∈ X − c.
While both checks are equivalent at this point, the new compatibility version considers all
possible sets of size at most q = |X| and not just X − c for all c. Hence, k-q-compatibility is
independent from the sets Xv which are assigned to the vertices v of the graph.

We extend the notion of compatibility in the standard way to k-q-representation.

▶ Definition 3.2 (k-q-Representation). Let k, q be positive integers. Given a set S ⊆ Nk,
and a set S ′ ⊆ S. We say S ′ k-q-represents S, denoted by S ′ ⊆k

q-rep S, if and only if for all
b ∈

(N
q

)k: ∃a ∈ S : a ∼k
q b ⇐⇒ ∃a′ ∈ S ′ : a′ ∼k

q b.

For both notations we omit the value k from the notation if k = 1. It remains to check
that k-q-compatibility generalizes Ct-compatibility. This follows by folding and unfolding the
definitions of the two types of compatibility.

▶ Lemma 3.3. Let B be a set of k vertices where each v ∈ B is assigned a set Xv such that
|Xv| ≤ x. Then the following holds for all S, S ′ ⊆ Nk: If S ′ ⊆k

x-rep S, then S ′ ⊆CB -rep S.

Matroids. For the computation of the representative sets we make use of uniform matroids.
They allow us to formally state the operations we are using.

▶ Definition 3.4 (Uniform Matroid). Let U be some universe with n elements and r ∈ N.
Then Ur,n = (U,

(
U

≤r

)
) is the uniform matroid of rank r, that is the matroid over the ground

set U and the independent sets are all subsets of U of size at most r.

Later the rank of these uniform matroids corresponds to the number of excluded degrees
(plus one). Since the matroid contains all subset of size at most the rank, we automatically
consider all possibilities for upcoming solutions.

There are results proving the existence of small representative sets for matroids [18, 19, 25].
Since these results are usually for general matroids, they also apply to uniform matroids
which we use here. However, as we are not considering a single matroid but the product of
several matroids, the previous results can only be applied partially to our setting. Moreover,
one can suspect that these results can be improved by exploiting properties of the uniform
matroids. In the following we show one approach to compute the representative sets. A
second method, not using matrix multiplication, is given in the full version of the paper [29].
That algorithm yields a slightly faster algorithm when parameterizing by pathwidth.

IPEC 2022

22:8 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

The Algorithm. We base our method on a previous result for computing representative sets.
Despite the fact that the following lemma is a special case of Lemma 3.4 in [25], our proof
uses a completely different technique as we exploit that the given matroids are uniform.

Let ω be the matrix multiplication coefficient in the following, i.e. ω < 2.37286 [2].

▶ Lemma 3.5. Let M1, . . . , Mk be k uniform matroids, each of rank r, with integer universes
U1, . . . , Uk. Given a set S ⊆ U1 × · · · × Uk we can find a set S ′ ⊆k

r−1-rep S of size rk in time
O(|S| · rk(ω−1)k).

Proof Idea. We follow the ideas behind the proof of Theorem 12.15 in [12] where a variant
of this lemma is shown for k = 1 with a general matroid.

Let M1, . . . , Mk be r × |U | matrices representing the matroids M1, . . . , Mk, which are
known to exist. Enumerate all I ∈ [r]k in an arbitrary order I1, . . . , Irk and compute for all
A ∈ S the vector vA, where for all j ∈ rk we set vA[j] =

∏k
i=1 Mi[Ij [i], A[i]]. Construct a

rk × |S| matrix Q with the vectors vA as columns and find a column basis BQ of Q. Output
the set S ′ = {A | vA ∈ BQ} as solution. Since BQ is a basis, it contains at most rk elements.

Computing all vA takes time O(|S| · rk · k) in total. As the computation of the basis takes
time O(|S| · rk(ω−1)), the complete procedure requires time O(|S| · rk(ω−1) · k).

The basic idea of the correctness proof is to characterize the compatibility by a product
of determinants of certain submatrices of each Mi. Then rewrite this by the Laplacian
expansion using the Ij and exploit that BQ is a basis. The formal proof is given in the full
version as it is rather technical and does not give any insight into the problem. ◀

To finish the algorithm for AntiFactorx from Theorem 1.4, it remains, by Lemma 3.3, to
compute a k-x-representative set as |Xv| ≤ x. To achieve this we define k uniform matroids
with universe {0, . . . , n} and rank x + 1. Then, plugging in the values from Lemma 3.5 into
Lemma 2.5, directly gives the following result. Note that we can assume x ≤ n.

▶ Corollary 3.6. Given a tree and a path decomposition, AntiFactorx can be solved in
time (x + 1)(ω+1)·twnO(1) and (x + 1)ω·pwnO(1), respectively.

4 Half-Induced Matchings

In this section we introduce half-induced matchings and show relations to compatibility
graphs and representative sets. We use these properties later in the lower bounds for the
decision and optimization version of X-AntiFactor and AntiFactorx. The proofs of all
results in this section are given in Appendix A.

▶ Definition 4.1 (Half-induced Matching). Let G = (U ∪̇ V, E) be a bipartite graph. G has a
half-induced matching of size ℓ if there are pairwise different a1, . . . , aℓ ∈ U and pairwise
different b1, . . . , bℓ ∈ V such that (1) (ai, bi) ∈ E for all i but (2) (ai, bj) ̸∈ E for all j > i.

By an abuse of notation, CX denotes the compatibility graph for a vertex with set X of
forbidden degrees. We show that arithmetic progressions in the set of excluded degrees are
sufficient to obtain large half-induced matchings in the corresponding compatibility graph.

▶ Lemma 4.2. If X contains an arithmetic progression of length ℓ, but not one of length
ℓ + 1, then CX has a half-induced matching of size ℓ + 1.

Conversely to the previous lemma, we also prove that arithmetic progressions are necessary
to obtain large half-induced matchings.

D. Marx, G.S. Sankar, P. Schepper 22:9

▶ Lemma 4.3. Let X ⊆ N with |X| = ℓ ≥ 2. Suppose CX contains a half-induced matching
of size ℓ + 1. Then X is an arithmetic progression.

For a graph C and an integer k > 1, we extend ∼C and ⊆C-rep to k dimensions, denoted by
∼k

C and ⊆k
C-rep, such that the C-compatibility must hold for each dimension.

▶ Lemma 4.4. Let X ⊆ N, and ϵ > 0 and ℓ ≥ 2 be constants. Then there exists a constant
k depending only on ϵ and ℓ such that the following holds. Suppose the compatibility graph
CX contains a half-induced matching of size ℓ. Then there is a set S ⊆ Nk such that every
representative set S ′ ⊆k

CX -rep S has size |S ′| ≥ (ℓ − ϵ)k.

The proof is given in Appendix A but we briefly discuss its implications. The running time of
the algorithm for X-AntiFactor from Theorem 1.4 depends on the size of the representative
sets computed. This lemma implies that any such algorithm using representative sets in a
similar way takes time at least (ℓ − ϵ)pw. This can be seen as an unconditional version of the
lower bound for the decision version shown in Theorem 5.4.

We conjecture that the converse of the above lemma is also true. For example, for
X = {10, 100, 1000, . . .} the largest half-induced matching in CX is of size three, a constant,
(even though X itself is infinite). Intuitively, the size of the representative set itself must be
small because knowing any two forbidden degrees of a vertex in the future solution is enough
for us to deduce the degree of the vertex in the partial solution.

▶ Conjecture 4.5. Let X ⊆ N and ℓ ≥ 2 be a constant. Then there exists a constant k

depending only on ℓ such that the following holds. Suppose the largest half-induced matching in
CX has size ℓ. Then every S ⊆ Nk has a representative set S ′ ⊆k

CX -rep S with |S ′| ≤ ℓk+o(k).

Recall, the runtime of the algorithm in Theorem 1.3 depends on max X but the lower bound
in Theorem 5.4 on the size ℓ of the half-induced matching. With the conjecture it seems
reasonable to get algorithms for the decision and optimization version based on representative
sets with a running time depending on ℓ. This would complement the lower bound. Note,
for the counting version the algorithm is essentially optimal (Theorem 6.3).

5 Lower Bounds for the Decision Version

In this section we prove the lower bounds for the decision version of X-AntiFactor and
AntiFactorx. Instead of showing the lower bound directly, we first define the following
intermediate problem and show the hardness of this problem.

▶ Definition 5.1 (X-AntiFactorR). Let X ⊆ N be fixed and finite. Let G = (VS ∪̇ VC , E)
be a vertex labeled graph such that

all vertices in VS, called simple vertices, are labeled with set X,
all vertices v ∈ VC , called complex vertices, are labeled with a relation Rv that is given
as a truth table such that Rv ⊆ 2I(v) where I(v) is the set of edges incident to v in G.

A set Ê ⊆ E is a solution for G if (1) for v ∈ VS: deg
Ê

(v) /∈ X and (2) for v ∈ VC :
I(v) ∩ Ê ∈ Rv.

X-AntiFactor with Relations (X-AntiFactorR) is the problem of deciding if such
an instance G has a solution.

We show our lower bounds based on this problem definition.

▶ Lemma 5.2 (Lower Bound for X-AntiFactorR). Let X ⊆ N be a fixed set which contains
a half-induced matching of size h ≥ 2.

IPEC 2022

22:10 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

Let fX : N → R+ be an arbitrary function that may depend on the set X.
For every constant ϵ > 0, there is no algorithm that can solve X-AntiFactorR in time

(h − ϵ)pw+fX (∆∗)nO(1), where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v), even if we are given a path
decomposition of width pw, unless SETH fails.

In a second step we remove the relations and replace them by appropriate gadgets. To
be able to reuse the reduction later we introduce a slightly more general version of the
problem. For two finite sets X, Y ⊆ N, we define (X, Y)-AntiFactor as the generalization
of X-AntiFactor where we allow the sets X and Y to be assigned to the vertices. We
show hardness when 0 ∈ X and when max-gap(X) > 1. The former is to ensure there are no
trivial solutions and the latter ensures that the problem is not polynomial-time solvable [10].
Recall that max-gap(X) is the size of the largest contiguous sequence of integers not in X

but whose boundaries are in X.

▶ Lemma 5.3. Fix a finite set X ⊆ N such that 0 ∈ X and max-gap(X) > 1. Let
Y ⊆ N be arbitrary. There is a many-one reduction from Y -AntiFactorR to (X, Y)-
AntiFactor such that pathwidth increases by at most f(∆∗) and size by a factor of f(∆∗),
where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v).

The proof essentially follows a similar approach as the one for the hardness of B-Factor
given in [30]. However, we deal with the cofinite set X, and thus the constructions do
not carry over directly. We do a careful check of their constructions and give necessary
modifications in the full version.

By combining the lower bound for the intermediate problem with this reduction, we can
show the lower bounds for X-AntiFactor and AntiFactorx.

▶ Theorem 5.4 (Lower Bound for Decision Version I). Fix a finite set X ⊆ N such that
0 ∈ X and max-gap(X) > 1,
and X contains a half-induced matching of size h.

For every constant ϵ > 0, there is no algorithm that can solve X-AntiFactor in time
(h − ϵ)pwnO(1) even if we are given a path decomposition of width pw, unless SETH fails.

Proof (Sketch). For a given X-AntiFactorR instance we apply Lemma 5.3 with X = Y

to obtain the X-AntiFactor. When applying the fast algorithm to it, one can easily check
that this would contradict SETH by Lemma 5.2. ◀

The following theorem extends the previous result to the more general AntiFactorx and
shows a more informative lower bound.

▶ Theorem 5.5 (Lower Bound for Decision Version II). For all x ≥ 3, ϵ > 0, AntiFactorx

cannot be solved in time (x + 1 − ϵ)pwnO(1) on graphs given with a path decomposition of
width pw, unless SETH fails.

Proof. We set Y := {2, 4, . . . , 2x} and X := {0, 2, 3}. By Lemma 4.2, Y contains a half-
induced matching of size x + 1. Moreover, X contains a gap of size two.

We use Lemma 5.3 to transform a Y -AntiFactorR instance into an (X, Y)-AntiFactor
instance. From |X|, |Y | ≤ x and by the properties of X and Y , the claim follows directly. ◀

5.1 Replacing Finite Sets by Cofinite Sets
In this section we prove Lemma 5.2, i.e. the lower bound for X-AntiFactorR, based on a
lower bound from [30] for the following intermediate problem.

D. Marx, G.S. Sankar, P. Schepper 22:11

v

{h− 1}

(a) The simple vertex v before the modifications.

X

v′

vleft vright

RrightRleft

(b) The gadget replacing vertex v.

Figure 1 The transformation in the proof of Lemma 5.2. The red, orange, green, and blue edges
represent the left-external, left-internal, right-internal, and right-external edges, respectively.

▶ Definition 5.6 (B-FactorR (Simplified Definition 4.1 in [30])). Let B ⊆ N be fixed of finite
size. B-Factor with Relations (B-FactorR) is the variation of X-AntiFactorR, cf.
Definition 5.1, where the simple vertices are not labeled with set X but with set B.

A set Ê ⊆ E(G) is a solution for G if deg
Ê

(v) ∈ B for all simple vertices v and the
relations of the complex vertices are satisfied.

We use the following lower bound and the restrictions to the graph as a starting point for
our construction.

▶ Lemma 5.7 (Corollaries 4.7 and 4.8 in the full version of [30]). Let B ⊆ N be a fixed and
finite set. Given a B-FactorR instance

and its path decomposition of width pw with ∆∗ = maxbag B

∑
v∈B∩VC

deg(v),
moreover all simple vertices are only connected to 2 complex nodes by exactly max B

(parallel) edges each,
and we are given the promise that with respect to any solution the degree of the simple
vertices is exactly max B.

Assume B-FactorR can be solved in such a case in (max B + 1 − ϵ)pw+fB(∆∗)nO(1) time for
some ϵ > 0 and some function fB : N → R+ that may depend on the set B. Then SETH
fails. Moreover the result also holds for #B-FactorR and #SETH.

To show a lower bound for X-AntiFactorR, it suffices to replace the simple vertices with set
B by an appropriate gadgets consisting of simple vertices with set X and complex vertices.

Modification of the Graph. Let a0, . . . , ah−1 and b0, . . . , bh−1 be the labels of the half-
induced matching of size h of X and U be the maximum over these labels. Let H be a
B-FactorR instance as stated in Lemma 5.7 with max B = h − 1.4 We replace each simple
vertex by the following gadget and keep the other vertices unchanged (see Figure 1).

By assumption, each simple vertex v is incident to 2(h − 1) edges which we can partition
into two sets of size h − 1 depending on their endpoints. We call these groups of edges the
left-external and right-external edges. We remove v and connect the left-external edges to a
new complex vertex vleft with relation Rleft. The right-external edges are connected similarly
to another new complex vertex vright with relation Rright. As a last step we create a new
simple vertex v′ with set X. We connect v′ by U (parallel) edges to vleft, call these edges the
left-internal edges, and by U parallel edges to vright, call these edges the right-internal edges.

The relation Rleft accepts if and only if, for some i ∈ [0, h − 1], exactly i left-external and
exactly ah−1−i left-internal edges are selected. Similarly, Rright accepts if and only if, for
some j ∈ [0, h − 1], exactly bj right-internal and exactly j right-external edges are selected.

We claim that the above replacement does not change the existence of solutions. For
this we show that the number of selected left-external edges plus the number of selected

4 It actually suffices to set B = {h − 1}.

IPEC 2022

22:12 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

right-external edges is at most h − 1 for each such modification. Then, by the properties in
Lemma 5.7, they sum to exactly h − 1 selected edges.

If i left-external edges are selected, then v′ is incident to ah−1−i selected left-internal
edges, by definition of Rleft. As Rright rejects when vright is incident to exactly k selected
right-internal edges where k ̸= bj for all j, vertex v′ must be incident to bj right-internal
edges for some j. By the definition of the half-induced matching we get ah−1−i + bj ∈ X if
j > h − 1 − i. Thus, some bh−1−i−i′ with h − 1 − i ≥ i′ ≥ 0 must be chosen. The relation
Rright maps the bh−1−i−i′ selected right-internal edges to h − 1 − i − i′ selected right-external
edges. Thus, the gadget is incident to i + (h − 1 − i − i′) = h − 1 − i′ ≤ h − 1 edges in total.

As v was only adjacent to complex vertices, we can merge the complex vertices vleft and
vright with the existing complex vertices and thus also the corresponding relations.

We analyze how the size and the pathwidth change. Replacing the simple vertices by
the gadget does not change the pathwidth of the graph but only increases the degree of the
complex vertices (due to the merging of the relations). Hence, ∆∗ increases to ∆∗ · U . As U

only depends on the set X, it can be bounded by f̂(max X) for some function f̂ .

Proof of Lemma 5.2 (Sketch). For a given B-FactorR instance with B = {h − 1}, apply
the above construction to obtain an X-AntiFactorR instance G. The total degree increases
only by a factor depending on X, which is a constant as X is fixed. When running the
claimed algorithm on G we contradict SETH by Lemma 5.7. ◀

6 Lower Bounds for the Counting Version

In this section we prove the two lower bounds for the counting version. While the lower
bound for the decision and maximization version of X-AntiFactor rely on half-induced
matching, we avoid this dependence for #X-AntiFactor by using interpolation techniques.
This allows us to show a tight lower bound compared to the running time of the algorithm
from Theorem 1.3. For the case when X = {0}, that is #EdgeCover, we show a completely
independent but also tight lower bound in the full version of this paper.

We also parameterize by the size of the set, i.e. by x. We design a new construction
to prove the #W[1]-hardness of #AntiFactorx, even if x = 1, when parameterizing by
treewidth. Hence, the problem is most likely not fixed-parameter tractable.

Both bounds use the same two-step approach as for the decision and optimization version;
we first show the hardness of an intermediate problem which uses arbitrary relations and
then remove these relations by a chain of reductions to obtain the actual lower bounds.

Parameterizing by the Maximum of the Set. We first show a lower bound for the
intermediate problem #X-AntiFactorR, which is the counting version of X-AntiFactorR.

▶ Lemma 6.1 (Lower Bound for #X-AntiFactorR). Let X ⊆ N be a fixed, non-empty and
finite set. Let fX : N → R+ be an arbitrary function that may depend on the set X.

For every constant ϵ > 0, there is no algorithm that can solve #X-AntiFactorR in
time (max X + 2 − ϵ)pw+fX (∆∗)nO(1), where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v), even if we are
given a path decomposition of width pw, unless #SETH fails.

We make use of the following lemma to remove the relations. We extend the definition of
(X, Y)-AntiFactor in the natural way to the counting version #(X, Y)-AntiFactor.

▶ Lemma 6.2. Let X ⊆ N be a finite set such that X ̸⊆ {0}. Let Y ⊆ N be arbitrary
(possibly be given as input).

D. Marx, G.S. Sankar, P. Schepper 22:13

There is a Turing reduction from #Y -AntiFactorR to #(X, Y)-AntiFactor increasing
the size from n to n·f(max X), decreasing ∆∗ to zero, and increasing pw to pw+∆∗ ·f(max X).

As for the decision version, the proof of this lemma is based on the reductions in [30] for
the counting version of B-Factor. The reduction makes use of the Holant framework
[8, 9, 20, 22, 24, 28] to formally relate the different steps of the reduction. See Appendix B
for the main ideas behind the proof.

Combining these two lemmas, we can prove the first lower bound for the counting version.

▶ Theorem 6.3 (Lower Bound for Counting Version I). Let X ⊆ N be a finite and fixed
set such that X ̸⊆ {0}. For every constant ϵ > 0, there is no algorithm that can solve
#X-AntiFactor in time (max X + 2 − ϵ)pwnO(1) even if we are given a path decomposition
of width pw, unless #SETH fails.

Proof (Sketch). After applying Lemma 6.2 where we set X = Y , the algorithm directly
contradicts #SETH by Lemma 6.1. ◀

Parameterizing by the Size of the Set. If we do not fix the set X but only the size of the
set, the decision and optimization version of AntiFactorx are still FPT parameterized by
treewidth. For #AntiFactorx the following result conditionally rules out such algorithms.

▶ Lemma 6.4. There exists a constant c such that there is no O(np−c) algorithm for
#AntiFactorR

1 on n-vertex graphs with ∆∗ ∈ O(1), even if only one set is used and we are
given a path decomposition of width p, unless #SETH is false.

Combined with Lemma 6.2 to remove the relations, we get the following hardness result.

▶ Theorem 6.5 (Lower Bound for Counting Version II). There exists a constant c such that
there is no O(np−c) algorithm for #AntiFactor1 on n-vertex graphs, even if we are given
a path decomposition of width p, unless #SETH is false.

Proof. Let G be a given #AntiFactorR
1 instance which uses just one set Y ⊆ N with

|Y | = 1. Use Lemma 6.2 with X = {2} to transform G into a #AntiFactor1 instance H.
The remaining part of the proof follows in a standard manner by using Lemma 6.4. ◀

We prove Lemma 6.4 by a reduction from the #W[1]-hard problem Counting Colorful
Hitting k-Sets. Hence, the following result holds by applying Lemma 6.2 as before.

▶ Theorem 6.6. #AntiFactor1 is #W[1]-hard.

6.1 High-level Construction for SETH Lower Bound
We show the hardness of #X-AntiFactorR by a reduction from #B-FactorR, that is, we
prove Lemma 6.1. As for the decision and optimization version, we mainly have to modify
the simple vertices to take care of the new set. We design this reduction in three steps.

The first step is a lower bound for the relation-weighted version of #X-AntiFactorR

(cf. Lemma 6.7). For this problem we assign each accepted input of a relation a weight.
Then an accepted input contributes by this weight to the solution. The weight of the
solution is the product of the weights of the relations. The unweighted problem can be
seen as assigning weight 1 to all accepted inputs and weight 0 to all rejected inputs.
Then in a second step we reduce this problem to the edge-weighted version where the
edges are assigned weights by which they contribute to the solution if they are selected
(cf. Lemma 6.8). Again, the weight of a solution is the product of the weights of the
selected edges.

IPEC 2022

22:14 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

The last step then removes these edge-weights by an appropriate Turing-reduction using
the technique of interpolation (cf. Lemma 6.9).

We use the Holant framework (cf. [8, 9, 20, 22, 24, 28]) to contextualize several versions
of #AntiFactor. In the Holant framework, we are given a signature graph Ω = (V, E),
where every edge e ∈ E has a weight we. Every vertex v ∈ V is labeled with a signature
fv : {0, 1}I(v) → Q, where I(v) is the incidence vector of edges incident to v. A solution is a
subset of edges such that the signature for each vertex is non-zero. The weight of a solution
is the product of the weights of all edges in the subset and the signatures of all the vertices.
Then the Holant of Ω is defined as the sum of the weights of all solutions.

Holant(Ω) =
∑

x∈{0,1}E(Ω)

∏
e∈x

we

∏
v∈V (Ω)

fv(x|I(v)).

The Holant problem is easily seen to be a weighted generalization of the counting versions
of GenFac and AntiFactor. For example, the problem #X-AntiFactor is a Holant
problem on unweighted graphs where every vertex has the following symmetric relation.

f(z) =

1 if hw(z) ̸∈ X

0 if hw(z) ∈ X

where hw(·) is the Hamming weight operator. We call vertices with such functions to be
HW∈X nodes.

For relations R1, . . . , Rk, we define Holant(R1, . . . , Rk) to be the set of Holant problems
where every edge is unweighted and every vertex has signature Rj for some j ∈ [k]. By an
abuse of notation also let Rj be a family of relations. For example, we may use Holant(HW=1)
when every vertex has relation HW(k)

=1 for some k.
The relation-weighted version of #X-AntiFactorR corresponds to a variant of the

Holant problem where all edges have weight 1. Likewise the edge-weighted version of #X-
AntiFactorR corresponds to a variant of the Holant problem where we require that the
value of the signatures is either 0 or 1, i.e. they accept or reject.

The Holant framework was extensively used in proving the #SETH lower bounds for
Counting Perfect Matchings [11] and Counting General Factors [30]. We make
use of some of their constructions to prove the following lower bound.

▶ Lemma 6.7. Let X ⊆ N be a fixed, non-empty and finite set. Let fX : N → R+ be an
arbitrary function that may depend on the set X.

For every constant ϵ > 0, there is no algorithm that can, even if we are given a path
decomposition of width pw, solve relation-weighted #X-AntiFactorR with (max X + 2)2

weights in time (max X + 2 − ϵ)pw+fX (∆∗)nO(1), where ∆∗ = maxbag B

∑
v∈B∩VC

deg(v),
unless #SETH fails.

We prove the lower bound by a reduction from #B-FactorR where B = {max X + 1}.
When treating the given #B-FactorR instance G as a #X-AntiFactorR instance H, all
solution of G are also a solution for H because of our choice of B. The converse is not true:
As X is finite (and thus the set of allowed degree is cofinite), the degree of the solutions for
H can be different from max X + 1 (possibly larger or even smaller). We construct a gadget
such that the number of selected incident edges is equal to max X + 1 and the solution is
also valid for the B-FactorR instance.

For this we add a weighted relation directly after the simple vertices. We choose the
weights such that the entire gadget behaves as the original vertex with set B. For this we
exploit the fact that the set X does not allow certain combinations of selected incident edges.

D. Marx, G.S. Sankar, P. Schepper 22:15

B

v̂

(a) The simple vertex be-
fore the modification.

X
α β γ

u

Rv

(b) The gadget resulting from
Lemma 6.7.

R′

u1 ur. . .

(c) The modifications of the complex ver-
tices from Lemma 6.8. The vertices ui are
assigned relation HW(1)

∈{1}.

Figure 2 The modifications of the vertices in the different steps of the reductions.

Proof of Lemma 6.7. We start with a #B-FactorR instance H as stated in Lemma 5.7
where B = {max X + 1} and apply the following transformation, illustrated in Figures 2a
and 2b, for each simple vertex v̂.

Transformation. By assumption, the incident edges of v̂ can be split into left and right
edges (depending on their endpoints). We remove v̂ and create a simple vertex v and a
complex vertex u. Connect the left edges to v and the right edges to u. We connect v and u

by max X + 1 parallel edges which we call middle edges.5 We assign the set X to v and the
relation R to u, which is defined as follows.

R requires that the selection of middle and right edges is monotone. That is the first
k edges are selected and the last max X + 1 − k edges are not selected. Then for all
β, γ ∈ [0, max X + 1], R accepts β middle and γ right edges with weight wβ,γ .

To define the weights wβ,γ , let g(α, γ) denote the signature of the whole gadget (including
v and u) when α left and γ right edges are selected. 6 Based on our construction we get:

g(α, γ) =
max X+1∑

β=0
β+α/∈X

wβ,γ .

To simulate the original simple vertex v̂ with set B = {max X + 1}, we need g(i, max X +
1 − i) = 1 for all i ∈ [0, max X + 1] and 0 otherwise. These constraints and the definition
of g describe a system of linear equations with (max X + 2)2 variables and equally many
constraints. Assuming that there always exists a solution, we can use Gaussian elimination
to compute the solution in time O(n3). Since the weights are chosen such that the remaining
graph does not see a difference between the vertex v̂ and this new gadget, we can replace all
simple vertices by this procedure to get a relation-weighted #X-AntiFactorR instance.

It remains to prove that such a solution always exists. For a fixed γ the values of
g(0, γ), . . . , g(max X + 1, γ) depend only on the weights w0,γ , . . . , wmax X+1,γ . Moreover,
these weights do not appear in the sum of any g(i, γ′) where γ′ ̸= γ. Hence, we can treat
each possible value of γ separately.

For a fixed γ, the sums for g(α, γ) and g(α + 1, γ) differ by (at least) one summand, i.e.
wmax X−α,γ . When starting with the sums for max X + 1 and max X, we can eliminate w0,γ

from the system of linear equations. Then we can repeat this process to eliminate w1,γ up to
wmax X+1,γ . Hence, there is a solution for a fixed γ.

5 Though these parallel edges disappear later, one could place EQ2 nodes on them to obtain a simple
graph.

6 Note that a signature is normally defined on subsets of edges. As we require the selection of the edges
to be monotonous, we also use “signature” to refer to g.

IPEC 2022

22:16 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

Lower Bound. Let G be the final #X-AntiFactorR instance. We have nG ≤ 2nH ,
∆∗

G ≤ 2∆∗
H , and pwG ≤ pwH + ∆∗

H . Assume we run a fast algorithm for relation-weighted
#X-AntiFactorR on the new instance. Then, one can easily check that this directly
contradicts #SETH by Lemma 5.7. ◀

The next step of our reduction removes the weights from the relations by using weighted
edges.

▶ Lemma 6.8. Let X ⊆ N be an arbitrary set (possibly given as input).
We can many-one reduce relation-weighted #X-AntiFactorR with r different weights

to edge-weighted #X-AntiFactorR such that
the r weights do not change,
the size increases by a multiplicative factor of O(r),
∆∗ increases to ∆∗ + r + 1,
and pw increases to pw + 1.

Proof. We apply the following procedure to each complex vertex u. See Figure 2c for the
modification. For this fix some u and let R be its relation. Let w1, . . . , wr′ be the r′ < r

different weights used by R. Assume w.l.o.g. that r′ = r.
For all i ∈ [r], we add a vertex ui with relation HW(1)

∈{0,1} and make it adjacent to v by an
edge of weight wi.

Based on R we design a new relation R′ as follows: Whenever R accepts the input x with
weight wi for some i ∈ [r], then R′ accepts x but additionally requires that the edge to ui is
selected while the edges to the other ui′ remain unselected.

One can easily check that this modification does not change the solution. Moreover, the
pathwidth increases by at most 1 and the degree of the complex nodes by at most r. ◀

In the next step of our reduction we remove the edge weights from the graph. First observe
that we do not have to change edges of weight 1. Furthermore, we can simply remove all
edges with weight 0.

▶ Lemma 6.9. Let X ⊆ N be a finite and non-empty set (possibly given as input). There
is a Turing reduction from edge-weighted #X-AntiFactorR with r different weights to
unweighted #X-AntiFactorR running in time nO(r). The reduction is such that

the size increases by a multiplicative factor of O(log2(n)),
the degree of the simple vertices stays the same,
∆∗ increases to ∆∗ + O(1),
and pw increases to pw + O(1).

The proof of the lemma uses the same interpolation techniques already used in [11] and later
in [30] to remove the edge weights. Now we can combine the previous steps and prove the
lower bound for #X-AntiFactorR.

Proof of Lemma 6.1 (Sketch). For a given relation-weighted #X-AntiFactorR instance
H we apply Lemmas 6.8 and 6.9 to obtain polynomially many #X-AntiFactor instances.
It is easy to check that a faster algorithm for #X-AntiFactorR would contradict #SETH
by Lemma 6.7. ◀

D. Marx, G.S. Sankar, P. Schepper 22:17

References
1 Akanksha Agrawal, Pallavi Jain, Lawqueen Kanesh, and Saket Saurabh. Parameterized

complexity of conflict-free matchings and paths. Algorithmica, 82(7):1939–1965, 2020. doi:
10.1007/s00453-020-00681-y.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021. doi:10.1137/1.9781611976465.32.

3 Hans L Bodlaender. Dynamic programming on graphs with bounded treewidth. In International
Colloquium on Automata, Languages, and Programming, pages 105–118. Springer, 1988.

4 Hans L Bodlaender. Treewidth: Algorithmic techniques and results. In International Sympo-
sium on Mathematical Foundations of Computer Science, pages 19–36. Springer, 1997.

5 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

6 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

7 Édouard Bonnet, Nick Brettell, O-joung Kwon, and Dániel Marx. Generalized feedback vertex
set problems on bounded-treewidth graphs: Chordality is the key to single-exponential parame-
terized algorithms. Algorithmica, 81(10):3890–3935, 2019. doi:10.1007/s00453-019-00579-4.

8 Jin-yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: Dichotomy
for Holantc problems. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors,
Algorithms and Computation - 21st International Symposium, ISAAC 2010, Jeju Island, Korea,
December 15-17, 2010, Proceedings, Part I, volume 6506 of Lecture Notes in Computer Science,
pages 253–265. Springer, 2010. doi:10.1007/978-3-642-17517-6_24.

9 Jin-yi Cai, Pinyan Lu, and Mingji Xia. A computational proof of complexity of some restricted
counting problems. Theor. Comput. Sci., 412(23):2468–2485, 2011. doi:10.1016/j.tcs.2010.
10.039.

10 Gérard Cornuéjols. General factors of graphs. J. Comb. Theory, Ser. B, 45(2):185–198, 1988.
doi:10.1016/0095-8956(88)90068-8.

11 Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer,
editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1650–1669. SIAM,
2016. doi:10.1137/1.9781611974331.ch113.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Víctor Dalmau and Daniel K. Ford. Generalized satisfability with limited occurrences per
variable: A study through delta-matroid parity. In Branislav Rovan and Peter Vojtás, editors,
Mathematical Foundations of Computer Science 2003, 28th International Symposium, MFCS
2003, Bratislava, Slovakia, August 25-29, 2003, Proceedings, volume 2747 of Lecture Notes in
Computer Science, pages 358–367. Springer, 2003. doi:10.1007/978-3-540-45138-9_30.

14 Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Exponential
time complexity of the permanent and the Tutte polynomial. ACM Trans. Algorithms,
10(4):21:1–21:32, 2014. doi:10.1145/2635812.

15 Szymon Dudycz and Katarzyna Paluch. Optimal general matchings. In Andreas Brandstädt,
Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in Computer Science -
44th International Workshop, WG 2018, Cottbus, Germany, June 27-29, 2018, Proceedings,
volume 11159 of Lecture Notes in Computer Science, pages 176–189. Springer, 2018. Full
version: arXiv:1706.07418. doi:10.1007/978-3-030-00256-5_15.

IPEC 2022

https://doi.org/10.1007/s00453-020-00681-y
https://doi.org/10.1007/s00453-020-00681-y
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1007/s00453-019-00579-4
https://doi.org/10.1007/978-3-642-17517-6_24
https://doi.org/10.1016/j.tcs.2010.10.039
https://doi.org/10.1016/j.tcs.2010.10.039
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-540-45138-9_30
https://doi.org/10.1145/2635812
http://arxiv.org/abs/1706.07418
https://doi.org/10.1007/978-3-030-00256-5_15

22:18 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

16 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
doi:10.4153/CJM-1965-045-4.

17 Eduard Eiben and Iyad Kanj. A colored path problem and its applications. ACM Trans.
Algorithms, 16(4):47:1–47:48, 2020. doi:10.1145/3396573.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
families of product families. ACM Trans. Algorithms, 13(3):36:1–36:29, 2017. doi:10.1145/
3039243.

20 Heng Guo and Pinyan Lu. On the complexity of holant problems. In Andrei A. Krokhin and
Stanislav Zivný, editors, The Constraint Satisfaction Problem: Complexity and Approximability,
volume 7 of Dagstuhl Follow-Ups, pages 159–177. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/DFU.Vol7.15301.6.

21 John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on computing, 2(4):225–231, 1973.

22 Sangxia Huang and Pinyan Lu. A dichotomy for real weighted holant problems. Comput.
Complex., 25(1):255–304, 2016. doi:10.1007/s00037-015-0118-3.

23 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

24 Michael Kowalczyk and Jin-Yi Cai. Holant problems for 3-regular graphs with complex edge
functions. Theory Comput. Syst., 59(1):133–158, 2016. doi:10.1007/s00224-016-9671-7.

25 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. J. ACM, 67(3):16:1–16:50, 2020. doi:10.1145/3390887.

26 L. Lovász and M. D. Plummer. Matching Theory. North-Holland Publishing Co., Amsterdam,
1986. Annals of Discrete Mathematics, 29.

27 László Lovász. The factorization of graphs. II. Acta Mathematica Hungarica, 23(1-2):223–246,
1972.

28 Pinyan Lu. Complexity dichotomies of counting problems. Electron. Colloquium Comput.
Complex., 18:93, 2011. URL: http://eccc.hpi-web.de/report/2011/093.

29 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized
by treewidth and list size (but counting is hard). CoRR, abs/2110.09369, 2021. URL:
https://arxiv.org/abs/2110.09369, arXiv:2110.09369.

30 Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity
results of general factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal,
Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual
Conference), volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021. Full version: arXiv:2105.08980. doi:10.4230/LIPIcs.ICALP.2021.95.

31 Dániel Marx and Paul Wollan. An exact characterization of tractable demand patterns for
maximum disjoint path problems. In Piotr Indyk, editor, Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 642–661. SIAM, 2015. doi:10.1137/1.9781611973730.44.

32 Silvio Micali and Vijay V. Vazirani. An O(sqrt(|v|) |E|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.12.

33 Burkhard Monien. How to find long paths efficiently. In Analysis and design of algorithms
for combinatorial problems (Udine, 1982), volume 109 of North-Holland Math. Stud., pages
239–254. North-Holland, Amsterdam, 1985.

34 András Sebö. General antifactors of graphs. J. Comb. Theory, Ser. B, 58(2):174–184, 1993.

https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1145/3396573
https://doi.org/10.1145/2886094
https://doi.org/10.1145/3039243
https://doi.org/10.1145/3039243
https://doi.org/10.4230/DFU.Vol7.15301.6
https://doi.org/10.1007/s00037-015-0118-3
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1007/s00224-016-9671-7
https://doi.org/10.1145/3390887
http://eccc.hpi-web.de/report/2011/093
https://arxiv.org/abs/2110.09369
http://arxiv.org/abs/2110.09369
http://arxiv.org/abs/2105.08980
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.1137/1.9781611973730.44
https://doi.org/10.1109/SFCS.1980.12

D. Marx, G.S. Sankar, P. Schepper 22:19

35 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
J. Comput. Syst. Sci., 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.11.008.

36 Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In
Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels,
and Algorithms - Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th
Birthday, volume 12160 of Lecture Notes in Computer Science, pages 262–297. Springer, 2020.
doi:10.1007/978-3-030-42071-0_18.

IPEC 2022

https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1007/978-3-030-42071-0_18

22:20 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

A Omitted Proofs from Section 4

We first proof that arithmetic progressions in the set of excluded degrees are sufficient to
obtain large half-induced matchings in the corresponding compatibility graph.

Proof of Lemma 4.2. Let a, a + d, a + 2d, . . . , a + (ℓ − 1)d ∈ X be an arithmetic progression
with d ≥ 1 such that a + ℓd ̸∈ X. We construct the following half-induced matching in CX

where, for all i ∈ [ℓ + 1], we set ai := d(i − 1) and bi := a + (ℓ + 1 − i)d.
Then for all i ∈ [ℓ + 1] we have ai + bi = d(i − 1) + a + (ℓ + 1 − i)d = a + ℓd ̸∈ X and hence

(ai, bi) ∈ E(CX). Similarly, for all i ∈ [ℓ] and all i < j ∈ [ℓ + 1], we have (ai, bj) ̸∈ E(CX)
because ai + bj = d(i − 1) + a + (ℓ + 1 − j)d = a + (ℓ + i − j)d ∈ X. ◀

Now we show the converse of the above result. That is, arithmetic progressions are necessary
to obtain large half-induced matchings.

Proof of Lemma 4.3. Let a1, . . . , aℓ+1 and b1, . . . , bℓ+1 be the vertices of the half-induced
matching of size ℓ + 1 in CX . Then we have the following constraints:

a1 + b2 ∈ X, a1 + b3 ∈ X, . . . , a1 + bℓ+1 ∈ X

a2 + b3 ∈ X, . . . , a2 + bℓ+1 ∈ X

Let X = {x1, x2, . . . , xℓ} where xi ≤ xi+1. From a1 + bj ̸= a1 + bj′ for any j ̸= j′, we get

{a1 + b2, a1 + b3, . . . , a1 + bℓ+1} = X.

Now consider the second set of constraints. Assuming a2 − a1 = d > 0, we have

{a2 + b3, a2 + b4, . . . , a2 + bℓ+1} = X \ {xi}

for some i. Since d > 0, we get xℓ + d /∈ X and thus

{x1 + d, x2 + d, x3 + d, . . . , xℓ−1 + d} = X \ {xi}.

Now further observe that x1 cannot belong to the left-hand side because d > 0 and x1 =
min(X). Thus, we have that i = 1. Similarly, when a2 − a1 = d < 0 we can argue that i = ℓ.
Without loss of generality consider the former case. Then we have that xi + d = xi+1 for all
i ∈ [ℓ]. Hence, X is an arithmetic progression of length ℓ. ◀

As the last part of this section, we prove Lemma 4.4 which states that a half-induced matching
implies a lower bound for the size of the representative set.

Proof of Lemma 4.4. We set the value of k later. Let the half-induced matching be between
A, B ⊆ N with A = {a1, . . . , aℓ}, B = {b1, . . . , bℓ}. Define indexing functions indA and
indB such that indA(ai) = indB(bi) = i. For s ∈ Ak, define indA(s) =

∑
i∈[k] indA(s[i]). We

partition Ak into sets Sq with q ∈ [ℓ · k] such that

Sq = {s ∈ Ak | indA(s) = q}.

Hence, there exists some q′ ∈ [ℓ · k] such that

|Sq′ | ≥ ℓk

ℓ · k
.

D. Marx, G.S. Sankar, P. Schepper 22:21

#Y -AntiFactorR

Holant(HW∈Y , HW∈X) Holant(HW∈Y , w[1, 1], w[−1, 1], w[0, 1])

Holant(HW∈Y , HW=1)

Holant(HW∈Y , HW∈X , w[−1, 1], w[0, 1])Holant(HW∈Y , HW∈X , w[0, 1])

Lemma B.1

Lemma B.2

Lemma B.3

Lemma B.3

Lemma B.3

Lemma B.5

Lemma 6.2

Figure 3 Steps in the chain of reductions from #Y -AntiFactorR to #(X, Y)-AntiFactor, i.e.
Holant(HW∈Y

, HW∈X
). Dotted lines indicate results obtained by combined reductions.

Let S = Sq′ be the set for which we want to lower bound the size of its representative sets. To
simplify notation, let q = q′. Consider some s ∈ S. We claim that s is the unique compatible
element for t ∈ Bk, where

t[i] = bindA(s[i]).

It is clear that s ∼k
CX

t. Suppose there is some other s′ ∈ S such that s′ ∼k
CX

t. Then
since indA(s) = indA(s′) = q and since s ̸= s′, there is some index j such that indA(s[j]) >

indA(s′[j]). The jth index of s′+t is aindA(s′[j])+bindA(s[j]) because s′[j] = aindA(s′[j]). However,
observe that this sum must be in X from the fact that there is a half-induced matching
between A, B in CX and indA(s[j]) > indA(s′[j]). This is a contradiction, implying that s

is the only compatible partner of t. Thus, s is forced to belong to any representative set
S ′ ⊆k

CX -rep S.
Since the above argument holds for all s ∈ S, we conclude that the only representative set

for S is itself. Now we set k to be large enough such that k log(ℓ − ϵ) ≤ k log(ℓ) − log(ℓ · k).
Then we have

|S| ≥ ℓk

ℓ · k
≥ (ℓ − ϵ)k. ◀

B Proof of Lemma 6.2: Removing Relations

In this section, we prove the reduction from #Y -AntiFactorR to #(X, Y)-AntiFactor,
i.e. Lemma 6.2, by a chain of reductions (cf. Figure 3). We make use of the Holant framework,
which was also used in [30], to formally state the results. The first step uses Lemmas 7.5
and 7.6 from [30]. Observe for this that the lemmas work for #B-Factor even when B

is co-finite, that is #B-AntiFactor because the simple vertices of the instance are not
changed in any way.

▶ Lemma B.1 (Lemma 7.5 and 7.6 in [30]). There is a polynomial-time Turing reduction
from #X-AntiFactorR to Holant(HW∈X , HW=1) such that the maximum degree increases to
at least 6 and the pathwidth increases by at most a constant depending only on ∆∗, i.e. the
maximum total degree of the complex nodes in any bag of the path decomposition.

▶ Note. Observe that Lemma 7.5 in [30] requires that the relation is even, i.e. the Hamming
weight of every accepted input is even. We can easily make every relation even by adding
an additional input that is selected whenever the parity of the original input is odd. This

IPEC 2022

22:22 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

additional input is then connected to a EQ1 node, which can easily be realized by forcing
max X + 1 edges to a fresh vertex using HW(1)

=1 nodes.
Before proceeding with the next steps, we define, for all x, y ∈ Z, w[x, y] as a new type of
node which has one dangling edge e and the following signature:

f(e) =

x if e is not selected
y if e is selected

.

Observe that HW(1)
=1 is precisely w[0, 1] and HW(1)

∈{0,1} corresponds to w[1, 1]. In the following
constructions we additionally use a w[−1, 1] node. We use the w[x, y] notation in the following
wherever possible.

▶ Lemma B.2. Let X ⊆ N be a finite set such that X ̸⊆ {0}. Let R1, . . . , Rd be d arbitrary
relations for some d ≥ 0. There is a polynomial-time Turing reduction from

Holant(R1, . . . , Rd, HW∈X , HW=1) to Holant(R1, . . . , Rd, HW∈X , w[1, 1], w[−1, 1], w[0, 1])

such that ∆∗ increases to ∆∗ · f(max X) and pw increases to pw + ∆∗ · f(max X).

The proof of the lemma is given in the full version [29] and uses three different gadgets
depending on X to realize HW=1. Next we show that we can realize w[x, y] nodes. In particular,
we can get the w[1, 1], w[−1, 1], and w[0, 1] nodes introduced by Lemma B.2.

▶ Lemma B.3. Let X ⊆ N be a fixed, finite set with X ̸⊆ {0}. Let R1, . . . , Rd be d arbitrary
relations for some d ≥ 0. The following holds for arbitrary values x, y. There is a polynomial-
time Turing reduction from Holant(R1, . . . , Rd, HW∈X , w[x, y]) to Holant(R1, . . . , Rd, HW∈X)
such that ∆∗ decreases and pw increases to pw + ∆∗ · f(max X).

Proof. We use Lemma 7.11 from [30] as our prototype. However, some arguments from their
proof do not follow in our case.

Let U be the set of w[x, y] nodes in the given graph G. Let Ai denotes the number of
possible solutions in G where for exactly i of the w[x, y] nodes the dangling edge is not
selected and for the other |U | − i nodes the dangling edge is selected. Then we have

Holant(G) =
|U |∑
i=0

Aix
iy|U |−i. (1)

We construct graphs Gd for a new parameter d from G where we replace each w[x, y] node
by a gadget Hd with exactly one dangling edge. The construction of Hd is given later as it
depends on X. Let h0(d) denote the number of solutions for Hd when the dangling edge is
not selected and h1(d) when the dangling edge is selected. Then we get

Holant(Gd) =
|U |∑
i=0

Aih0(d)ih1(d)|U |−i = h1(d)|U |
|U |∑
i=0

Ai

(
h0(d)
h1(d)

)i

.

Assume we can find at least |U | + 1 values for d such that for all values the ratios h0(d)/h1(d)
are pairwise different. After computing Holant(Gd) for these values of d we can recover the
value of each Ai. By Equation (1) we can finally output the value of Holant(G).

It remains to construct the gadgets Hd and to find the values for d. We later construct
the gadgets in a way such that there are constants F1, F2, and F3 only depending on X with

h0(d) := F0 · h0(d − 1) + F1 · h1(d − 1) h0(1) := F0

h1(d) := F1 · h0(d − 1) + F2 · h1(d − 1) h1(1) := F1.

D. Marx, G.S. Sankar, P. Schepper 22:23

z︷ ︸︸ ︷ z︷ ︸︸ ︷ z︷ ︸︸ ︷ z︷ ︸︸ ︷

Figure 4 Gadget to realize w[x, y] nodes in Case 1. Red nodes are HW(1)
∈{0,1} nodes.

Given these properties of Hd, we can use the following proposition to find sufficiently many
values for d. The proof is given in the full version [29].

▶ Proposition B.4 (Special Case of Proposition 7.7 in [30]). Given three constants F0, F1,
and F2 with F0F2 ̸= (F1)2 and F0, F1 ̸= 0. Let {An}n∈N, {Bn}n∈N be two sequences with[

An

Bn

]
= M ·

[
An−1
Bn−1

]
= Mn · U where M =

[
F0 F1
F1 F2

]
and U =

[
A0
B0

]
=
[

F0
F1

]
.

Then {An/Bn}n∈N is a sequence which does not contain any repetitions.

As a last step we construct the Hd gadgets.

Case 1: 0 ∈ X or 1 ̸∈ X. We first show how to get a HW(1)
∈{0,1} node.

If 0, 1 ̸∈ X, then any vertex with a dangling edge acts as a HW(1)
∈{0,1} node.

If 0 ∈ X, 1 ̸∈ X, then attach max X + 1 pendant vertices to any vertex v. Then v acts as
a HW(1)

∈{0,1} node.
If 0 ∈ X, 1 ∈ X, then take a clique of size min(X)+1. Split the edge between two vertices
into two dangling edges. This now acts as a HW(2)

=2 node. Attaching ⌈(max X + 1)/2⌉
many HW(2)

=2 nodes to a new vertex with one dangling edge gives us a HW(1)
∈{0,1} node.

Hd consists of a path of d vertices with a dangling edge on the first vertex. For an integer
z ≥ max X + 1 that we will choose later, attach z pendant HW(1)

∈{0,1} nodes to each vertex in
the path. See Figure 4 for an illustration. By this definition we get:

F0 =
∑

i≥0:i∈X

(
z

i

)
, F1 =

∑
i≥0:i+1∈X

(
z

i

)
, F2 =

∑
i≥0:i+2∈X

(
z

i

)
.

We claim that there is a z such that assumptions from Proposition B.4 hold. If we can
choose z larger than max X + 1, then F0, F1, and F2 are never equal to 0. Now suppose that
F0F2 = (F1)2. We will show a contradiction. We first expand the equations above. Then for
every z, ∑

i∈X

(
z

i

)
 ∑

i+2∈X

(
z

i

) =
(∑

i+1∈X

(
z

i

))2

2z −
∑
i∈X

(
z

i

)2z −
∑

i+2∈X

(
z

i

) =
(

2z −
∑

i+1∈X

(
z

i

))2

IPEC 2022

22:24 Anti-Factor is FPT Parameterized by Treewidth and List Size (but Counting is Hard)

which implies 2zQ1(z) = Q2(z), where

Q1(z) =

2
∑

i+1∈X

(
z

i

)
−
∑
i∈X

(
z

i

)
−
∑

i+2∈X

(
z

i

)
Q2(z) =

(∑
i+1∈X

(
z

i

))2

−

∑
i∈X

(
z

i

) ∑
i+2∈X

(
z

i

).

For large enough z, we argue that Q1(z) is not identically zero. Observe that the second
term in Q1(z) gives a non-zero zmax X monomial whereas the other two terms cannot give a
monomial of this degree. Now, since X is a fixed, finite set, Q1, Q2 are polynomials with
constant degree. Thus, Q1(z) is zero only for finitely many z. Hence, there are infinitely
many (positive) z such that Q1(z) is non-zero. For each such z we have

|2zQ1(z)| = |Q2(z)|.

This is immediately a contradiction since 2z = ω(zc) for any constant c if z is large enough.
Thus, there is some positive integral value of z such that F0F2 ≠ (F1)2. We use this value
of z in the construction of the gadget. Note that z only depends on X and can thus be
precomputed.

Case 2: 0 ̸∈ X, 1 ∈ X. In this case we do not use HW(1)
∈{0,1} nodes but EQ2 nodes, i.e.

HW(2)
∈{0,2} nodes, instead. We still attach z of these nodes by 2z edges to the vertices on the

path. Then the proof follows similarly to the previous case. The formal proof is given in the
full version [29]. ◀

▶ Lemma B.5. Let X ⊆ N be a fixed, finite set with X ̸⊆ {0}. Let R1, . . . , Rd be d arbitrary
relations for some d ≥ 0. There is a polynomial-time Turing reduction from

Holant(R1, . . . , Rd, HW∈X , w[1, 1], w[−1, 1], w[0, 1]) to Holant(R1, . . . , Rd, HW∈X)

such that ∆∗ decreases and pw increases to pw + ∆∗ · f(max X).

Proof. We first use Lemma B.3 to remove the w[1, 1] nodes. Observe that this can alterna-
tively be done by a simple construction using a fresh vertex with max X + 1 forced edges.
Then we apply the lemma two more times to remove the w[−1, 1] nodes and finally the
w[0, 1] nodes. ◀

Now we can prove the reduction from #Y -AntiFactorR to #(X, Y)-AntiFactor.

Proof of Lemma 6.2. By the reduction of Lemma B.1 we can reduce #Y -AntiFactorR

to Holant(HW∈Y , HW=1). This can trivially be reduced to Holant(HW∈Y , HW∈X , HW=1) as we
do not have any vertices with relation HW∈X . Then we invoke Lemmas B.2 and B.5 such
that the vertices with relation HW∈Y are not changed (or used for any construction). By
this we end the reduction with Holant(HW∈Y , HW∈X) which precisely corresponds to #(X, Y)-
AntiFactor. ◀

	1 Introduction
	2 Algorithms
	2.1 Parameterizing by the Number of Excluded Degrees
	2.1.1 Naive Algorithm
	2.1.2 Improving the Naive Algorithm

	3 Computing Representative Sets
	4 Half-Induced Matchings
	5 Lower Bounds for the Decision Version
	5.1 Replacing Finite Sets by Cofinite Sets

	6 Lower Bounds for the Counting Version
	6.1 High-level Construction for SETH Lower Bound

	A Omitted Proofs from Section 4
	B Proof of Lemma 6.2: Removing Relations

