
Tight Complexity Bounds for

Counting Generalized Dominating Sets in

Bounded-Treewidth Graphs

Abstract

We investigate how e�ciently a well-studied family of domination-type problems can be
solved on bounded-treewidth graphs. For sets σ, ρ of non-negative integers, a (σ, ρ)-set of a
graph G is a set S of vertices such that |N(u) ∩ S| ∈ σ for every u ∈ S, and |N(v) ∩ S| ∈ ρ for
every v ̸∈ S. The problem of �nding a (σ, ρ)-set (of a certain size) uni�es standard problems
such as Independent Set, Dominating Set, Independent Dominating Set, and many
others.

For almost all pairs of �nite or co�nite sets (σ, ρ), we determine (under standard complexity
assumptions) the best possible value cσ,ρ such that there is an algorithm that counts (σ, ρ)-sets
in time ctwσ,ρ · nO(1) (if a tree decomposition of width tw is given in the input). Let stop denote
the largest element of σ if σ is �nite, or the largest missing integer +1 if σ is co�nite; rtop is
de�ned analogously for ρ. Surprisingly, cσ,ρ is often signi�cantly smaller than the natural bound
stop + rtop + 2 achieved by existing algorithms [van Rooij, 2020]. Toward de�ning cσ,ρ, we say
that (σ, ρ) is m-structured if there is a pair (α, β) such that every integer in σ equals α mod m,
and every integer in ρ equals β mod m. Then, setting

� cσ,ρ = max{stop, rtop} + 1 if (σ, ρ) is m-structured for some m ≥ 3, or 2-structured with
stop ̸= rtop, or 2-structured with stop = rtop being odd,

� cσ,ρ = max{stop, rtop} + 2 if (σ, ρ) is 2-structured, but not m-structured for any m ≥ 3,
and stop = rtop is even, and

� cσ,ρ = stop + rtop + 2 if (σ, ρ) is not m-structured for any m ≥ 2,

we provide algorithms counting (σ, ρ)-sets in time ctwσ,ρ · nO(1). For example, for the Exact
Independent Dominating Set problem (also known as Perfect Code) corresponding to
σ = {0} and ρ = {1}, this improves the 3tw · nO(1) algorithm of van Rooij to 2tw · nO(1).

Despite the unusually delicate de�nition of cσ,ρ, we show that our algorithms are most likely
optimal, i.e., for any pair (σ, ρ) of �nite or co�nite sets where the problem is non-trivial (except
those having co�nite σ with ρ = Z≥0), and any ε > 0, a (cσ,ρ − ε)tw · nO(1)-algorithm count-
ing the number of (σ, ρ)-sets would violate the Counting Strong Exponential-Time Hypothesis
(#SETH). For �nite sets σ and ρ, our lower bounds also extend to the decision version, show-
ing that our algorithms are optimal in this setting as well. In contrast, for many co�nite sets,
we show that further signi�cant improvements for the decision and optimization versions are
possible using the technique of representative sets.

Contents

1 Introduction 1

2 Technical Overview 4

2.1 Faster Algorithms . 4
2.2 Lower Bounds . 9

3 Preliminaries 15

3.1 Basics . 15
3.2 Generalized Dominating Sets . 17

I Faster Algorithms 20

4 Faster Algorithms for Structured Pairs 20

4.1 Structural Insights into the m-Structured Case . 20
4.2 Exploiting Structure: Fast Join Operations . 29
4.3 Faster Algorithms for Generalized Dominating Set Problems 37

5 Faster Algorithms via Representative Sets 41

II Lower Bounds 48

6 High-level Constructions for Proving Lower Bounds for GenDomSet 48

6.1 Decision Problem . 50
6.2 Counting Problem . 51

7 Constructing Providers 52

7.1 Providers Having Either σ-States or ρ-States . 53
7.2 Providers Having σ-States Together with ρ-States 55

8 Constructing Managers 62

8.1 Proof of Lemma 8.4: A Blueprint for Managers . 65

9 Lower Bound for the Problem with Relations 69

9.1 Decision Problem . 69
9.2 Counting Problem . 78

10 Realizing Relations 82

10.1 Decision Problem . 82
10.2 Counting Problem . 89

1 Introduction

Since treewidth was de�ned independently in multiple equivalent ways in the 70s [7, 30, 44], algo-
rithms on bounded-treewidth graphs have been investigated for decades from di�erent viewpoints.
It was observed already in the 80s that many of the basic NP-hard problems can be solved e�ciently
on bounded-treewidth graphs using a dynamic programming approach [3, 6, 9]. Courcelle's Theo-
rem [16] formalized this observation for a large class of algorithmic problems de�nable in monadic
second-order logic. Algorithms on bounded-treewidth graphs were studied not only for their own
sake, but also because they served as useful tools in other algorithms, most notably for planar
problems and problems in the parameterized setting [4, 12, 20�22, 34].

Over the years, the focus shifted to trying to make the algorithms as e�cient as possible. For
example, given a tree decomposition of width tw, the Dominating Set problem can be solved
in time 3tw · nO(1) using dynamic programming and subset convolution, but this running time was
achieved only after multiple rounds of improvements [1, 8, 46, 50]. The search for more e�cient
algorithms is complemented by conditional lower bounds showing that certain forms of running times
are the best possible. For problems that can be solved in time ctw · nO(1), a line of research started
by Lokshtanov, Marx, and Saurabh [36] gives tight lower bounds on the best possible c appearing
in the running time [11, 18, 19, 23, 24, 33, 37, 41, 42]. For example, Lokshtanov et al. [36] showed
that 3tw · nO(1) is probably optimal for Dominating Set: assuming the Strong Exponential-Time
Hypothesis (SETH), there is no algorithm for Dominating Set that solves the problem in time
(3 − ε)tw · nO(1) for some ε > 0 if given a graph with a tree decomposition of width tw. The goal
of this paper is to try to prove similar tight bounds for a class of generalized domination problems.
Our �ndings show that, despite decades of intensive research, even very simple problems are poorly
understood, and one can �nd surprises even when looking at the simplest of problems.

Telle [45] introduced the notion of (σ, ρ)-sets as a common generalization of independent sets
and dominating sets. For sets σ, ρ of non-negative integers, a (σ, ρ)-set of a graph G is a set S of
vertices such that |N(u) ∩ S| ∈ σ for every u ∈ S, and |N(v) ∩ S| ∈ ρ for every v ̸∈ S. With
di�erent choices of σ and ρ, the problem of �nding a (σ, ρ)-set (of a certain size) can express various
well-studied algorithmic problems:

� σ = {0}, ρ = {0, 1, . . .}
Independent Set: �nd a set S of k vertices that are pairwise non-adjacent.

� σ = {0}, ρ = {0, 1}
Strong Independent Set: �nd a set S of k vertices that are pairwise at distance at least
2.

� σ = {0, 1, . . .}, ρ = {1, 2, . . .}
Dominating Set: �nd a set S of k vertices such that every remaining vertex has a neighbor
in S.

� σ = {0}, ρ = {1, 2, . . .}
Independent Dominating Set: �nd an independent set S of k vertices such that every
remaining vertex has a neighbor in S.

� σ = {0}, ρ = {1}
Exact Independent Dominating Set/Perfect Code: �nd an independent set S of k
vertices such that every remaining vertex has exactly one neighbor in S.

1

� σ = {1, 2, . . .}, ρ = {1, 2, . . .}
Total Dominating Set: �nd a set S of k vertices such that every vertex in the graph has
at least one neighbor in S.

� σ = {0, 1, . . .}, ρ = {1}
Perfect Dominating Set: �nd a set S of k vertices such that every remaining vertex has
exactly one neighbor in S.

� σ = {0, 1 . . . , d}, ρ = {0, 1, . . .}
Induced Bounded-Degree Subgraph: �nd a set S of k vertices that have at most d
neighbors in S.

� σ = {d}, ρ = {0, 1, . . .}
Induced d-Regular Subgraph: �nd a set S of k vertices that have exactly d neighbors in
S.

Problems related to �nding (σ, ρ)-sets received signi�cant attention both from the complexity
viewpoint and for demonstrating the robustness of algorithmic techniques [13�15, 25, 26, 29, 31,
32, 47�49]. Some authors call these types of problems locally checkable vertex subset problems
(LC-VSP).

For the case when each of σ and ρ is �nite or co�nite, van Rooij [48] presented a general technique
for �nding (σ, ρ)-sets on graphs of bounded treewidth. For a set σ of �nite or co�nite integers, we
write stop to denote the maximum element of σ if σ is �nite, and the maximum missing integer +1
if σ is co�nite; rtop is de�ned analogously based on ρ. When one tries to solve a problem in time
f(tw) · nO(1) on a graph with a given tree decomposition of width tw, and the goal is to make the
function f(tw) as slowly growing as possible, then typically there are two main bottlenecks: the
number of subproblems in the dynamic programming, and the e�cient handling of join nodes. It
was observed by van Rooij [48] that when we consider the problem of �nding a (σ, ρ)-set, then
each vertex in a partial solution has essentially stop + rtop + 2 states. For example, if a vertex is
unselected in a partial solution and ρ is �nite, then we need to distinguish between having exactly
0, 1, . . . , rtop neighbors in the partial solution, yielding rtop + 1 possibilities. If ρ is co�nite, then
when need to distinguish between having exactly 0, 1, . . . , rtop−1, or at least rtop neighbors (again
rtop + 1 possibilities). In a similar way, a selected vertex has stop + 1 di�erent states, giving a total
number of stop + rtop + 2 states for each vertex. This suggests that we need to consider about
(stop + rtop + 2)tw di�erent subproblems at each node of the tree decomposition. Furthermore, van
Rooij [48] showed that all these subproblems can be solved in time (stop+rtop+2)tw ·nO(1) by using
a fast generalized convolution algorithm in each step. The algorithm can be extended to require
a speci�c size for the set S, thus, allowing us to solve minimization/maximization problems or to
count the number of solutions.

Theorem 1.1 (van Rooij [48]). Let σ and ρ be two �nite or co�nite sets. Given a graph G with
a tree decomposition of width tw and an integer k, we can count the number of (σ, ρ)-sets of size
exactly k in time (stop + rtop + 2)tw · nO(1).

Is the upper bound in Theorem 1.1 optimal for every pair (σ, ρ)? In our �rst main result,
we show that there are pairs (σ, ρ) for which (stop + rtop + 2)tw overstates the number of possible
subproblems that we need to consider at each step of the dynamic programming algorithm. Together
with e�cient convolution techniques that we develop for this problem, it follows that there are pairs
(σ, ρ) for which the (stop + rtop + 2)tw · nO(1) algorithm is not optimal and can be improved.

2

To be more speci�c, we say that (σ, ρ) is m-structured if there is a pair (α, β) such that every
integer in σ is exactly α mod m, and every integer in ρ is exactly β mod m. For example, the
pairs ({0, 3}, {3}) and ({0, 3}, {1, 4}) are both 3-structured, but the pair ({0, 3}, {3, 4}) is not m-
structured for any m ≥ 2. Notice that if a set is co�nite, then it cannot be m-structured for any
m ≥ 2. Furthermore, if |σ| = |ρ| = 1, then (σ, ρ) is m-structured for every m.

De�nition 1.2. Let σ and ρ be two �nite or co�nite sets of non-negative integers. We de�ne cσ,ρ
by setting

� cσ,ρ = max{stop, rtop} + 1 if (σ, ρ) is m-structured for some m ≥ 3, or 2-structured with
stop ̸= rtop, or 2-structured with stop = rtop being odd,

� cσ,ρ = max{stop, rtop} + 2 if (σ, ρ) is 2-structured, but not m-structured for any m ≥ 3, and
stop = rtop is even, and

� cσ,ρ = stop + rtop + 2 if (σ, ρ) is not m-structured for any m ≥ 2.

For example, c{0,3},{3} = 4, c{0,3},{1,4} = 5, c{1,3},{4} = 5, and c{2,4},{4} = 6. Our main obser-
vation is that we need to consider only roughly (cσ,ρ)

tw subproblems at each step of the dynamic
programming algorithm: if (σ, ρ) is m-structured, then parity/linear algebra type of arguments show
that many of the subproblems cannot be solved.

Theorem 1.3. Let σ and ρ denote two �nite or co�nite sets. Given a graph G with a tree decom-
position of width tw and an integer k, we can count the number of (σ, ρ)-sets of size exactly k in
time (cσ,ρ)

tw · nO(1).

In particular, for Exact Independent Dominating Set (that is, σ = {0}, ρ = {1}), we
have stop + rtop + 2 = 3, while cσ,ρ = 2 as (σ, ρ) is 3-structured. Therefore, Theorem 1.1 gives a
3tw ·nO(1) time algorithm, which we improve to 2tw ·nO(1) by Theorem 1.3. This shows that despite
the decades-long interest in algorithms for bounded-treewidth graphs, there were new algorithmic
ideas to discover even for literally the simplest of the non-trivial (σ, ρ)-set problems.

The improvement from stop + rtop + 2 to cσ,ρ = max{stop, rtop}+ 1 in the base of the exponent
can be signi�cant, but one can say that Theorem 1.3 improves upon the algorithm of Theorem 1.1
in this way only in exceptional cases (and there is even an exception to the exception where the
improvement is only to cσ,ρ = max{stop, rtop}+2). One may suspect that further improvements are
possible, possibly leading to improvements that can be described in a more uniform way. However,
we show that the delicate nature of this improvement is not a shortcoming of our algorithmic
techniques, but inherent to the problem: for the counting version, cσ,ρ precisely characterizes the
best possible base of the exponent (except when σ is co�nite with ρ = Z≥0). For the following lower
bound, we need to exclude pairs (σ, ρ) where the problem is trivially solvable: we say that (σ, ρ) is
non-trivial if ρ ̸= {0}, and (σ, ρ) ̸= ({0, 1, . . .}, {0, 1, . . .}).
Theorem 1.4. Let (σ, ρ) denote a non-trivial pair of �nite or co�nite sets such that ρ ̸= Z≥0 or σ
is �nite. If there is an ε > 0 and an algorithm that counts in time (cσ,ρ − ε)tw · nO(1) the number of
(σ, ρ)-sets in a given graph with a given tree decomposition of width tw, then the Counting Strong-
Exponential Time Hypothesis (#SETH) fails.

The algorithm of Theorem 1.3 achieves its running time by considering roughly (cσ,ρ)
tw subprob-

lems at each node of the tree decomposition. The lower bound of Theorem 1.4 can be interpreted
as showing that at least that many subproblems really need to be considered by any algorithm that
solves the counting problem. Does this remain true for the decision version as well? For �nite σ
and ρ this is indeed the case and we obtain a matching lower bound.

3

Theorem 1.5. Let (σ, ρ) be a non-trivial pair of �nite sets (i.e., non-empty and 0 /∈ ρ). If there
is an ε > 0 and an algorithm that decides in time (cσ,ρ − ε)tw · nO(1) whether there is a (σ, ρ)-set
in a given graph with a given tree decomposition of width tw, then the Strong-Exponential Time
Hypothesis (SETH) fails.

Intriguingly, if at least one of σ or ρ is co�nite, the technique of representative sets [10, 27, 28,
39, 40, 43] can be used to signi�cantly reduce the number of subproblems that need to be considered
at each node. The main idea is that we do not need to solve every subproblem, but rather, we only
need a small representative set of partial solutions with the property that if there is a solution to the
whole instance, then there is one that extends a partial solution in our representative set. This idea
becomes relevant for example when σ or ρ is co�nite with only a few missing integers: then we do not
need a collection with every possible type of partial solution, but rather, we only need a collection
of partial solutions that can avoid a small list of forbidden degrees at every vertex. We formalize
this idea by presenting an algorithm where the base of the exponent does not depend on the largest
missing integer in the co�nite set, but depends only on the number of missing integers. We write
∅ ̸= τ ⊆ Z≥0 for a �nite or co�nite set. If τ is �nite, then we de�ne cost(τ) := max(τ). Otherwise,
τ is co�nite and we de�ne cost(τ) := |Z≥0 \ τ |. Further, let ω denote the matrix multiplication
exponent [2].

Theorem 1.6. Suppose σ, ρ ⊆ Z≥0 are �nite or co�nite. Also, set tcost := max{cost(ρ), cost(σ)}.
Then, there is an algorithm A that, given a graph G and a nice tree decomposition of G of width
tw, decides whether G has a (σ, ρ)-DomSet in time

2tw · (tcost + 1)tw(ω+1) · (tcost + tw)O(1) · |V (G)|.

While the algorithm of Theorem 1.3 can be signi�cantly more e�cient than the algorithm of
Theorem 1.6, it is unlikely to be tight in general, and it remains highly unclear what the best
possible running time should be. For a tight result, one would need to overcome at least two major
challenges: proving tight upper bounds on the size of representative sets, and understanding whether
they can be handled without using matrix-multiplication based methods.

2 Technical Overview

2.1 Faster Algorithms

We start with an overview on the techniques used to prove our algorithmic results. First, let us
turn to Theorem 1.3. With Theorem 1.1 in mind, it su�ces to consider the case where (σ, ρ) is
m-structured from some m ≥ 2.

2.1.1 Structured Sets

As hinted to earlier, our algorithms are based on the �dynamic programming on tree decompositions�
paradigm. Hence, let us �rst brie�y recall the de�nition of tree decompositions (see Section 3 for
more details). A tree decomposition of a graph G consists of a rooted tree T and a bag Xt for every
node t of T with the following properties:

1. every vertex v of G appears in at least one bag,

2. for every vertex v of G, the bags containing v correspond to a connected subtree of T , and

3. if two vertices of G are adjacent, then there is at least one bag containing both of them.

4

The width of a tree decomposition is the size of the largest bag minus one, and the treewidth of a
graph G is the smallest possible width of a tree decomposition of G. Further, for our exposition,
for a node t of T , we write Vt for the union of all bags Xt′ where t

′ is a descendant of t (including t
itself).

Let us also recall the most common structure of (dynamic programming) algorithms on tree
decompositions (of width tw). Typically, we de�ne suitable subproblems for each node t of the
decomposition, and then solve them in a bottom up way. In particular, we construct partial solutions
that we aim to extend into full solutions while moving up the tree decomposition. In order to fastly
identify which partial solutions can be extended to full solutions, we classify them into a (limited)
number of types: if two partial solutions have the same type and one has an extension into a full
solution, then the same extension would work for the other solution as well. Now, the subproblems
at node t correspond to computing which types of partial solutions are possible. Finally, we need
to argue that if we have solved every subproblem for every child t′ of t, then the subproblems at t
can be solved e�ciently as well.

For a more detailed description of how we implement said general approach, �rst suppose for
simplicity that both σ and ρ are �nite (in fact, this is always the case when (σ, ρ) is m-structured
from some m ≥ 2). Now, for us, a partial solution at a node t is a set S ⊆ Vt such that |N(u)∩S| ∈ σ
for every u ∈ S \Xt, and |N(v) ∩ S| ∈ ρ for every v ∈ Vt \ (S ∪Xt), that is, all vertices not in Xt

satisfy the σ constraints and ρ constraints, but the vertices in Xt may not. In particular, it may
happen that a vertex v ∈ Xt \ S does not yet have a correct number of selected neighbors, that is,
|N(v) ∩ S| /∈ ρ, since said vertex may receive additional selected neighbors that lie outside of Vt.

Now, two partial solutions S1, S2 ⊆ V (G) have the same type if

1. Xt ∩ S1 = Xt ∩ S2, and

2. |N(v) ∩ S1| = |N(v) ∩ S2| for all v ∈ Xt.

Indeed, in this situation, it is easy to verify that, for any S ⊆ V (G) \ Vt, we have that S ∪ S1 is a
(σ, ρ)-set if and only if S∪S2 is a (σ, ρ)-set. In other words, the type of a solution S is determined by
specifying, for each v ∈ Xt, whether v ∈ S and how many selected neighbors v has. Hence, we can
describe such a type by a string y ∈ AXt , where A = {σ0, . . . , σstop , ρ0, . . . , ρrtop}, that associates
with every v ∈ Xt a state y[v] ∈ A,

� where state σi means that v ∈ S and v has i selected neighbors, and

� where state ρj means that v /∈ S and v has j selected neighbors.

Observe that we can immediately dismiss partial solutions that assign too many selected neighbors
to a vertex (that is, for instance, a state σi for i > stop), since such partial solutions can never
be extended to a full solution (assuming σ is �nite; for co�nite σ all states σi, for i ≥ stop, are
equivalent). This gives a trivial upper bound of (stop + rtop + 2)tw+1 for the number of types; and
yields essentially the known algorithms.

However, it is highly unclear if said trivial upper bound is tight: is it really possible that
for every string y ∈ AXt there is some partial solution Sy that corresponds to y? In general,
this turns out to be indeed the case. Consider the classical Dominating Set problem (that is
ρ = {1, 2, . . . }, σ = {0, 1, 2, . . . }) and the following example. Suppose that for some bag Xt, each
of its vertices vi ∈ Xt has a single neighbor v′i ∈ Vt \ Xt, and suppose that all vertices v′⋆ share a
common vertex w ∈ Vt \Xt. Consult Figure 2.1 for a visualization of this example.

Now, for any string y ∈ AXt = {ρ0, ρ1, σ1}Xt , there is indeed a partial solution (select w, now
any selection of v′⋆ or v⋆ is a valid partial solution), that is, each string y ∈ AXt is indeed compatible

5

Vt

Xt

w

σ0 ρ0 ρ1 ρ0 σ0

Vt

Xt

w

ρ0 ρ0 ρ0 σ0 ρ0

Figure 2.1: For Dominating Set (where ρ = {1, 2, . . . }, σ = {0, 1, 2, . . . }), it is easy to construct
an example where any string y ∈ AXt = {ρ0, ρ1, σ1}Xt is compatible with t: we depict selected
vertices as encircled blue and unselected vertices without a selected neighbor as a hollow black
circle. Observe that after selecting w, any selection of the remaining vertices constitutes a valid
partial solution. Hence, there are 3|Xt| = (stop + rtop + 2)|Xt| compatible strings in this case.

with t. In particular, there are (stop + rtop +2)|Xt| = (0+ 1+ 2)|Xt| = 3|Xt| strings compatible with
t; for |Xt| = tw the trivial upper bound on the number of types is thus indeed tight.

In stark contrast to this rather unsatisfactory situation, we show that for m-structured (σ, ρ)
where m ≥ 2, indeed, not all (stop+rtop+2)tw+1 di�erent strings (or types) can be compatible with
t � we can then exploit this to obtain Theorem 1.3.

To upper-bound the number of compatible strings in said case, let us �rst decompose strings
y ∈ AXt into a σ-vector σ⃗(y) ∈ {0, 1}Xt , de�ned via σ⃗(y)[v] = 1 if y[v] = σc for some c, and a
weight vector w⃗(y) ∈ {0, . . . ,max(stop, rtop)}Xt , de�ned via w⃗(y)[v] = c if y[v] ∈ {σc, ρc}. Now,
our main structural insight reads as follows.

Lemma 2.1. Suppose (σ, ρ) is m-structured (for m ≥ 2). Let y, z ∈ AXt denote strings that are
compatible with t with witnesses Sy, Sz ⊆ Vt such that |Sy \Xt| ≡m |Sz \Xt|. Then, σ⃗(y) · w⃗(z) ≡m

σ⃗(z) · w⃗(y).

For an intuition for this lemma, let us move to the Exact Independent Dominating Set
(or Perfect Code) problem as a speci�c example which corresponds to σ = {0} and ρ = {1}.
Observe that ({0}, {1}) is indeed 2-structured. Consider two partial solutions Sy, Sz ⊆ Vt. (Also
consult Figure 2.2a for a visualization of an example.) Note that both Sy and Sz are independent
sets in G since σ = {0}. Now, let us count the edges between Sy and Sz. To that end, let us de�ne
Y0 as the set of vertices from Vt \ Sy that have no selected neighbor, and Y1 as the set of vertices
from Vt \Sy that have one selected neighbor (observe that Y0 ⊆ Xt). Observe that (Sy, Y0, Y1) forms
a partition of Vt. We de�ne Z0 and Z1 analogously for the partial solution Sz.

Now, every vertex in Sz ∩ Y0 has no neighbor in Sy, while every vertex in Sz ∩ Y1 has exactly
one neighbor in Sy. Recalling that vertices from Sz ∩ Sy have no neighbor in Sy (since Sy is
an independent set), the number of edges from Sz to Sy equals |Sz ∩ Y1|. Repeating the same
argument with reversed roles, we get that the number of edges from Sy to Sz equals |Sy ∩ Z1|. So
|Sz ∩ Y1| = |Sy ∩ Z1|. Assuming Xt = Vt, this condition is equivalent to σ⃗(y) · w⃗(z) = σ⃗(z) · w⃗(y).
To obtain the conclusion of the lemma also for Xt ̸= Vt, we use that |Sy \ Xt| ≡2 |Sz \ Xt| and
Y0, Z0 ⊆ Xt. Consult Figure 2.2b for a visualization of said proof sketch for the example from
Figure 2.2a.

Now, how can we use Lemma 2.1 to derive bounds on the number of compatible strings y ∈ AXt?
First, we partition the compatible strings into sets Li, for i ∈ [0 . .m − 1], where Li contains all
compatible strings y for which there is a partial solution Sy that satis�es |Sy \ Xt| ≡m i. Hence,

6

Vt

Xt

y ρ0 ρ0 ρ1 ρ0 σ0

Vt

Xt

z ρ1 σ0 ρ1 σ0 ρ0

(a) A bag Xt and the union Vt of the bags that are not above Xt. For ρ = {1}, σ = {0} (which are
2-structured) the strings y = ρ0ρ0ρ1ρ0σ0 and z = ρ1σ0ρ1σ0ρ0 are compatible with t; the vertices of the
corresponding partial solutions Sy and Sz are encircled in blue and purple (respectively); we depict unselected
vertices without selected neighbors as empty circles. We have |Sy \ Xt| = |Sz \ Xt| = 2 and σ⃗(y) · w⃗(z) =
(0, 0, 0, 0, 1) · (1, 0, 1, 0, 0) = 0 ≡2 0 = (0, 1, 0, 1, 0) · (0, 0, 1, 0, 0) = σ⃗(z) · w⃗(y).

Vt

Xt

Sy Y0 Y1

Sz

Z0

Z1

(b) The partial solutions Sy and Sz depicted at once. Observe that edges between a vertex vy ∈ Sy and
vz ∈ Sz are possible only if vy and vz have exactly one selected neighbor in the corresponding other partial
solution.

Figure 2.2: An example for partial solutions and edges between them for Perfect Code.

Lemma 2.1 yields that σ⃗(y) · w⃗(z) ≡m σ⃗(z) · w⃗(y) for all y, z ∈ Li. We then show that |Li| ≤ c
|Xt|
σ,ρ

for all i ∈ [0 . .m− 1] by using arguments that have a linear-algebra �avor. For the case σ = {0}
and ρ = {1}, we for example obtain that |Li| ≤ 2|Xt|. On a high level, our intuition here is that
the condition σ⃗(y) · w⃗(z) ≡m σ⃗(z) · w⃗(y) says that the set of σ-vectors is in some sense �orthogonal�
to the set of weight-vectors. More precisely, it turns out that we can partition the set Xt = A ⊎B
such that

� A determines the σ-vectors of Li, that is, �xing all positions v ∈ A of a σ-vector s⃗ completely
determines s⃗, and

� B determines the weight-vectors modulo m for every �xed σ-vector, that is, �xing all positions
v ∈ B of a weight-vector that appears together with a �xed σ-vector s⃗, determines all positions
of the weight vector modulo m.

For example, for σ = {0} and ρ = {1}, this implies that |Li| ≤ 2|A| · 2|B| = 2|Xt|. Indeed, there
are 2|A| many potential σ-vectors s⃗, and, for every �xed s⃗, we have 2|B| options for choosing the
weight vector modulo 2. Since max(stop, rtop) ≤ 1, determining the weight vector modulo 2 actually
completely determines the weight vector, and so the upper bound follows.

For m ≥ 3, the largest number of types can generally be achieved when A = ∅, since, intuitively
speaking, in comparison to the trivial upper bound, we roughly save a factor of m|A| · 2|B|. In this

7

case, it is easy to see that |Li| ≤ (max{stop, rtop}+1)|Xt| since we have that many choices for weight
vectors. It may be tempting to believe that the same holds for m = 2 (since here, it does not seem
to matter how we choose A). However, there is one notable exception when stop = rtop is even. In
this case, the language

L∗ := {y ∈ AXt | w⃗(y)[v] ≡m 0 for all v ∈ Xt}

has size |L∗| = (⌊rtop/m⌋ + ⌊stop/m⌋ + 2)|Xt| = (max{stop, rtop} + 2)|Xt| which explains why this
case stands out in De�nition 1.2. Note that for L∗ we need to choose A = Xt and B = ∅.

Overall, we obtain that the number of compatible strings is bounded by O(c
|Xt|
σ,ρ). With our

improved bound at hand, we can now obtain improved dynamic programming algorithms.
At this point, however, we face a second challenge. When performing dynamic programming

along a tree decomposition, the most expensive step is to perform a join operation. In this situation,
the current node t has exactly two children t1 and t2 andXt = Xt1 = Xt2 . In [48], van Rooij provides
various convolution-based methods to e�ciently compute the set of compatible strings for t given the
sets of compatible strings for t1 and t2. We wish to apply the same methods, but unfortunately this
is not directly possible since the convolution-based methods are not designed to handle restrictions
of the input space. To circumvent this issue, our solution is to design a specialized compression
method that again exploits the structure described above. With the partition (A,B) of Xt at hand,
this seems rather straightforward by simply omitting the redundant information. However, the crux
is that we need to design the compression in such a way that it agrees with the join operation: two
compatible strings y1 and y2 for t1 and t2 can be joined into a compatible string y for t if and only if
the compressed strings y′1 and y

′
2 can be joined into the compressed string y′. This condition makes

the compression surprisingly tricky, and here we need to add several �checksums� to the compressed
strings to ensure the required equivalence.

2.1.2 Representative Sets

The algorithm described above determined, for every node t and string y ∈ AXt , whether there is
a partial solution S ⊆ Vt that has type y. Our lower bounds show that this strategy is essentially
optimal when we want to count the number of solutions. But, for the decision version, the idea of
representative sets can give signi�cant improvements in some cases.

As an illustrative example, let us consider the problem with σ = {0}, ρ = Z≥0 \ {10}, and
suppose that Xt = {v}. Then, the partial solutions S ⊆ Vt have rtop+ stop+2 = 13 di�erent types:
either v ∈ S has 0 neighbors in S, or v ̸∈ S and v has 0, 1, . . . , 10, or ≥ 11 neighbors in S. However,
we do not need to know exactly which of these types correspond to partial solutions. A smaller
amount of information is already su�cient to decide if there is a partial solution that is compatible
with some extension S′ ⊆ V (G) \ Vt. For example, if we have partial solutions that correspond to,
say, the σ0, ρ7, and ρ8 states, then every extension S′ that extends some partial solution S ⊆ Vt
extends one of these three partial solutions. Indeed, suppose that v ̸∈ S and extension S′ gives i
further neighbors to v, then S can be replaced by a partial solution corresponding to the ρ7 state
unless i = 3, in which case S can be replaced by the solution corresponding to ρ8.

In general, we want to compute a representative set of all the partial solutions of Vt such that
if there is one partial solution that is extended by some set S′ ⊆ V (G) \ Vt, then there is at least
one partial solution in the representative set that is extendable by S′. When |Xt| > 1, then it is far
from trivial to obtain upper bounds on the size of the required representative sets and to compute
them e�ciently. Earlier work [38] showed a connection between these type of representative sets
and representative sets in linear matroids, and hence, known algebraic techniques can be used
[27, 28, 35]. The upper bounds depend on the number of missing integers from the co�nite sets,

8

but do not depend on the largest missing element. Thus, this technique is particularly e�cient
when a few large integers are missing from ρ or σ. However, the price we have to pay is that the
algebraic techniques require matrix operations and the matrix multiplication exponent ω appears
in the exponent of the running time. This makes it unlikely that we can get tight upper bounds
similar to Theorem 1.4.

2.2 Lower Bounds

Next, we give an overview of the techniques used to prove our lower bound results.

2.2.1 Hardness for Relation Problems

For the lower bounds, we follow the ideas of previous lower bounds [18, 36, 37] given for problems
parameterized by treewidth. We present a reduction from SAT to (σ, ρ)-DomSet by constructing a
graph which has �small� treewidth. Instead of giving a direct reduction, we split it in two parts. The
�rst part shows a lower bound for the intermediate problem (σ, ρ)-Dominating Set w. Relations
((σ, ρ)-DomSetRel) which extends the (σ, ρ)-DomSet problem by the possibility of having special
(complex) vertices to which a relation is assigned. These vertices are never selected and instead of
requiring the number of selected neighbors to be in ρ, they enforce a relation on their neighborhood.
The second step then considers the problem of removing these relations. For now we just consider
the variant with relations, i.e., (σ, ρ)-DomSetRel.

Naive and Improved Construction. We �rst recap the naive approach and its downsides.
There the graph of the (σ, ρ)-DomSetRel instance has a grid-like structure with one column for
each clause of the SAT formula, and one row for each variable of the formula, where each edge in
each row is subdivided by an information vertex. The crossing points of the grid are relations which
check whether the corresponding clause is satis�ed by the assignments which is encoded by the
selection status of the information vertex. This information is then propagated to the relation in
the next row. As the assignment is only encoded by two states of the information vertices (selected
or not), this approach could only give a lower bound of (2− ε)tw.

To obtain better lower bounds of the form (|A| − ε)tw, we need more states for the information
vertices than only �selected� or �unselected�, which we may write as σ0 and ρ0. Especially, we need
to be able to add neighbors to these information vertices from the left, but also from the right side.
Instead of using only the states σ0 and ρ0, we want to use the remaining states in A as well. We
later explain why this is actually not always possible.

Before we describe it in more detail, see Figure 2.3 for an illustration of the improved con-
struction. Assuming we can use all these states, we partition the variables into n/ log(|A|) groups
of size log(|A|) each.1 By this choice, there is a one-to-one correspondence between assignments
to each group and the states in A. Similarly to the naive approach, the constructed graph has a
grid-like structure with m columns, each corresponding to one clause of the SAT formula, but only
n/ log(|A|) many rows, each corresponding to one group of variables. Moreover, at the crossing
points of rows and columns, we have relations which check that the assignment satis�es the clause.
The most notable di�erence is the neighborhood of the information vertices which we place between
two crossing points in the grid. Let wj

i be the information vertex with the crossing between the ith
row and jth column to its left and the crossing between the ith row and j+1th column to its right.
Each such information vertex gets max{stop, rtop} neighbors on the left and the same number of

1For ease of presentation, we ignore rounding and parity issues here, which can be resolved by partitioning into a
somewhat smaller number of somewhat larger groups.

9

neighbors to the right. The state of an information vertex is determined by its selection status and
the number of selected neighbors to its left. As mentioned above, this state encodes the assignment
for the corresponding group of variables. In each column, we connect two relations exactly when
they are assigned to two neighboring crossing points, that is, they share an edge between them.

For the basic idea, it su�ces to think of σ, ρ as being �nite and just containing one element.
For example, let σ = {4} and ρ = {3}. Whenever the information vertex wj

i is selected and has ℓ
selected neighbors to the left, it must have stop − ℓ = 4− ℓ selected neighbors on the right because
of the constraints imposed by σ. The relation at crossing point (i, j + 1) is de�ned such that the
next information vertex wj+1

i gets ℓ selected neighbors from the left. By de�ning all relations which
we assign to crossing points in this way, all information vertices of one row get the same number
of neighbors from the left. Hence, they can encode the same assignment. The same arguments
work for the case when wj

i is not selected, but then w
j
i must have rtop − ℓ = 3− ℓ neighbors to the

right if it has ℓ neighbors to the left. As the behavior of the relation depends on the information
vertices, they are additionally connected to the information vertices and not only their neighbors
toward the relation. To ensure that clauses that are initially unsatis�ed are eventually satis�ed, we
add corresponding relations to the �rst and last row of the graph.

Observe that the information vertices of one column cut the graph in two halves. Hence, the
treewidth of the graph can be bounded by the number of rows plus some constant which takes care
of the relations and other vertices. Moreover, when we cut the graph at the information vertices
of one column, we get a direct correspondence to the results from the upper bound. Indeed, the
states the information vertices might get in a solution precisely correspond to the strings in the
language compatible with the graph. Consequently, for each such set of information vertices, the
number of states they can have is trivially upper-bounded by |A|tw+1. However, as we have seen in
Section 2.1, the number of states that can actually appear is often much smaller (i.e., when (σ, ρ)
is m-structured). In such a case, we can only hand over states from a suitable subset A ⊆ A to the
information vertices, and we get a weaker lower bound of only (|A| − ε)tw. The entire reduction
is presented in Section 9 and stated formally in Lemma 6.5 for the decision version. Afterwards,
we extend the results to the counting version of the problem, denoted by (σ, ρ)-#DomSetRel,
in Lemma 6.8.

Di�culties in the Construction. Observe that the information vertices are always happy;
if there are ℓ selected vertices on the left, then we can select stop− ℓ or rtop− ℓ vertices on the right
depending on whether the information vertex is selected or not, respectively. However, the previous
construction ignores a very subtle but surprisingly crucial issue; the neighbors of the information
vertices also have to be happy, that is, they must get a feasible number of selected neighbors to
satisfy the σ- or ρ-constraints. It turns out that this is not always possible while simultaneously
being able to give all states to the information vertices. Instead, depending on (σ, ρ), as we already
indicated above, we have to restrict the states for the information vertices to be able to make their
neighbors happy. Note that this property is crucially needed as otherwise no solution exists. When
proving the lower bound, we de�ne, for each case mentioned in De�nition 1.2, a manager gadget
by which we achieve the mentioned bound. The formal introduction of these gadgets and their
construction is given in Section 8.

Handling General Co�nite Sets. The basic idea of the hardness result for (σ, ρ)-Dom-
SetRel is easiest to understand when each of σ and ρ contains only a single integer. Then, an
information vertex really transfers information: its selection status and the number of neighbors on
the left uniquely determine the number of neighbors on the right. We can interpret a selected vertex

10

1

w3
4

w1
2

R
3 1

R
4 1

R
3 1

w1
1

w1
3

w1
4 w4

4

w4
1

w4
2

w2
1

w4
3

w3
1

w2
4

unsat unsat unsat

sat satsat

R
4 4

R
2 4

R
2 1

sat sat

unsat unsat

R
1 1

R
1 4

R
5 4

R
5 1

Figure 2.3: The �gure illustrates the construction for the lower bound given a SAT formula with
�ve clauses, depicted as columns, and variables which are grouped into four groups, depicted as
rows. The relations Rj

i check if the assignment for the ith group satis�es the jth clause.

as a requirement �= stop� on the number of neighbors. With some changes, the argument can be
made to work with arbitrary �nite σ: such a set enforces a requirement stronger than �≤ stop�.
Similarly, if σ is simple co�nite, that is, σ = {stop, . . . , }, then σ enforces exactly �≥ stop�. However,
an arbitrary co�nite set enforces a requirement weaker than �≥ stop�, which is not useful for our
purposes.

We handle general co�nite sets by presenting a reduction from simple co�nite sets. In particular,
suppose that σ is co�nite; then we reduce from the case where σ′ = {stop, . . . }. As we shall see,
the reduction relies heavily on the counting nature of the problem. Given a graph G, the reduction
creates a graph G′ by attaching to each vertex v a certain gadget with the following properties:

� If v is unselected, then the gadget has a unique extension, which does not give any additional
neighbors to v.

� If v is selected, then every extension of the gadget provides at most stop new neighbors to v.

� If v is selected, then the gadget has di extensions that provide i new neighbors to v.

Given the numbers d0, . . . , dstop , it is not very di�cult to use the relations to construct a gadget
with exactly these types and number of extensions.

Let us consider σ = {1, 3, 4, 6, 7, . . . } as an illustrative example, and suppose for simplicity that
we attached such a gadget only to a single vertex v. Consider now partial solutions of the original
graph G where every vertex satis�es the requirements, except potentially v. Suppose that v has
0 neighbors in a partial solution; it needs 1, 3, 4, or at least 6 further neighbors to satisfy the σ
constraint. Therefore, the gadget has exactly d1 + d3 + d4 + d6 extensions where the degree of v
becomes a member of σ. Similarly, if v already has one neighbor in the partial solution, then it

11

needs 0, 2, 3, or at least 5 neighbors and thus, the gadget has exactly d0+d2+d3+d5+d6 extensions
where v satis�es the degree condition, and so on.

We would like to build a gadget where the integers di are chosen in such a way that the gadget has
exactly 1 (or some other constant) extension if v already has at least 6 neighbors, and 0 extensions
if v has less than 6 neighbors. If we can build such a gadget, then we can e�ectively force that v
has at least 6 neighbors. Based on the discussion above, the di's have to be chosen such that they
satisfy the following system of equations:

0 1 0 1 1 0 1
1 0 1 1 0 1 1
0 1 1 0 1 1 1
1 1 0 1 1 1 1
1 0 1 1 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 1 1

·

d0
d1
d2
d3
d4
d5
d6

=

0
0
0
0
0
0
1

One can observe that the coe�cient matrix has a form that guarantees that it is non-singular: every
element on or below the codiagonal is 1, while every element one row above the codiagonal is 0.
Therefore, the system of equations has a solution, so we could construct the appropriate gadget.
The catch is, however, that some of the di's could be negative, making it impossible to have a
gadget with exactly that many extensions. We can solve this issue in the following way: if di is
negative, then we design the gadget to have 2x · |di| extensions, where x is some parameter of the
construction. If we attach such gadgets to every vertex, then it can be observed that the number
of solutions is a polynomial in y = 2x. We can recover the coe�cients of this polynomial using
interpolation techniques. Then, we evaluate the polynomial at y = −1, which then will simulate
exactly di extensions.

2.2.2 Realizing Relations

The remaining step to complete the lower bound is to remove the relations.

Relations for the Decision Problem. For the decision version, in order to establish The-
orem 1.5, we follow previous approaches [18, 37], and �rst realize very speci�c relations such as
the �Hamming Weight One� relation and the �Equality� relation. In a second step, we use these
relations to design graphs which behave exactly like arbitrarily complex relations. The �nal step for
the lower bound in the decision version is to replace the relations by these graphs. As the realization
of relations again depends on σ and ρ, we only give the lower bounds when both sets are �nite.

Relations for the Counting Problem. To reduce (σ, ρ)-#DomSetRel to (σ, ρ)-#DomSet,
it will be convenient to introduce a natural generalization of the problem where not necessarily every
vertex has the same constraint (σ, ρ). Instead, we have an additional set P of pairs and the input
contains a mapping specifying for every vertex if it is constrained by (σ, ρ) or by some other pair in
P. For a �xed set P of pairs, we denote by (σ, ρ)-#DomSetP this extension. As the �rst step of
the proof, we show that if

� (∅, {1}) ∈ P,

� (∅, {0, 1}) ∈ P, or

� (∅,Z≥1) ∈ P,

12

(σ, ρ)-#DomSetRel

(σ, ρ)-#DomSetHW=1

Lemma 10.14

(σ, ρ)-#DomSetHW≥1L
em

m
a
10.18

(σ, ρ)-#DomSet(∅,{1})

Lemma 10.16

(σ, ρ)-#DomSet(∅,{0,1}

Lemma 10.17

(σ, ρ)-#DomSet(∅,Z≥1)

Lemma 10.19

(σ, ρ)-#DomSet({0},Z≥0)

Lemma 10.20

ρ �nite ∧ rtop − 1 /∈ ρρ �nite ∧ rtop − 1 ∈ ρ ρ co�nite ∧ ρ ̸= Z≥0 ρ = Z≥0 ∧ σ �nite

Lemma 10.11 (σ, ρ)-#DomSet(σ,∅)

Lemmas 10.22 and 10.23

(σ, ρ)-#DomSet(σ,∅)+(∅,ρ)

(σ, ρ)-#DomSet

Lemma 10.12

Lemma 10.21

Figure 2.4: The reductions for the counting version to remove the relations. The inital starting
problem is (σ, ρ)-#DomSetRel.

then (σ, ρ)-#DomSetRel can be reduced to (σ, ρ)-#DomSetP in a treewidth-preserving way. The
proof utilizes the realization of the relations (as in the decision problem) using �Hamming Weight
One� relations, and then simulating this relation using one of the three pairs listed above. Then,
the main part of the proof is to show that, for every (σ, ρ) pair we consider, one of the three pairs
can be simulated with the (σ, ρ)-#DomSet problem, see Figure 2.4.

Toward this goal, we simulate some number of other pairs. A key intermediate goal is to �force
a vertex to be unselected�, that is, to simulate an (∅, ρ) vertex. Similarly, another important goal
is to �force a vertex to be selected� by simulating a (σ,∅) vertex. Now, let us do the following:

� introduce rtop − 1 cliques, each consisting of smin + 1 vertices of type (σ,∅)

� introduce one vertex v of type (∅, ρ), adjacent to one vertex in each clique.

The vertex v can be considered as an always unselected vertex that already has rtop − 1 extra
neighbors, that is, ρ is �shifted down� by rtop − 1. Then, depending on whether ρ is co�nite, �nite
with rtop−1 ∈ ρ or �nite with rtop−1 ̸∈ ρ, the vertex v e�ectively becomes an (∅,Z≥1), (∅, {0, 1}),
or (∅, {1}) vertex, respectively.

In the rest of this section, we highlight some of the technical ideas behind the simulation of
(∅, ρ) and (σ,∅) vertices. The following notation will be convenient for the description. Let G be a
gadget with a single portal vertex v. We denote by extG(ρi) the number of partial solutions S of G
where every vertex except v satis�es the constraints, v ̸∈ S, and v has exactly i neighbors in S. The
de�nition of extG(σi) is analogous with v ∈ S. The proof proceeds by constructing gadgets where
the numbers of extensions satisfy certain properties. Let us assume �rst that σ and ρ are �nite.

Step 1. First, we construct G1 with extG1(ρ0), extG1(ρ1) ≥ 1, but extG1(ρi) = 0 for i ≥ 2. The
construction is easy: the graph consists of a portal vertex v, and two sets of vertices X, Y with a
single edge between X and v. All we need to ensure is that both X and Y are solutions, which can
be ensured by having degree stop inside X and Y , and degree rtop between X and Y .

13

Step 2. Next, we want to construct a graph G2 where extG2(ρ0) and extG2(σ0) are both at least
one, but di�erent. In other words, the choice of selecting/not selecting the portal v in�uences the
number of extensions in the gadget where the neighbors of the portal are not selected. Intuitively,
this should be the case for most graphs, but to �nd a graph where this is provably so, we argue in
the following way. Take x copies of the G1 gadget de�ned above, and identify their portal vertices
into a single vertex w. The portal of G2 is a new vertex v adjacent to w. The number extG2(ρ0)
corresponds to partial solutions S where v, w ̸∈ S. Then, each copy of G1 has extG1(ρ1) extensions
that add a new neighbor to w and extG1(ρ0) extensions that do not. These extra neighbors should
satisfy the constraint given by ρ on w. Therefore, we have

extG2(ρ0) =
∑
i∈ρ

(
x

i

)
extG1(ρ1)

i extG1(ρ0)
x−i.

The expression for extG2(σ0) is similar, but counts partial solutions containing v, giving an extra
selected neighbor to w. Thus,

extG2(σ0) =
∑
i+1∈ρ

(
x

i

)
extG1(ρ1)

i extG1(ρ0)
x−i.

Observe that dividing both expressions by extG1(ρ0)
x gives two polynomials in x, where the �rst one

has degree rtop, and the second one rtop − 1. Thus, there has to be an x where they are di�erent.

Step 3. The next step is to implement a vertex (∅, {0}), that is, a vertex that cannot be selected
and should not get any neighbors. This can be used to force any number of other vertices to be
unselected. We construct a gadget G3 by creating x copies of G2 and identifying their portal vertices
into a single portal vertex. Suppose that we extend a graph G to a graph G′ by identifying the
portal of G3 with a vertex v ∈ V (G). Let ad be the number of partial solutions in G where v is
unselected and has exactly d selected neighbors; bd is de�ned similarly for v being selected. Now
the number of solutions in G′ is

rtop∑
d=0

ad
∑

i+d∈ρ

(
x

i

)
extG2(ρ1)

i extG2(ρ0)
x−i

︸ ︷︷ ︸
A:=

+

stop∑
d=0

bd
∑

i+d∈ρ

(
x

i

)
extG2(σ1)

i extG2(σ0)
x−i

︸ ︷︷ ︸
B:=

The important observation here is that extG2(ρ0) ̸= extG2(σ0) implies that the two terms A and
B above have very di�erent orders of magnitude. Assume that extG2(ρ0) < extG2(σ0) (the other case
is similar). Then, A is roughly at most 2|V (G)| · extG2(ρ0)

x, while B is divisible by extG2(σ0)
x−rtop ,

which is much larger for su�ciently large values of x. Therefore, if we compute A + B modulo
extG2(σ0)

x−rtop , then B vanishes and we can recover A.
Dividing A by extG2(ρ0)

x ̸= 0 gives a polynomial in x of degree rtop, whose coe�cients we
can recover using interpolation. (For simplicity, we assume here that extG2(ρ1) ̸= 0; otherwise, we
treat it as a separate case). Observe that only d = 0 contributes a term xrtop , and thus, from the
coe�cient of xrtop we can recover the value of a0. This counts the number of partial solutions where
v is not selected and has no neighbors, that is, it simulates an (∅, {0}) vertex, as we wanted.

Step 4. Once we can express a single (∅, {0}), attaching it to any set S of vertices forbids selecting
any vertex of S without adding any neighbors, e�ectively making them (∅, ρ) vertices. A further
interpolation argument of similar �avor allows us to simulate an arbitrary number of (σ,∅) vertices.
We omit the details here.

14

Step 5. There are a number of di�culties with this approach if σ and/or ρ is co�nite. For example,
suppose that ρ is co�nite and consider the term A above. As ρ is not �nite, A cannot be written as
the sum of a constant number of binomial terms. Instead, we can write A as all possible extensions
to G3, minus those extensions that give the wrong number of neighbors to v. That is,

A :=

rtop∑
d=0

ai

(extG2(ρ0) + extG2(ρ1))
x −

∑
i+d̸∈ρ

(
x

i

)
extG2(ρ1)

i extG2(ρ0)
x−i

 .

Observe that this is a combination of an exponential term and some polynomials. In the co�nite
cases, we have to deal with functions of the form f(x) = cx − p(x), where p(x) is a polynomial. A
key technique to handle such expressions is to compute f(x + 1) − c · f(x) = p(x + 1) − c · p(x),
which is a polynomial of the same degree as p(x), and hence, much easier to work with.

Step 6. The case when ρ = Z≥0 has to be treated as a special case. First, we establish a
reduction from (σ, ρ)-#DomSetRel to (σ, ρ)-#DomSetP when ({0},Z≥0) ∈ P. Then, we show
that if σ is �nite and ρ = Z≥0, then (σ, ρ)-#DomSet can simulate such vertices. However, when
σ is co�nite this approach breaks down. In that case, a reduction from (σ, ρ)-#DomSetRel to
(σ, ρ)-#DomSetP seems very challenging. Intuitively, v ∈ S or v ̸∈ S can be distinguished only
if v has a neighbor u ∈ S (as the unselected neighbors of v are not a�ected by the status of v).
Thus, in a sense, a gadget cannot detect the status of the vertex v without changing its number of
neighbors, contrary to how relations are de�ned in (σ, ρ)-#DomSetRel. Problems with ρ = Z≥0

and σ co�nite seem to be of a very di�erent type that need a separate treatment.

3 Preliminaries

3.1 Basics

Numbers, Sets, Strings, and Vectors

We use a ≡m b as shorthand for a ≡ b (mod m).
We write Z≥0 = {0, 1, 2, 3, . . . } to denote the set of non-negative integers and Z>0 = {1, 2, 3, . . . }

to denote the positive integers. For integers i, j, we write [i . . j] for the set {i, . . . , j}, and [i . . j)
for the set {i, . . . , j − 1}. The sets (i . . j] and (i . . j) are de�ned similarly. A set τ ⊆ Z≥0 is
co�nite if Z≥0 \ τ is �nite. Also, we say that τ is simple co�nite if τ = {n, n + 1, n + 2, . . . } for
some n ∈ Z≥0.

We write s = s[1]s[2] · · · s[n] for a string of length |s| = n over an alphabet Σ. In some
cases, we also write s = (s[1], s[2], · · · , s[n]) to explicitly point to the individual characters of
s. We write Σn for the set (or language) of all strings of length n, and Σ∗ :=

⋃
n≥0Σ

n for the
set of all strings over Σ. We use ε to denote the empty string. For a string s ∈ Σn and positions
i ≤ j ∈ [1 . .n], we write s[i . . j] := s[i] · · · s[j]; accordingly, we de�ne s(i . . j], s[i . . j), and
s(i . . j). Finally, for two strings s, t, we write st for their concatenation � in particular, we have
s = s[1 . . i]s(i . .n]. Sometimes we are interested in the number of occurrences of an element
a ∈ Σ in a string s. To this end, we use the notation #a(s) for the number of occurrences of a in s,
that is, #a(s) := |{i ∈ |s| | s[i] = a}|. Also, for A ⊆ Σ, #A(s) denotes the number of occurrences
of elements from A in s, that is, #A(s) :=

∑
a∈A#a(s).

For a �nite set X (for instance, a set of vertices of a graph), we write ΣX := Σ|X| to emphasize
that we index the strings in (subsets of) ΣX with elements from X: for an xi ∈ X, we write
s[xi] := s[i].

15

Similarly, for an n-dimensional vector space V, we view its elements as strings of length n and
correspondingly write v = v[1]v[2] . . . v[n] ∈ V. In addition to the notions de�ned for strings, for
a set of positions P ⊆ [1 . .n], we write v[P] := ⃝a∈P x[a] for the |P |-dimensional vector that
contains only the components of v whose indices are in P .

To improve readability, we sometimes use a �ranging star� ⋆ to range over unnamed objects. For
example, if we wish to de�ne a function f : Z≥0 × Z≥0 → Z≥0, then we write f(⋆, 4) = 5 to specify
that f(i, 4) = 5 for all i ∈ Z≥0.

Graphs

We use standard notation for graphs. A graph is a pair G = (V (G), E(G)) with �nite vertex set
V (G) and edge set E(G) ⊆

(
V (G)
2

)
. Unless stated otherwise, all graphs considered in this paper are

simple (that is, there are no loops or multiedges) and undirected. We use uv as a shorthand for
edges {u, v} ∈ E(G). We write NG(v) for the (open) neighborhood of a vertex v ∈ V (G), that is,
NG(v) := {w ∈ V (G) | vw ∈ E(G)}. The degree of v is the size of its (open) neighborhood, that is,
degG(v) := |NG(v)|. The closed neighborhood is NG[v] := NG(v) ∪ {v}. We usually omit the index
G if it is clear from the context. For X ⊆ V (G), we write G[X] to denote the induced subgraph on
the vertex set X, and G−X := G[V (G) \X] denotes the induced subgraph on the complement of
X.

Treewidth

Next, we de�ne tree decompositions and recall some of their basic properties. For a more thorough
introduction to tree decompositions and their many applications, we refer the reader to [20, Chapter
7].

Fix a graph G. A tree decomposition of G is a pair (T, β) that consists of a rooted tree T and a
mapping β : V (T) → 2V (G) such that

(T.1)
⋃

t∈V (T) β(t) = V (G),

(T.2) for every edge vw ∈ E(G), there is some node t ∈ V (T) such that {u, v} ⊆ β(t), and

(T.3) for every v ∈ V (G), the set {t ∈ V (T) | v ∈ β(t)} induces a connected subtree of T .

The width of a tree decomposition (T, β) is de�ned as maxt∈V (T) |β(t)|−1. The treewidth of a graph
G, denoted by tw(G), is the minimum width of a tree decomposition of G.

When designing algorithms on graphs of bounded treewidth, it is instructive to work with nice
tree decompositions. Let (T, β) denote a tree decomposition and write Xt := β(t) for t ∈ V (T). We
say (T, β) is nice if Xr = ∅ where r denotes the root of T , Xℓ = ∅ for all leaves ℓ ∈ V (T), and
every internal node t ∈ V (T) has one of the following types:

Introduce: t has exactly one child t′ and Xt = Xt′∪{v} for some v /∈ Xt′ ; the vertex v is introduced
at t,

Forget: t has exactly one child t′ and Xt = Xt′ \ {v} for some v ∈ Xt′ ; the vertex v is forgotten at
t, or

Join: t has exactly two children t1, t2 and Xt = Xt1 = Xt2 .

It is well-known that every tree decomposition (T, β) of G of width tw can be turned into a nice
tree decomposition of the same width tw of size O(tw · V (T)) in time O(tw2 ·max(|V (G), V (T)|))
(see, for instance, [20, Lemma 7.4]).

16

Treewidth-Preserving Reductions

To prove hardness results for computational problems on graphs of bounded treewidth (or variations
thereof where treewidth is de�ned) we rely on reduction chains that, up to additive constants,
preserve the treewidth of the input graphs.

De�nition 3.1 (treewidth-preserving reduction). Let A and B denote two computational problems
for which (some notion of) treewidth is de�ned.

We write A ≤tw B if there is a treewidth-preserving reduction from A to B, that is, a polynomial-
time Turing reduction from A to B that, if executed on an instance I of A given with a tree decom-
position of width at most t, makes oracle calls to B only on instances that have size polynomial in
|I| and that are given with a tree decomposition of width at most t+O(1).

We say that A is the source and B is the target of the reduction.

Observation 3.2. A sequence of treewidth-preserving reductions A1 ≤tw A2 ≤tw . . . ≤tw Ak gives
a treewidth-preserving reduction from A1 to Ak if k ∈ O(1) (with respect to the input size of A1).

Note that we extend these de�nitions and observations in the obvious way to pathwidth-
preserving reductions.

3.2 Generalized Dominating Sets

In the following, let σ, ρ ⊆ Z≥0 denote two sets that are �nite or co�nite.

Basics

Fix a graph G. A set of vertices S ⊆ V (G) is a (σ, ρ)-set if |N(u) ∩ S| ∈ σ for every u ∈ S, and
|N(v) ∩ S| ∈ ρ for every v ∈ V (G) \ S. The (decision version of the) (σ, ρ)-DomSet problem takes
as input a graph G, and asks whether G has a (σ, ρ)-set S ⊆ V (G). We use (σ, ρ)-#DomSet to
refer to the counting version, that is, the input to the problem is a graph G, and the task is to
determine the number of (σ, ρ)-sets S ⊆ V (G).

We say (σ, ρ) is trivial if ρ = {0} or (σ, ρ) = (Z≥0,Z≥0).

Fact 3.3. Suppose (σ, ρ) is trivial. Then, (σ, ρ)-#DomSet can be solved in polynomial time.

Proof. For (σ, ρ) = (Z≥0,Z≥0), the number of (σ, ρ)-sets is 2|V (G)|. For ρ = {0}, the number of
(σ, ρ)-sets is 2c, where c denotes the number of those connected components of G where every vertex
degree is contained in σ.

In order to analyze the complexity of (σ, ρ)-DomSet (and (σ, ρ)-#DomSet) for non-trivial
pairs (σ, ρ), we associate the following parameters with (σ, ρ). We de�ne

rtop :=

{
max(ρ) if ρ is �nite,

max(Z \ ρ) + 1 if ρ is co�nite,
and stop :=

{
max(σ) if σ is �nite,

max(Z \ σ) + 1 if σ is co�nite.
(3.1)

Moreover, we set ttop := max(rtop, stop). For pairs (σ, ρ) that are structured in a certain way, we
are able to obtain more e�cient algorithms.

De�nition 3.4 (m-structured sets). Fix an integer m ≥ 1. A set τ ⊆ Z≥0 is m-structured if there
is some number c∗ such that

c ≡m c∗

for all c ∈ τ .

We say that (σ, ρ) is m-structured if both ρ and σ are m-structured. Observe that (σ, ρ) is
always 1-structured.

17

G

U

S
s v

σ3 σ3 σ2 ρ1 ρ0

Figure 3.1: A graph G and subsets of vertices U and S. For ρ = {1}, σ = {2, 4} the set S is a
partial solution (with respect to U), as every blue vertex s ∈ S \U satis�es |N(s)∩ S| ∈ {2, 4} = σ
and as every black vertex v ∈ V (G) \ (S ∪ U) satis�es |N(v) ∩ S| ∈ {1} = ρ. The depicted set S
corresponds to the compatible string σ3σ3σ2ρ1ρ0 (written above G). Note that S would not be a
partial solution for σ = {4}, as all but one blue vertex have only 2 neighbors in S.

Partial Solutions and States

For both our algorithmic and our hardness results, a key ingredient is the description of partial
solutions.

A graph with portals is a pair (G,U), where G is a graph and U ⊆ V (G). If U = {u1, . . . , uk},
then we also write (G, u1, . . . , uk) instead of (G,U).

Intuitively speaking, the idea of this notion is that G may be part of some larger graph that
interacts with G only via vertices from U . In particular, in the context of the (σ, ρ)-DomSet
problem, vertices in U do not necessarily need to satisfy the de�nition of a (σ, ρ)-set since they may
receive further selected neighbors from outside of G.

De�nition 3.5 (partial solution). Fix a graph with portals (G,U). A set S ⊆ V (G) is a partial
solution (with respect to U) if

(PS1) for each v ∈ V (G) \ (S ∪ U), we have |N(v) ∩ S| ∈ ρ, and

(PS2) for each v ∈ S \ U , we have |N(v) ∩ S| ∈ σ.

To describe whether vertices from U are selected into partial solutions and how many selected
neighbors they already have inside G, we associate a state with every vertex from U .

Formally, we write Sfull := {σi | i ∈ Z≥0} for the set of potential ρ-states, and we write Rfull :=
{ρi | i ∈ Z≥0} for the set of potential σ-states. We also write Afull := Rfull ∪ Sfull for the set of all
potential states.

De�nition 3.6 (compatible strings). Fix a graph with portals (G,U). A string x ∈ AU
full is com-

patible with (G,U) if there is a partial solution Sx ⊆ V (G) such that

(X1) for each v ∈ U ∩ Sx, we have x[v] = σs, where s = |N(v) ∩ Sx|, and

(X2) for each v ∈ U \ Sx, we have x[v] = ρr, where r = |N(v) ∩ Sx|.

We also refer to the vertices in Sx as being selected and say that Sx is a (partial) solution, selection,
or witness that witnesses x.

Consult Figure 3.1 for a visualization of an example of a partial solution and its corresponding
compatible string.

18

Observe that, despite Afull being an in�nite alphabet, for every graph with portals (G,U), only
�nitely many strings x can be realized. Indeed, if |V (G)| = n, then every compatible string can only
have characters from An = Sn ∪ Rn, where Sn := {σi | i ∈ [0 . .n]} and Rn := {ρi | i ∈ [0 . .n]}.

De�nition 3.7 (realized language, L-provider). For a graph with portals (G,U), we de�ne its
realized language as

L(G,U) := {x ∈ AU
full | x is compatible with (G,U)}.

For a language L ⊆ AU
full, we say that (G,U) is an L-realizer if L = L(G,U).

For a language L ⊆ AU
full, we say that (G,U) is an L-provider if L ⊆ L(G,U).

Again, observe that L(G,U) ⊆ AU
n , where n = |V (G)|.

In fact, for most of our applications, it makes sense to restrict the alphabet even further. Recall
the de�nition of stop and rtop from Equation (3.1). Suppose that σ is �nite. Then, we are usually
not interested in partial solutions S where some vertex from U is selected and already has more
than stop selected neighbors (as it is impossible to extend this partial solution into a full solution).
Also, if σ is in�nite, it is usually irrelevant to us whether a selected vertex has exactly stop selected
neighbors, or more than stop selected neighbors, since both options lead to the same outcome for
all possible extensions of a partial solution. For this reason, we typically2 restrict ourselves to the
alphabets

R := {ρ0, . . . , ρrtop} and S := {σ0, . . . , σstop}.
As before, we de�ne A := R ∪ S.

De�nition 3.8 (inverse of a state). For a state σs ∈ S, the inverse of σs with respect to σ is
the state invσ(σs) = σstop−s. For a state ρr ∈ R, the inverse of ρr with respect to ρ is the state
invρ(ρr) = ρrtop−r.

We set invσ(ρr) = ρr and invρ(σs) = σs. For all states a ∈ A, the inverse of a with respect to
σ, ρ is the state invσ,ρ(a) = invσ(invρ(a)).

We extend this in the natural way to strings by applying it coordinate-wise, and to sets by applying
it to each element of the set.

2Sometimes, it turns out to be more convenient to work with the more general variants; we clearly mark said
(rare) occurrences of Afull and An.

19

Part I

Faster Algorithms

4 Faster Algorithms for Structured Pairs

The goal of this section is to prove Theorem 1.3. With Theorem 1.1 in mind, we can restrict
ourselves to the case where (σ, ρ) is m-structured for some m ≥ 2. In particular, both σ and ρ are
�nite in this case.

So for the remainder of this section, suppose that σ, ρ ⊆ Z≥0 are �nite non-empty sets such
that ρ ̸= {0}. Recall that rtop := max ρ, stop := maxσ, and ttop := max(rtop, stop). Also suppose
that (σ, ρ) is m-structured for some m ≥ 2, that is, there are integers B,B′ ∈ [0 . .m) such that
r ≡m B for every r ∈ ρ and s ≡m B′ for every s ∈ σ. Without loss of generality, we may assume
that ttop + 1 ≥ m (if m > ttop + 1, then |ρ| = |σ| = 1, which implies that (σ, ρ) is m-structured for
every m ≥ 2).

For this case, we present faster dynamic-programming on tree-decomposition-based algorithms
for (σ, ρ)-DomSet. In particular, we prove the following result.

Theorem 4.1. Let (σ, ρ) denote �nite m-structured sets for some m ≥ 2. Then, there is an
algorithm A that, given a graph G and a nice tree decomposition of G of width tw, decides whether
G has a (σ, ρ)-DomSet.

If m ≥ 3 or ttop is odd or min(rtop, stop) < ttop, then algorithm A runs in time

(ttop + 1)tw · (ttop + tw)O(1) · |V (G)|.

If m = 2, ttop is even, and rtop = stop = ttop, then algorithm A runs in time

(ttop + 2)tw · (ttop + tw)O(1) · |V (G)|.

Observe that Theorem 4.1 is concerned with the decision version of the problem, and not the
counting version. The reason is that we �nd it more convenient to �rst explain the algorithm for
the decision version, and explain afterward how to modify the algorithm for the counting version.
Also observe that, for the decision version, we obtain a linear bound on the running time in terms
of the number of vertices, whereas for the counting version, we only have a polynomial bound.

We prove Theorem 4.1 in two steps. First, we obtain structural insights and an upper bound
on the number of states that need to be maintained during the run of the dynamic programming
algorithm. Second, we then show how to e�ciently merge such states using a fast convolution-based
algorithm.

4.1 Structural Insights into the m-Structured Case

In this section, we work with the alphabet A := {σ0, . . . , σstop , ρ0, . . . , ρrtop}. Also, recall that
S := {σ0, . . . , σstop} and R := {ρ0, . . . , ρrtop}. For a graph with portals (G,U), we aim to obtain a
(tight) bound on the size of the realized language L(G,U) in terms of stop and rtop. Thereby, we
also bound the number of states that are required in our dynamic-programming-based approach for
computing a solution for a given graph G. To that end, we �rst de�ne certain vectors associated
with a string x ∈ An, essentially decomposing a string into its σ/ρ component and its �weight�-
component.

To able to reuse the de�nition in later sections, we state it for the full alphabet Afull.

20

De�nition 4.2. For a string x ∈ An
full, we de�ne

� the σ-vector of x as σ⃗(x) ∈ {0, 1}n with

σ⃗(x)[i] :=

{
1 if x[i] ∈ S,
0 if x[i] ∈ R.

� the weight-vector of x as w⃗(x) ∈ Zn
≥0 with

w⃗(x)[i] := c, where x[i] ∈ {ρc, σc}.

� the m-weight-vector of x as w⃗m(x) ∈ Zn
m with

w⃗m(x)[i] := w⃗(x)[i] mod m.

For a language L ⊆ An
full, we write σ⃗(L) := {σ⃗(x) | x ∈ L} for the set of all σ-vectors of L, we write

w⃗(L) := {w⃗(x) | x ∈ L} for the set of all weight-vectors of L, and we write w⃗m(L) := {w⃗m(x) | x ∈
L} for the set of all m-weight-vectors of L.

Finally, for a vector s⃗ ∈ {0, 1}n, we de�ne the capacity of s⃗ as caps⃗ ∈ {0, . . . , ttop}n with

caps⃗[i] :=

{
stop if s⃗[i] = 1,

rtop if s⃗[i] = 0.

To bound the size of realized languages, we proceed as follows. First, we compare two di�erent
partial solutions with respect to a �xed set U to obtain certain frequency properties of the characters
of the corresponding string in AU (expressed as σ-vectors and m-weight vectors). In a second step,
we then show that there is only a moderate number of strings with said structure.

Fix a graph G, a subset of its vertices U ⊆ V (G), and the realized language L := L(G,U) ⊆
AU . For a string x ∈ L and an integer m ≥ 2, we de�ne the ordered partition Pm(x) :=
(Xσ,0, . . . , Xσ,m−1, Xρ,0, . . . , Xρ,m−1) of U with3

Xσ,0 := {v ∈ U | σ⃗(x)[v] = 1 and w⃗m(x)[v] = 0},
. . .

Xσ,m−1 := {v ∈ U | σ⃗(x)[v] = 1 and w⃗m(x)[v] = m− 1},
Xρ,0 := {v ∈ U | σ⃗(x)[v] = 0 and w⃗m(x)[v] = 0},

. . .

Xρ,m−1 := {v ∈ U | σ⃗(x)[v] = 0 and w⃗m(x)[v] = m− 1}.

Lemma 4.3. Let (G,U) be a graph with portals and let L := L(G,U) ⊆ AU denote its realized
language. Also let x, y ∈ L denote strings with witnesses Sx, Sy ⊆ V (G) such that |Sx \ U | ≡m

|Sy \ U |. Then, σ⃗(x) · w⃗m(y) ≡m σ⃗(y) · w⃗m(x).

Proof. Consult Figure 4.1 for a visualization of an example.
In a �rst step, we count the number of edges between Sx and Sy in two di�erent ways. The

corresponding ordered partitions are

Pm(x) = (Xσ,0, . . . , Xσ,m−1, Xρ,0, . . . , Xρ,m−1) and Pm(y) = (Yσ,0, . . . , Yσ,m−1, Yρ,0, . . . , Yρ,m−1).

3We chose this slightly convoluted-looking de�nition to simplify our exposition in Lemma 4.3.

21

G

U

Xσ,1 Xσ,0 Xρ,1 Xρ,0

Sx

x σ3 σ3 σ2 ρ1 ρ0

G

U

Yρ,0 Yσ,1 Yρ,1 Yσ,0 Yσ,1

Sy

y ρ2 σ1 ρ3 σ0 σ1

Figure 4.1: A graph G with portals U . For ρ = {1, 3}, σ = {2, 4} (which are 2-structured) the
strings x = σ3σ3σ2ρ1ρ0 and y = ρ2σ1ρ3σ0σ1 are compatible with (G,U); the corresponding partial
solutions Sx and Sy, as well as the partitions of U are depicted above. We have |Sx\U | = |Sy\U | = 4
and σ⃗(x) · w⃗m(y) = (1, 1, 1, 0, 0) · (0, 1, 1, 0, 1) = 2 ≡2 2 = (0, 1, 0, 1, 1) · (1, 1, 0, 1, 0) = σ⃗(y) · w⃗m(x).

Recall the integers B,B′ ∈ [0 . .m) with r ≡m B for every r ∈ ρ and s ≡m B′ for every s ∈ σ.
Observe that by (PS1), every vertex in V (G) \ (U ∪ Sy) has (B + m ℓ) neighbors in Sy (for some
non-negative integer ℓ). In particular, this holds for all vertices in Sx \ (U ∪ Sy). Similarly, observe
that by (PS2), every vertex in Sx∩Sy has (B′+m ℓ′) neighbors in Sy (for some non-negative integer
ℓ′). Finally, a vertex v in Sx ∩ U =

⋃
j∈[0 . .m)Xσ,j has exactly i +m ℓ′′ neighbors in Sy (for some

non-negative integer ℓ′′) if and only if v is in one of Yρ,i or Yσ,i.

Writing E⃗(X,Y) := {(v, w) ∈ E(G) | v ∈ X,w ∈ Y }, we obtain

|E⃗(Sx, Sy)| ≡m B · |Sx \ (U ∪ Sy)|
+B′ · |Sx ∩ Sy|
+

∑
i∈[1 . .m)

∑
j∈[0 . .m)

i ·
(
|Xσ,j ∩ Yρ,i|+ |Xσ,j ∩ Yσ,i|

)
≡m B · (|Sx \ U | − |Sx ∩ Sy|+ |Sx ∩ Sy ∩ U |)
+B′ · |Sx ∩ Sy|
+

∑
i∈[1 . .m)

∑
j∈[0 . .m)

i ·
(
|Xσ,j ∩ Yρ,i|+ |Xσ,j ∩ Yσ,i|

)
.

In a symmetric fashion, we count the edges from Sy to Sx:

|E⃗(Sy, Sx)| ≡m B · (|Sy \ U | − |Sy ∩ Sx|+ |Sy ∩ Sx ∩ U |)
+B′ · |Sy ∩ Sx|
+

∑
i∈[1 . .m)

∑
j∈[0 . .m)

i ·
(
|Yσ,j ∩Xρ,i|+ |Yσ,j ∩Xσ,i|

)
.

Now, we combine the previous equations and use the assumption that |Sx \U | ≡m |Sy \U | to obtain∑
i∈[1 . .m)

∑
j∈[0 . .m)

i ·
(
|Xσ,j ∩Yρ,i|+ |Xσ,j ∩Yσ,i|

)
≡m

∑
i∈[1 . .m)

∑
j∈[0 . .m)

i ·
(
|Yσ,j ∩Xρ,i|+ |Yσ,j ∩Xσ,i|

)
.

22

Next, we unfold the de�nitions for X⋆, Y⋆ and observe that∑
i∈[1 . .m)

∑
j∈[0 . .m)

i ·
(
|Xσ,j ∩ Yρ,i|+ |Xσ,j ∩ Yσ,i|

)
≡m

∑
i∈[1 . .m)

∑
j∈[0 . .m)

i · |{k ∈ [1 . .n] | σ⃗(x)[k] = 1, w⃗m(x)[k] = j, and w⃗m(y)[k] = i}|

≡m

∑
i∈[1 . .m)

i · |{k ∈ [1 . .n] | σ⃗(x)[k] = 1 and w⃗m(y)[k] = i}|

≡m σ⃗(x) · w⃗m(y).

Hence, the claimed σ⃗(x) · w⃗m(y) ≡m σ⃗(y) · w⃗m(x) follows, completing the proof.

With Lemma 4.3 in mind, in order to bound the size of a realized language, it su�ces (up to a
factor of m) to bound the size of a language L ⊆ An such that L× L ⊆ Rn, where

Rn := {(x, y) ∈ An × An | σ⃗(x) · w⃗m(y) ≡m σ⃗(y) · w⃗m(x)}. (4.1)

Observe that the relation Rn is re�exive and symmetric.
We proceed to exploit the relation Rn to obtain size bounds for realized languages (in Sec-

tion 4.1.1). Afterward, in Section 4.1.2, we investigate how said size bounds behave when combining
realized languages.

4.1.1 Bounding the Size of a Single Realized Language

The goal of this section is to show the following result.

Theorem 4.4. Let L ⊆ An denote a language with L× L ⊆ Rn.
If m ≥ 3 or ttop is odd or min(rtop, stop) < ttop, then |L| ≤ (ttop + 1)n.
If m = 2, ttop is even, and rtop = stop = ttop, then |L| ≤ (ttop + 2)n.

Note that the bounds of Theorem 4.4 are essentially optimal; consider the following example.

Example 4.5. Consider the languages

� L1 := Rn = {v ∈ An | σ⃗(v) = 0},

� L2 := {v ∈ Sn | ∑ℓ∈[1 . .n] w⃗(v)[ℓ] ≡m 0}, and

� L3 := {v ∈ An | w⃗(v)[ℓ] ≡m 0 for all ℓ ∈ [1 . .n]}.

It is straightforward to see that Li × Li ⊆ Rn for all i ∈ {1, 2, 3}. We have that |L1| = (rtop + 1)n,
|L2| ≥ (stop + 1)n−1 and

|L3| =
(⌈

rtop + 1

m

⌉
+

⌈
stop + 1

m

⌉)n

.

Observe that |L3| = (ttop + 2)n if m = 2, ttop is even, and rtop = stop = ttop. In all other
cases, |L3| ≤ (ttop + 1)n. In particular, the language L3 indicates why the case m = 2 with even
rtop = stop = ttop stands out.

Toward proving Theorem 4.4, we start by showing that, for strings with the same σ-vector, the
di�erence of their m-weight-vectors is �orthogonal� to the σ-vector of any other string.

23

Lemma 4.6. Let L ⊆ An denote a language with L × L ⊆ Rn. For any three strings v, w, z ∈ L
with σ⃗(v) = σ⃗(w), we have (

w⃗m(v)− w⃗m(w)
)
· σ⃗(z) ≡m 0.

Proof. Fix strings v, w, z ∈ L. By the de�nition of Rn, we have

σ⃗(v) · w⃗m(z) ≡m σ⃗(z) · w⃗m(v) and σ⃗(w) · w⃗m(z) ≡m σ⃗(z) · w⃗m(w).

Using the assumption that σ⃗(v) = σ⃗(w), we conclude that

σ⃗(z) · w⃗m(v) ≡m σ⃗(z) · w⃗m(w),

which yields the claim after rearranging.

Next, we explore the implications of Lemma 4.6. Intuitively, we show that, for a language L
of strings of length n, each of the n positions contributes either to vectors from σ⃗(L) or to vectors
from w⃗m(L). Formally, let us start with the notion of a σ-de�ning set.

De�nition 4.7 (σ-de�ning set). Let L ⊆ An. A set S ⊆ [1 . .n] is σ-de�ning for σ⃗(L) if S is an
inclusion-minimal set of positions that uniquely characterize the σ-vectors of the strings in L, that
is, for all u, v ∈ L, we have

σ⃗(u)[S] = σ⃗(v)[S] =⇒ σ⃗(u) = σ⃗(v). (4.2)

Remark 4.8. As a σ-de�ning S is (inclusion-)minimal, observe that, for each position i ∈ S, there
are pairs of witness vectors w1,i, w0,i ∈ σ⃗(L) that di�er (on S) only at position i, with w1,i[i] = 1,
that is,

� w1,i[S \ i] = w0,i[S \ i],

� w1,i[i] = 1, and

� w0,i[i] = 0.

We write WS := {w1,i, w0,i | i ∈ S} for a set of witness vectors for σ⃗(L). Note that, as S itself, the
witness vectors WS do not directly depend on strings in L, but only on the σ-vectors of L.

Lemma 4.9. Let L ⊆ An denote a language with L×L ⊆ Rn and let S denote a σ-de�ning set for
L.

Then, for any two strings u, v ∈ L with σ⃗(u) = σ⃗(v), the remaining positions S̄ := [1 . .n] \ S
uniquely characterize the m-weight vectors of u and v, that is, we have

w⃗m(u)[S̄] = w⃗m(v)[S̄] =⇒ w⃗m(u) = w⃗m(v). (4.3)

Proof. Let S ⊆ [1 . .n] denote a σ-de�ning set for σ⃗(L) with witness vectors WS (see Remark 4.8),
and consider the set S̄ := [1 . .n] \ S. We proceed to show that (4.3) is satis�ed. To that end,
let u, v ∈ L denote strings with σ⃗(u) = σ⃗(v) and w⃗m(u)[S̄] = w⃗m(v)[S̄]. We need to argue that
w⃗m(u) = w⃗m(v), and, in particular, that w⃗m(u)[S] = w⃗m(v)[S]. Hence, we proceed to show that,
for every i ∈ S, we have w⃗m(u)[i] = w⃗m(v)[i].

Now, �x a position i ∈ S and corresponding witness vectors w1,i, w0,i ∈ WS . We proceed by
showing two immediate equalities.

24

Claim 4.10. The strings u, v, w1,i, and w0,i satisfy(
w⃗m(u)− w⃗m(v)

)
·
(
w1,i − w0,i

)
≡m 0.

Proof of Claim. By Lemma 4.6, we have that(
w⃗m(u)− w⃗m(v)

)
·
(
w1,i − w0,i

)
≡m

(
w⃗m(u)− w⃗m(v)

)
· w1,i −

(
w⃗m(u)− w⃗m(v)

)
· w0,i

≡m 0− 0

≡m 0,

which completes the proof. ◁

Claim 4.11. The strings u, v, w1,i, and w0,i satisfy(
w⃗m(u)− w⃗m(v)

)
·
(
w1,i − w0,i

)
≡m

(
w⃗m(u)[i]− w⃗m(v)[i]

)
·
(
w1,i[i]− w0,i[i]

)
.

Proof of Claim. Observe that, by assumption, for every component j ∈ S̄, we have w⃗m(u)[j] =
w⃗m(v)[j]. Observe further that, by the de�nitions of i and S, for every component j ∈ S \ i, we
have w1,i[j] = w0,i[j], which yields the claim. ◁

Now, combining Claims 4.10 and 4.11 yields

0 ≡m

(
w⃗m(u)− w⃗m(v)

)
·
(
w1,i − w0,i

)
≡m

(
w⃗m(u)[i]− w⃗m(v)[i]

)
·
(
w1,i[i]− w0,i[i]

)
≡m

(
w⃗m(u)[i]− w⃗m(v)[i]

)
·
(
1− 0

)
≡m w⃗m(u)[i]− w⃗m(v)[i].

In other words, w⃗m(u)[i] = w⃗m(v)[i] for all i ∈ S, which yields (4.3), and hence, the claim.

As a direct consequence of Lemma 4.9, we obtain a �rst upper bound on the size of languages
L ⊆ An with L× L ⊆ Rn.

Corollary 4.12. Let L ⊆ An denote a language with L × L ⊆ Rn, and let S denote a σ-de�ning
set for σ⃗(L). Then, we have

|L| ≤ (ttop + 1)n−|S| ·
|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

.

Proof. For a k ∈ {0, . . . , |S|}, write Lk to denote the set of all strings x ∈ L such that σ⃗(x)[S] has
a Hamming-weight of exactly k, that is, σ⃗(x)[S] contains exactly k entries equal to 1.

As L decomposes into the di�erent sets Lk, we obtain |L| = ∑|S|
k=0 |Lk|. Hence, it su�ces to

show that, for each k ∈ {0, . . . , |S|}, we have

|Lk| ≤ (ttop + 1)n−|S| ·
(|S|
k

)
·
⌈
stop + 1

m

⌉k

·
⌈
rtop + 1

m

⌉|S|−k

. (4.4)

We proceed to argue that Inequality (4.4) does indeed hold. To that end, �x a k ∈ {0, . . . , |S|},
and observe that a string x ∈ L (and hence, x ∈ Lk) is uniquely determined by its σ-vector σ⃗(x)
and its weight vector w⃗(x) (where elements are not taken modulo m). Note that as L × L ⊆ Rn,
not all pairs of σ-vectors and weight-vectors correspond to a string in Lk. Hence, we write

|Lk| ≤
∑

s⃗∈σ⃗(Lk)

|{w⃗(x) | x ∈ Lk and σ⃗(x) = s⃗}|.

25

Now, as S is σ-de�ning for σ⃗(L) (and hence, for σ⃗(Lk) ⊆ σ⃗(L)), for each σ-vector for Lk when
restricted to the positions S, there is exactly one σ-vector for Lk (on all positions). In particular, the
number of di�erent σ-vectors of Lk is equal to the number of di�erent σ-vectors on the positions S.
Further, by construction of Lk, all σ-vectors on S have Hamming-weight exactly k. Hence, we
obtain

|σ⃗(Lk)| = |{σ⃗(x) | x ∈ Lk}| = |{σ⃗(x)[S] | x ∈ Lk}| ≤
(|S|
k

)
.

Now, �x a σ-vector s⃗ ∈ σ⃗(Lk), and write Lk,s⃗ := {x ∈ Lk | σ⃗(x) = s⃗} for all strings in Lk

with σ-vector s⃗. By Lemma 4.9, for each m-weight vector for Lk,s⃗ when restricted to the positions
S̄ := [1 . .n] \ S, there is exactly one m-weight vector for Lk,s⃗ (on all positions):

|{w⃗m(x) | x ∈ Lk,s⃗ and w⃗m(x)[S̄] = u}| = 1. (4.5)

Hence, it remains to count weight-vectors instead of m-weight vectors. To that end, for each possible
weight-vector on S̄, we count the possible extensions into a weight-vector on all positions. Writing
um for the m-weight vector corresponding to a weight vector u, we obtain

|w⃗(Lk,s⃗)| ≤
∑

u∈{w⃗(x)[S̄]|x∈Lk,s⃗}

|{w⃗(x)[S] | x ∈ Lk,s⃗ and w⃗(x)[S̄] = u}|

≤
∑

u∈{w⃗(x)[S̄]|x∈Lk,s⃗}

|{w⃗(x)[S] | x ∈ Lk,s⃗ and w⃗m(x)[S̄] = um}|.

Finally, we bound |{w⃗(x)[S] | x ∈ Lk,s⃗ and w⃗m(x)[S̄] = um}|. To that end, observe that
by Equation (4.5), the corresponding m-weight vector is unique. Hence, we need to bound only
the number of di�erent weight vectors (on S) that result in the same m-weight vector (on S).
By construction, on the positions S, the string x contains exactly k characters σ⋆�for each such
position, there are at most ⌈(stop+1)/m⌉ di�erent characters having the same m-weight vector; for
each of the remaining |S|− k positions, there are at most ⌈(rtop+1)/m⌉ di�erent characters having
the same m-weight vector. This yields

|{w⃗(x)[S] | x ∈ Lk,s⃗ and w⃗m(x)[S̄] = um}| ≤
⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

.

Combining the previous steps with the �nal observation that

|{w⃗(x)[S̄] | x ∈ Lk,s⃗}| ≤ (ttop + 1)|S̄| = (ttop + 1)n−|S|,

we obtain the claimed Inequality (4.4):

|Lk| ≤
∑

s⃗∈σ⃗(Lk)

|w⃗(Lk,s⃗)|

≤
(|S|
k

)
·

∑
u∈{w⃗(x)[S̄]|x∈Lk,s⃗}

|{w⃗(x)[S] | x ∈ Lk,s⃗ and w⃗m(x)[S̄] = um}|

≤ (ttop + 1)n−|S| ·
(|S|
k

)
·
⌈
stop + 1

m

⌉k

·
⌈
rtop + 1

m

⌉|S|−k

.

Overall, this yields the desired bound.

26

In a �nal step before proving Theorem 4.4, we tidy up the unwieldy upper bound from Corol-
lary 4.12.

Lemma 4.13. For any non-negative integers n and a ∈ [0 . .n], we have

(ttop + 1)n−a ·
a∑

k=0

(
a

k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉a−k

≤
{

(ttop + 2)n if m = 2 and ttop = stop = rtop is even,

(ttop + 1)n otherwise.

Proof. In a �rst step, applying ttop = max(rtop, stop) and the Binomial Theorem yields

(ttop + 1)n−a ·
a∑

k=0

(
a

k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉a−k

≤ (ttop + 1)n−a ·
a∑

k=0

(
a

k

)⌈
ttop + 1

m

⌉k ⌈ ttop + 1

m

⌉a−k

= (ttop + 1)n−a ·
(
2 ·

⌈
ttop + 1

m

⌉)a

.

In a next step, we investigate the term ⌈(ttop + 1)/m⌉.
First, if m ≥ 3 or if m = 2 and ttop is odd, we have

2 ·
⌈
ttop + 1

m

⌉
≤ ttop + 1.

Hence, in these cases, we directly obtain

(ttop + 1)n−a ·
(
2 ·

⌈
ttop + 1

m

⌉)a

≤ (ttop + 1)n.

Next, if m = 2 and ttop = stop = rtop is even, we have

2 ·
⌈
ttop + 1

m

⌉
= ttop + 2.

Hence, in this case, we directly obtain

(ttop + 1)n−a ·
(
2 ·

⌈
ttop + 1

m

⌉)a

≤ (ttop + 2)n.

Finally, if m = 2, ttop is even, and min(rtop, stop) < ttop, we need a more careful analysis.
Restarting from the initial term, we apply the Binomial Theorem and obtain

(ttop + 1)n−a ·
a∑

k=0

(
a

k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉a−k

= (ttop + 1)n−a ·
(⌈

stop + 1

m

⌉
+

⌈
rtop + 1

m

⌉)a

≤ (ttop + 1)n−a ·
(⌈

ttop
m

⌉
+

⌈
ttop + 1

m

⌉)a

= (ttop + 1)n−a ·
(
ttop
2

+
ttop + 2

2

)a

≤ (ttop + 1)n.

This completes the proof.

27

Finally, combining Corollary 4.12 and Lemma 4.13 directly yields Theorem 4.4, which we restate
here for convenience.

Theorem 4.4. Let L ⊆ An denote a language with L× L ⊆ Rn.
If m ≥ 3 or ttop is odd or min(rtop, stop) < ttop, then |L| ≤ (ttop + 1)n.
If m = 2, ttop is even, and rtop = stop = ttop, then |L| ≤ (ttop + 2)n.

Proof. Let L ⊆ An denote a language with L × L ⊆ Rn, and let S denote a σ-de�ning set for L.
By Corollary 4.12, we obtain

|L| ≤ (ttop + 1)n−|S| ·
|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

.

Applying Lemma 4.13 yields the claim.

4.1.2 Bounding the Size of Combinations of Realized Languages

Having understood a single realized language, we turn to combinations of realized languages next.

De�nition 4.14. For two strings x, y ∈ An, we de�ne their combination as the string x ⊕ y ∈
(A ∪ {⊥})n obtained via

(x⊕ y)[ℓ] :=

σk if x[ℓ] = σi and y[ℓ] = σj and i+ j = k ≤ stop,

ρk if x[ℓ] = ρi and y[ℓ] = ρj and i+ j = k ≤ rtop,

⊥ otherwise.

We say that x and y can be joined if, for each position ℓ ∈ [1 . .n], we have (x⊕ y)[ℓ] ̸= ⊥.
For two languages L1, L2 ⊆ An, we de�ne their combination as the set of all combinations of

strings that can be joined:

L1 ⊕ L2 := {x⊕ y | x ∈ L1 and y ∈ L2 such that x, y can be joined}.

Observe that, for strings x ∈ L1 and y ∈ L2, their combination x⊕ y is in L1 ⊕L2 if and only if
x and y share a common σ-vector and the sum of their weight-vectors does not �over�ow�, that is,
we have4

L1 ⊕ L2 = {x⊕ y | x ∈ L1, y ∈ L2, σ⃗(x) = σ⃗(y), and w⃗(x) + w⃗(y) ≤ capσ⃗(x)}. (4.6)

Finally, observe that, for strings x ∈ L1 and y ∈ L2 that can be joined, we have

w⃗(x) + w⃗(y) = w⃗(x⊕ y). (4.7)

We use the remainder of this section to show that Corollary 4.12 and Theorem 4.4 easily lift
to the combinations of realized languages. Thereby, we show that the number of partial solutions
does not signi�cantly increase by combining realized languages. We start with a small collection
of useful properties of combinations of realized languages. First, we discuss how σ-vectors behave
under combinations of languages.

Lemma 4.15. Let L1, L2 ⊆ An denote languages with L1 × L1 ⊆ Rn and L2 × L2 ⊆ Rn.
Then, (L1 ⊕ L2) has the σ-vectors that appear for both L1 and L2, that is,

σ⃗(L1 ⊕ L2) ⊆ σ⃗(L1) ∩ σ⃗(L2).
4For ease of notation, we use �≤� component-wise on vectors.

28

Proof. The proof follows immediately from De�nition 4.14. Indeed, no string of the language L1⊕L2

has a ⊥ character, as (L1 ⊕ L2) contains only combinations of strings with the same σ-vectors.
Hence, the strings in L1 ⊕ L2 may di�er from strings in L1 or L2 only in their weight vectors, and
σ⃗(L1 ⊕ L2) has only those σ-vectors that appear in both σ⃗(L1) and σ⃗(L2). Furthermore, note that
due to �over�ows� in the weight-vectors, a σ-vector in σ⃗(L1)∩ σ⃗(L2) might not be in σ⃗(L1⊕L2).

Next, we show that having the relation Rn transfers as well.

Lemma 4.16. Let L1, L2 ⊆ An denote languages with L1 × L1 ⊆ Rn and L2 × L2 ⊆ Rn.
Then, we have (L1 ⊕ L2)× (L1 ⊕ L2) ⊆ Rn.

Proof. Fix strings x, y ∈ L1 ⊕ L2. By De�nition 4.14, this means that there are strings x1, y1 ∈ L1

and x2, y2 ∈ L2 such that x = x1 ⊕ x2 and y = y1 ⊕ y2. Expanding the de�nition of ⊕ yields

σ⃗(x) · w⃗m(y) = σ⃗(x) · (w⃗m(y1) + w⃗m(y2)) = σ⃗(x) · w⃗m(y1) + σ⃗(x) · w⃗m(y2).

As ⊕ does not change σ-vectors for strings that can be joined, we obtain

σ⃗(x) · w⃗m(y) = σ⃗(x1) · w⃗m(y1) + σ⃗(x2) · w⃗m(y2)

Next, we use (x1, y1) ∈ Rn and (x2, y2) ∈ Rn to obtain

σ⃗(x) · w⃗m(y) ≡m σ⃗(y1) · w⃗m(x1) + σ⃗(y2) · w⃗m(x2)

Again, as ⊕ does not change σ-vectors for strings that can be joined, we obtain

σ⃗(x) · w⃗m(y) ≡m σ⃗(y) · w⃗m(x1) + σ⃗(y) · w⃗m(x2)

= σ⃗(y) · (w⃗m(x1) + w⃗m(x2))

= σ⃗(y) · w⃗m(x),

which completes the proof that (x, y) ∈ Rn.

Now, we directly obtain that Corollary 4.12 lifts:

Corollary 4.17. Let L1, L2 ⊆ An denote languages with L1×L1 ⊆ Rn and L2×L2 ⊆ Rn. Further,
let S denote a σ-de�ning set for σ⃗(L1 ⊕ L2). Then, we have

|L1 ⊕ L2| ≤ (ttop + 1)n−|S| ·
|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

.

Proof. By Lemma 4.16, we can use Corollary 4.12 on the language L1 ⊕ L2.

4.2 Exploiting Structure: Fast Join Operations

Recall that the bound in Theorem 4.4 yields an upper bound on the number of partial solutions
for a graph G and a subset U of its vertices. Recall further that, in the end, we intend to use an
algorithm based on the dynamic programming on a tree decomposition paradigm. Hence, we need
to be able to e�ciently compute possible partial solutions for a graph given the already computed
partial solutions for some of its subgraphs. We tackle this task next. In particular, we show how to
generalize known convolution techniques to compute the combination of realized languages:

29

Theorem 4.18. Let L1, L2 ⊆ An denote languages with L1 × L1 ⊆ Rn and L2 × L2 ⊆ Rn, and let
S denote a σ-de�ning set for σ⃗(L1) ∩ σ⃗(L2). Then, we can compute the language L1 ⊕ L2 in time

(n+ ttop)
O(1) · (ttop + 1)n−|S| ·

|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

≤
{

(n+ ttop)
O(1) · (ttop + 2)n if m = 2 and ttop = stop = rtop is even,

(n+ ttop)
O(1) · (ttop + 1)n otherwise.

Toward proving Theorem 4.18, �rst recall that strings x1 ∈ L1 and x2 ∈ L2 decompose into a σ-
vector and a weight-vector each. Further, recall from Equation (4.6) that x1⊕x2 is in L1⊕L2 if and
only if x1 and x2 share a common σ-vector and the sum of their weight-vectors does not �over�ow�.
This observation yields the following proof strategy. For each di�erent σ-vector s⃗ ∈ σ⃗(L1) ∩ σ⃗(L2),
we compute all possible sums of the weight-vectors for strings with σ-vector s⃗. Afterward, we �lter
out resulting vectors where an over�ow occurred. To implement this strategy, we intend to make
use of the tools developed by van Rooij [48]; in particular, the following result.

Fact 4.19 ([48, Lemma 3]). For integers d1, . . . , dn and D :=
∏n

i=1 di, let p denote a prime such
that in the �eld Fp, the di-th root of unity exists for each i ∈ [1 . .n]. Further, for two functions
f, g : Zd1 × · · · × Zdn → Fp, let h : Zd1 × · · · × Zdn → Fp denote the convolution

h(a) :=
∑

a1+a2=a

f(a1) · g(a2).

Then, we can compute the function h in O(D logD) many arithmetic operations (assuming a di-th
root of unity ωi is given for all i ∈ [1 . .n]).

Before we continue, let us brie�y comment on how to �nd an appropriate prime p, as well as
the roots of unity ωi.

Remark 4.20. Suppose M is a su�ciently large integer such that all images of the functions
f, g, h are in the range [0 . .M]. In particular, suppose that M ≥ D. Suppose d′1, . . . , d

′
ℓ is the

list of integers obtained from d1, . . . , dn by removing duplicates (in all our applications, ℓ ≤ 4). Let
D′ :=

∏ℓ
i=1 d

′
i. We consider candidate numbers mj := 1 +D′j for all j ≥ 1. By the Prime Number

Theorem for Arithmetic Progressions (see, for instance, [5]) there is a prime p such that

1. p = mj for some j ≥ 1,

2. p > M , and

3. p = O(φ(D′)M),

where φ denotes Euler's totient function. Such a number can be found in time

O
(
p
(
log p

)c)
= O

(
φ(D′)M

(
log(φ(D′)M)

)c)
for some absolute constant c exploiting that prime testing can be done in polynomial time.

Now, �x i ∈ [1 . .n] and �x ki := D′/di. For every x ∈ Fp, we have that xp−1 = 1, and hence,
xki is a di-th root of unity if and only (xki)i ̸= 1 for all i < di. Hence, given an element x ∈ Fp, it
can checked in time

O
(
di · (log p)c

)
30

whether xki is a di-th root of unity. Due to our choice of p, this test succeeds for at least one x ∈ Fp.
Thus, a di-th root of unity ωi for every i ∈ [1 . .n] can be found in time

O
(
n · p · max

i∈[1 . .n]
di · (log p)c

)
.

Now, let us return to the problem at hand. The most naive approach, applying Fact 4.19 to
the weight-vectors directly, is not fast enough for our purposes: A single convolution already takes
time Õ((ttop +1)n), and so, using such a convolution for each of the up to 2|S| di�erent σ-vectors is
hence far too slow. Instead of convolving weight-vectors directly, we hence turn to Lemma 4.9: for
a �xed σ-vector s⃗, there are far less (depending on the size of S) than (ttop + 1)n di�erent weight
vectors. We can exploit this by compressing the weight-vectors to a smaller representation, and then
convolving the resulting compressed vectors. Formally, we �rst make our intuition of �exploiting�
Lemma 4.9 more formal by de�ning a useful auxiliary vector.

De�nition 4.21. Let L ⊆ An denote a (non-empty) language with L × L ⊆ Rn, let S denote
a σ-de�ning set for σ⃗(L), let WS ⊆ σ⃗(L) denote a corresponding set of witness vectors, and set
S̄ := [1 . .n] \ S.

For two vectors u, o ∈ [0 . . ttop]
n and a position ℓ ∈ S, we de�ne the remainder remWS

(u, o) at
ℓ as

remWS
(u, o)[ℓ] :=

∑
i∈S̄

(
u[i]− o[i]

)
·
(
w1,ℓ[i]− w0,ℓ[i]

)
.

Remark 4.22. Observe that, if we restrict u and o to be the weight-vectors of strings in L with
a common σ-vector s⃗ ∈ σ⃗(L), that is, u, o ∈ {w⃗(x) | x ∈ L and σ⃗(x) = s⃗}, then, for any ℓ ∈ S,
Lemma 4.6 yields

u[ℓ]− o[ℓ]+ remWS
(u, o)[ℓ] = u[ℓ]− o[ℓ]+

∑
i∈[1 . .n]\S

(
u[i]− o[i]

)
·
(
w1,ℓ[i]− w0,ℓ[i]

)
=

(
u− o

)
·
(
w1,ℓ − w0,ℓ

)
=

(
u− o

)
· w1,ℓ −

(
u− o

)
· w0,ℓ

≡m 0− 0 ≡m 0.

Note that Remark 4.22 closely mirrors Claim 4.10. Further, if we pick an arbitrary vector
o ∈ {w⃗(x) | x ∈ L and σ⃗(x) = s⃗} to act as an �origin�, then we can shift all vectors in {w⃗(x) | x ∈
L and σ⃗(x) = s⃗} so that their coordinates on S become divisible by m. We can then exploit this
to compress the coordinates on S. In other words, the reduced �exibility due to �xing the σ-vector
s⃗ translates to a reduced �exibility in the choice of coordinates for the positions that de�ne the
possible σ-vectors.

Finally, as we intend to add (the components of) compressed vectors modulo some number di (see
Fact 4.19), we need to add �checksums� to the compressed vectors to be able to detect �over�ows�.
This leads to the following de�nition.

De�nition 4.23. Let L ⊆ An denote a (non-empty) language with L × L ⊆ Rn, let S denote
a σ-de�ning set for σ⃗(L), let WS ⊆ σ⃗(L) denote a corresponding set of witness vectors, and set
S̄ := [1 . .n] \ S.

Further, �x a vector s⃗ ∈ σ⃗(L) and an origin vector o ∈ [0 . . ttop]
n such that, for any u ∈ {w⃗(x) |

x ∈ L and σ⃗(x) = s⃗}, we have

u[ℓ]− o[ℓ]+ remWS
(u, o)[ℓ] ≡m 0.

31

For a (weight-)vector z ∈ {w⃗(x) | x ∈ L and σ⃗(x) = s⃗}, we de�ne the σ-compression with origin
o and type s⃗ as the following (n+ 2)-dimensional vector z↓o:

z↓o[ℓ] := z[ℓ] mod ttop + 1, ℓ ∈ S̄,

z↓o[ℓ] :=
z[ℓ]− o[ℓ]+ remWS

(z, o)[ℓ]

m
mod

⌈
caps⃗[ℓ]+ 1

m

⌉
, ℓ ∈ S,

z↓o[n+ 1] :=
∑
i∈S̄

z[i] mod 2n(ttop + 1),

z↓o[n+ 2] :=
∑
i∈S

z[i] mod 2n(ttop + 1).

Further, we write ZS,s⃗ for the (n + 2)-dimensional space of all σ-compressed vectors for S and s⃗
(and potentially di�erent o).

Remark 4.24. With Fact 4.19 in mind and writing Ss⃗,c := {ℓ ∈ S | s⃗[ℓ] = c}, we observe that

|ZS,s⃗| =
⌈
stop + 1

m

⌉|Ss⃗,1|
·
⌈
rtop + 1

m

⌉|Ss⃗,0|
· (ttop + 1)n−|S| · 4n2(ttop + 1)2.

In particular, using Fact 4.19 on the σ-compressed vectors yields a signi�cant speed-up over the
direct application to the weight vectors (whose domain has a size of (ttop + 1)n).

Remark 4.25. Observe that, for a �xed origin vector o, the mapping ⋆↓o is injective and we can
easily recover the original weight-vector z from its σ-compression z↓o:5

z[ℓ] := z↓o[ℓ], ℓ ∈ S̄,

z[ℓ] :=
(
m · z↓o[ℓ]+ o[ℓ]− remWS

(z↓o, o)[ℓ]
)
mod m

⌈
caps⃗[ℓ]+ 1

m

⌉
=

(
m · z↓o[ℓ]+ o[ℓ]

−
∑
i∈S̄

(
z↓o[i]− o[i]

)
·
(
w1,ℓ[i]− w0,ℓ[i]

))
mod m

⌈
caps⃗[ℓ]+ 1

m

⌉
, ℓ ∈ S.

Further, for elements x ∈ ZS,s⃗ that cannot be obtained from a σ-compression, we have that either∑
i∈S̄

x[i] ̸= x[n+ 1] or
∑
i∈S

x[i] ̸= x[n+ 2] or x[ℓ] > caps⃗[ℓ] for an ℓ ∈ [1 . .n].

Hence, given a subset of ZS,s⃗, we can quickly identify which vectors are indeed σ-compressed weight
vectors.

In a next step, we discuss how addition and σ-compression interact with each other.

Lemma 4.26. Let L1, L2 ⊆ An denote (non-empty) languages with L1×L1 ⊆ Rn and L2×L2 ⊆ Rn,
let S denote a σ-de�ning set for σ⃗(L1)∩ σ⃗(L2), let WS ⊆ σ⃗(L1)∩ σ⃗(L2) denote a corresponding set
of witness vectors, and set S̄ := [1 . .n] \ S.

Further, �x a σ-vector s⃗ ∈ σ⃗(L1) ∩ σ⃗(L2), as well as weight-vectors

o ∈ {w⃗(x) | x ∈ L1 and σ⃗(x) = s⃗} and p ∈ {w⃗(x) | x ∈ L2 and σ⃗(x) = s⃗}.
5Observe that we exploit remWS (z, o)[ℓ] = remWS (z↓o, o)[ℓ].

32

For any two strings u ∈ L1, v ∈ L2 with σ⃗(u) = σ⃗(v) = s⃗, we have that u and v can be joined if
and only if there is a string z ∈ L1 ⊕ L2 with

w⃗(u)↓o + w⃗(v)↓p = w⃗(z)↓o+p. (4.8)

If z exists, we have z = u⊕ v.

Proof. Fix two strings u ∈ L1, v ∈ L2 with σ⃗(u) = σ⃗(v) = s⃗, and suppose that they can be joined.
Equation (4.7) now yields w⃗(u) + w⃗(v) = w⃗(u⊕ v) and, in particular, for each position ℓ ∈ [1 . .n],
that

w⃗(u)[ℓ]+ w⃗(v)[ℓ] ≤ caps⃗[ℓ] ≤ ttop.

Now, for Equation (4.8), only positions ℓ ∈ S warrant a short justi�cation; for all other positions
the result is immediate from De�nition 4.23. Hence, for a position ℓ ∈ S, �rst observe that we have

remWS
(w⃗(u), o)[ℓ]+ remWS

(w⃗(v), p)[ℓ] = remWS
(w⃗(u) + w⃗(v), o+ p)[ℓ]

= remWS
(w⃗(u⊕ v), o+ p)[ℓ].

Now, we obtain

0 ≡m

(
w⃗(u)[ℓ]− o[ℓ]+ remWS

(w⃗(u), o)[ℓ]
)
+
(
w⃗(v)[ℓ]− p[ℓ]+ remWS

(w⃗(v), p)[ℓ]
)

= w⃗(u⊕ v)[ℓ]− (o+ p)[ℓ]+ remWS
(w⃗(u⊕ v), o+ p)[ℓ],

which yields the claim.
For the other direction, �x two strings u ∈ L1, v ∈ L2 with σ⃗(u) = σ⃗(v) = s⃗, and suppose that

there is a string z ∈ L1 ⊕ L2 with w⃗(u)↓o + w⃗(v)↓p = w⃗(z)↓o+p. We proceed to show that then,
indeed, u and v can be joined and z = u⊕ v.

First, consider the positions in the set S̄, and in particular, �x an ℓ ∈ S̄. Now, we have

w⃗(z)[ℓ] = w⃗(z)↓o+p[ℓ] ≡ttop+1 w⃗(u)↓o[ℓ]+ w⃗(v)↓p[ℓ] = w⃗(u)[ℓ]+ w⃗(v)[ℓ].

In combination with 0 ≤ w⃗(z)[ℓ] ≤ caps⃗[ℓ] ≤ ttop + 1 and 0 ≤ w⃗(u)[ℓ]+ w⃗(v)[ℓ], we obtain

w⃗(z)[ℓ] ≤ w⃗(u)[ℓ]+ w⃗(v)[ℓ]. (4.9)

Now, exploiting the �checksums�, we obtain∑
i∈S̄

w⃗(z)[i] = w⃗(z)↓o+p[n+ 1]

≡2n(ttop+1) w⃗(u)↓o[n+ 1]+ w⃗(v)↓p[n+ 1] =
∑
i∈S̄

w⃗(u)[i]+
∑
i∈S̄

w⃗(v)[i]. (4.10)

Finally, as u ∈ L1, v ∈ L2, and z ∈ L1 ⊕ L2, we have that, for all positions i ∈ [1 . .n],

0 ≤ w⃗(u)[i] ≤ caps⃗[ℓ] ≤ ttop, 0 ≤ w⃗(v)[i] ≤ caps⃗[ℓ] ≤ ttop, and 0 ≤ w⃗(z)[i] ≤ caps⃗[ℓ] ≤ ttop,

and hence,

0 ≤
∑
i∈S̄

w⃗(u)[i]+
∑
i∈S̄

w⃗(v)[i] < 2n(ttop + 1) and 0 ≤
∑
i∈S̄

w⃗(z)[i] < 2n(ttop + 1).

33

We conclude that Equation (4.10) is in fact an equality (over Z). Hence, in combination with
Equation (4.9), we obtain the desired

w⃗(u)[ℓ]+ w⃗(v)[ℓ] = w⃗(z)[ℓ] ≤ caps⃗[ℓ].

Therefore, indeed w⃗(u⊕ v)[ℓ] = w⃗(u)[ℓ]+ w⃗(v)[ℓ] = w⃗(z)[ℓ].
Next, consider the positions in the set S, and in particular, �x an ℓ ∈ S. The overall proof

strategy is the same as before. We only need to adapt to the slightly more complicated de�nition
of ⋆↓⋆[ℓ]. Writing m′ := ⌈(caps⃗[ℓ]+ 1)/m⌉ and applying Remark 4.25, we obtain

w⃗(z)[ℓ] ≡m·m′ m · w⃗(z)↓o+p[ℓ]+ (o+ p)[ℓ]− remWS
(w⃗(u) + w⃗(v), o+ p)[ℓ]

≡m·m′ m · (w⃗(u)↓o[ℓ]+ w⃗(v)↓p[ℓ]) + (o[ℓ]+ p[ℓ])− remWS
(w⃗(z)↓o+p, o+ p)[ℓ]

≡m·m′
(
m · w⃗(u)↓o[ℓ]+ o[ℓ]− remWS

(w⃗(u)↓o, o)[ℓ]
)

+
(
m · w⃗(v)↓p[ℓ]+ p[ℓ]− remWS

(w⃗(v)↓p, p)[ℓ]
)

≡m·m′ w⃗(u)[ℓ]+ w⃗(v)[ℓ].

In combination with 0 ≤ w⃗(z)[ℓ] ≤ caps⃗[ℓ] ≤ m ·m′ and 0 ≤ w⃗(u)[ℓ]+ w⃗(v)[ℓ], we obtain

w⃗(z)[ℓ] ≤ w⃗(u)[ℓ]+ w⃗(v)[ℓ]. (4.11)

Again, exploiting the �checksums�, we obtain∑
i∈S

w⃗(z)[i] = w⃗(z)↓o+p[n+ 1]

≡2n(ttop+1) w⃗(u)↓o[n+ 1]+ w⃗(v)↓p[n+ 1] =
∑
i∈S

w⃗(u)[i]+
∑
i∈S

w⃗(v)[i]. (4.12)

Finally, as u ∈ L1, v ∈ L2, and z ∈ L1 ⊕ L2, we have that, for all positions i ∈ [1 . .n],

0 ≤ w⃗(u)[i] ≤ caps⃗[ℓ] ≤ ttop, 0 ≤ w⃗(v)[i] ≤ caps⃗[ℓ] ≤ ttop, and 0 ≤ w⃗(z)[i] ≤ caps⃗[ℓ] ≤ ttop,

and hence,

0 ≤
∑
i∈S

w⃗(u)[i]+
∑
i∈S

w⃗(v)[i] < 2n(ttop + 1) and 0 ≤
∑
i∈S

w⃗(z)[i] < 2n(ttop + 1).

We conclude that Equation (4.12) is in fact an equality (over Z). Hence, in combination with
Equation (4.11), we obtain the desired

w⃗(u)[ℓ]+ w⃗(v)[ℓ] = w⃗(z)[ℓ] ≤ caps⃗[ℓ].

Therefore, indeed w⃗(u⊕ v)[ℓ] = w⃗(u)[ℓ]+ w⃗(v)[ℓ] = w⃗(z)[ℓ].
Overall, we obtain that u and v can be joined and that z = u⊕v, which completes the proof.

Finally, we are ready to give algorithms. First, we discuss how to compute a σ-de�ning set S
(as well as witness strings that certify that S is indeed a minimal set).

Lemma 4.27. Given a language L ⊆ An, we can compute a σ-de�ning set S for σ⃗(L), as well as
a set of witness vectors WS for S, in time O(|L| · n4).

34

Proof. Given a language L ⊆ An, we �rst compute the set σ⃗(L) of all σ-vectors. Then, starting
with S := [1 . .n], we repeatedly iterate over the positions 1 to n; for each position i, we check
if i can be removed from S, that is, whether removing the i-th position from each vector in σ⃗(L)
does not decrease the size of σ⃗(L). If removing the i-th position would decrease the size of σ⃗(L),
we also store two witness vectors that di�er only at position i, but not at the remaining positions
in S. We stop when no further positions can be removed; we return the resulting set S, as well as
the corresponding pairs of witness vectors.

We can check if a position i ∈ S can be removed by checking if the (multi-)set

σ⃗(L)S,i :=
{
v[S \ {i}] | v ∈ σ⃗(L)

}
(where position i is removed) contains a duplicate element. This we can do by a linear scan over
σ⃗(L)S,i to construct σ⃗(L)S,i, sorting σ⃗(L)i, and then another linear scan over σ⃗(L)S,i. Observe that
if we indeed detect a duplicate, we have also found the required witness.

For the correctness, observe that during the algorithm we maintain that the positions in S
uniquely identify the vectors in σ⃗(L); as we maintain the size of σ⃗(L), the resulting set does indeed
also uniquely identify the vectors in the initial set σ⃗(L). Further, our algorithm trivially ensures
that S is minimal, and hence, the returned set S is indeed σ-de�ning for σ⃗(L).

For the running time, we can compute σ⃗(L) in time O(|L| log |σ⃗(L)| ·n) = O(|L| ·n2) by iterating
over L and computing each σ-vector separately; �ltering out duplicates by using an appropriate
data structure. Next, observe that we iterate over all positions in S at most n times; in each
iteration, we check for at most n positions whether they can be removed from S. The check if
we can remove a position from S runs in the time it takes to sort σ⃗(L), which we can bound by
O(|σ⃗(L)| log |σ⃗(L)| ·n) = O(|L| ·n2). Hence, in total the algorithm runs in the claimed running time
of O(|L| · n4), which completes the proof.

Lastly, we prove the promised main result, which we restate here for convenience.

Theorem 4.18. Let L1, L2 ⊆ An denote languages with L1 × L1 ⊆ Rn and L2 × L2 ⊆ Rn, and let
S denote a σ-de�ning set for σ⃗(L1) ∩ σ⃗(L2). Then, we can compute the language L1 ⊕ L2 in time

(n+ ttop)
O(1) · (ttop + 1)n−|S| ·

|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

≤
{

(n+ ttop)
O(1) · (ttop + 2)n if m = 2 and ttop = stop = rtop is even,

(n+ ttop)
O(1) · (ttop + 1)n otherwise.

Proof. Given the languages L1 and L2, we �rst compute σ⃗(L1) ∩ σ⃗(L2) and drop any strings from
L1 and L2 whose σ-vectors are not in σ⃗(L1) ∩ σ⃗(L2). Next, we use Lemma 4.27 to compute a
σ-de�ning set S for σ⃗(L1) ∩ σ⃗(L2) as well as a set of witness vectors WS . Now, for each σ-vector
s⃗ ∈ σ⃗(L1) ∩ σ⃗(L2), we compute the sets

w⃗(L1,s⃗) := {w⃗(u) | u ∈ L1 and σ⃗(u) = s⃗} and w⃗(L2,s⃗) := {w⃗(v) | v ∈ L2 and σ⃗(v) = s⃗}.

Next, we pick arbitrary vectors o ∈ L1,s⃗ and p ∈ L2,s⃗, and compute the functions f1, f2 : ZS,s⃗ → Z

f1(x) :=

{
1 if x = u↓o for some u ∈ L1,s⃗,

0 otherwise;
and f2(y) :=

{
1 if y = v↓p for some v ∈ L2,s⃗,

0 otherwise.

(4.13)

35

Using Fact 4.19, we compute the function h : ZS,s⃗ → Z,

h(a) :=
∑

x+y=a

f1(x) · f2(y).

Using Remark 4.25, we compute the set w⃗(L1,2,s⃗) of all weight-vectors whose compression has a
positive value for h:

w⃗(L1,2,s⃗) := {z | ∃a ∈ ZS,s⃗ : h(a) > 0 and z↓o+p = a}.

Iterating over w⃗(L1,2,s⃗), we uniquely reconstruct a string from the weight vector and s⃗ in the
straightforward way to obtain

L1,2,s⃗ := {z ∈ An | σ⃗(z) = s⃗ and w⃗(z) ∈ w⃗(L1,2,s⃗)}.

Finally, we return the union L1,2 of all sets L1,2,s⃗ computed,

L1,2 :=
⋃

s⃗∈σ⃗(L1)∩σ⃗(L2)

L1,2,s⃗.

For the correctness, �rst observe that by Lemma 4.15, any string z ∈ L1 ⊕ L2 has the same
σ-vector as a string in L1 and a string in L2. Hence, we can indeed compute the strings in L1 ⊕L2

for each σ-vector separately. Next, by Lemma 4.26 and Remark 4.25, the set w⃗(L1,2,s⃗) is indeed the
set of all weight-vectors of strings in L1 ⊕ L2 with σ-vector s⃗:

w⃗(L1,2,s⃗) = w⃗({z ∈ L1 ⊕ L2 | σ⃗(z) = s⃗}).

Hence, in total, the algorithm does indeed compute L1 ⊕ L2 = L1,2.
For the running time, we can compute the sets σ⃗(L1) and σ⃗(L2) in total time

O
(
(|L1|+ |L2|) log(|σ⃗(L1)|+ |σ⃗(L2)|) · n

)
= O(max{|L1|, |L2|} · n2)

by iterating over L1 (or L2) and computing each σ-vector separately; �ltering out duplicates by
using an appropriate data structure (note that |σ⃗(L1)|, |σ⃗(L2)| ≤ 2n). Afterward, we can compute
σ⃗(L1) ∩ σ⃗(L2) in the same running time by using standard algorithms for merging sets.

Using the algorithm from Lemma 4.27, we can compute the σ-de�ning set S (as well as the
corresponding witness vectors) in time O(max{|L1|, |L2|} ·n4). As S is σ-de�ning for σ⃗(L1)∩ σ⃗(L2),
we have |σ⃗(L1) ∩ σ⃗(L2)| ≤ 2|S|. Now, for a �xed σ-vector s⃗ ∈ σ⃗(L1) ∩ σ⃗(L2), write k(s⃗) := |{i ∈ S |
s⃗[i] = 1}| for the number of entries 1 of the vector s⃗ on positions from S. Recalling Remark 4.24,
we see that the application of Fact 4.19 takes time

(n+ ttop)
O(1) · (ttop + 1)n−|S|

⌈
stop + 1

m

⌉k(s⃗) ⌈rtop + 1

m

⌉|S|−k(s⃗)

.

Here, using the notation of Remark 4.20, we set M := |ZS,s⃗| and exploit that D′ = (n + ttop)
O(1)

to compute the prime p and the required roots of unity in the desired time. Finally, recovering
L1,2,s⃗ can be done with a linear pass over ZS,s⃗ in the same running time; combining the recovered
(disjoint) sets can then be done in linear time of the returned result L1 ⊕ L2.

In total, the algorithm thus runs in time

(n+ ttop)
O(1) ·max{|L1|, |L2|, |L1 ⊕ L2|}

+ (n+ ttop)
O(1) · (ttop + 1)n−|S| ·

|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

.

36

Using Corollaries 4.12 and 4.17, the running time simpli�es to

(n+ ttop)
O(1) · (ttop + 1)n−|S| ·

|S|∑
k=0

(|S|
k

)⌈
stop + 1

m

⌉k ⌈rtop + 1

m

⌉|S|−k

.

Finally, Lemma 4.13 yields the tidier upper bound, which completes the proof.

4.3 Faster Algorithms for Generalized Dominating Set Problems

Finally, we use Theorem 4.18 to obtain faster algorithms for (σ, ρ)-DomSet; that is, we prove
Theorem 4.1, which we restate here for convenience.

Theorem 4.1. Let (σ, ρ) denote �nite m-structured sets for some m ≥ 2. Then, there is an
algorithm A that, given a graph G and a nice tree decomposition of G of width tw, decides whether
G has a (σ, ρ)-DomSet.

If m ≥ 3 or ttop is odd or min(rtop, stop) < ttop, then algorithm A runs in time

(ttop + 1)tw · (ttop + tw)O(1) · |V (G)|.

If m = 2, ttop is even, and rtop = stop = ttop, then algorithm A runs in time

(ttop + 2)tw · (ttop + tw)O(1) · |V (G)|.

Proof. For ease of notation, let us de�ne τ := ttop+1 if m ≥ 3 or ttop is odd or min(rtop, stop) < ttop,
and τ := ttop + 2 if m = 2, ttop is even, and rtop = stop = ttop.

Let (T, β) denote the nice tree decomposition of G. For t ∈ V (T), we set Xt := β(t) and write
Vt for the set of vertices contained in bags below t (including t itself).

For each node t ∈ V (T) and each i ∈ [0 . .m), we compute the language Lt,i ⊆ AXt of all
strings x ∈ AXt that are compatible with (G[Vt], Xt)

6 via a witnessing solution set Sx such that
|Sx \Xt| ≡m i. We have that Lt,i × Lt,i ⊆ R|Xt| by Lemma 4.3, and hence, Theorem 4.4 yields

|Lt,i| ≤ τ |Xt| ≤ τ tw+1. (4.14)

We compute the sets Lt,i for nodes t ∈ V (T) in a bottom-up fashion starting at the leaves of T .
For a leaf t of T , we have Xt = Vt = ∅ and Lt,i = {ε} for every i ∈ [0 . .m) (where ε denotes

the empty string).
For an internal node t, suppose we already computed all sets Lt′,i for all children t

′ of t. We
proceed depending on the type of t.

Forget: First, suppose t is a forget-node, and let t′ denote the unique child of t. Also, assume that
Xt′ = Xt ∪ {v}, that is, v ∈ V (G) is the vertex forgotten at t. We say that a string x ∈ AXt′

is ρ-happy at v if x[v] = ρc and c ∈ ρ. Also, we say that a string x ∈ AXt′ is σ-happy at v if
x[v] = σd and d ∈ σ. It is easy to see that

Lt,i = {x[Xt] | x ∈ Lt′,i such that x is ρ-happy at v}
∪ {x[Xt] | x ∈ Lt′,i−1 such that x is σ-happy at v},

where the index i− 1 is taken modulo m. Hence, using Equation (4.14), for each i ∈ [0 . .m),
we can compute the set Lt,i in time τ tw · (ttop + tw)O(1).

6To follow standard notation for dynamic programming algorithms on tree decompositions, we use Xt here to
denote the set of portal vertices.

37

Introduce: Next, consider the case that t is an introduce-node, and let t′ denote the unique child
of t. Suppose that Xt = Xt′ ∪ {v}, that is, v ∈ V (G) is the vertex introduced at t. Note that
we have NG(v) ∩ Vt ⊆ Xt′ . We say a string x ∈ AXt ρ-extends a string y ∈ AXt′ if

1. x[v] = ρc for some c ∈ {0, . . . , rtop},
2. c = |{w ∈ NG(v) | y[w] ∈ S}|, and
3. x[Xt′] = y[Xt′].

A string x ∈ AXt σ-extends a string y ∈ AXt′ if

1. x[v] = σd for some d ∈ {0, . . . , stop},
2. d = |{w ∈ NG(v) | y[w] ∈ S}|,
3. σ⃗(x)[w] = σ⃗(y)[w] for all w ∈ Xt′ ,

4. w⃗(x)[w] = w⃗(y)[w] for all w ∈ Xt′ \NG(v), and

5. w⃗(x)[w] = w⃗(y)[w]+ 1 for all w ∈ Xt′ ∩NG(v).

Finally, a string x ∈ AXt extends a string y ∈ AXt′ if it ρ-extends y or it σ-extends y. We
have that

Lt,i = {x ∈ AXt | x extends some y ∈ Lt′,i}.

Since, for every string y ∈ AXt′ , there are at most two strings x ∈ AXt such that x extends y,
all of the languages Lt,i can be computed by iterating over all sets Lt′,i once. This takes time
τ tw · (ttop + tw)O(1) using Equation (4.14).

Join: Finally, suppose that t is a join-node, and let t1, t2 denote the two children of t. Observe
that Xt = Xt1 = Xt2 .

To compute the sets Lt,i, we intend to rely on the algorithm from Theorem 4.18. However,
this is not directly possible since the weight-vectors of the resulting strings would not be
correct. Indeed, suppose that x1, x2 ∈ AXt are strings that are compatible with (G[Vt1], Xt1)
and (G[Vt2], Xt2), respectively. Also, suppose that x1 and x2 can be joined. Then, x1 ⊕ x2
is not (necessarily) compatible with (G[Vt], Xt) since, for every v ∈ Xt, the vertices from
NG(v) ∩Xt that are contained in the solution set are counted twice. For this reason, we �rst
modify all the strings from the languages Lt1,i such that indices do not take solution vertices
from the set Xt into account.

For each i ∈ [0 . .m) and each x ∈ Lt1,i, we perform the following steps. We de�ne the string
x̂ ∈ AXt as

x̂[v] :=

{
ρc if x[v] = ρc′ and c

′ = c+ |{w ∈ NG(v) ∩Xt | x[w] ∈ S}|,
σd if x[v] = σd′ and d

′ = d+ |{w ∈ NG(v) ∩Xt | x[w] ∈ S}|

and add x̂ to the set L′
t1,i

. Observe that, for each i ∈ [0 . .m), we can compute the set L′
t1,i

in time τ tw · (ttop + tw)O(1) using Equation (4.14).

Now, we easily observe that

Lt,i =
⋃

j∈[0 . .m)

L′
t1,j ⊕ Lt2,i−j ,

38

where the index i − j is taken modulo m. We iterate over all choices of i, j ∈ [0 . .m)
and compute L′

t1,j
⊕ Lt2,i−j using Theorem 4.18. To that end, we need to ensure that the

requirements of Theorem 4.18 are satis�ed. We have already argued that Lt2,i−j × Lt2,i−j ⊆
R|Xt|. Further, L′

t1,j
is realized by (G[Vt]−E(Xt, Xt), Xt) (that is, the graph obtained from

G[Vt] by removing all edges within Xt), and hence, L′
t1,j

× L′
t1,j

⊆ R|Xt| using Lemma 4.3.

Overall, this allows us to compute the join in time τ tw · (ttop + tw)O(1) using Theorem 4.18.

Since processing a single node of T takes time τ tw·(ttop+tw)O(1) and we have |V (T)| = O(tw·|V (G)|),
we see that all sets Lt,i can be computed in the desired time.

To decide whether G has a (σ, ρ)-DomSet, we consider the root node t ∈ V (T) for which
Xt = ∅ and Vt = V (G). Then, G has a (σ, ρ)-DomSet if and only if ε ∈ Lt,i for some i ∈ [0 . .m),
which completes the proof.

Next, we explain how to extend the algorithm to the optimization and counting version of the
problem. For the optimization version, it is easy to see that we can keep track of the size of partial
solutions in the dynamic programming tables. This increases the size of all tables by a factor of
|V (G)|. Hence, we obtain the following theorem for the optimization version.

Theorem 4.28. Let (σ, ρ) denote �nite, m-structured sets for some m ≥ 2. Then, there is an
algorithm A that, given a graph G, an integer k, and a nice tree decomposition of G of width tw,
decides whether G has a (σ, ρ)-DomSet of size at most (at least) k.

If m ≥ 3 or ttop is odd or min(rtop, stop) < ttop, then algorithm A runs in time

(ttop + 1)tw · (ttop + tw)O(1) · |V (G)|2.

If m = 2, ttop is even, and rtop = stop = ttop, then algorithm A runs in time

(ttop + 2)tw · (ttop + tw)O(1) · |V (G)|2.

For the counting version of the problem (that is, we wish to compute the number of solution
sets), the situation is more complicated. The main challenge for the counting version stems from
the application of Fact 4.19 for which we need to �nd an appropriate prime p as well as certain
roots of unity. In Remark 4.20, we explained how to �nd these objects in time roughly linear in p
(ignoring various lower-order terms that are not relevant to the discussion here). However, for the
counting version, we would need p to be larger than the number of solutions, which results in a
running time that is exponential in n in the worst case.

Luckily, we can circumvent this problem using the Chinese Remainder Theorem. The basic
idea is to compute the number of solutions modulo pi for a su�ciently large number of distinct
small primes pi. Assuming

∏
i pi > 2n, the number of solutions can be uniquely recovered using the

Chinese Remainder Theorem.

Theorem 4.29 (Chinese Remainder Theorem). Let m1, . . . ,mℓ denote a sequence of integers that
are pairwise coprime, and de�ne M :=

∏
i∈[1 . . ℓ]mi. Also, let 0 ≤ ai < mi for all i ∈ [1 . . ℓ].

Then, there is a unique number 0 ≤ s < M such that

s ≡ ai (mod mi)

for all i ∈ [1 . . ℓ]. Moreover, there is an algorithm that, given m1, . . . ,mℓ and a1, . . . , aℓ, computes
the number s in time O((logM)2).

39

More generally, we can build on the following extension of Fact 4.19 which may also be interesting
in its own right.

Theorem 4.30. Let d1, . . . , dn ≥ 2, and let D :=
∏n

i=1 di. Also, let f, g : Zd1 × · · · × Zdn → Z
denote a function, and let h : Zd1 × · · · × Zdn → Fp denote the convolution

h(a) :=
∑

a1+a2=a

f(a1) · g(a2).

Moreover, let M denote a non-negative integer such that all images of f, g and h are contained in
{0, . . . ,M}. Then, the function h can be computed in time D · (logD + n+ logM)O(1).

Proof. Let m := ⌈logM⌉. We compute the list of the �rst m primes p1 < · · · < pm such that pi ≡ 1
(mod D) for all i ∈ [1 . .m]. By the Prime Number Theorem for Arithmetic Progressions (see, e.g.,
[5]) we get that pm = O(φ(D) ·m · logm), where φ denotes Euler's totient function. In particular,
pm = O(D ·m · logm) because φ(D) ≤ D. Since prime testing can be done in polynomial time, we
can �nd the sequence p1, . . . , pm in time O(D ·m · (logm)c) for some constant c.

Next, for every i ∈ [1 . .m] and j ∈ [1 . .n], we compute a dj-th root of unity in Fpi as follows.
First, observe that such a root of unity exists since dj divides pi−1. Now, we simply iterate over all
elements x ∈ Fpi and test whether a given element x is a dj-th root of unity in time (dj+log pi)

O(1).
So, overall, computing all roots of unity can be done in time

pm · (n+m+ logD)O(1) = D · (n+m+ logD)O(1).

Now, for every i ∈ [1 . .m] and a ∈ Zd1 × · · · × Zdn , we compute

hi(a) := h(a) (mod pi)

using Fact 4.19 taking O(m ·D · logD) many arithmic operations. Since each arithmetic operation
can be done time (log pm)O(1), we obtain a total running time of

D · (m+ logD)O(1).

Finally, we can recover all numbers h(a) by the Chinese Remainder Theorem in time

O(D ·m2).

Note that
∏

i∈[1 . .m] pi > 2m ≥ M , which implies that all numbers are indeed uniquely recovered.
In total, this achieves the desired running time.

Now, to obtain an algorithm for the counting version, we follow the algorithm from Theorem 4.1
and replace the application of Fact 4.19 by Theorem 4.30. Also, we change the de�nition of the
functions fi in Equation (4.13) to give the number of partial solutions. Note that we can setM := 2n

since the number of solutions is always bounded by 2n. Additionally, similarly to the optimization
version, we keep track of the size of solutions. Overall, we obtain the following theorem for the
counting version.

Theorem 4.31. Let (σ, ρ) denote �nite, m-structured sets for some m ≥ 2. Then, there is an
algorithm A that, given a graph G, an integer k, and a nice tree decomposition of G of width tw,
computes the number of solution sets of size exactly k in G for (σ, ρ)-DomSet.

If m ≥ 3 or ttop is odd or min(rtop, stop) < ttop, then algorithm A runs in time

(ttop + 1)tw · (ttop + tw + |V (G)|)O(1).

If m = 2, ttop is even, and rtop = stop = ttop, then algorithm A runs in time

(ttop + 2)tw · (ttop + tw + |V (G)|)O(1).

We obtain Theorem 1.3 by combining Theorems 1.1 and 4.31.

40

5 Faster Algorithms via Representative Sets

Next, we present a second algorithm for (σ, ρ)-DomSet which is designed for the decision version
and the case that one of the sets σ, ρ is co�nite. More precisely, the aim of this section is to prove
Theorem 1.6. Let us stress again that the algorithm given in this section works for all �nite or
co�nite sets σ, ρ, but in the case where both ρ and σ are �nite, it is slower than existing algorithms
(see Theorem 1.1). The algorithm is based on representative sets. Intuitively speaking, for a graph
G and a set U ⊆ V (G), the idea is to not compute the set entire set L ⊆ AU of strings that are
compatible with (G,U), but only a representative set R ⊆ L such that, if there is a partial solution
for some x ∈ L that can be extended to a full solution via some y ∈ AU , then there is also a partial
solution x′ ∈ R that can be extended to a full solution via y. If one of the sets σ, ρ is co�nite, then
it is possible to obtain representative sets R ⊆ L that are much smaller than the number of partial
solutions that are maintained by standard dynamic programming algorithms (see, e.g., [48]).

For technical reasons, it turns out to be more convenient to work with the alphabet An =
{ρ0, . . . , ρn, σ0, . . . , σn}, where n denotes the number of vertices of the graph G under investigation.

To obtain the representative sets, we build on ideas that were already used in [38]. In the
following, let ω < 2.37286 denote the matrix multiplication exponent [2].

Let us �rst restrict ourselves to the case where both ρ and σ are co�nite. Let k ≥ 1 and let
F1, . . . , Fk ⊆ Z≥0 denote �nite sets of forbidden elements. Intuitively speaking, for a set X ⊆ V (G)
consisting of k vertices v1, . . . , vk, we set Fi := Z≥0 \ σ if vi is selected into a partial solution, and
Fi := Z≥0 \ ρ otherwise.

De�nition 5.1. The compatibility graph for forbidden sets F1, . . . , Fk is the in�nite graph C =
C(F1, . . . , Fk) with

� V (C) := Uk ∪ V k where U, V are disjoint sets both identi�ed with Z≥0, and

� E(C) := {((a1, . . . , ak), (b1, . . . , bk)) | ∀i ∈ [1 . . k] : ai + bi /∈ Fi}.

Let S ⊆ Z≥0
k denote a �nite set. We say that S ′ ⊆ S is an (F1, . . . , Fk)-representative set of S if,

for every b ∈ Z≥0
k, we have that

∃a ∈ S : (a, b) ∈ E(C(F1, . . . , Fk)) ⇐⇒ ∃a′ ∈ S ′ : (a′, b) ∈ E(C(F1, . . . , Fk)).

Now, the basic idea is that, for a set X = {v1, . . . , vk} and a �xed σ-vector s⃗ ∈ {0, 1}|X|, it
su�ces to keep an (F1, . . . , Fk)-representative set of the weight vectors of those partial solutions
that have σ-vector s⃗. Here, Fi := Z≥0 \ σ if s⃗[vi] = 1, and Fi := Z≥0 \ ρ if s⃗[vi] = 0.

Lemma 5.2 ([38, Lemma 3.3 & 3.6]). Let F1, . . . , Fk ⊆ Z≥0 denote �nite sets such that |Fi| ≤ t for
all i ∈ [1 . . k]. Further, let S ⊆ Z≥0

k denote a �nite set. Then, one can compute an (F1, . . . , Fk)-
representative set S ′ of S such that |S ′| ≤ (t+ 1)k in time O(|S| · (t+ 1)k(ω−1)k).

We can use Lemma 5.2 to compute representative sets of small size if both ρ and σ are co�nite.
To also cover �nite sets, we need to extend the above results as follows. Consider a k, ℓ ∈ Z≥0 such
that k + ℓ ≥ 1 and let F1, . . . , Fk, P1, . . . , Pℓ ⊆ Z≥0 denote �nite sets of forbidden elements and
positive elements. The basic intuition is similar to before. Consider a set X ⊆ V (G) consisting of
k + ℓ vertices v1, . . . , vk+ℓ and a �xed σ-vector s⃗ ∈ {0, 1}|X| that has k entries corresponding to an
in�nite set, and ℓ entries corresponding to a �nite set (e.g., if σ is in�nite and ρ is �nite, then there
are k many 1-entries since they correspond to the in�nite set σ). With this intuition in mind, we
generalize De�nition 5.1 as follows.

41

De�nition 5.3. The compatibility graph for forbidden sets F1, . . . , Fk and positive sets P1, . . . , Pℓ

is the in�nite graph C = C(F1, . . . , Fk;P1, . . . , Pℓ) with

� V (C) := Uk+ℓ ∪ V k+ℓ where U, V are disjoint sets both identi�ed with Z≥0, and

� E(C) := {((a1, . . . , ak+ℓ), (b1, . . . , bk+ℓ)) | ∀i ∈ [1 . . k] : ai + bi /∈ Fℓ and ∀j ∈ [1 . . ℓ] : ak+j +
bk+j ∈ Pj}.

Let S ⊆ Z≥0
k+ℓ denote a �nite set. We say that S ′ ⊆ S is an (F1, . . . , Fk;P1, . . . , Pℓ)-representative

set of S if, for every b ∈ Z≥0
k, we have that

∃a ∈ S : (a, b) ∈ E(C) ⇐⇒ ∃a′ ∈ S ′ : (a′, b) ∈ E(C).

By taking a brute-force approach to positions with positive sets, we can also generalize Lemma 5.2.

Lemma 5.4. Let F1, . . . , Fk, P1, . . . , Pℓ ⊆ Z≥0 denote �nite sets such that |Fi| ≤ t for all i ∈ [1 . . k]
and max(Pj) ≤ t for all j ∈ [1 . . ℓ]. Further, write S ⊆ Z≥0

k for a �nite set. Then, one can
compute an (F1, . . . , Fk;P1, . . . , Pℓ)-representative set S ′ of S such that |S ′| ≤ (t + 1)k+ℓ in time
O(|S| · (t+ 1)ℓ+k(ω−1)(k + ℓ)).

Proof. We proceed in two steps. We �rst compute the set

S ′′ := {(a1, . . . , ak+ℓ) ∈ S | ∀j ∈ [1 . . ℓ] : ak+j ≤ t}.

Clearly, the set S ′′ can be computed in time O(|S| ·ℓ). Also, every element (a1, . . . , ak+ℓ) ∈ S \S ′′ is
an isolated vertex in C = C(F1, . . . , Fk;P1, . . . , Pℓ) because max(Pj) ≤ t for all j ∈ [1 . . ℓ]. Hence,
it su�ces to compute a (F1, . . . , Fk;P1, . . . , Pℓ)-representative set of S1.

We say that two elements (a1, . . . , ak+ℓ), (a1, . . . , ak+ℓ) ∈ S ′′ are positive-equivalent if ak+j =
bk+j for all j ∈ [1 . . ℓ]. Let S1, . . . ,Sp denote the equivalence classes of this relation. Note that,
by the de�nition of the set S ′′, we have p ≤ (t + 1)ℓ. We can compute the sets S1, . . . ,Sp in time
O(|S|·(t+1)ℓ(k+ℓ)). For each i ∈ [1 . . p], we can compute a (F1, . . . , Fk;P1, . . . , Pℓ)-representative
set S ′

i of Si using Lemma 5.2 in time O(|S| · (t+ 1)k(ω−1)k). Then, |S ′
i| ≤ (t+ 1)k. We de�ne

S ′ :=
⋃

i∈[1 . . p]

S ′
i.

Observe that |S ′| ≤ p · (t+ 1)k ≤ (t+ 1)k+ℓ. Moreover, computing S ′ overall takes time O(|S| · ℓ+
|S| · (t+ 1)ℓ(k + ℓ) + p · |S| · (t+ 1)k(ω−1)k) = O(|S| · (t+ 1)ℓ+k(ω−1)(k + ℓ)).

We have all the tools to present an algorithm for (σ, ρ)-DomSet on graphs of small tree-width
based on representative sets. To state its running time, let us introduce the following cost measure
for sets of natural numbers. We write ∅ ̸= τ ⊆ Z≥0 for a �nite or co�nite set. If τ is �nite, then we
de�ne cost(τ) := max(τ). Otherwise, τ is co�nite and we de�ne cost(τ) := |Z≥0 \ τ |.

Theorem 5.5 (Theorem 1.6 restated). Suppose σ, ρ ⊆ Z≥0 are �nite or co�nite. Also, let tcost :=
max(cost(ρ), cost(σ)). Then, there is an algorithm A that, given a graph G and a nice tree decom-
position of G of width tw, decides whether G has a (σ, ρ)-DomSet in time

2tw · (tcost + 1)tw(ω+1) · (tcost + tw)O(1) · |V (G)|.

42

Before we dive into the proof, let us again compare the running times from this algorithm and
the existing algorithm by van Rooij (Theorem 1.1). To this end, we de�ne a modi�ed cost measure.
Write τ ⊆ Z≥0 for a �nite or co�nite set. If τ is �nite, then we de�ne cost′(τ) := max(τ). Otherwise,
τ is co�nite and we de�ne cost′(τ) := max(Z≥0 \ τ)+1 if Z≥0 \ τ ̸= ∅, and cost′(Z≥0) = 0. Observe
the di�erence in the de�nition for co�nite sets. Also, note that cost(τ) ≤ cost′(τ) for all �nite or
co�nite sets τ ⊆ Z≥0. Moreover, for a co�nite set τ ⊆ Z≥0, we have that cost(τ) = cost′(τ) if and
only if τ = {c, c+ 1, c+ 2, . . . } for some number c ∈ Z≥0.

Using this cost measure, the running time of the algorithm from Theorem 1.1 is(
cost′(ρ) + cost′(σ) + 2

)tw
nO(1).

On the other hand, the algorithm from Theorem 5.5 runs in time(
2 ·

(
max(cost(ρ), cost(σ)) + 1

)ω+1
)tw

nO(1).

If σ and ρ are both �nite, then the algorithm by van Rooij is clearly faster using that cost′(ρ) =
cost(ρ) and cost′(σ) = cost(σ) (but, in this case, Theorem 4.1 provides an improved algorithm for
structured sets). However, if one the sets σ, ρ is co�nite, then our algorithm may be substantially
faster since cost(τ) can be arbitrarily smaller than cost′(τ) for a co�nite set τ . As a concrete example,
suppose that ρ = Z≥0 \ {c} and σ = Z≥0 \ {d}. Then, cost(ρ) = cost(σ) = 1, but cost′(ρ) = c + 1
and cost′(σ) = d + 1. Hence, van Rooij's algorithm runs in time (c + d + 4)twnO(1), where the
algorithm from Theorem 5.5 takes time 2tw(ω+2)nO(1) which is at most 20.72twnO(1). Observe that
the second running time is independent of c and d.

Proof. Let (T, β) denote the nice tree decomposition of G and suppose n = |V (G)|. For ease of
notation, let us set A := An = {ρ0, . . . , ρn, σ0, . . . , σn} for the remainder of this proof. For t ∈ V (T),
we denote Xt := β(t) and Vt the set of vertices contained in bags below t (including t itself). For
each node t ∈ V (T) and each s⃗ ∈ {0, 1}Xt we denote by Lt,s⃗ ⊆ AXt the set of all strings x ∈ AXt

that are compatible with (G[Vt], Xt) and σ⃗(x) = s⃗.
Now, let us �x some t ∈ V (T) and s⃗ ∈ {0, 1}Xt . Also, suppose that v ∈ Xt. We say that v is

an F -position if s⃗[v] = 1 and σ is co�nite, or s⃗[v] = 0 and ρ is co�nite. In the former case, we
de�ne Fv := Z≥0 \ σ, and in the latter case we de�ne Fv := Z≥0 \ ρ. If v is not an F -position, then
we say that v is a P -position. Note that v is a P -position if s⃗[v] = 1 and σ is �nite, or s⃗[v] = 0
and ρ is �nite. In the former case, we de�ne Pv := σ, and in the latter case we de�ne Pv := ρ.
By ordering elements in Xt accordingly, we may assume that Xt = {v1, . . . , vk, vk+1, . . . , vk+ℓ} such
that v1, . . . , vk are F -positions and vk+1, . . . , vk+ℓ are P -positions.

For two words x, y ∈ AXt such that σ⃗(x) = σ⃗(y) = s⃗, we write x ∼t,s⃗ y if

(w⃗(x), w⃗(y)) ∈ E(C(Fv1 , . . . , Fvk ;Pvk+1
, . . . , Pvk+ℓ

)).

We say that a set Rt,s⃗ ⊆ Lt,s⃗ is a (t, s⃗)-representative set of Lt,s⃗ if

S ′ := {w⃗(x) | x ∈ Rt,s⃗}

is an (Fv1 , . . . , Fvk ;Pvk+1
, . . . , Pvk+ℓ

)-representative set of

S := {w⃗(x) | x ∈ Lt,s⃗}.

Equivalently, Rt,s⃗ ⊆ Lt,s⃗ is a (t, s⃗)-representative set of Lt,s⃗ if, for every y ∈ AXt such that σ⃗(y) = s⃗,
we have

∃x ∈ Lt,s⃗ : x ∼t,s⃗ y ⇐⇒ ∃x′ ∈ Rt,s⃗ : x
′ ∼t,s⃗ y.

43

The algorithm computes, for each t ∈ V (T) and s⃗ ∈ {0, 1}Xt , a (t, s⃗)-representative set Rt,s⃗ of
Lt,s⃗ such that |Rt,s⃗| ≤ (tcost + 1)|Xt|. To compute these sets we proceed in a bottom-up fashion
starting at the leaves of T . Suppose t is a leaf of T . Then, Xt = Vt = ∅ and Lt,s⃗ = {ε}. We set
Rt,s⃗ := {ε}.

Next, let t denote an internal node and suppose the algorithm already computed all sets Rt′,s⃗

for all children t′ of t.

Forget: First, suppose t is a forget-node and write t′ for the unique child of t. Also, assume that
Xt′ = Xt ∪ {v}, i.e., v ∈ V (G) is the vertex forgotten at t. We say that a string x ∈ AXt′

is happy at v if x[v] = ρc and c ∈ ρ, or x[v] = σd and d ∈ σ. Fix some s⃗ ∈ {0, 1}Xt . For
i ∈ {0, 1}, we write s⃗i ∈ {0, 1}Xt∪{v} for the extension of s⃗ for which s⃗[v] = i. It is easy to
see that

Lt,s⃗ = {x[Xt] | x ∈ Lt′,s⃗0 such that x is happy at v}
∪ {x[Xt] | x ∈ Lt′,s⃗1 such that x is happy at v}.

We set

R̂t,s⃗ = {x[Xt] | x ∈ Rt′,s⃗0 such that x is happy at v}
∪ {x[Xt] | x ∈ Rt′,s⃗1 such that x is happy at v}.

We show that R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. Let x ∈ Lt,s⃗ and y ∈ AXt such that

σ⃗(y) = s⃗ and x ∼t,s⃗ y. We need to show that there is some x′ ∈ R̂t,s⃗ such that x′ ∼t,s⃗ y. Let
z ∈ Lt′,s⃗i such that z is happy at v and x = z[Xt]. Let yi ∈ AXt′ such that σ⃗(yi) = s⃗i and
w⃗(yi)[v] = 0 and w⃗(yi)[w] = w⃗(y)[w] for all w ∈ Xt. Then, z ∼t′,s⃗i yi. So, there is some
z′ ∈ Rt′,s⃗i such that z′ ∼t′,s⃗i yi. Observe that z′ is happy at v since w⃗(yi)[v] = 0. We set

x′ := z′[Xt]. Then, x
′ ∈ R̂t,s⃗ and x

′ ∼t,s⃗ y as desired.

Observe that R̂t,s⃗ can be computed in time O((tcost + 1)|Xt′ | · |Xt|) = O((tcost + 1)tw · (tcost +
tw)O(1)).

Finally, we obtain Rt,s⃗ by computing a (t, s⃗)-representative set of R̂t,s⃗ using Lemma 5.4. Note

that |Rt,s⃗| ≤ (tcost + 1)|Xt| as desired. Also, Rt,s⃗ is a (t, s⃗)-representative set of Lt,s⃗ since R̂t,s⃗

is a (t, s⃗)-representative set of Lt,s⃗. This step takes time

O(|R̂t,s⃗| · (tcost + 1)|Xt|(ω−1) · |Xt|)
= (tcost + 1)tw · (tcost + 1)tw(ω−1) · (tcost + tw)O(1)

= (tcost + 1)tw·ω · (tcost + tw)O(1).

So overall, computing Rt,s⃗ for every s⃗ ∈ {0, 1}Xt takes time 2tw · (tcost+1)tw·ω · (tcost+ tw)O(1).

Introduce: Next consider the case that t is an introduce-node and write t′ for the unique child of
t. Suppose that Xt = Xt′ ∪ {v}, that is, v ∈ V (G) is the vertex introduced at t. Note that
NG(v) ∩ Vt ⊆ Xt′ . We say a string x ∈ AXt ρ-extends a string y ∈ AXt′ if

1. x[v] = ρc for some c ∈ Z≥0,

2. c = |{w ∈ NG(v) | y[w] ∈ S}|, and
3. x[Xt′] = y[Xt′].

44

A string x ∈ AXt σ-extends a string y ∈ AXt′ if

1. x[v] = σd for some d ∈ Z≥0,

2. d = |{w ∈ NG(v) | y[w] ∈ S}|,
3. σ⃗(x)[w] = σ⃗(y)[w] for all w ∈ Xt′ ,

4. w⃗(x)[w] = w⃗(y)[w] for all w ∈ Xt′ \NG(v), and

5. w⃗(x)[w] = w⃗(y)[w]+ 1 for all w ∈ Xt′ ∩NG(v).

Finally, a string x ∈ AXt extends a string y ∈ AXt′ if it ρ-extends y or it σ-extends y.

Now, �x some s⃗ ∈ {0, 1}Xt . We have that

Lt,s⃗ = {x ∈ AXt | x extends some y ∈ Lt′,s⃗[Xt′]
}.

Similarly to the previous case, the algorithm computes

R̂t,s⃗ := {x ∈ AXt | x extends some y ∈ Rt′,s⃗[Xt′]
}.

Since, for every string y ∈ AXt′ , there are at most two strings x ∈ AXt such that x extends y,
this can be done in time (tcost + 1)tw · (tcost + tw)O(1).

Again, we claim that R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. Let x ∈ Lt,s⃗ and y ∈ AXt such

that σ⃗(y) = s⃗ and x ∼t,s⃗ y. We need to show that there is some x′ ∈ R̂t,s⃗ such that x′ ∼t,s⃗ y.
Let z ∈ Lt′,s⃗[Xt′]

such that x extends z.

First, suppose that x ρ-extends z, i.e., s⃗[v] = 0. Let y′ := y[Xt′]. Then, z ∼t′,s⃗[Xt′]
y′ since

x[Xt′] = y[Xt′]. So, there is some z′ ∈ Rt′,s⃗[Xt′]
such that z′ ∼t′,s⃗[Xt′]

y′. We de�ne x′ ∈ AXt

such that x′[Xt′] = z′ and x′[v] = x[v]. Then, x′ ρ-extends z′, and hence, x′ ∈ R̂t,s⃗. Also,
x′ ∼t,s⃗ y as desired.

Otherwise, x σ-extends z, that is, s⃗[v] = 1. De�ne y′ ∈ AXt′ via

1. σ⃗(y′) = s⃗[Xt′],

2. w⃗(y′)[w] = w⃗(y)[w] for all w ∈ Xt′ \NG(v), and

3. w⃗(y′)[w] = w⃗(y)[w]+ 1 for all w ∈ Xt′ ∩NG(v).

Then, z ∼t′,s⃗[Xt′]
y′. So, there is some z′ ∈ Rt′,s⃗[Xt′]

such that z′ ∼t′,s⃗[Xt′]
y′. We de�ne

x′ ∈ AXt such that

1. x′[v] = x[v],

2. σ⃗(x′) = s⃗,

3. w⃗(x′)[w] = w⃗(z′)[w] for all w ∈ Xt′ \NG(v), and

4. w⃗(x′)[w] = w⃗(z′)[w]+ 1 for all w ∈ Xt′ ∩NG(v).

Then, x′ σ-extends z′, and hence, x′ ∈ R̂t,s⃗. Also, x
′ ∼t,s⃗ y as desired.

So, overall, R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. We obtain Rt,s⃗ by computing a (t, s⃗)-

representative set of R̂t,s⃗ using Lemma 5.4. Note that |Rt,s⃗| ≤ (tcost + 1)|Xt| as desired. Also,

45

Rt,s⃗ is a (t, s⃗)-representative set of Lt,s⃗ since R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. This
step takes time

O(|R̂t,s⃗| · (tcost + 1)|Xt|(ω−1) · |Xt|)
= (tcost + 1)tw · (tcost + 1)tw(ω−1) · (tcost + tw)O(1)

= (tcost + 1)tw·ω · (tcost + tw)O(1).

So, in total, computing Rt,s⃗ for every s⃗ ∈ {0, 1}Xt takes time 2tw ·(tcost+1)tw·ω ·(tcost+tw)O(1).

Join: Finally, suppose that t is a join-node and write t1, t2 for the two children of t. Note that
Xt = Xt1 = Xt2 .

Again, let us �x some s⃗ ∈ {0, 1}Xt . For two strings x, y ∈ AXt such that σ⃗(x) = σ⃗(y) = s⃗, we
de�ne the string x⊕s⃗ y via

(x⊕s⃗ y)[v] =

{
ρc if x[v] = ρc1 , y[v] = ρc2 , c = c1 + c2 − |{w ∈ NG(v) ∩Xt | s⃗[w] = 1}|
σd if x[v] = σd1 , y[v] = σd2 , d = d1 + d2 − |{w ∈ NG(v) ∩Xt | s⃗[w] = 1}|

Now,
Lt,s⃗ = {x1 ⊕s⃗ x2 | x1 ∈ Lt1,s⃗, x2 ∈ Lt2,s⃗}.

Again, the algorithm computes

R̂t,s⃗ := {x⊕s⃗ y | x ∈ Rt1,s⃗, y ∈ Rt2,s⃗}.

This can be done in time |Rt1,s⃗| · |Rt1,s⃗| · (tcost + tw)O(1) = (tcost + 1)2tw · (tcost + tw)O(1).

As before, we claim that R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. Let x ∈ Lt,s⃗ and y ∈ AXt

such that σ⃗(y) = s⃗ and x ∼t,s⃗ y. We need to show that there is some x′ ∈ R̂t,s⃗ such that
x′ ∼t,s⃗ y. We have that x = x1 ⊕s⃗ x2 for some x1 ∈ Lt1,s⃗ and x2 ∈ Lt2,s⃗. Let y1 := y ⊕s⃗ x2.
Then, x1 ∼t1,s⃗ y1, and hence, there is some x′1 ∈ Rt1,s⃗ such that x

′
1 ∼t1,s⃗ y1. Let x

′′ := x′1⊕s⃗x2.

Then, x′′ ∼t,s⃗ y. By applying the same argument to the second term, we obtain an x′ ∈ R̂t,s⃗

such that x′ ∼t,s⃗ y.

So, R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. As usual, we obtain Rt,s⃗ by computing a (t, s⃗)-

representative set of R̂t,s⃗ using Lemma 5.4. Note that |Rt,s⃗| ≤ (tcost + 1)|Xt| as desired. Also,

Rt,s⃗ is a (t, s⃗)-representative set of Lt,s⃗ since R̂t,s⃗ is a (t, s⃗)-representative set of Lt,s⃗. This
step takes time

O(|Rt1,s⃗| · |Rt2,s⃗| · (tcost + 1)|Xt|(ω−1) · |Xt|)
= (tcost + 1)2tw · (tcost + 1)tw(ω−1) · (tcost + tw)O(1)

= (tcost + 1)tw·(ω+1) · (tcost + tw)O(1).

So, in total, computing Rt,s⃗ for every s⃗ ∈ {0, 1}Xt takes time 2tw · (tcost + 1)tw·(ω+1) · (tcost +
tw)O(1).

Since processing a single node of T takes time 2tw · (tcost + 1)tw(ω+1) · (tcost + tw)O(1) and |V (T)| =
O(tw · |V (G)|), it follows that all sets Lt,s⃗ can be computed in the desired time.

To decide whether G has a (σ, ρ)-DomSet, the algorithm considers the root node t ∈ V (T)
for which Xt = ∅ and Vt = V (G). Then, G has a (σ, ρ)-DomSet if and only if ε ∈ Rt,s⃗, where s⃗
denotes the empty vector.

46

Similarly to the previous section, we can also obtain an algorithm for the optimization version
by incorporating the size of solution sets.

Theorem 5.6. Suppose σ, ρ ⊆ Z≥0 are �nite or co�nite. Also, let tcost := max(cost(ρ), cost(σ)).
Then, there is an algorithm A that, given a graph G, an integer k, and a nice tree decomposition of
G of width tw, decides whether G has a (σ, ρ)-DomSet of size at most (at least) k in time

2tw · (tcost + 1)tw(ω+1) · (tcost + tw)O(1) · |V (G)|2.

However, in contrast to the previous section, the representative set approach cannot be extended
to the counting version of the problem. Note that this is by design, since the fundamental idea of this
approach is to not keep all the partial solutions which would be necessary for the counting version.
We shall see in the following sections that this is actually not a shortcoming of our algorithmic
approach, but holds in general assuming #SETH.

47

Part II

Lower Bounds

6 High-level Constructions for Proving Lower Bounds for GenDom-

Set

In this part, we prove the advertised lower bounds for (σ, ρ)-DomSet. More precisely, we formally
prove Theorems 1.4 and 1.5.

For the decision problem, we divide the proof into three parts. We �rst construct a special type
of gadget (later called manager) which allows us to give certain numbers of (selected) neighbors to
vertices. In this step, we exploit the properties of σ and ρ to show di�erent versions of the manager
which results in stronger or weaker lower bounds. Once we have said managers at hand, the second
step is a lower bound for a generalization of (σ, ρ)-DomSet where we additionally allow relations
to be present in the graph (they generalize the constraints enforced by σ and ρ). The third and last
step is to show how to remove the relations, while preserving their properties, such that we get a
lower bound for (σ, ρ)-DomSet.

For the counting problem, we follow essentially the same outline. In fact, we can reuse some
results for the decision problem: we show that some constructions directly transfer to the case when
we count the number of solutions. An overview of the steps to obtain the lower bounds can be
found in Figure 6.1.

Before starting with the proof, we �rst need to de�ne some notation in order to formally state
our results.

De�nition 6.1 (Graph with Relations). A graph with relations is a tuple G = (VS , VC , E, (Rv)v∈VC
)

where (VS ∪ VC , E) forms a graph and Rv ⊆ 2N(v) for every v ∈ VC . We call the vertices in VS
simple, and the vertices in VC complex. Slightly abusing notation, we usually do not distinguish
between G and its underlying graph (VS ∪ VC , E), and use G to refer to both objects depending on
the context.

Given a graph with relations G = (VS , VC , E, (Rv)v∈VC
), a (σ, ρ)-set of G is a set S ⊆ VS such

that S is a (σ, ρ)-set of the underlying graph (VS ∪ VC , E), and S ∩N(v) ∈ Rv for every v ∈ VC .
The treewidth of a graph with relations G, is the treewidth of the graph G′ obtained from G

by turning each complex vertex and its neighborhood into a clique. Formally, we de�ne G′ :=
(VS ∪ VC , E′) where E′ := E ∪⋃

v∈VC
{(u,w) | u,w ∈ N [v], u ̸= w}.

Note that when using graphs with relations in a treewidth preserving reduction (see De�ni-
tion 3.1), this new variant of treewidth is used instead of the �normal� treewidth.

As a �rst example of a graph with relations, we de�ne a special gadget, called manager, which
allows us to add selected neighbors to possibly selected vertices. In fact, a manager additionally
ensures that the vertices to which it is connected get a valid number of neighbors such that the
σ-constraints and ρ-constraints are always satis�ed.

De�nition 6.2 (A-manager). Given A ⊆ A, an A-manager is an in�nite family ((Gℓ, Uℓ))ℓ≥1 of
pairs (Gℓ, Uℓ) where Gℓ is a graph with relations and Uℓ = {u1, . . . , uℓ} ⊆ V (Gℓ) is a set of ℓ
distinguished simple vertices. Moreover, there is some non-negative integer b (depending only on
stop, rtop) such that the following holds for every ℓ ≥ 1:

� The vertices from V (Gℓ) \ Uℓ can be partitioned into 2ℓ vertex-disjoint subgraphs B1, . . . , Bℓ

and B1, . . . , Bℓ, which we refer to as blocks, such that

48

Sections 7 and 8 Section 9 Section 10

Managers

SAT

#SAT
(σ, ρ)-#DomSetRel

(Corollary 9.7)

relation weighted
(σ̂, ρ)-#DomSetRel

Lemma 9.8

relation weighted
(σ̂, ρ̂)-#DomSetRel

Lemma 9.11

vertex weighted
(σ̂, ρ̂)-#DomSetRel

Lemma 9.13

(σ̂, ρ̂)-#DomSetRel

(Lemma 6.8)

Lemma 9.14

(σ̂, ρ̂)-#DomSet
(Theorem 1.4)L

em
m
a
6.9

(σ, ρ)-DomSetRel

(Lemma 6.5)

(σ, ρ)-DomSet
for �nite σ, ρ

(Theorem 1.5)

L
em

m
a
6.6

Section 9.1

O
b
servation

9.6

Figure 6.1: Outline of the proof of the lower bounds. The upper sequence considers the decision
version. The lower sequence considers the counting version and includes the chain of reductions
behind the proof of Lemma 6.8.
For the problems in the �lled boxes, the statement refers to the formal lower bound. Multiple
parallel edges indicate Turing-reductions.
The sets σ, ρ are �nite or simple co�nite sets unless mentioned otherwise. The sets σ̂ and ρ̂ are
�nite or co�nite sets (not necessarily simple co�nite).

� |Bi| ≤ b and |Bi| ≤ b for all i ∈ [1 . . ℓ],

� N(ui) ⊆ Bi ∪Bi for all i ∈ [1 . . ℓ],

� there are edges only between the following pairs of blocks: Bi and Bi+1, Bi and Bi+1, for
each i ∈ [1 . . ℓ− 1], and Bℓ and Bℓ.

� Each x ∈ Aℓ ⊆ Aℓ is managed in the sense that there is a unique (σ, ρ)-set Sx of Gℓ
7 such

that for all i ∈ [1 . . ℓ]:

� If x[i] = σs, then ui ∈ Sx. Moreover, ui has exactly s neighbors in Bi ∩ Sx, and exactly
stop − s neighbors in Bi ∩ Sx.

� If x[i] = ρr, then ui /∈ Sx. Moreover, ui has exactly r neighbors in Bi ∩ Sx, and exactly
rtop − r neighbors in Bi ∩ Sx.

We refer to Gℓ as the A-manager of rank ℓ.

Recall that the �rst step for the lower bound is to show that there are managers. Formally, this
is achieved by the following lemma.

7Note that all vertices in Gℓ already have a feasible number of neighbors. The graph does not have any poten-
tially �unsatis�ed� portals. In this sense, it is di�erent from the graphs with portals that we use in other gadget
constructions.

49

Lemma 6.3 (Existence of Managers). Let σ and ρ be two �nite or co�nite sets of non-negative
integers with ρ ̸= {0}.

1. There is an A-manager with |A| = rtop + 1.

2. If (σ, ρ) is 2-structured, but not m-structured for any m ≥ 3, and stop and rtop ≥ 1 are even,
then there is an A-manager with |A| = (stop + rtop)/2 + 2.

3. If stop ≥ rtop ≥ 1, then there is an A-manager with |A| = stop + 1.

4. If (σ, ρ) is not m-structured for any m ≥ 2, then there is an A-manager with |A| = stop +
rtop + 2.

Moreover, each A-manager is such that A is closed under the inverse with respect to σ, ρ.

Section 8 is dedicated to the proof of Lemma 6.3. We prove each case separately; the proof of
Lemma 6.3 then follows from Lemmas 8.1, 8.2, 8.5 and 8.6.

Observe that the bounds for the managers precisely coincide with the bounds for the languages
provided in Example 4.5. Hence, these managers are the key ingredient to obtain matching lower
bounds.

6.1 Decision Problem

While the �rst step is the same for the decision problem and for the counting problem, the remaining
two steps need problem speci�c results. Before this, we de�ne the intermediate problem for which
we show a lower bound as the next step.

De�nition 6.4 ((σ, ρ)-DomSetRel). In the (σ, ρ)-Dominating Set w. Relations ((σ, ρ)-Dom-
SetRel) problem, we are given a graph with relations G = (VS , VC , E, (Rv)v∈VC

), and the task is to
decide whether there is a (σ, ρ)-set of G.

We de�ne the counting version (σ, ρ)-#DomSetRel analogously.
As mentioned before, our lower bound depends on the �quality� of the manager. Thus, we treat

the manager as input and prove a lower bound based on it. Although a manager is a graph with
relations, this assumption is useful as the intermediate problem has relations too.

Lemma 6.5 (Lower Bound for (σ, ρ)-DomSetRel). Let σ, ρ ⊆ Z≥0 be two �xed, non-empty, and
�nite or simple co�nite sets with 0 /∈ ρ. Suppose there is an A ⊆ A that is closed under the inverse
with respect to σ, ρ such that there is an A-manager.

Then, (σ, ρ)-DomSetRel cannot be solved in time (|A| − ε)k+O(1) · nO(1), even if we are given a
path decomposition of width k, and all relations have arity at most O(1), unless SETH fails.

The proof of this lemma is given in Section 9.
The third and last step for the lower bound shows how to remove these relations. This is made

formal with the following lemma.

Lemma 6.6 (Removing Relations in the Decision Version). Let σ, ρ denote �nite, non-empty sets
with 0 /∈ ρ. If all relations have arity at most O(1), then (σ, ρ)-DomSetRel ≤tw (σ, ρ)-DomSet.

In Section 10.1, we show how to remove relations for the decision version. The lemma follows
almost immediately from Lemma 10.7.

Now we have all the results we need to show the lower bound for the decision version.

50

Proof of Theorem 1.5. By De�nition 1.2, we have to consider three di�erent cases. We give the
proof for the �rst case in full detail. The remaining cases are analogous. Observe that all managers
from Lemma 6.3 satisfy the constraints in Lemma 6.5.

� (σ, ρ) is not m-structured for any m ≥ 2.

Let G be an instance of (σ, ρ)-DomSetRel where the arity of the relations is O(1). By the
treewidth-preserving reduction from Lemma 6.6, this instance G can be transformed into an
instance H of (σ, ρ)-DomSet such that tw(H) ≤ tw(G) + O(1). Toward a contradiction,
assume that there is a faster algorithm for (σ, ρ)-DomSet with cσ,ρ = stop + rtop + 2. Then,
use this faster algorithm to solve H and afterward recover the solution for G in time

(stop + rtop + 2− ε)tw(G)+O(1) · |G|O(1).

By Lemma 6.3 Case 4, we know that there is an A-manager with |A| = stop + rtop + 2 which
then contradicts SETH by our intermediate lower bound from Lemma 6.5.

� (σ, ρ) is 2-structured, but not m-structured for any m ≥ 3, and stop = rtop is even.

In this case, we use the same arguments as before with the di�erence being that for the
algorithm we have cσ,ρ = max(stop, rtop) + 2. As a consequence, we use the A-manager from
Lemma 6.3 Case 2 with |A| = (stop + rtop)/2 + 2 = max(stop, rtop) + 2.

Observe that we can use this encoder as ρ being 2-structured implies that ρ is �nite but
ρ ̸= {0}, by assumption. Hence, we directly get rtop ≥ 1.

� (σ, ρ) is m-structured for some m ≥ 3, or 2-structured with stop ̸= rtop, or 2-structured with
stop = rtop being odd.

Once more we use the same approach as for the �rst case but now we have an algorithm with
cσ,ρ = max(stop, rtop) + 1.

If rtop ≥ stop, then we can use the A-manager from Lemma 6.3 Case 1 with |A| = rtop + 1. If
stop ≥ rtop, then we want to use the A-manager from Lemma 6.3 Case 3 with |A| = stop + 1.
For this case to be applicable we need rtop ≥ 1. Whenever rtop = 0, we either have ρ = {0}
or ρ = Z≥0. The �rst case is not possible by assumption. The second case implies that
ρ is 1-structured but not m-structured for any m ≥ 2. This immediately contradicts our
assumption.

We note that it is indeed a reasonable assumption that 0 /∈ ρ. Otherwise the empty set is a
trivial solution and the problem becomes trivial.

Observation 6.7. For all σ, ρ ⊆ Z≥0, (σ, ρ)-DomSet can be solved in constant time if 0 ∈ ρ.

6.2 Counting Problem

We have mentioned earlier that the lower bounds for the counting version follows the same ideas as
the bounds for the decision version. By the de�nition of the managers, their constructions transfer
directly to the counting version. Moreover, the lower bound for the intermediate problem is based
on the result for the decision version. As we allow co�nite sets for the counting version, further
investigation is needed to obtain the following result where we again use the managers in a black-box
style.

51

Lemma 6.8 (Lower Bound for (σ, ρ)-#DomSetRel). Let σ, ρ ⊆ Z≥0 be two �xed, non-empty and
�nite or co�nite sets. Suppose there is an A ⊆ A that is closed under the inverse with respect to σ, ρ
such that there is an A-manager.

Then, (σ, ρ)-#DomSetRel cannot be solved in time (|A| − ε)k+O(1) · nO(1), even if we are given
a path decomposition of width k, and all relations have arity at most O(1), unless #SETH fails.

We show in Section 9.2 how to obtain this bound by proving the lemma.
While the procedure for the decision and counting versions was so far very similar, this does not

hold for the last step where we remove the relations. Although the result is still comparable, the
following reduction is much more involved than the result for the decision version.

Lemma 6.9 (Removing Relations in the Counting Version). Let σ, ρ denote �nite or co�nite, non-
empty sets such that neither ρ = {0} nor σ is co�nite with ρ = Z≥0.

If all relations have arity at most O(1), then (σ, ρ)-#DomSetRel ≤tw (σ, ρ)-#DomSet.

Section 10.2 gives the formal proof for this lemma.
Now we have all the results we need to prove the lower bound for the counting version.

Proof of Theorem 1.4. The proof follows in the same way as the proof of Theorem 1.5, with the
only di�erence being that we now use the intermediate lower bound for (σ, ρ)-#DomSetRel from
Lemma 6.8 and the reduction from Lemma 6.9 to remove the relations.

Similarly as for the decision version, we cannot make the assumptions about σ and ρ weaker
(see Fact 3.3) except for the open case when σ is co�nite with ρ = Z≥0.

7 Constructing Providers

In this section, we provide the basis for the construction of the managers that we introduced earlier.
Their formal construction is then given in Section 8.

In Section 7.1, we �rst build providers which have either σ-states or ρ-states. We use them later
to construct the managers from Cases 1 and 3 in Lemma 6.3, that is, A-managers where we have
that either A ⊆ R or A ⊆ S.

In Section 7.2, we then construct providers which contain σ-states together with ρ-states. They
then allow us to construct A-managers with A containing states from S and simultaneously from
R. These managers correspond to Cases 2 and 4 in Lemma 6.3.

The following basic provider is a useful building block for many of our constructions.

Lemma 7.1. For any r ∈ ρ and s ∈ σ, there is a {ρr, σs}-provider (P{ρr, σs}, u).

Proof. We de�ne a graph G := P{ρr, σs} with a single portal u. We consider two cases depending
on whether r = 0 or not.

Case 1: r = 0. We choose G to be a clique on s + 1 vertices, and we declare any of its vertices
to be u. Observe that both selecting all vertices and selecting no vertices constitute valid partial
solutions, and hence, the strings ρ0 = ρr and σs are compatible with (G, {u}). Hence, (G, {u}) is a
{ρr, σs}-provider. Consult Figure 7.1a for a visualization of the construction and the aforementioned
(partial) solutions.

52

P{ρ0, σs}

{u}
Ks+1

P{ρ0, σs}

{u}
Ks+1

(a) Valid partial solutions for the provider for Case 1,
when r = 0.

P{ρr, σs}

{u}

Ks+1

Ks+1

Ks+1

Ks+1

P{ρr, σs}

{u}

Ks+1

Ks+1

Ks+1

Ks+1

(b) Valid partial solutions for the provider for Case 2,
when r ̸= 0 (r = 2 in the depicted example).

Figure 7.1: The gadget constructions from Lemma 7.1.

Case 2: r ̸= 0. We construct the graph G as follows. For each i ∈ [1 . . r], we add two (s + 1)-

cliques K
(i)
s+1 (with the vertices vi,1, . . . , vi,s+1) and K

(i)
s+1 (with the vertices vi,1, . . . , vi,s+1). Next,

for each j ∈ [1 . . s + 1], we connect all vertices v⋆,j and v⋆,j into a complete bipartite graph Bj

(where V (Bj) = ({v⋆,j} ∪ {v⋆,j}). Finally, we choose u to be any vertex in K
(1)
s+1. Formally, we set

V (G) := {vi,j , vi,j | i ∈ [1 . . r], j ∈ [1 . . s+ 1]},
E(G) := {vi,jvi,j′ , vi,jvi,j′ | i ∈ [1 . . r], j ̸= j′ ∈ [1 . . s+ 1]}

∪ {vi,jvi′,j | i, i′ ∈ [1 . . r], j ∈ [1 . . s+ 1]}, and

u := v1,1.

Observe that (G, {u}) has the following partial solutions {vi,j | i ∈ [1 . . r], j ∈ [1 . . s + 1]}
(the cliques K

(i)
s+1 for i ∈ [1 . . r]) and {vi,j | i ∈ [1 . . r], j ∈ [1 . . s + 1]} (the cliques K

(i)
s+1 for

i ∈ [1 . . r], where K
(1)
s+1 contains u). Consult Figure 7.1b for a visualization of the construction

and the aforementioned (partial) solutions. Hence, (G, {u}) is a {ρr, σs}-provider, completing the
proof.

7.1 Providers Having Either σ-States or ρ-States

In this section, we establish L-providers for select languages L that are either completely contained
in R or completely contained in S. These gadgets exist without special requirements on ρ and σ.
We start with a provider for all possible elements from R.

Lemma 7.2. For non-empty sets ρ and σ, there is a {ρ0, ρ1, . . . , ρrtop}-provider (PR, u).

Proof. Fix r ∈ ρ and s ∈ σ. We de�ne a graph G := PR with a single portal u. To that end, we
take rtop independent copies P (i) := ((P{ρr, σs})(i), u(i)) of the {ρr, σs}-provider from Lemma 7.1
and connect each vertex u(i) to the vertex u. Consult Figure 7.2 for a visualization.

By Lemma 7.1, each provider P (i) has at least a partial solution that selects u(i) and a partial
solution that does not select u(i). Hence, for each j ∈ [0 . . rtop], the constructed graph G has at
least one partial solution that selects exactly j neighbors of u; this completes the proof.

53

PR

{u}

. . .
P{ρr, σs} P{ρr, σs} P{ρr, σs} P{ρr, σs}

rtop
PR

{u}

. . .
P{ρr, σs} P{ρr, σs} P{ρr, σs} P{ρr, σs}

rtop

Figure 7.2: The gadget constructions from Lemma 7.2 with exemplary partial solutions that corre-
spond to ρ1 and ρrtop . For providers used in the construction, we depict only their portal vertices.

For our next construction, we need regular (bipartite) graphs, which are fortunately easy to
construct.

Lemma 7.3. For any nonnegative integers d ≤ n, the bipartite graph M
(d)
n ,

V (M (d)
n) := {v0, . . . , vn−1} ∪ {w0, . . . , wn−1},

E(M (d)
n) := {{vi, wj} | ((i− j) mod n) ∈ [0 . . d)}

is d-regular and contains an edge {vi, wi} for each i ∈ [0 . .n).

Proof. Observe that for each b ∈ [0 . . d) and each i ∈ [0 . .n), there is exactly one solution each
to the equations i− x ≡n b and x− i ≡n b; the claim follows.

Further, recall from Section 3 that, for a string x and a character a ∈ A, we write#a(x) to
denote the number of occurrences of a in x.

Lemma 7.4. For an r ≥ 1, consider the language

Lr := {x ∈ {σ0, σ1}4r | #σ1(x) ∈ {0, 2r}}.

For any set ρ that contains r and any set σ that contains an s ≥ r, there is an L-provider
(PLr, U). Moreover, the closed neighborhoods of portals in U are pairwise disjoint.

Proof. Let U = {u1, . . . , u4r} denote the set of portal vertices. We de�ne an L-provider (PLr, U) as
follows. For every A ⊆ [1 . . 4r] such that |A| = 2r, G := PLr has the following vertices and edges
in addition to its portals. It has (2s+ 2)r vertices which are partitioned into blocks V 1

A, . . . , V
2s+2
A ,

where each block V q
A contains r vertices vqA,1, . . . , v

q
A,r. Moreover, G has 2sr + 2(r − 1) vertices

which are partitioned into blocksW 1
A, . . . ,W

2s+2
A , where the �rst two blocksW q

A, q ∈ {1, 2}, contain
r−1 vertices wq

A,1, . . . , w
q
A,r−1, and all other blocks W q

A contain r vertices wq
A,1, . . . , w

q
A,r. We de�ne

VA :=
⋃

q∈[1 . . 2s+2] V
q
A and WA :=

⋃
q∈[1 . . 2s+2]W

q
A. Suppose A = {k1, . . . , k2r}. Then, G has

edges to form the following:

� A complete bipartite graph between V q
A and W q

A for all q ∈ [1 . . 2s+ 2].

� A graph on VA such that every v ∈ V 1
A ∪ V 2

A has degree s− 1, and every v ∈ VA \ (V 1
A ∪ V 2

A)
has degree s. This is possible by Lemma 7.3. Indeed, |VA| is even and |VA|/2 ≥ s. So, we can
build an s-regular graph on VA. Additionally, by numbering vertices appropriately, there is a
matching between V 1

A and V 2
A, and we may simply omit the corresponding edges to decrease

the degree of every vertex from V 1
A ∪ V 2

A by one to achieve the desired result.

54

� An s-regular graph onWA which is possible by Lemma 7.3 since |WA| is even and |WA|/2 ≥ s.

� ukpv
1
A,p for all p ∈ [1 . . r].

� ukpv
2
A,p−r for all p ∈ [r + 1 . . 2r].

This completes the description of the graph G. From the last two items, it follows that no two
portals share an edge and that their neighborhoods are disjoint.

Let us start with some basic observations. Let A ⊆ [1 . . 4r] such that |A| = 2r. Then, G[WA]
is s-regular. We have |NG(v) ∩ VA| = s − 1 for all v ∈ V 1

A ∪ V 2
A, and |NG(v) ∩ VA| = s for all

v ∈ VA \ V 1
A ∪ V 2

A. Also, |NG(v) ∩WA| = r − 1 for all v ∈ V 1
A ∪ V 2

A, and |NG(v) ∩WA| = r for all
v ∈ VA \ V 1

A ∪ V 2
A. Moreover, |NG(w) ∩ VA| = r for all w ∈ WA. Finally, |NG(v) ∩ U | = 1 for every

v ∈ V 1
A ∪ V 2

A.
Now, let x ∈ {σ0, σ1}4r such that #σ1(x) ∈ {0, 2r}. Let x = σi1σi2 . . . σi4r . We need to show

that x ∈ L(G,U). Let Ax := {p ∈ [1 . . 4r] | ip = 1}.
First, suppose that Ax = ∅. Then, we de�ne a solution set

Sx := U ∪
⋃

A⊆[1 . . 4r] : |A|=2r

WA.

Using the basic observations outlined above, it is easy to verify that this solution set indeed witnesses
that x ∈ L(G,U).

Otherwise, |Ax| = 2r. Now, we de�ne a solution set

Sx := U ∪ VAx ∪
⋃

A⊆[1 . . 4r] : |A|=2r,A̸=Ax

WA.

Again, using the basic observations outlined above, it is easy to verify that this solution set indeed
witnesses that x ∈ L(G,U).

7.2 Providers Having σ-States Together with ρ-States

Conversely to the previous section, we establish L-providers in this section, where L contains states
from both R and S. These providers are relevant if (σ, ρ) is m-structured for m ≤ 2, but not
m-structured for any m ≥ 3.

We start by obtaining two auxiliary providers that are used in later constructions.

Lemma 7.5. Let r ∈ ρ, s ∈ σ with r, s ≥ 1. There is an L-provider where

L := {(σs−1, σs−1, ρr−1), (ρr, ρr, ρr), (ρr−1, ρr, σs)}.

Proof. We de�ne a graph G with three portals as follows. The vertices of G are partitioned into
three sets X = {xji | i ∈ [1 . . r], j ∈ [1 . . s + 1]}, Y = {yji | i ∈ [1 . . r], j ∈ [1 . . s + 1]}, and
Z = {zji | i ∈ [1 . . r], j ∈ [1 . . s+1]}. Intuitively, each of these sets consists of r cliques of size s+1
each. Then, between each pair of sets from X,Y, Z, the vertices with the same index j ∈ [1 . . s+1]
form a complete bipartite graph (with r vertices in each part).

Formally, for each i ∈ [1 . . r], the vertices {xji | j ∈ [1 . . s + 1]} ({yji | j ∈ [1 . . s + 1]} and

{zji | j ∈ [1 . . s+1]}, respectively) form a clique on s+1 vertices. There are no other edges within

the set X (Y and Z, respectively). For each j ∈ [1 . . s + 1], the vertices {xji | i ∈ [1 . . r]} and

{yji | i ∈ [1 . . r]} form the two parts of a complete bipartite graph (with r vertices in each part).
Similarly, for each j ∈ [1 . . s+1], there is a complete bipartite graph between X and Z, as well as

55

between Y and Z. Finally, two edges are omitted from the previous construction: there is a missing
edge between x11 and x21, and there is a missing edge between x11 and z11 . We use x11, x

2
1, z

1
1 as the

three portal vertices of G (in that order).
It remains to show that (G, {x11, x21, z11}) is an L-provider. We give partial solutions corresponding

to the three elements of L.

(σs−1, σs−1, ρr−1) Select the vertices from X. Thus, x11 and x21 are selected, but z11 is not. To
satisfy the σ-constraints, each vertex in X, with the exception of x11 and x

2
1, obtains s selected

neighbors from (their respective clique in) X. Because of the missing edge, both x11 and x21
only have s− 1 selected neighbors each. To satisfy the ρ-constraints, each vertex from Y and
Z, with the exception of z11 , obtains r selected neighbors from X. Because of the missing edge
to x11, z

1
1 only has r − 1 selected neighbors.

(ρr, ρr, ρr) Select the vertices from Y . As before, we can check that this selection witnesses
(ρr, ρr, ρr).

(ρr−1, ρr, σs) Select the vertices from Z. As before, we can check that this selection witnesses
(ρr−1, ρr, σs).

In the statement and proof of Lemma 7.6 we use, for a ∈ A, the expression (aδ) to denote the
vector in Aδ with (aδ)[i] = a for all i ∈ [1 . . δ].

Lemma 7.6. Let r ∈ ρ, s, s′ ∈ σ with r, s ≥ 1 and s′ > smin, where smin := min(σ). Let k ∈ Z>0

and δ := k(s′ − smin). Then, there is a {(ρδr), (ρδr−1), (σ
δ
s)}-provider (with δ portals).

Proof. We de�ne a graph G with δ = k(s′ − smin) portals as follows.

� There are three disjoint sets of vertices A = {ai | i ∈ [1 . . δ]}, B = {bi | i ∈ [1 . . δ]}, and
C = {ci | i ∈ [1 . . δ]}, where the vertices of C form the δ portals of G.

� For each i ∈ [1 . . δ], (ai, bi, ci) are (in this order) the portals of an attached {(σs−1, σs−1, ρr−1),
(ρr, ρr, ρr), (ρr−1, ρr, σs)}-provider Ji, which exists by Lemma 7.5 and the fact that r, s ≥ 1.

� There is a set DA of size k, where each vertex of DA is the portal of an attached {ρr, σsmin}-
provider, which exists by Lemma 7.1. We introduce edges between A and DA in a way that
each vertex in A has precisely 1 neighbor in DA, and each vertex of DA has precisely s′− smin

neighbors in A. This is possible as δ = k · (s′ − smin).

� Similarly, there is a set DB of size k, where each vertex of DB is the portal of an attached
{ρr, σsmin}-provider, each vertex in B has precisely 1 neighbor in DB, and each vertex of DB

has precisely s′ − smin neighbors in B.

We show that (G,C) is a {(ρδr), (ρδr−1), (σ
δ
s)}-provider. We give solutions corresponding to the

three states.

(ρδ
r) None of the vertices in A,B,C,DA, DB are selected. For each i ∈ [1 . . δ], select vertices in

Ji according to the solution that witnesses the state (ρr, ρr, ρr). In the {ρr, σsmin}-providers
attached to DA and DB, select vertices according to the ρr-state.

For each i, the vertices ai and bi, as well as the portal ci, are unselected and each obtain
r selected neighbors from Ji. Each vertex in DA and DB is also unselected and obtains r
selected neighbors from the attached {ρr, σsmin}-provider.

56

(ρδ
r−1) Select the vertices A∪B ∪DA∪DB. For each i ∈ [1 . . δ], select vertices in Ji according to

the solution that witnesses the state (σs−1, σs−1, ρr−1). In the {ρr, σsmin}-providers attached
to DA and DB, select vertices according to the σsmin-state.

For each i, the portal ci is unselected and obtains r − 1 selected neighbors from Ji. The
vertices ai and bi are selected and each obtain s − 1 selected neighbors from Ji, and ai also
obtains 1 selected neighbor from DA, and bi obtains 1 selected neighbor from DB. Thus, both
obtain a total of s ∈ σ selected neighbors. The vertices in DA are selected and each obtain
s′−smin selected neighbors from A, each of them also obtains smin selected neighbors from the
attached {ρr, σsmin}-provider for a total of s′ ∈ σ. Similarly, the vertices in DB are selected
and obtain s′ ∈ σ selected neighbors.

(σδ
s) Select the vertices C ∪ DA. For each i ∈ [1 . . δ], select vertices in Ji according to the

solution that witnesses the state (ρr−1, ρr, σs). In the {ρr, σsmin}-providers attached to DA,
select vertices according to the σsmin-state. In the {ρr, σsmin}-providers attached to DB, select
vertices according to the ρr-state.

For each i, the portal ci is selected and obtains s selected neighbors from Ji. The vertex ai
is unselected, obtains r − 1 selected neighbors from Ji, and obtains 1 selected neighbor from
DA. The vertex bi is unselected and obtains r selected neighbors from Ji. The vertices in DA

are selected and each obtain smin selected neighbors from the attached {ρr, σsmin}-provider.
The vertices in DB are unselected and each obtain r selected neighbors from the attached
{ρr, σsmin}-provider.

Before we continue with the next gadget, we �rst prove some technical lemma which ensures the
existence of bipartite graphs with certain degree sequences.

Lemma 7.7. Let c1, . . . , cℓ, d1, . . . , dk ∈ Z≥0 such that∑
i∈[ℓ]

ci =
∑
j∈[k]

dj .

Also, suppose a is another natural number such that a ≥ max{c1, . . . , cℓ, d1, . . . , dk}. Then, there is
some s0 ≥ 0 such that, for every s ≥ s0, there is a bipartite graph G = (V,W,E) such that

1. V = {v1, . . . , vℓ, x1, . . . , xs},

2. degG(vi) = ci for all i ∈ [ℓ], and degG(xi) = a for all i ∈ [s],

3. W = {w1, . . . , wk, y1, . . . , ys}, and

4. degG(wi) = di for all i ∈ [k], and degG(yi) = a for all i ∈ [s].

Proof. Pick s0 := a. We give an iterative construction for G. Initially, E(G) := ∅. We de�ne
c(vi) := ci for all i ∈ [ℓ], and c(xj) := a for j ∈ [s]. Similarly, de�ne c(wi) := di for all i ∈ [k], and
c(yj) := a for j ∈ [s]. Throughout the construction, c(u) denotes the number of neighbors still to
be added to u ∈ V ∪W . We shall maintain the property that

(i) c(u) ≥ 0 for all u ∈ V ∪W ,

(ii)
∑

v∈V c(v) =
∑

w∈W c(w), and

(iii) |{v ∈ V | c(v) ∈ {cmax, cmax − 1}}| ≥ a, where cmax := maxv∈V c(v).

57

Observe that this property is initially satis�ed.
If c(w) = 0 for all w ∈ W , then c(v) = 0 for all v ∈ V by Conditions (i) and (ii), and the

construction is complete. So, �x some w ∈ W such that c(w) > 0. Let d := c(w). Let v′1, . . . , v
′
ℓ+s

be a list of all the vertices from V ordered according to the current capacities, i.e., c(v′i) ≥ c(v′i+1)
for all i ∈ [ℓ+ s− 1].

First, we claim that c(v′i) ≥ 1 for all i ∈ [d]. If cmax ≥ 2, then this follows directly from
Condition (iii) because d ≤ a. Otherwise, cmax = 1. But, then |{v ∈ V | c(v) = cmax}| ≥ d by
Condition (ii). We add an edge between w and v′i for all i ∈ [d]. Also, we update c(w) := 0 and
decrease c(v′i) by one for all i ∈ [d]. Clearly, Conditions (i) and (ii) are still satis�ed. For Condition
(iii), it can be observed that every v ∈ V such that c(v) ∈ {cmax, cmax − 1} before the update still
satis�es this Condition after the update.

Repeating this process until all capacities are equal to zero, we obtain the desired graph G.

The following lemma crucially exploits that (σ, ρ) is 1-structured or 2-structured. While in the
former case we can obtain a provider with only one portal, this is not possible for the latter case.
On an intuitive level, the property of being 2-structured raises parity issues which does not allow
us to have two independent copies of the provider for the 1-structured case. Hence, we design a
provider where the state of one portal depends on the state of the other portal, and in fact, both
states must be equal for this provider.

Lemma 7.8. Let rtop ≥ 1. Suppose there is a maximum value m such that (σ, ρ) is m-structured.

1. If m = 1, then there is a {ρ0, ρ1, σ0}-provider.

2. If m = 2, then there is a {ρ0, ρ2, σ0}-provider. There is also a {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-
provider.

Proof. We �rst claim that there are �nite subsets σ′ ⊆ σ and ρ′ ⊆ ρ such that there exists a
maximum value m′ such that (σ′, ρ′) is m′-structured, and moreover m′ = m. Indeed, if σ is �nite,
we simply set σ′ := σ. Otherwise, σ is co�nite which means there is some s ∈ Z≥0 such that
s, s + 1 ∈ σ. In particular, it follows that m = 1. We set σ′ := {s, s + 1} which implies that σ′ is
1-structured, but not m′-structured for any m ≥ 2. The set ρ′ is de�ned analogously.

Since every L-provider with respect to (σ′, ρ′) is also an L-provider with respect to (σ, ρ), it
su�ces to prove the lemma for the pair (σ′, ρ′). For ease of notation, let us suppose that (σ, ρ) =
(σ′, ρ′), i.e., in the remainder of the proof, we suppose that both σ and ρ are �nite.

Let ρ = {r1, . . . , r|ρ|} and σ = {s1, . . . , s|σ|}, where we assume that elements are ordered with
respect to size. The fact that m is the maximum value such that (σ, ρ) is m-structured is equivalent
to

gcd({r − r1 | r ∈ ρ} ∪ {s− s1 | s ∈ σ}) = m. (7.1)

We claim that there are non-negative integers xi, x̃i (for i ∈ [2 . . |ρ|]) and non-negative integers
yj , ỹj (for j ∈ [1 . . |σ|]) such that

m+

|ρ|∑
i=2

(ri − r1)(xi − x̃i) +

|σ|∑
j=2

(sj − s1)(yj − ỹj) = 0 (7.2)

We argue that such a choice is possible. Note that (7.2) corresponds to a Diophantine equation
with variables (xi − x̃i) and (yj − ỹj) (for 2 ≤ i ≤ |ρ|, j ∈ [1 . . |σ|]), which has solutions by (7.1).
We can choose non-negative values for the indeterminates accordingly.

Using these integer solutions, we de�ne a graph G with one portal as follows.

58

� The vertices of G are partitioned into two sets L and R together with some attached providers.

� L consists of the following.

� The portal vertex u which is intended to have m neighbors in R.

� For each i ∈ [2 . . |ρ|], a set Ai of xi vertices, each of which are intended to have ri − r1
neighbors in R.

� For some yet to be determined positive integer k, a set A∗ of k vertices, each of which
are intended to have r|ρ| − r1 neighbors in R.

� For each j ∈ [2 . . |σ|], a set Bj of bj := (sj − s1)yj vertices, each of which is intended to
have 1 neighbor in R.

We set A = A∗ ∪⋃
i∈[2 . . |ρ|]Ai and B =

⋃
i∈[2 . . |σ|]Bi.

� There are some providers attached to L:

� Each vertex in A is portal to an attached {ρr1 , σs1}-provider (exists by Lemma 7.1).

� If |σ| ≥ 2, then stop ≥ 1. Also, rtop ≥ 1 by assumption. So, we can choose some r ∈ ρ
and s ∈ σ with r, s ≥ 1. For each j ∈ [2 . . |σ|], the vertices of Bj are the bj portals of

an attached {(ρbjr), (ρ
bj
r−1), (σ

bj
s)}-provider Jj (exists by Lemma 7.6 using the fact that

r, s ≥ 1).

� Analogously, R consists of the following.

� For each i ∈ [2 . . |ρ|], a set Ãi of x̃i vertices, each of which are intended to have ri − r1
neighbors in L.

� A set Ã∗ of k vertices, each of which are intended to have r|ρ| − r1 neighbors in L.

� For each j ∈ [2 . . |σ|], a set B̃j of b̃j := (sj − s1)ỹj vertices, each of which is intended to
have 1 neighbor in L.

We set Ã = Ã∗ ∪⋃
i∈[2 . . |ρ|] Ãi and B̃ =

⋃
i∈[2 . . |σ|] B̃i.

� There are some providers attached to R:

� Each vertex in Ã is portal of an attached {ρr1 , σs1}-provider.
� For each j ∈ [2 . . |σ|], the vertices in B̃j are the b̃j portals of an attached {(ρb̃jr), (ρ

b̃j
r−1), (σ

b̃j
s)}-

provider J̃j . (Here we can use the same r and s as in the de�nition of L.)

� Using (7.2), we verify that the intended number of edges going from L to R is the same as
the intended number of edges going from R to L:

m+

|ρ|∑
i=2

(ri − r1)xi + (r|ρ| − r1)k +

|σ|∑
i=j

(si − s1)yj

=

|ρ|∑
i=2

(ri − r1)x̃i + (r|ρ| − r1)k +

|σ|∑
j=2

(si − s1)ỹj

Note that r|ρ|− r1 is the maximum of the intended degrees. Therefore, by Lemma 7.7 applied
to a = r|ρ|−r1, for su�ciently large k, edges can be introduced such that the intended degrees
in the bipartite graph induced by L ∪R are met.

59

We show that (G, {u}) is a {ρ0, ρm, σ0}-provider. We give solutions corresponding to the three
states.

ρ0 Both L and R are unselected. In each of the {ρr1 , σs1}-providers attached to A and Ã,
select vertices according to the ρr1-state. For each i ∈ [2 . . s|σ|], select vertices in Jj and J̃j

according to the (ρ
bj
r)- and (ρ

b̃j
r)-state, respectively.

The portal u is unselected and has no selected neighbors, as required. Moreover, the vertices
in A and Ã are unselected and obtain r1 ∈ ρ selected neighbors from the attached {ρr1 , σs1}-
providers. The vertices in B and B̃ are unselected and obtain r ∈ ρ selected neighbors from
the attached Jj 's and J̃j 's, respectively.

ρm R is selected, but L is unselected. In each of the {ρr1 , σs1}-providers attached to A, select
vertices according to the ρr1-state. In each of the {ρr1 , σs1}-providers attached to Ã, select
vertices according to the σs1-state. For each i ∈ [2 . . s|σ|], select vertices in Jj according to

the (ρ
bj
r−1)-state, and select vertices in J̃j according to the (σ

b̃j
s)-state.

The portal u is unselected and has m selected neighbors in R, as required. For i ∈ [2 . . |ρ|],
each vertex in Ai is unselected, obtains r1 ∈ ρ selected neighbors from the attached {ρr1 , σs1}-
provider, and additionally obtains ri− r1 selected neighbors in R, for a total of ri ∈ ρ selected
neighbors. The vertices in Ã are selected and obtain s1 ∈ σ selected neighbors from the
attached {ρr1 , σs1}-providers. They have no further selected neighbors. For i ∈ [2 . . |σ|],
each vertex in Bi is unselected, obtains r− 1 ∈ ρ selected neighbors from Jj , and additionally

obtains 1 selected neighbor from R, for a total of r ∈ ρ. The vertices in B̃ are selected and
obtain s ∈ σ selected neighbors from the attached J̃j 's.

σ0 The selection is symmetric to the previous state: L is selected but R is unselected. In each
of the {ρr1 , σs1}-providers attached to A, select vertices according to the σs1-state. In each
of the {ρr1 , σs1}-providers attached to Ã, select vertices according to the ρr1-state. For each

i ∈ [2 . . s|σ|], select vertices in Jj according to the (σ
bj
s)-state, and select vertices in J̃j

according to the (ρ
b̃j
r−1)-state.

The portal u is selected and has no selected neighbors, as required. The analysis is symmetric
to the previous case.

So, for m ∈ {1, 2}, we have shown the existence of a {ρ0, ρm, σ0}-provider. Note that, for m = 2, if
we replace the single portal u of degree 2 with two portals, each of degree 1, then the construction
yields a {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-provider.

In the remaining part, we extend these providers to a setting where the selected portals can also
get neighbors. That is, we also have the state σ1 for the portal. We �rst handle the case when (σ, ρ)
is 1-structured, and then independently the case when the sets are 2-structured.

7.2.1 The Sets are 1-Structured

We �rst construct an auxiliary provider which we combine afterward with the provider from Lemma 7.8.

Lemma 7.9. Suppose there is a {ρ0, ρ1, σ0}-provider. If stop ≥ 1, then there is a {(ρ0, ρ0), (ρ0, σ0),
(σ0, σ0), (σ1, σ1)}-provider. Moreover, the closed neighborhoods of both portals are disjoint.

60

Proof. Let (J, {û}) be a {ρ0, ρ1, σ0}-provider. We de�ne a graph G with two portals u1 and u2 as
follows. Let K be a clique with vertices v1, . . . , vstop+1 where we remove the edge between v1 and
v2. (Note that K contains at least 2 vertices since stop ≥ 1.) Then, G consists of K where we add
the two edges u1v1 and u2v2. Moreover, for every i ∈ [1 . . stop + 1], we add rtop copies of J to G,
where we use vi as the portal vertex for all copies.

It remains to show that (G, {u1, u2}) is a {(ρ0, ρ0), (ρ0, σ0), (σ0, σ0), (σ1, σ1)}-provider. We give
solutions corresponding to the four states.

(ρ0, ρ0) Do not select any vertices from K, so u1 and u2 have no selected neighbors. To satisfy the
ρ-constraints of the vertices in K, each vi obtains rtop selected neighbors from its attached
copies of J (for each of the rtop attached {ρ0, ρ1, σ0}-providers, we select vertices corresponding
to the ρ1-state).

(ρ0, σ0) Do not select any vertices from K. Since u2 is selected, v2 already has one neighbor. From
the copies of J attached to v2, it receives another rtop − 1 selected neighbors, for a total of
rtop (rtop − 1 of the attached {ρ0, ρ1, σ0}-providers are in the ρ1-state, one is in the ρ0-state).
The remaining vertices of K get rtop neighbors via the attached copies of J .

(σ0, σ0) Do not select any vertices from K. Now both v1 and v2 already have one neighbor and
receive another rtop − 1 selected neighbors through their attached copies of J . The remaining
vertices of K again get rtop neighbors by the copies of J .

(σ1, σ1) Select all vertices from K. The copies of J do not provide further neighbors to these
vertices (all of them are in the σ0-state). By construction, v2, . . . , vstop+1 have stop selected
neighbors in K, and thus, in total. Both v1 and v2 have stop − 1 selected neighbors in K
(since the edge between v1 and v2 is missing), and they are adjacent to the selected u1 and
u2, respectively. Hence, they also have stop selected neighbors in total.

Combining the previous lemma with Lemma 7.8, we get the following result.

Lemma 7.10. Let stop ≥ 1. Suppose that m = 1 is the maximum value such that (σ, ρ) is m-
structured.

If rtop ≥ 1, then there is a {(ρ0, σ0), (ρ1, σ0), (σ0, σ0), (σ1, σ1)}-provider. If rtop = 0 but ρ ̸=
{0}, then there is a {(ρ0, σ0), (σ0, σ0), (σ1, σ1)}-provider. Moreover, the closed neighborhoods of the
portals in both providers are disjoint.

Proof. Assume rtop ≥ 1. Let (G1, {u1}) and (G2, {u2}) be two copies of a {ρ0, ρ1, σ0}-provider
as constructed in Lemma 7.8. Let (G3, {u1, u2}) be a {(ρ0, ρ0), (ρ0, σ0), (σ0, σ0), (σ1, σ1)}-provider
which exists by Lemma 7.9. It is easy to check that (G1 ∪G2 ∪G3, {u1, u2}) is a {(ρ0, σ0), (ρ1, σ0),
(σ0, σ0), (σ1, σ1)}-provider.

Observe that the construction from Lemma 7.9 does not use any {ρ0, ρ1, σ0}-provider if rtop = 0.
Hence, the exactly same proof works in the case when rtop = 0 and gives us a {(ρ0, ρ0), (ρ0, σ0),
(σ0, σ0), (σ1, σ1)}-provider.

7.2.2 The Sets are 2-Structured

For the case when (σ, ρ) are 2-structured, we again �rst show an intermediate provider.

Lemma 7.11. Let stop ≥ 1. If a {ρ0, ρ2, σ0}-provider and a {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-provider
exist, then there is a {ρ0, ρ2, σ0, σ2}-provider.

61

Proof. Let (G′, {u′}) be a {ρ0, ρ2, σ0}-provider and assume we can construct a {ρ0, σ0, σ2}-provider
(G, {u}). By setting u = u′, (G ∪ G′, {u}) is a {ρ0, ρ2, σ0, σ2}-provider. In the remainder of this
proof, we show how to obtain a {ρ0, σ0, σ2}-provider (G, {u}).

Let K be a biclique with vertex bipartition {w1, . . . , wstop} and {w′
1, . . . , w

′
stop}. We remove

the edge between w1 and w′
1 (observe that stop ≥ 1, so these vertices always exist). For each i ∈

[1 . . stop], let wi and w
′
i be the two portals of rtop attached copies of a {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-

provider. The portal u is adjacent to w1 and w′
1. Then, G is the graph consisting of K, the

stop · rtop attached {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-providers, and the portal u. We show that (G, {u})
is a {ρ0, σ0, σ2}-provider by giving solutions corresponding to the three states.

ρ0 No vertex from K is selected, so u has no selected neighbor. To satisfy the ρ-constraints of
the vertices in K, all vertices wi and w′

i receive rtop selected neighbors from the attached
{(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-providers (they are all in state (ρ1, ρ1)).

σ0 No vertex from K is selected, so u has no selected neighbor. However, now u is selected, so
w1 and w′

1 already have one selected neighbor. Therefore, w1 and w′
1 receive only rtop − 1

selected neighbors from the attached {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-providers (rtop − 1 of these
are in state (ρ1, ρ1), the remaining one is in state (ρ0, ρ0)). For i ≥ 2, wi and w

′
i receive rtop

selected neighbors from the attached {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-providers, as before.

σ2 All vertices from K are selected. Since K is a biclique (minus one edge), the vertices
w2, . . . , wstop and w′

2, . . . , w
′
stop are adjacent to stop selected neighbors. The vertices w1 and

w′
1 have stop−1 selected neighbors in K and, additionally, the selected portal u as a neighbor.

All of the {(ρ0, ρ0), (ρ1, ρ1), (σ0, σ0)}-providers are in state (σ0, σ0) and do not give any further
selected neighbors to vertices in K.

As a last step, we combine the previous lemma with Lemma 7.8 to obtain the �nal provider for
the 2-structured case.

Lemma 7.12. Let rtop ≥ 1. Suppose that m = 2 is the maximum value such that (σ, ρ) is m-
structured. Suppose further that the elements of ρ and σ are even. Then, for L = {ρi ∈ R | i ∈
2Z≥0} ∪ {σi ∈ S | i ∈ 2Z≥0}, there is an L-provider.

Proof. First assume that stop ≥ 1. Combining Lemmas 7.8 and 7.11, there is a {ρ0, ρ2, σ0, σ2}-
provider (G, {u}). Create ttop/2 copies (Gi, {ui})i∈[1 . . ttop/2] of (G, {u}). We set u1 = · · · = uttop/2,
i.e., we identify all portals with the same vertex. It is straightforward to verify that (G1 ∪ · · · ∪
Gttop/2, {u1}) is an L-provider.

If we have that stop = 0, then we can use the same construction except that we use the
{ρ0, ρ2, σ0}-provider from Lemma 7.8 instead.

8 Constructing Managers

The goal of this section is to establish four A-managers with di�erent A ⊆ A. Formally, we prove
Lemma 6.3 which we restate here for convenience.

Lemma 6.3 (Existence of Managers). Let σ and ρ be two �nite or co�nite sets of non-negative
integers with ρ ̸= {0}.

1. There is an A-manager with |A| = rtop + 1.

62

2. If (σ, ρ) is 2-structured, but not m-structured for any m ≥ 3, and stop and rtop ≥ 1 are even,
then there is an A-manager with |A| = (stop + rtop)/2 + 2.

3. If stop ≥ rtop ≥ 1, then there is an A-manager with |A| = stop + 1.

4. If (σ, ρ) is not m-structured for any m ≥ 2, then there is an A-manager with |A| = stop +
rtop + 2.

Moreover, each A-manager is such that A is closed under the inverse with respect to σ, ρ.

Before starting with the construction, we restate the de�nition of a manager here.

De�nition 6.2 (A-manager). Given A ⊆ A, an A-manager is an in�nite family ((Gℓ, Uℓ))ℓ≥1 of
pairs (Gℓ, Uℓ) where Gℓ is a graph with relations and Uℓ = {u1, . . . , uℓ} ⊆ V (Gℓ) is a set of ℓ
distinguished simple vertices. Moreover, there is some non-negative integer b (depending only on
stop, rtop) such that the following holds for every ℓ ≥ 1:

� The vertices from V (Gℓ) \ Uℓ can be partitioned into 2ℓ vertex-disjoint subgraphs B1, . . . , Bℓ

and B1, . . . , Bℓ, which we refer to as blocks, such that

� |Bi| ≤ b and |Bi| ≤ b for all i ∈ [1 . . ℓ],

� N(ui) ⊆ Bi ∪Bi for all i ∈ [1 . . ℓ],

� there are edges only between the following pairs of blocks: Bi and Bi+1, Bi and Bi+1, for
each i ∈ [1 . . ℓ− 1], and Bℓ and Bℓ.

� Each x ∈ Aℓ ⊆ Aℓ is managed in the sense that there is a unique (σ, ρ)-set Sx of Gℓ
8 such

that for all i ∈ [1 . . ℓ]:

� If x[i] = σs, then ui ∈ Sx. Moreover, ui has exactly s neighbors in Bi ∩ Sx, and exactly
stop − s neighbors in Bi ∩ Sx.

� If x[i] = ρr, then ui /∈ Sx. Moreover, ui has exactly r neighbors in Bi ∩ Sx, and exactly
rtop − r neighbors in Bi ∩ Sx.

We refer to Gℓ as the A-manager of rank ℓ.

See Figure 8.1 for an illustration of this de�nition. Note that this de�nition does not a priori
rule out solutions that do not correspond to values x ∈ Aℓ.

The proof of Lemma 6.3 is split into four cases, each case corresponding to one manager. Lem-
mas 8.1, 8.2, 8.5 and 8.6 handle each one of these cases and together imply the above lemma.

For the construction of the managers, we mostly rely on the providers introduced in Section 7.
In the following, we �rst construct the managers from the �rst two cases as they follow rather
directly from the constructed providers. Then, we show how to obtain the remaining two managers
assuming a general construction for managers based on speci�c providers. As a last step, we provide
this general construction in Section 8.1.

Lemma 8.1. For non-empty sets σ and ρ, there is an R-manager.

8Note that all vertices in Gℓ already have a feasible number of neighbors. The graph does not have any poten-
tially �unsatis�ed� portals. In this sense, it is di�erent from the graphs with portals that we use in other gadget
constructions.

63

Proof. Let ℓ be a �xed rank of the manager. For each i ∈ [1 . . ℓ], G contains a distinguished vertex
ui that is the portal of two independent copies of a {ρ0, ρ1, . . . , ρrtop}-provider (which exists by
Lemma 7.2). The providers neighboring ui in the �rst and second copy form the sets Bi and Bi,
respectively. To each copy, we add a relation which just ensures that the selection of vertices for
each state ρi is unique. This de�nes an R-manager of rank ℓ since, for each r ∈ [0 . . rtop], both ρr
and ρrtop−r are compatible with the {ρ0, ρ1, . . . , ρrtop}-provider.

As a next step, we construct the �rst manager with σ and ρ-states.

Lemma 8.2. Let rtop ≥ 1. Suppose that m = 2 is the maximum value such that (σ, ρ) is m-
structured. Suppose further that all elements of ρ and σ are even. Then, there is an L-manager
where

L := {ρi ∈ R | i ∈ 2Z≥0} ∪ {σi ∈ S | i ∈ 2Z≥0}.

Proof. The construction is analogous to that in the proof of Lemma 8.1, but we use the L-provider
from Lemma 7.12 instead of the {ρ0, ρ1, . . . , ρrtop}-provider. Note that rtop and stop are even, and
thus, rtop − k and stop − k are even if k is even.

Before providing the last two managers, we �rst introduce some notation.
Let x be a vector (string) of elements from A. Recall that, for a ∈ A, #a(x) denotes the number

of occurrences of a in x. Similarly, for A ⊆ A, #A(x) denotes the number of occurrences of elements
from A in x.

De�nition 8.3. Let d ≥ 1 and β ∈ [0 . . 2d]. We de�ne a set

L
(2d)
β := {x ∈ {ρ0, ρ1, σ0, σ1}2d | #σ1(x) ∈ {0, d},#R(x) ≤ β}.

Using this de�nition, we can state the following general construction for a manager.

Lemma 8.4. Suppose for some d ≥ 1 and β ∈ {0, 1} that there is an L
(2d)
β -provider where the closed

neighborhoods of the portals are disjoint. Then, there is an S-manager, and if β = 1, then there is
also an A-manager.

Before proving Lemma 8.4 in Section 8.1, we show how to use it to prove Lemmas 8.5 and 8.6,
that is, the remaining two managers from Lemma 6.3. For the �rst manager, the distinguished
vertices have to always be selected.

Lemma 8.5. If there is c ∈ ρ with stop ≥ c ≥ 1, then there is an S-manager.

Proof. By Lemma 7.4, there is an L-provider where

L := {x ∈ {σ0, σ1}4r | #σ1(x) ∈ {0, 2r}}.

Note that this precisely corresponds to an L
(4r)
0 -provider. Moreover, we get from the lemma that

the closed neighborhoods of the portals are disjoint. Then, the claim follows by Lemma 8.4.

The following manager concludes the series of constructions by providing an A-manager.

Lemma 8.6. Let ρ ̸= {0}. Suppose that m = 1 is the maximum value such that (σ, ρ) is m-
structured. Then, there is an A-manager.

64

B1

B2

B1

B2

u1

u2

J1,1

J1,2

J1,1

J1,2

J2,1

J2,2

J2,1

J2,2

v0,1 v0,4

v1,1 v1,4 v1,1 v1,4

v0,1 v0,4

v2,4

v2,1

Figure 8.1: Construction of the manager from Lemma 8.4. The big, dark blue boxes represent the

blocks, while the smaller, light boxes represent the L-providers. The L-providers F j
i,z, F

j
i,z are not

shown to keep the �gure simple.

Proof. We �rst handle the case when stop, rtop ≥ 1. By Lemma 7.10, there is a Z-provider with
Z = {(ρ0, σ0), (ρ1, σ0), (σ0, σ0), (σ1, σ1)}. Moreover, the closed neighborhoods of both portals are

disjoint. From this we construct an L
(4)
1 -provider as follows. We introduce four vertices u1, . . . , u4

that serve as portals of the L
(4)
1 -provider. For each pair (ui, uj) of distinct portals, we attach an

independent copy of a Z-provider where ui is the �rst portal, and uj is the second portal vertex. It is

straightforward to verify that the resulting gadget is an L
(4)
1 -provider where the closed neighborhoods

of the portals are disjoint. The lemma then follows from Lemma 8.4.
The next case is when, rtop ≥ 1 and stop = 0, i.e., σ = {0}. By Lemma 7.8, there is a {ρ0, ρ1, σ0}-

provider J . For all i, the blocks Bi and Bi consist of ttop copies of J each using ui as a portal.
Since σ = {0}, this �nishes the construction of the A-manager of rank ℓ, after we added relations
to ensure that the solutions are unique, and proves its correctness.

It remains to handle the case when rtop = 0. If we have stop = 0, then we are only interested
in the states σ0 and ρ0. In this case the empty graph already gives an A-manager. Thus, assume
stop ≥ 1. We claim that it su�ces to have a Z ′-provider with Z ′ = {(ρ0, σ0), (σ0, σ0), (σ1, σ1)}.
Then we could use the construction for rtop, stop ≥ 1 as we never need the combination (ρ1, σ0).
The desired Z ′-provider follows from Lemma 7.10 and �nishes the proof.

8.1 Proof of Lemma 8.4: A Blueprint for Managers

Now, we turn to the proof of Lemma 8.4. That is, given an L
(2d)
β -provider for some d ≥ 1 and

β ∈ {0, 1}, we construct an S-manager, and if β = 1, then also an A-manager.

To simplify notation let L = L
(2d)
β in the following.

Construction of the Graph. Let ℓ be a �xed rank of the manager. For ease of notation, we
omit ℓ from Gℓ and Uℓ in the following and just write G and U . We �rst de�ne the graph G with
its set of distinguished vertices U = {u1, . . . , uℓ}. An illustration is given in Figure 8.1. Afterward,
we establish that it is an S-manager or A-manager for β = 0 or β = 1, respectively.

Apart from the vertices in U , G also contains ℓ∗ − ℓ auxiliary vertices uℓ+1, . . . , uℓ∗ , which
are used to circumvent some parity issues that would otherwise prevent us from obtaining proper
solutions. In the construction of G, we treat these auxiliary vertices in the same way as the vertices

65

in U . However, for the encoding that we want to model (see De�nition 6.2), we are only interested
in the vertices u1, . . . , uℓ and their selected neighbors. Later, we set the number ℓ∗ (as a number
depending on β). For each i ∈ [1 . . ℓ∗], there are some subgraphs Xi and Xi, which we de�ne
subsequently. They provide the neighbors for ui in G, and with some minor modi�cations, these
subgraphs Xi and Xi form the blocks Bi and Bi of the manager G.

For all i ∈ [0 . . ℓ∗] and all j ∈ [1 . . d], we create vertices vi,j and vi,j . For j ∈ [1 . . d], we
identify vℓ∗,j = vℓ∗,d+1−j . Intuitively, the case i = ℓ∗ is special as it is the connection between the
vi,j 's and the vi,j 's. For each i ∈ [0 . . ℓ∗], the vertices vi,1, . . . , vi,d serve as portals of stop copies of
the given L-provider. Let us name these providers F 1

i , . . . , F
stop
i . (We use �F � as in ��ll� since these

providers are used to �ll up the count of selected neighbors of their portals as far as possible.) Note
that the L-provider has 2d portals, and therefore, each vertex in vi,1, . . . , vi,d serves as two portals
for each of these L-providers. Identifying two portals of an L-provider is possible without forming
loops or multiple edges by the assumption that the portals of the given L-provider are independent
and have no common neighbors. Analogously, for each i ∈ [0 . . ℓ∗], the vertices vi,1, . . . , vi,d serve

as portals of stop L-providers F
1
i , . . . , F

stop
i .

For each i ∈ [1 . . ℓ∗], there is a subgraph Xi de�ned as follows. It contains a set of vertices
{xi,z,j | z ∈ [0 . . ttop], j ∈ [1 . . d]}. For z /∈ {0, ttop}, these xi,z,j 's are new vertices, but for all
j ∈ [1 . . d], we set xi,0,j = vi−1,j and xi,ttop,j = vi,j . Just like the vi,j 's, for each z ∈ [1 . . ttop − 1],
the vertices xi,z,1, . . . , xi,z,d serve as portals of stop copies F 1

i,z, . . . , F
stop
i,z of the given L-provider.

We set F y
i,0 = F y

i−1 and F y
i,ttop

= F y
i for all y ∈ [1 . . stop]. Furthermore, for all z ∈ [1 . . ttop], Xi

contains an L-provider Ji,z with portals ui, xi,z−1,1, . . . , xi,z−1,d−1, and xi,z,1, . . . , xi,z,d.
For each i, we similarly de�ne a subgraph Xi with vertices {xi,z,j | z ∈ [0 . . ttop], j ∈ [1 . . d]},

and xi,0,j = vi−1,j , xi,ttop,j = vi,j (for all j ∈ [1 . . d]). Moreover, for all z ∈ [1 . . ttop], Xi

contains an L-provider J i,z with portals ui, xi,z−1,1, . . . , xi,z−1,d−1, and xi,z,1, . . . , xi,z,d. For all z ∈
[1 . . ttop − 1], we create stop L-providers F

1
i,z, . . . , F

stop
i,z , and additionally set for all y ∈ [1 . . stop],

F
y
i,0 = F

y
i−1 and F

y
i,ttop = F

y
i . As a last step, we make the vertices in Xi together with ui subject

to a relation which ensures that there is exactly one solution for each state the vertex ui can get.
For this we use the solution which we construct in the following. We apply the same to the vertices
of Xi together with ui. This completes the de�nition of G.

Partitioning the Graph. We use G for both cases β = 0 and β = 1. We only adjust the value
of ℓ∗ accordingly. We have to show that there is an integer b, and a partition of G into blocks that
ful�ll the requirements stated in De�nition 6.2.

Let δL denote the number of vertices of the L-provider (including the 2d portal vertices). We
set

b := (ℓ∗ − ℓ+ 1) · (stop + 1) · (ttop + 1) · δL. (8.1)

For all i ∈ [1 . . ℓ − 1], the block Bi consists of the vertices of Xi minus the ones from Xi+1 (and
minus ui). Note that the common vertices of Xi and Xi+1 are vi,1, . . . , vi,d together with the L-
providers F 1

i , . . . , F
stop
i . Likewise, the block Bi consists of the vertices of Xi minus the vertices from

Xi+1. The �nal blocks Bℓ and Bℓ hold all the remaining vertices of V (G)\U , that is, Bℓ consists of
all Xi with i ∈ [ℓ . . ℓ∗] minus the vertices from Xℓ∗ ∩Xℓ∗ . (These are vℓ∗,1 = vℓ∗,d, . . . , vℓ∗,d = vℓ∗,1
together with the L-providers F 1

ℓ∗ , . . . , F
stop
ℓ∗ .) Then, Bℓ consists of all Xi with i ∈ [ℓ . . ℓ∗].

It is straightforward to verify that these blocks form a partition of the vertices of G. Each
set Xi contains stop · (ttop + 1) many L-providers of the form F s

i,z, and ttop many L-providers of
the form Ji,z. So in total, this gives at most (stop + 1) · (ttop + 1) many L-providers. Since each
vertex xi,z,j is a portal of at least one of those L-providers, we conclude that Xi contains at most
(stop + 1) · (ttop + 1) · δL many vertices. The same bound also holds for all subgraphs Xi for all

66

i ∈ [1 . . ℓ∗]. Since each block Bi or Bi, i ∈ [1 . . ℓ], contains vertices from at most (ℓ∗ − ℓ + 1)
many subgraphs Xi or Xi, it follows that |Bi| ≤ b and |Bi| ≤ b for all i ∈ [1 . . ℓ]. Finally, by
construction, it is immediately clear that N(ui) ⊆ Bi ∪ Bi for all i ∈ [1 . . ℓ], and there are edges
only between Bi and Bi+1, Bi and Bi+1, for each i ∈ [1 . . ℓ− 1], and Bℓ and Bℓ.

Constructing a Solution. To show that the corresponding graph G together with the distin-
guished vertices U = {u1, . . . , uℓ} is an A-manager (for β = 1) or an S-manager (for β = 0) of rank
ℓ, we additionally need to prove the second property from De�nition 6.2.

For a given x ∈ Aℓ,9 we de�ne an x∗ ∈ Aℓ∗ with x∗[i] = x[i] for all i ∈ [1 . . ℓ], while the
remaining entries are set depending on β (and x). We iteratively construct (partial) solutions Si,z for
all i ∈ [1 . . ℓ∗] and z ∈ [0 . . ttop] such that Sx := Sℓ∗,ttop corresponds to the �nal solution. Based

on these Si,z, we de�ne two functions B,B : [1 . . ℓ∗]×[0 . . ttop] → [0 . . d−1] such that B(i, z) = k
if and only if the k vertices xi,z,1, . . . , xi,z,k need (exactly) one more neighbor in Si,z, respectively for
B(i, z) = k and the vertices xi,z,1, . . . , xi,z,k. Due to the construction of G, we set Si,ttop = Si+1,0,
and therefore, B(i, ttop) = B(i+ 1, 0) and B(i, ttop) = B(i+ 1, 0) for all i ∈ [1 . . ℓ∗ − 1]. We later
set ℓ∗ and x∗ such that the partial solutions maintain the following invariant for all i ∈ [1 . . ℓ∗]:

B(i, ttop) +B(i, ttop) ≡d stop ·#S(x
∗[1 . . i]) and B(1, 0) = B(1, 0) = 0 (8.2)

S1,0 consists of the vertices x1,0,j and x1,0,j for all j ∈ [1 . . d]. Moreover, the L-providers

F 1
1,0, . . . , F

stop
1,0 and F

1
1,0, . . . , F

stop
1,0 give each of these vertices stop neighbors. We directly get

B(1, 0) = B(1, 0) = 0 which satis�es the invariant.
Now, for each i from 1 to ℓ∗, we iterate over all z from 1 to ttop and apply the following selection

process. Unless mentioned otherwise, the portals of the L-providers get state σ0.

� Si,z consists of all selected vertices from Si,z−1. If x∗[i] ∈ S, then we select vertex ui.
Moreover, we select the vertices xi,z,j and xi,z,j for all j ∈ [1 . . d]. We use the L-providers
F y
i,z, F

y
i,z for all y ∈ [1 . . stop − 1] to add stop − 1 neighbors to each of these vertices.

� Selection process for Bi if x
∗[i] = σs.

� If ui has < s neighbors in Bi ∩ Si,z−1, then we give it one more neighbor in Si,z.
The L-provider Ji,z gives state σ1 to ui and each of xi,z−1,1, . . . , xi,z−1,B(i,z−1) and
xi,z,B(i,z−1)+2, . . . , xi,z,d. Hence, the vertices xi,z,1, . . . , xi,z,B(i−1)+1 need one more neigh-
bor.

If B(i − 1, z) + 1 = d, then we use the additional L-provider F
stop
i,z to give every vertex

one additional neighbor. Therefore, B(i, z) = B(i, z − 1) + 1 mod d.

� If ui has s neighbors in Bi∩Si,z−1, then we do not give it one more neighbor in Si,z. The
L-provider Ji,z gives state σ0 to ui and state σ1 to each of xi,z−1,1, . . . , xi,z−1,B(i,z−1) and
xi,z,B(i,z−1)+1, . . . , xi,z,d. Hence, B(i, z) = B(i, z − 1).

� Selection process for Bi if x
∗[i] = σs.

� If ui has < stop − s neighbors in Bi ∩ Si,z−1, then we give it one more neighbor in
Si,z. The L-provider J i,z gives state σ1 to ui and each of xi,z−1,1, . . . , xi,z−1,B(i,z−1) and

xi,z,B(i,z−1)+2, . . . , xi,z,d. Hence, the B(i, z− 1) + 1 vertices xi,z,1, . . . , xi,z,B(i,z−1)+1 need
one more neighbor.

9For β = 0 we restrict ourself to strings from Sℓ.

67

If B(i − 1, z) + 1 = d, then we use the additional L-provider F
stop
i,z to give every vertex

one additional neighbor. Therefore, B(i, z) = B(i, z − 1) + 1 mod d.

� If ui has stop−s neighbors in Bi∩Si,z−1, then we do not give it one more neighbor in Si,z.
The L-provider J i,z gives state σ0 to ui and state σ1 to each of xi,z−1,1, . . . , xi,z−1,B(i,z−1)

and xi,z,B(i,z−1)+1, . . . , xi,z,d. Hence, B(i, z) = B(i, z − 1).

� Selection process for Bi if x
∗[i] = ρr. (Note that this case does not occur when β = 0)

� If ui has < r neighbors in Bi ∩ Si,z−1, then we give it one more neighbor in Si,z. The
L-provider Ji,z gives state ρ1 to ui and state σ1 to each of xi,z−1,1, . . . , xi,z−1,B(i,z−1) and
xi,z,B(i,z−1)+1, . . . , xi,z,d. Since the vertices xi,z,1, . . . , xi,z,B(i−1) need one more neighbor,
B(i, z) = B(i, z − 1).

� If ui has r neighbors in Bi∩Si,z−1, then we do not give it one more neighbor in Si,z. The
L-provider Ji,z gives state ρ0 to ui and state σ1 to each of xi,z−1,1, . . . , xi,z−1,B(i,z−1) and
xi,z,B(i,z−1)+1, . . . , xi,z,d. Hence, B(i, z) = B(i, z − 1).

� Selection process for Bi if x
∗[i] = ρr. (Note that this case does not occur when β = 0)

� If ui has < rtop−r neighbors in Bi∩Si,z−1, then we give it one more neighbor in Si,z. The
L-provider J i,z gives state ρ1 to ui and state σ1 to each of xi,z−1,1, . . . , xi,z−1,B(i,z−1) and
xi,z,B(i,z−1)+1, . . . , xi,z,d. Since the vertices xi,z,1, . . . , xi,z,B(i,z−1) need one more neighbor,

B(i, z) = B(i, z − 1).

� If ui has rtop−r neighbors in Bi∩Si,z−1, then we do not give it one more neighbor in Si,z.
The L-provider J i,z gives state ρ0 to ui and state σ0 to each of xi,z−1,1, . . . , xi,z−1,B(i,z−1)

and xi,z,B(i,z−1)+1, . . . , xi,z,d. Hence, B(i, z) = B(i, z − 1).

Correctness of the Solution. We �rst show that these steps preserve the invariant in Equa-
tion (8.2). The claim immediately follows if x∗[i] = ρr because in this case B(i, z − 1) = B(i, z)
for all z ∈ [1 . . ttop]. Likewise, we get B(i, z − 1) = B(i, z).

For the case x∗[i] = σs, we get that B(i, z) ≡d B(i, 0) + z for all z ∈ [1 . . s], and B(i, z) =
B(i, z− 1) for all z ∈ (s . . ttop]. Conversely, we get B(i, z) ≡d B(i, 0)+ z for all z ∈ [1 . . stop − s],
and B(i, z) = B(i, z − 1) for all z ∈ (stop − s . . ttop]. This directly yields

B(i, ttop) +B(i, ttop) ≡d B(i, 0) +B(i, 0) + s+ (stop − s)

≡d #S(x
∗[1 . . i− 1]) · stop + stop

≡d #S(x
∗[1 . . i]) · stop,

proving that the invariant is preserved.

Setting the Parameters. Assume we can set ℓ∗ and x∗(ℓ . . ℓ∗] such that the solution satis�es
B(ℓ∗, ttop) + B(ℓ∗, ttop) ∈ {0, d}. We then show that Sℓ∗,ttop is indeed a valid solution. From

B(ℓ∗, ttop) = k, we know that the vertices vℓ∗,1, . . . , vℓ∗,k need one more neighbor. From B(ℓ∗, ttop) =
k′, we know that the vertices vℓ∗,1, . . . , vℓ∗,k′ need one more neighbor. Recall that vℓ∗,j = vℓ∗,d+1−j

for all j. If B(ℓ∗, ttop) + B(ℓ∗, ttop) = d, then k′ = d − k and the vertices vℓ∗,1, . . . , vℓ∗,k get a
neighbor from J ℓ∗,ttop . Conversely, the vertices vℓ∗,1 = vℓ∗,d, . . . , vℓ∗,d−k = vℓ∗,k+1 get a neighbor
from Jℓ∗,ttop . Thus, none of these vertices need an additional neighbor.

If B(ℓ∗, ttop)+B(ℓ∗, ttop) = 0, then the L-provider F
stop
ℓ∗ = F

stop
ℓ∗ already provided one additional

neighbor for these vertices.

68

It remains to set ℓ∗ and x∗(ℓ . . ℓ∗] depending on β such that the claim holds.

� β = 1: We set ℓ∗ = ℓ + d. Let x∗[i] = σ0 for all i ∈ (ℓ . . ℓ + ℓ′] and x∗[i] = ρ0 for all
i ∈ (ℓ + ℓ′ . . ℓ∗], where ℓ′ = d − (#S(x) mod d). From the invariant in Equation (8.2), we
get:

B(ℓ∗, ttop) +B(ℓ∗, ttop) ≡d stop ·#S(x
∗)

≡d stop · (#S(x) + #S(x
∗(ℓ . . ℓ∗]))

≡d stop · (#S(x) + ℓ′)

≡d stop · (#S(x) + d− (#S(x) mod d)) ≡d 0

� β = 0: We set ℓ∗ = ℓ + d − (ℓ mod d) and x∗[i] = σ0 for all i ∈ (ℓ . . ℓ∗]. By the invariant
in Equation (8.2) and the fact that x∗ ∈ Sℓ∗ , we get:

B(ℓ∗, ttop) +B(ℓ∗, ttop) ≡d stop ·#S(x
∗)

≡d stop · ℓ∗
≡d stop · (ℓ+ d− (ℓ mod d)) ≡d 0

We complete the proof of Lemma 8.4 by observing that ℓ∗ − ℓ + 1 ≤ d + 1 in both cases, which
means that b (see Equation (8.1)) only depends on stop and rtop.

9 Lower Bound for the Problem with Relations

As mentioned earlier, our lower bounds follow in three steps. In Section 7, we provided the basis
for the managers we constructed in Section 8. In this section, we proceed with the second step
that is an intermediate lower bound for (σ, ρ)-DomSetRel, which is de�ned as the generalization of
(σ, ρ)-DomSet on a graph with relations, cf. De�nitions 6.1 and 6.4. Unless mentioned otherwise,
the considered vertices are simple from now on.

In Section 9.1, we prove the intermediate lower bound for the decision version, that is, we prove
Lemma 6.5. We achieve this by giving a reduction from k-SAT to (σ, ρ)-DomSetRel assuming a
suitable A-manager is given. In Section 9.2, we reuse this construction to show the lower bound for
the counting version, that is, Lemma 6.8. As the construction for the decision version is only for
the case when σ and ρ are �nite or simple co�nite, we provide some modi�cations and extensions
(exploiting properties of the counting version) such that the sets might also be co�nite without
being simple co�nite.

Observe that each A-manager from Lemmas 8.1, 8.2, 8.5 and 8.6, satis�es our conditions on A
from the lower bounds. Hence, we can use them in the following constructions.

9.1 Decision Problem

To prove the lower bound, we reduce from k-SAT to (σ, ρ)-DomSetRel, and keep pathwidth, and
thus, also treewidth low. For this we follow previous approaches as in [18, 36, 37].

We �rst introduce some types of relations that we use in the following reduction.

De�nition 9.1. Let d ≥ 1 denote a positive integer and ℓ ≥ 0 denote a non-negative integer.

We write HW
(d)
=ℓ := {S ⊆ [1 . . d] | |S| = ℓ} for the d-ary Hamming Weight ℓ relation, that is, the

relation whose corresponding partial solutions contain exactly ℓ selected portal vertices.
Further, we write EQ(d) := {∅, [1 . . d]} for the d-ary Equality relation, that is, the relation

whose corresponding partial solutions either select all portal vertices or none of them.

69

In Section 9.1.1, we give the construction of the (σ, ρ)-DomSetRel instance. Then, in Sec-
tion 9.1.2, we prove the correctness of these constructions, and �nalize the proof in Section 9.1.3.

9.1.1 Construction of the Graph

Let ϕ be a given k-SAT formula in CNF with n variables x1 . . . , xn and m clauses C1, . . . , Cm. We
group the variables of ϕ into t := ⌈n/q⌉ groups F1, . . . , Ft of q variables each, where q is chosen
later. Later, we also choose some g with 2q ≤ |A|g.

We now de�ne a corresponding graph Gϕ that serves as an instance of (σ, ρ)-DomSetRel. The
construction is illustrated in Figure 9.1.

In the following, the indices we use are superscripts if they refer to �columns� of the construction,
and they are subscripts if they refer to �rows� of the construction. Whenever we say that some set
of vertices V ′ is subject to a relation R, we mean that there is a complex vertex v to which the
relation R is assigned and the neighborhood of v is V ′. In a separate step, we show how to remove
these complex vertices and their relations. Here is the construction of Gϕ:

� Introduce vertices wj
i,ℓ for all i ∈ [1 . . t], ℓ ∈ [1 . . g], and j ∈ [0 . .m].

� Introduce vertices cji for all i ∈ [0 . . t] and j ∈ [1 . .m].

� For all j ∈ [0 . .m], we create a copy J j of the given A-manager of rank tg for which {wj
i,ℓ |

i ∈ [1 . . t], ℓ ∈ [1 . . g]} act as distinguished vertices. Let Bj
i,ℓ and B

j
i,ℓ be the corresponding

blocks.

� For each wj
i,ℓ, NB(w

j
i,ℓ) andNB(w

j
i,ℓ) are the neighborhoods of w

j
i,ℓ inB

j
i,ℓ andB

j
i,ℓ, respectively.

� For all i ∈ [0 . . t] and j ∈ [1 . .m], there is a {σsmin , ρrmin}-provider Qj
i (exists by Lemma 7.1)

with cji as portal. We add a relation to the vertices ofQj
i and c

j
i which ensures that the provider

only has two solutions, namely one corresponding to the state when cji is selected, and one to

the state when cji is not selected.

� For all j ∈ [1 . .m], cj0 is additionally subject to a relation HW
(1)
=0, and c

j
t is additionally subject

to HW
(1)
=1.

� For each i ∈ [1 . . t] and j ∈ [1 . .m], the set of vertices

Zj
i := {cji−1, c

j
i} ∪

⋃
ℓ∈[1 . . g]

(
wj−1
i,ℓ ∪NB(w

j−1
i,ℓ) ∪ wj

i,ℓ ∪NB(w
j
i,ℓ)

)
is subject to a relation Rj

i , which we de�ne in a moment.

� Similarly, for each i ∈ [1 . . t],

Z0
i :=

⋃
ℓ∈[1 . . g]

(
w1
i,ℓ ∪NB(w

1
i,ℓ)

)
and Zm+1

i :=
⋃

ℓ∈[1 . . g]

(
wm
i,ℓ ∪NB(w

m
i,ℓ)

)
,

are subject to relations R0
i and Rm+1

i , respectively.

70

This completes the de�nition of Gϕ. In order to de�ne the relations R
j
i , we need some more notation.

For each group of variables Fi, there are at most 2q corresponding partial assignments. We encode
these assignments by states from Ag. For technical reasons, instead of using all states, we only use
those states that have a certain property. For now it su�ces to think of this property as having a
certain weight. To this end, we �rst de�ne the weight wt(x) of a vector x ∈ Ag using the de�nition
of a weight vector w⃗(·) from De�nition 4.2:

wt(x) =

g∑
i=1

w⃗(x)[i].

One can also think of wt(·) as the 1-norm of w⃗(·). Let maxA = max{i | σi ∈ A∨ ρi ∈ A}. Observe
that the vectors in Ag can have at most g · maxA + 1 possible weights between 0 and g · maxA.
There are |Ag| vectors in total.

Claim 9.2. There is a weight w and a set A ⊆ Ag such that |A| ≥ ⌈|Ag|/(g ·maxA+ 1)⌉ and, for
all x ∈ A, we have wt(x) = w.

Proof. If g · maxA + 1 ≥ |Ag|, then we only need that there is one weight which appears at
least once. This is true as A is non-empty. Otherwise, there are more vectors than weights, and
g · maxA + 1 ≤ |Ag|. The pigeon-hole principle provides some weight w such that at least the
claimed fraction of vectors has weight w.

Recall the de�nition of the inverse of a state from De�nition 3.8. Using this de�nition, we de�ne
a new set Â ⊆ Ag as the inverse of A with respect to σ and ρ if the sets σ and ρ are simple co�nite,
respectively. We initially set Â = A.

� If σ is simple co�nite, then update Â := invσ(Â).

� If ρ is simple co�nite, then update Â := invρ(Â).

Since A is closed under inversion with respect to σ, ρ, we get Â ⊆ Ag. Moreover, as the inverse is a
bijective function, we have |Â| = |A|.

We set q = ⌊g log|A| − log(g · maxA + 1)⌋ such that 2q ≤ |A|g/(g · maxA + 1) ≤ |Â|, that is,
even when using vectors from Â for the encodings, we can still encode all partial assignments. As
a last step, we choose an (injective) mapping e : 2q → Â to �x the encoding.

Given a selection S of vertices from Gϕ, for each i ∈ [1 . . t], ℓ ∈ [1 . . g], and j ∈ [0 . .m],

we de�ne two states aji,ℓ and aji,ℓ as follows. Let T j
i,ℓ := S ∩ NB(w

j
i,ℓ) be the number of selected

neighbors of wj
i,ℓ in B

j
i,ℓ, and let T

j
i,ℓ := S ∩NB(w

j
i,ℓ) be the number of selected neighbors of wj

i,ℓ in

B
j
i,ℓ.

If wj
i,ℓ is selected, then we set aji,ℓ = σ

T j
i,ℓ

and aji,ℓ = σ
T

j
i,ℓ
.

If wj
i,ℓ is not selected, then we set aji,ℓ = ρ

T j
i,ℓ

and aji,ℓ = ρ
T

j
i,ℓ
.

(9.1)

Note that, for each i ∈ [1 . . t] and j ∈ [1 . .m], a selection of vertices Sj
i from Zj

i determines

the states aji,ℓ and a
j−1
i,ℓ for each ℓ ∈ [1 . . g].

Using these states, we now have everything in place to conveniently de�ne the relations Rj
i . For

each i ∈ [1 . . t] and j ∈ [1 . .m], Sj
i is in Rj

i if and only if all of the following hold:

� aji,1 . . . a
j
i,g is in Â ⊆ Ag, and it is the encoding e(πi) of a partial assignment πi of the group

of variables Fi.

71

� For each ℓ ∈ [1 . . g], the state aj−1
i,ℓ complements aji,ℓ in the sense that aj−1

i,ℓ = invσ,ρ(aji,ℓ).

Note that therefore wj
i,ℓ is selected if and only if wj−1

i,ℓ is selected.

� If the vertex cji−1 is selected, then the vertex cji must also be selected.

� If cji−1 is not selected, then c
j
i is selected if and only if the encoded assignment πi satis�es the

clause Cj .

Similarly, we de�ne R0
i and Rm+1

i for each i ∈ [1 . . t]. A selection of vertices S0
i from Z0

i

determines, for each ℓ ∈ [1 . . g], the state a0i,ℓ; and a selection of vertices Sm
i from Zm

i determines,
for each ℓ ∈ [1 . . g], the state ami,ℓ where we follow the above procedure.

S0
i is in R0

i if and only if

� a0i,1 . . . a
0
i,g is in Â ⊆ Ag, and it is the encoding e(πi) of a partial assignment πi of the group

of variables Fi.

In order to de�ne Rm+1
i , we de�ne, for each ℓ ∈ [1 . . g], the auxiliary state am+1

i,ℓ with am+1
i,ℓ :=

invσ,ρ(ami,ℓ). Then, S
m+1
i is in Rm+1

i if and only if

� am+1
i,1 . . . am+1

i,g is in Â ⊆ Ag, and it is the encoding e(πi) of a partial assignment πi of the
group of variables Fi.

9.1.2 Correctness of the Construction

In the following two claims, we show the correctness of the construction. Afterward, we prove some
properties of the graph which we need later to obtain tight bounds for the lower bounds.

Claim 9.3. If ϕ is satis�able, then (σ, ρ)-DomSetRel has a solution on Gϕ.

Proof. Let π be a satisfying assignment for ϕ, and let π1, . . . , πt be the corresponding partial assign-
ments to the variable groups F1, . . . , Ft. For each i ∈ [1 . . t], ei := e(πi) ∈ Â ⊆ Ag ⊆ Ag denotes
the corresponding encoding. So, these encodings as a whole form an element x ∈ Atg. By the
de�nition of an A-manager of rank gt, for each x ∈ Atg, there is a unique solution Sx that manages
x.

We now de�ne a selection S of vertices of the graph Gϕ, and afterward show that S is a solution
for this instance of (σ, ρ)-DomSetRel. For each j ∈ [1 . .m], the following vertices are selected:

� From the A-manager of rank gt J j , we select vertices according to the solution Sx.

� Let i∗ ∈ [1 . . t] be the smallest index such that Fi∗ contains a variable that satis�es the clause
Cj under the assignment π. A vertex cji is selected if and only if i ≥ i∗.

� We lift the selection to the {σsmin , ρrmin}-providers: if cji is selected, then we select vertices
according to the σsmin-state of the attached {σsmin , ρrmin}-provider, and otherwise, according
to the ρrmin-state.

In order to show that this selection of vertices is a feasible solution of (σ, ρ)-DomSetRel, we
have to verify that

1. for each j ∈ [1 . .m], the corresponding HW
(1)
=0- and HW

(1)
=1-relations are satis�ed, i.e., cj0 is

unselected, and cjt is selected,

72

1

R
0 t

w0
1,1

w0
1,g

c11

cji

c10

w0
t,g

c1t

cm1

cm0

cmt

wm
t,g

wm
1,1

wm
1,g

R
j i

R
m t

R
1 1

R
m 1

R
1 t

cj−1
i

w1
1,1

wm−1
1,1

wm−1
1,g

wm−1
t,g

wj
i,1

wj
i,g

wj−1
i,1

wj−1
i,g

w1
1,g

w1
t,g

B0
1,1

B0
1,g

B0
t,g

Bj
i,1

Bj
i,g

B
j−1
i,1

B
j−1
i,g

B
0
t,g

B
0
1,1

B
0
1,g

Bm
1,1

Bm
1,g

B
m
1,1

B
m
1,g

Bm
t,g B

m
t,g

B
m−1
t,gB1

t,g

B1
1,1

B1
1,g

B
m−1
1,1

B
m−1
1,g

R
m

+
1

1
R

m
+
1

t

R
0 1

HW
(1)
=0 HW

(1)
=0 HW

(1)
=0

HW
(1)
=1 HW

(1)
=1 HW

(1)
=1

Figure 9.1: The construction in Section 9.1 for the lower bound for the problem with relations.
Vertices are shown by dots, {σsmin , ρrmin}-providers are shown in red, the blocks from the A-manager
are shown in blue, and relations by hexagons.

73

2. for each i and j, the relation Rj
i is satis�ed, and

3. all simple vertices of Gϕ have a feasible number of selected neighbors, according to their own
selection status.

Since π is a satisfying assignment, for each j ∈ [1 . .m], there is an index i∗ ∈ [1 . . t] such that
πi∗ satis�es Cj . This gives Item 1.

In order to verify Item 2, let i ∈ [1 . . t] and j ∈ [1 . .m]. We check that Rj
i is satis�ed. The

relevant selected vertices are Sj
i = S∩Zj

i . Recall from Equation (9.1) that Sj
i determines the states

aji,ℓ and a
j−1
i,ℓ for each ℓ ∈ [1 . . g]. The states aji,1, . . . , a

j
i,g are determined by the selected vertices of

J j , i.e. an A-manager of rank gt, and they are determined by the selection status of its distinguished
vertices and their selected neighbors in the corresponding B-blocks. As we selected vertices of J j

according to the solution Sx, the fact that a
j
i,1 . . . a

j
i,g is the encoding ei of πi follows from the fact

that Sx manages x (see De�nition 6.2).
Similarly, the states aj−1

i,1 , . . . , aj−1
i,g are determined by the selected vertices of J j−1, and in

particular, by the selection status of its distinguished vertices and their selected neighbors in the
corresponding B-blocks. Let ℓ ∈ [1 . . g]. Since we selected vertices of J j−1 according to Sx as well,
we have aj−1

i,ℓ = aji,ℓ. By De�nition 6.2, aj−1
i,ℓ complements the state aj−1

i,ℓ = aji,ℓ as required by Rj
i .

It is clear that in our selection we include cji into S whenever we include cji−1. Finally, suppose

cji−1 is not selected. If cji is selected, then we have i = i∗, which means that πi satis�es Cj by the

choice of i∗. Conversely, if we do not select cji , then i < i∗, which means that πi does not satisfy

Cj . This shows that the selection S satis�es Rj
i .

It remains to show Item 3. Let v be a simple vertex in Gϕ. If v is a non-portal vertex of a
{σsmin , ρrmin}-provider, then, by the de�nition of such providers (De�nition 3.7), v has a feasible
number of selected neighbors (and, as it is not a portal, it does not have any neighbors outside of the
respective provider). In the remaining cases, v is either a vertex of some J j , i.e., an A-manager of
rank gt, or it is a vertex of the form cji . Suppose v is in some J j . By De�nition 6.2, v has a feasible
number of neighbors within J j . If v has neighbors in Gϕ that are not part of J j , then v is in some

set Zj
i and each of its additional neighbors is a complex vertex which is not selected by assumption.

This means that v does not have any selected neighbors other than the feasible number within J j .
Finally, the same argument holds for v = cji : it has a feasible number of selected neighbors within
the attached {σsmin , ρrmin}-provider, but as all other neighbors are complex vertices with relations

(some Rj
i , HW

(1)
=0, or HW

(1)
=1), it does not receive any more selected neighbors.

In the following, we show the reverse direction from the proof of correctness.

Claim 9.4. If (σ, ρ)-DomSetRel has a solution on Gϕ, then ϕ is satis�able.

Proof. Let S be a selection of vertices from Gϕ that is a solution of (σ, ρ)-DomSetRel. Recall that

S determines the states aji,ℓ, a
j
i,ℓ and numbers T j

i,ℓ, T
j
i,ℓ, as described in Equation (9.1).

Observe that, for all i, ℓ, we have that wj
i,ℓ is selected if and only if wj−1

i,ℓ is selected. This follows

from the de�nition of the relation Rj
i . First, suppose the vertices w

0
i,ℓ, . . . , w

m
i,ℓ are selected.

Assume further that σ is �nite. As S is a solution, wj
i,ℓ can have at most stop selected neighbors.

Hence, for each j ∈ [0 . .m], we have T j
i,ℓ + T

j
i,ℓ ≤ stop. Moreover, by the de�nition of the relations

Rj
i , for each j ∈ [1 . .m], we get T

j−1
i,ℓ + T j

i,ℓ = stop. Combining both constraints yields T 0
i,ℓ ≤ · · · ≤

Tm
i,ℓ and T

0
i,ℓ ≥ · · · ≥ T

m
i,ℓ.

74

Now, assume σ is simple co�nite. As S is a solution, wj
i,ℓ has at least stop selected neighbors.

Hence, for each j ∈ [0 . .m], we have T j
i,ℓ + T

j
i,ℓ ≥ stop. As before, we get by the de�nition of

the relations Rj
i that, for each j ∈ [1 . .m], T

j−1
i,ℓ + T j

i,ℓ = stop. Combining both constraints yields

T 0
i,ℓ ≥ · · · ≥ Tm

i,ℓ and T
0
i,ℓ ≤ · · · ≤ T

m
i,ℓ in the simple co�nite case.

It is easy to check that we get the same constraints if the vertices wj
i,ℓ are not selected.

We de�ne new values T̂ j
i,ℓ.

T̂ j
i,ℓ :=

stop − T j

i,ℓ wj
i,ℓ is selected ∧ σ is simple co�nite

rtop − T j
i,ℓ wj

i,ℓ is not selected ∧ ρ is simple co�nite

T j
i,ℓ else

(9.2)

One can easily check that we get T̂ 0
i,ℓ ≤ · · · ≤ T̂m

i,ℓ independently from σ or ρ being �nite or co�nite.

Recall that we only use encodings from Â (all other encodings are not accepted by the relations
Rj

i), and hence, they have a one-to-one correspondence to the encodings in A which all have the

same weight. Therefore, for all i ∈ [1 . . t] and j ∈ [0 . .m + 1], we get:
∑g

ℓ=1 T̂
j
i,ℓ = w. Now,

assume that for some i ∈ [1 . . t], j ∈ [1 . .m], and ℓ ∈ [1 . . g], we have T̂ j
i,ℓ < T̂ j+1

i,ℓ . This implies

that there is some ℓ′ such that T̂ j
i,ℓ′ > T̂ j+1

i,ℓ′ , which contradicts the above assumption. Hence, we

obtain T̂ 0
i,ℓ = · · · = T̂m

i,ℓ for each i and ℓ. Combined with Equation (9.2) this implies

T 0
i,ℓ = · · · = Tm

i,ℓ and T
0
i,ℓ = · · · = T

m
i,ℓ for each i and ℓ. (9.3)

We de�ne an assignment π of ϕ as follows. For each i, a1i,1 . . . a
1
i,g ∈ Ag is subject to R1

i , and
therefore, it is the encoding of a partial assignment πi of the group of variables Fi. Let π be the
assignment comprised of these partial assignments.

It remains to verify that π satis�es ϕ. For j ∈ [1 . .m], we verify that π satis�es the clause

Cj . Consider the vertices cj0, . . . , c
j
t . Since cj0 and cjt are subject to a HW

(1)
=0- and HW

(1)
=1-relation,

respectively, we have cj0 /∈ S and cjt ∈ S. Hence, there is an i ∈ [1 . . t] for which cji−1 is not selected,

but cji is. As c
j
i−1 and cji are subject to R

j
i , it follows that a

j
i,1 . . . a

j
i,g encodes a partial assignment

that satis�es the clause Cj . The equalities from Equation (9.3) imply a1i,1 . . . a
1
i,g = aji,1 . . . a

j
i,g.

Therefore, πi satis�es Cj , and consequently π satis�es Cj .

This �nishes the correctness of the construction. As a last step we analyze the graph and its
tree decomposition.

Claim 9.5. There is some function f that depends only on g, stop, and rtop such that the graph Gϕ

has at most m · t · f(g, stop, rtop) vertices, pathwidth at most gt + f(g, stop, rtop), and each relation
has arity at most f(g, stop, rtop).

Proof. Every vertex in Gϕ is part of (at least) one of the following:

� an A-manager of rank gt (and there are m+1 of these) including the complex vertices therein,

� a {σsmin , ρrmin}-provider Qj
i (and there are (t+ 1)m of these),

� the complex vertices with relations; there are 2m of the form HW
(1)
=0 or HW

(1)
=1, t(m + 2) of the

form Rj
i , and (t+ 1)m relations attached to Qj

i and c
j
i .

75

We analyze the number of vertices in these components.

� By De�nition 6.2, the size of an A-manager of rank gt is of the form gt · b, where b is an upper
bound on the size of the blocks. Thus, b depends only on stop and rtop.

� The size of the {σsmin , ρrmin}-providers Qj
i depends only on smin and rmin (see the construction

in Lemma 7.1).

� Note that the arity of the realizations we use is upper bounded by the size of the sets Zj
i or

some function depending on the size of the blocks from the manager. Recall that

Zj
i = {cji−1, c

j
i} ∪

⋃
ℓ∈[1 . . g]

(
wj−1
i,ℓ ∪NB(w

j−1
i,ℓ) ∪ wj

i,ℓ ∪NB(w
j
i,ℓ)

)
.

The size of the sets NB(w
j−1
i,ℓ) and NB(w

j
i,ℓ) is bounded by that of the blocks of the A-manager

of rank gt. So, once again, their size depends only on stop and rtop. So, there is some function

f ′′ such that, for each i and j, we have |Zj
i | ≤ g · f ′′(stop, rtop).

This proves the bound on the size of Gϕ. Moreover, it implies the bound of the arity of the relations.
We use a node search strategy to bound the pathwidth of Gϕ (see [20, Section 7.5]). For each

i ∈ [1 . . t] and j ∈ [1 . .m], we de�ne a set Y j
i that contains the following vertices:

� The vertices subject to relation Rj
i and the complex vertex the relation is assigned to. (This

includes the set Zj
i .)

� The vertices in B
j−1
i,ℓ and Bj

i,ℓ for all ℓ ∈ [1 . . g]. (Some of these vertices are also contained

in Zj
i .)

� The vertices of the {σsmin , ρrmin}-providers Qj
i−1 and Qj

i attached to cji−1 and cji and the
vertices of the corresponding relations.

� If i− 1 = 0, the vertex of the HW
(1)
=0-relation attached to cji−1.

� If i = t, the vertex of the HW
(1)
=1-relation attached to cji .

We similarly de�ne, for each i ∈ [1 . . t], the sets Y 0
i and Y m+1

i . To simplify notation, we consider

Y j
i to be the empty set if i /∈ [1 . . t] or j /∈ [0 . .m+ 1].
We now describe m + 2 stages of selecting vertices as positions for searchers, where each stage

consists of t rounds. Let i ∈ [1 . . t]. In the ith round of the jth stage, where j ∈ [0 . .m+ 1], the
selected vertices are Y j

i ∪ Y j
i+1 ∪ Y

j−1
t together with, for each z ∈ [1 . . i − 1] and ℓ ∈ [1 . . g], the

vertex wj
z,ℓ (if it exists), and for each z ∈ [i+ 1 . . t] and ℓ ∈ [1 . . g], the vertex wj−1

z,ℓ (if it exists).
Using Figure 9.1, it is straightforward to verify that selecting vertices according to the described

stages cleans the graph as required. Note that we select the set Y j−1
t in all rounds of the jth stage

to prevent �recontamination� via the edges between the blocks Bj−1
t,g and B

j−1
t,g . Moreover, for each

complex vertex, there is some stage in some round where this vertex together with its neighborhood
are covered (that is, they are in the same bag of the decomposition).

Now, consider the number of searchers/the selected vertices in each stage. By the previously
speci�ed bounds on the size of blocks, and {σsmin , ρrmin}-providers, there is some function f that
depends only on g, stop, and rtop, such that the size of Y j

i is bounded from above by f(g, stop, rtop)
for each i and j. Hence, at each stage we select at most gt + O(1) · f(g, stop, rtop) vertices. This
is an upper bound on the node search number of Gϕ, and consequently an upper bound on its
pathwidth.

76

The following observation follows directly from the construction and the previous proofs.

Observation 9.6. There is a one-to-one correspondence between satisfying assignments for ϕ and
solutions for Gϕ.

In all solutions for Gϕ, each vertex wj
i,ℓ has exactly stop neighbors if it is selected, and exactly

rtop neighbors if it is not selected.

9.1.3 Finalizing the Lower Bound

It remains to prove Lemma 6.5, which we restate here for convenience.

Lemma 6.5 (Lower Bound for (σ, ρ)-DomSetRel). Let σ, ρ ⊆ Z≥0 be two �xed, non-empty, and
�nite or simple co�nite sets with 0 /∈ ρ. Suppose there is an A ⊆ A that is closed under the inverse
with respect to σ, ρ such that there is an A-manager.

Then, (σ, ρ)-DomSetRel cannot be solved in time (|A| − ε)k+O(1) · nO(1), even if we are given a
path decomposition of width k, and all relations have arity at most O(1), unless SETH fails.

Proof. Toward a proof by contradiction, assume that there is such an algorithm for (σ, ρ)-Dom-
SetRel. We show that there is an algorithm solving SAT in time (2− δ)n for some δ > 0, where n
is the number of variables.

To use the construction from the previous sections, it remains to choose the values for q and g.
Let ε′ = log|A|(|A| − ε) < 1. We choose some α > 1 such that α · ε′ ≤ δ′ = log(2− δ) < 1 for some
δ > 0. We choose g large enough such that it satis�es g log |A| ≤ α⌊g log |A| − log(g ·maxA+ 1)⌋.
Finally, set q = ⌊g log |A| − log(g · maxA + 1)⌋. Observe that we can actually encode all partial
assignments of one group. Using these parameters, we can construct a (σ, ρ)-DomSetRel instance.
For the size bound and pathwidth, observe that |A| ≤ |A|, and thus, |A| can be bounded in
terms of stop and rtop. Moreover, g only depends on ε, δ, and |A|. Since σ, ρ are �xed, any
term only depending on ε, δ, stop, and rtop can be treated as a constant. Based on this, from
Claim 9.5 it follows that there is some �xed function f such that Gϕ has pathwidth at most
tg + f(g, stop, rtop) = tg + O(1), where t = ⌈nq ⌉, and that a path decomposition of this size can be
computed e�ciently. The graph has size

O(⌈nq ⌉ ·m · f(g, stop, rtop)) = O(n ·m · f ′(g, stop, rtop)) = O(n ·m).

Then, we run the fast (σ, ρ)-DomSetRel algorithm on this example:

(|A| − ε)k+O(1) · nO(1) ≤(|A| − ε)tg+O(1) · nO(1)

≤(|A| − ε)
⌈n
q
⌉g+O(1) · nO(1)

≤(|A| − ε)
n
q
g+g+O(1) · nO(1)

By the same argument as above, we can ignore the term of g + O(1) in the exponent as it only
contributes a constant factor to the runtime.

≤(|A| − ε)
n
q
·g · nO(1)

≤2
log |A|·ε′·n

q
·g · nO(1)

≤2
ε′· n

⌊g log |A|−log(g·maxA+1)⌋ ·g·log |A| · nO(1)

By our choice of g we get:

≤2ε
′αn · nO(1) ≤ 2δ

′n · nO(1) = (2− δ)n · nO(1).

But, this directly contradicts SETH.

77

9.2 Counting Problem

Now we move to the proof of the intermediate lower bound for the counting version. By Observa-
tion 9.6, the previous reduction is parsimonious. Hence, the lower bound for the decision version
from Lemma 6.5 directly transfers to the counting version.

Corollary 9.7. Let σ, ρ ⊆ Z≥0 be two �xed and non-empty sets which are �nite or simple co�nite.
Suppose there is an A ⊆ A that is closed under the inverse with respect to σ, ρ such that there is an
A-manager.

Then, (σ, ρ)-#DomSetRel cannot be solved in time (|A| − ε)k+O(1) · nO(1), even if we are given
a path decomposition of width k, and all relations have arity at most O(1), unless #SETH fails.

In what follows, we extend this result to (σ, ρ)-#DomSetRel, where we allow the sets σ and ρ
to also be arbitrary co�nite sets and not only simple co�nite sets. See Figure 6.1 for an illustration
of the process.

Our �rst step is to allow σ to be co�nite. For this we introduce the relation weighted version
of (σ, ρ)-#DomSetRel. For this problem, each accepted input of a relation might be assigned a
weight such that the relation contributes by this factor to the number of solutions, rather than just
contributing 1 in the unweighted case or 0 if the input is not accepted.

Lemma 9.8. Let ρ be a �xed and non-empty set. Let σ, σ′ be two �xed and non-empty sets where
σ is co�nite and σ′ is simple co�nite such that max(Z≥0 \ σ) = max(Z≥0 \ σ′).

There is a treewidth-preserving reduction from (relation weighted) (σ′, ρ)-#DomSetRel to rela-
tion weighted (σ, ρ)-#DomSetRel introducing at most O(1) new weights.

Proof. We can obviously assume that σ ̸= σ′. We use the following auxiliary provider in the proof.

Claim 9.9. Let σ, ρ be �xed and non-empty. If σ is co�nite, then there is a parsimonious {σ0, σ1, ρ0}-
provider which uses relations.

Proof of Claim. Without loss of generality, we can assume that stop ≥ rtop. Let u be the portal
vertex to which we add a single neighbor, say v. We make v adjacent to stop additional vertices
v1, . . . , vstop each serving as the portal of a new {σstop , ρrmin}-provider. For ease of notation we let
F = {σstop , ρrmin}. We show that there is a partial solution for each state.

ρ0 The vertices v1, . . . , vrtop are selected, which is extended to the σstop-state of the F -provider.
The remaining vertices, including v, are unselected, and this is extended to the ρrmin-states of
the F -providers. Hence, the vertices v1, . . . , vrtop have stop neighbors from the providers and
no other neighbors. The vertices vrtop+1, . . . , vstop have rmin neighbors from the provider and
no other neighbors.

σ0 The vertices v1, . . . , vrtop−1 are selected and the selection is extended to the F -providers. The
remaining vertices are unselected, which is again extended to the F -provider. The vertex v is
unselected and gets rtop − 1 neighbors from the F -provider, but already has u as a selected
neighbor. The vertices vrtop , . . . , vstop get rmin neighbors from the F -provider and no other
neighbors since u is unselected.

σ1 The vertex v and all the vertices vi are selected, and this is extended to the F -providers. Hence,
they have stop neighbors in the provider and one neighbor outside, namely v. Moreover, u is
selected and has stop + 1 neighbors.10

10This also works for state ρ1.

78

We add a relation which ensures that there are exactly three partial solutions, each corresponding
to one of the mentioned states. By this, all other potential partial solutions are ruled out. ◁

Observe that when we just replace the set σ′ by the set σ, all previous solutions are still valid.
However, the converse is not true; there might be new solutions which are not valid before as the
degree of some vertex might be less than stop. We modify the graph, or rather each vertex v,
such that the degree of v cannot be smaller than stop. As we work with the counting version, we
additionally introduce (negative) weights which allow us to compensate for some other contribution.
Hence, we change the vertex such that the invalid combinations cancel out.

The basic idea is to add neighbors to v which can be selected almost arbitrarily. By the degree
constraints of v based on the set σ, some selections are allowed and some are not. We add weights
wi based on the number of additional vertices v gets as neighbors such that in total the vertex
behaves as if it would have set σ′.

Formally, we apply the following modi�cation for each vertex v ∈ V (G). To simplify notation
set Z = {σ0, σ1, ρ0}. Note that, by Claim 9.9, a Z-provider exists (if we allow additional relations).
We introduce stop copies of the Z-provider with v as portal. Let v1, . . . , vstop be the neighbors
of v in these copies. We add a relation R observing v, v1, . . . , vstop which ensures that if v is
selected, then there is always a γ ∈ [0 . . stop] such that the vertices v1, . . . , vγ are selected and the
vertices vγ+1, . . . , vstop are not selected. Moreover, if v is unselected, then the relation R enforces
that v1, . . . , vstop are unselected. If exactly the vertices v, v1, . . . , vγ are selected, then the relation
accepts with a weight wγ which is de�ned shortly. To conclude the construction, it remains to de�ne
the weights wi.

If v is adjacent to α selected neighbors in the graph (excluding the vertices v1, . . . , vstop), then
by the degree constraints of σ, we can only select vertices v1, . . . , vγ such that α+γ ∈ σ. Moreover,
these valid weights have to sum up to 0 if α < stop, and sum up to 1 if α ≥ stop. Formally, we have
to de�ne the weights wi such that the following equation holds for all α ∈ [0 . . stop]:

stop∑
γ=0:

α+γ∈σ

wγ =

{
1 α ≥ stop
0 else

. (9.4)

Claim 9.10. We can (e�ciently) �nd the values for the wi's such that they satisfy the constraints
from Equation (9.4).

Proof of Claim. Observe that there are stop+1 unknown values and stop+1 many constraints. We
get that stop − 1 /∈ σ since stop > 0. From the de�nition in Equation (9.4), the sums for α = stop
and α = stop−1 di�er by exactly one weight, namely w0. Hence, we can determine the value for w0

and eliminate it from the constraints. Repeating this procedure yields a solution for the equations
and provides the values for all wi. ◁

It remains to show that we can actually select the vertices correspondingly. First, assume that
v is unselected. Then, all vertices vi must be unselected. That is, each Z-provider gives state ρ0 to
v.

Now, assume that v is selected. Then, the �rst γ many Z-providers give state σ1 to v, and the
remaining providers give state σ0 to v. This precisely corresponds to the case when the vertices
v1, . . . , vγ are selected and the vertices vγ , . . . , vstop are unselected. The weight of the relation is
then wγ .

The relation R has arity stop+1. Hence, we can duplicate one bag containing v and add all stop
vertices v1, . . . , vstop to that bag. Then, the closed neighborhood of the relation is contained in one
bag. As σ is �xed, stop is a constant, and hence, treewidth increases by a constant only.

79

Similarly to the previous result, we show the following dual result, that is, we allow ρ to be
co�nite.

Lemma 9.11. Let σ be a �xed and non-empty set. Let ρ, ρ′ be two �xed sets where ρ is co�nite and
ρ′ is simple co�nite such that max(Z≥0 \ ρ) = max(Z≥0 \ ρ′).

There is a treewidth-preserving reduction from (relation weighted) (σ, ρ′)-#DomSetRel to rela-
tion weighted (σ, ρ)-#DomSetRel introducing at most O(1) new weights.

Proof. We use the following auxiliary provider in the proof which complements the result from
Claim 9.9.

Claim 9.12. Let σ, ρ be �xed and non-empty. If ρ is co�nite, then there is a parsimonious
{σ0, ρ0, ρ1}-provider which uses relations.

Proof of Claim. Let u be the portal vertex and make it adjacent to a new vertex v which serves as
the portal of a {σsmin , ρrtop}-provider. Once more we let F = {σsmin , ρrtop} to simplify notation.

For states σ0 and ρ0, v is unselected which is extended to the F -provider. Hence, v has at least
rtop neighbors.

For state ρ1, v is selected which is again extended to the F -provider. Hence, v has smin neighbors
as u is not selected.

We add a relation which ensures that there are exactly three partial solutions, each corresponding
to one of the mentioned states. By this all other potential partial solutions are ruled out. ◁

The proof follows precisely the same idea as before. The most notable di�erence is that we use
Z-providers where we now have Z = {σ0, ρ0, ρ1}, that is, the state σ1 is not allowed, but the state
ρ1 is allowed. Observe that this is not an issue as we never need to add neighbors to v if the vertex
is selected, actually the relation forbids to add neighbors to v in this case.

Then, the remaining part of the proof follows in precisely the same way.

In the next step, we remove the weighted relations by allowing weighted vertices. In this setting,
the vertices contribute with their weight to the solution whenever they are selected.

Lemma 9.13. There is a treewidth-preserving reduction from relation weighted (σ, ρ)-#DomSetRel

with O(1) di�erent weights for each relation to vertex weighted (σ, ρ)-#DomSetRel with the same
weights.

Proof. Let R be a weighted relation assigned to a complex vertex v such that R uses q many weights
w1, . . . , wq. We make v adjacent to q many new vertices v1, . . . , vq. Each of these vertices is the
portal of a parsimonious {ρrmin , σsmin}-provider with relations. For all i ∈ [1 . . q], we assign weight
wi to vertex vi. Moreover, we replace relation R by an unweighted relation R′ which observes the
same vertices as R and additionally also the vertices v1, . . . , vq. The new relation R′ behaves (i.e.,
accepts or rejects) in exactly the same way as R on the vertices observed by R, but whenever R
accepts with weight wi, R

′ forces the vertex vi to be selected and all the vertices vj with i ̸= j to
be unselected.

It remains to argue that the reduction increases the treewidth only by a constant. By assumption
there is a bag containing v and its closed neighborhood. We duplicate this bag and add the new
vertices v1, . . . , vq to the copy. For each vi, we duplicate this new bag and add all the vertices from
the provider to it. Observe that the size of each {ρrmin , σsmin}-provider with relation is bounded by
a constant, as the size depends only on σ and ρ, and these two sets are �xed. Hence, the width of
the decomposition increases by an additive term of at most O(1).

80

The last step now �nally removes the weights from the vertices, and thus, also from the instance.

Lemma 9.14. There is a treewidth-preserving reduction from vertex weighted (σ, ρ)-#DomSetRel

with O(1) di�erent weights to unweighted (σ, ρ)-#DomSetRel without changing the arity of the
relations.

Proof. We use the known interpolation techniques to remove the weights. Assume there are q
di�erent weights. We replace each weight wi by a variable xi and treat the output as a polynomial
P in the q variables x1, . . . , xq. Observe that there are at most n vertices, and hence, the total
degree is at most n for each variable. Hence, if we can realize n + 1 di�erent weights for each
variable xi, then we can use Lemma 2.5 in [17] to recover the coe�cients of P in time polynomial
in n. Then, we can output P (w1, . . . , wq) to recover the original solution.

It remains to realize n + 1 di�erent weights for each variable. For this it certainly su�ces to
realize weights of the form 2i.

Let v be the vertex for which we want to realize weight 2i. For this we introduce i new vertices
v1, . . . , vi which are all portals of a parsimonious {ρrmin , σsmin}-provider with relations. Moreover,
we add complex vertices u1, . . . , ui. Vertex uj is adjacent to v and vj , and we assign relation R to
it. This relation R ensures that if v is unselected, then vj must also be unselected. Otherwise, vj
can be selected or unselected. Whenever v is selected, there are two options to select vj , and hence,
this part contributes a factor of 2i to the solution. If v is unselected, then there is only one solution
which is enforced by the relations, and hence, contributes a factor of 1.

It easily follows that this modi�cation does not change the treewidth too much. Indeed, whenever
v is in a bag, we can add each uj , vj , and the corresponding {σsmin , ρrtop}-provider together with
the relations one after the other to the bag. By the size bound for the {σsmin , ρrtop}-provider, the
claim follows.

Combining all the previous results, we get the intermediate lower bound for the counting version
in Lemma 6.8 which we restate here for convenience.

Lemma 6.8 (Lower Bound for (σ, ρ)-#DomSetRel). Let σ, ρ ⊆ Z≥0 be two �xed, non-empty and
�nite or co�nite sets. Suppose there is an A ⊆ A that is closed under the inverse with respect to σ, ρ
such that there is an A-manager.

Then, (σ, ρ)-#DomSetRel cannot be solved in time (|A| − ε)k+O(1) · nO(1), even if we are given
a path decomposition of width k, and all relations have arity at most O(1), unless #SETH fails.

Proof. Observe that we only have to consider the case when one of the sets is co�nite. Otherwise,
the lower bound follows directly from Corollary 9.7.

Assume, without loss of generality, that σ and ρ are co�nite, but not simple co�nite. Let σ′ ⊆ σ
and ρ′ ⊆ ρ be simple co�nite sets such that max(Z≥0 \ σ) = max(Z≥0 \ σ′) and max(Z≥0 \ ρ) =
max(Z≥0 \ ρ′).

We start with an instance G of (σ′, ρ′)-#DomSetRel where all relations have arity O(1). We
sequentially apply Lemmas 9.8, 9.11, 9.13 and 9.14 to obtain polynomially (as we allow Turing-
reductions) many instancesHi of (σ, ρ)-#DomSet

Rel. By the properties of the treewidth-preserving
reductions, we get that tw(Hi) ≤ tw(G) +O(1) and |Hi| ≤ |G|O(1). Moreover, the arity of the rela-
tions increased by at most a constant.

Now, assume that the algorithm from the lemma exists for some ε > 0 and apply it to all
(σ, ρ)-#DomSetRel instances Hi. Recovering the solution for G takes in total time∑

i

(|A| − ε)tw(Hi)+O(1) · |Hi|O(1) + |G|O(1) = (|A| − ε)tw(G)+O(1) · |G|O(1).

81

By Corollary 9.7, this immediately contradicts #SETH, and hence, �nishes the proof.

10 Realizing Relations

As the third and last step for the lower bound, we wish to express arbitrary relations using graphs
with portals. In particular, for a given d-ary relation R, we wish to construct a graph with portals
whose compatible language is equivalent to R. We call such a graph a realization of R. Further, we
wish to be able to add a (realization of) a relation to a set of vertices, without invalidating the σ-
and ρ-constraints of these vertices. Hence, we require that a realization does not add any selected
neighbors to the portal vertices.

We �rst prove the result for the decision version, that is Lemma 6.6, where we ensure that the
size of a realization of some relation is always bounded by a function in the arity d, rtop, and stop.
For the counting version, the situation is not that simple. Indeed, for the proof of Lemma 6.9 we
do not give a self-contained construction as for the decision version, but a sequence of reductions
from (σ, ρ)-#DomSetRel to (σ, ρ)-#DomSet. We prove this result in Section 10.2.

10.1 Decision Problem

As mentioned above, we want to replace a relation R by a graph that realizes R. Recalling De�ni-
tion 3.7, we can de�ne a realization of R as an LR-realizer for a language LR ⊆ {ρ0, σ0}d such that
each string x ∈ LR 1-to-1 corresponds with an element in r ∈ R, where x[i] = σ0 if and only if
i ∈ r.

De�nition 10.1 (Realization). For an integer d ≥ 1, let R ⊆ 2[1 . . d] denote a d-ary relation. For
an element r ∈ R, write xr for the length-d string that is σ0 at every position i ∈ r and ρ0 at the
remaining positions,

xr[i] :=

{
σ0 if i ∈ r,

ρ0 otherwise.

Now, de�ne LR as
LR := {xr | r ∈ R}.

Let H = (G, {u1, . . . , ud}) denote a graph with d portals. Slightly overloading notation, we say that
H realizes R if H realizes LR, that is, if L(H) = LR. We say that R is realizable if there is a graph
with d portals that realizes R.

10.1.1 Realizing Simple Auxiliary Relations

As a �rst major step, we show how to realize simple auxiliary relations. We then use said realizations
as crucial building blocks when realizing arbitrary relations.

We start with a helpful gadget to ensure that a vertex v is selected (with stop selected neighbors)
in any partial solution, that is, how to realize the language {σstop}.

Lemma 10.2. Let σ and ρ denote �nite and non-empty sets with 0 /∈ ρ. Then, there is a {σstop}-
realizer (Rstop, u).

11

Proof. We start with a useful helper gadget.

11It is also possible to obtain a {σstop}-realizer for all non-empty (but not necessarily �nite) ρ with (i) 0 /∈ ρ and
for some r ∈ ρ we have r + 1 /∈ ρ or (ii) tmin ≥ 1. However, as we need {σstop}-realizers for �nite ρ only, we instead
opted for simplifying our construction.

82

Ps
≥
min

{u}
Ksmin+1

Ps
≥
min

{u}
Ksmin+1

(a) The {σsmin
}-provider for Case 1, when 0 < smin <

rmin. Observe that not selecting the portal vertex
violates the ρ-constraints of the portal vertex.

Ps
≥
min

{u}

I
Ksmin+1

Ps
≥
min

{u}
Ksmin+1

I

(b) The {σsmin
}-provider for Case 2, when smin ≥

rmin ≥ 1. Observe that not selecting the portal vertex
violates the ρ-constraints of at least one vertex from
the independent set I.

Ps
≥
min

{u}
A

|A| = rmin

B
|B| = rtop + 1

Ps
≥
min

{u}
A

|A| = rmin

B
|B| = rtop + 1

(c) The {σsmin
}-provider for Case 3, when

smin = 0, rmin ≥ 1. Observe that not selecting
the portal vertex violates the ρ-constraints of at least
one vertex from B.

Figure 10.1: The gadget constructions from Claim 10.3.

Claim 10.3. There is a {σsmin}-provider (Ps≥min, u) with the additional property that L(G, {u}) ⊆
{σi ∈ S | smin ≤ i}.
Proof of Claim.

Recall that we need to construct a graph G := Ps
≥
min with a single portal vertex u that satis�es

{σsmin} ⊆ L(G, {u}) ⊆ {σi ∈ S | smin ≤ i}. We consider three cases.

Case 1: 0 < smin < rmin. We choose G to be a clique of size smin + 1; we declare any of the
vertices to be u; consult Figure 10.1a for a visualization.

Now, suppose that one of the vertices of G is unselected and call said vertex v. Then, v needs
at least rmin selected neighbors. However, v can have at most smin < rmin selected neighbors, and
thus, v cannot be unselected. Symmetrically, all other vertices of G need to be selected as well.

Case 2: smin ≥ rmin ≥ 1. We construct G as follows. Starting from a clique C = Ksmin+1 (of
smin +1 vertices) and an independent set I = I⌈(smin+1)/rmin⌉ (of ⌈(smin +1)/rmin⌉ vertices), we add
rmin · ⌈(smin + 1)/rmin⌉ edges between C and I such that each vertex in I has a degree of exactly
rmin, and such that every vertex in C is adjacent to at least one vertex in I. It is readily veri�ed
that this is always possible. Finally, we pick any vertex from C to be the portal vertex u. Consult
Figure 10.1b for a visualization.

Now, �rst observe that we cannot select any vertex from I in any partial solution, as by smin ≥
rmin, any selected vertex in I may never have at least smin selected neighbors. However, if all
vertices in I are not selected, then any vertex neighboring a vertex in I must be selected (as the
degree of any vertex in I is exactly rmin). Hence, every vertex in C must be selected, and thus, has
smin selected neighbors.

83

Rstop

{u}Ps
≥
min

Ps
≥
min

Ps
≥
min Ps

≥
min

Ps
≥
min

Kstop−smin+1

Figure 10.2: The main construction of Lemma 10.2: we use the providers from Claim 10.3 to obtain
(Rstop, {u}). Observe that u has exactly smin+(stop− smin) = stop selected neighbors, smin selected
neighbors from inside the provider and (stop − smin) selected neighbors from the selected portals of
the other instances of the provider. For providers, only their portal vertex is depicted.

Case 3: smin = 0, rmin ≥ 1. We choose G to be a complete bipartite graph with bipartition (A,B)
such that |A| = rmin, |B| = rtop + 1.12 We pick an arbitrary vertex u in A as the portal vertex u.
Consult Figure 10.1c for a visualization.

Suppose that u is not selected. Then, every vertex in B can have at most rmin − 1 selected
neighbors, which means that every vertex in B must be selected. In this case, u would have rtop+1
selected neighbors, which is not feasible. Therefore, u must be selected. If u is indeed selected, then
selecting every vertex in A and leaving every vertex in B unselected yields a solution for which u
has smin = 0 selected neighbors. ◁

Finally, we use Claim 10.3 to construct a {σstop}-realizer (Rstop, {u}) as follows. As our graph
G := Rstop, we use stop − smin + 1 ≥ 1 independent copies ((Ps≥min)

(i), {u(i)}) of the provider from
Claim 10.3, and connect the vertices u(i) to a (stop− smin+1)-clique. We choose any of the vertices
u(i) to be the portal vertex u.

By Claim 10.3, all vertices u(i) are selected in any partial solution for (G, {u}) with the ad-
ditional guarantee that each vertex u(i) already has at least smin selected neighbors inside of the
corresponding helper gadgets. Hence, each vertex u(i) (and in particular u) has exactly stop selected
neighbors, which completes the proof.

Recall from De�nition 9.1 that we denote by HW
(d)
=1 the d-ary Hamming Weight One relation

where exactly one portal must be selected, and by EQ(d) the d-ary Equality relation where either all
or no portals must be selected. We �rst realize these two types of relations which we then use to
construct arbitrary relations.

Lemma 10.4. Let σ, ρ denote �nite non-empty sets with 0 /∈ ρ.13 Then, for all k ≥ 1, HW
(k)
=1 is

realizable.

Proof. We construct a graph with portals H = (G,U) with L(H) = HW
(k)
=1. Write U = {u1, . . . , uk}

to denote the k portals of H. We distinguish three cases.

12Instead of rtop, any value r ∈ ρ with r + 1 /∈ ρ su�ces.
13Technically, the existence of a {σstop}-realizer, as well as 1 ≤ r, r′ ∈ ρ with r− 1, r′ +1 /∈ ρ, are enough to realize

HW
(k)
=1 .

84

HW
(k)
=1

U

...v w

...

Rstop

Rstop

r − 1
rtop − 1

...

Rstop

Rstop

Rstop

(a) The construction in Case 1, when there is an r ∈ ρ
with r ≥ 2 and r − 1 /∈ ρ.

HW
(k)
=1

U

...

v2

v1

w

...

Rstop

Rstop

Rstop

Rstop

rtop
(= r) rtop − 1

(= r − 1)

...

Rstop

Rstop

Rstop

(b) The construction in Case 2, when ρ = [1 . . r] for
some r ≥ 2.

HW
(k)
=1

U

...

v2

v1

Rstop

(c) The construction in Case 3, when ρ = {1}.

Figure 10.3: The gadget constructions from Lemma 10.4 for realizing HW
(k)
=1. For realizers, we depict

only their portal vertices; we depict an arbitrary vertex from U as being selected.

Case 1: There is an r ∈ ρ with r ≥ 2 and r − 1 /∈ ρ. We create two additional vertices
v and w, and make both adjacent to each portal ui. Further, we take r − 1 independent copies
((Rstop)

(i,1), u(i,1)) of the realizer from Lemma 10.2, and connect v to the r− 1 vertices u(i,1). Next,
we take rtop−1 independent copies ((Rstop)

(i,2), u(i,2)) of the realizer from Lemma 10.2, and connect
w to the rtop − 1 vertices u(i,2). Consult Figure 10.3a for a visualization.14

To see thatH realizes HW
(k)
=1, �rst observe that by Lemma 10.2, any vertex u(⋆,⋆) is always selected

with stop selected neighbors (inside of the corresponding realizer). Hence, no neighbor of any u(⋆,⋆)

outside the corresponding realizer can be selected. In particular, v and w have to be unselected.
Since r−1 ̸∈ ρ, at least one portal vertex u1, . . . , uk must be selected into the solution to satisfy

the ρ-constraint of v. Further, as ρ is �nite and w already has rtop − 1 selected neighbors, at most
one of the k portal vertices u1, . . . , uk can be selected. Thus, we must select exactly one portal
vertex into the solution, completing the proof for this case.

Case 2: ρ = [1 . . r] for r ≥ 2. We create three additional vertices v1, v2, and w, and make v2
and w adjacent to each portal ui. Further, we take r independent copies ((Rstop)

(i,1), u(i,1)) of the
realizer from Lemma 10.2, and connect v1 to the r vertices u(i,1); we also connect v1 and v2. Next,
we take rtop−1 = r−1 independent copies ((Rstop)

(i,2), u(i,2)) of the realizer from Lemma 10.2, and
connect w to the r − 1 vertices u(i,2). Consult Figure 10.3b for a visualization.

14If ρ is not �nite, we can use the following construction: we create
(
k
2

)
+ 1 additional vertices v and wi for all

i ⊆ [1 . . k] with |i| = 2. Vertex v is adjacent to all portal vertices and to r − 1 pendent nodes where each node is
the portal of an attached realizer from Lemma 10.2. For each i ⊆ [1 . . k] with |i| = 2, say i = {i1, i2}, we make
wi adjacent to the portals ui1 and ui2 . Additionally, wi is adjacent to r′ − 1 pendant nodes where each node is the
portal of an attached realizer from Lemma 10.2.

85

EQ(k)

U

...

HW
(2)
=1

HW
(2)
=1

HW
(2)
=1

...

HW
(2)
=1

v

EQ(k)

U

...

HW
(2)
=1

HW
(2)
=1

HW
(2)
=1

...

HW
(2)
=1

v

Figure 10.4: The two solutions of the gadget construction from Lemma 10.5 and Corollary 10.6 for
realizing EQ(k). For realizers, we depict only their portal vertices; we use hexagons to depict that
some relation is realized between the vertices connected to said hexagons.

As in Case 1, v1 and w must be unselected. Now, observe that v2 must also be unselected as v1
already has r selected neighbors and r+ 1 /∈ ρ. As 0 /∈ ρ, at least one of the non-v1 neighbors of v2
must be selected, that is, at least one of u1, . . . , uk must be selected. Finally, observe that rtop = r,
so as in Case 1, the vertex w ensures that at most one of the vertices u1, . . . , uk is selected. This
completes the proof in this case.

Case 3: ρ = {1}. We use the same construction as in Case 2, but we remove the vertex w.
Consult Figure 10.3c for a visualization.

The constraint that exactly one portal is selected follows already from the properties of v2 as
it needs exactly one selected neighbor. This completes the proof for the �nal case, and hence, also
the proof of the lemma.

Lemma 10.5. Let σ, ρ denote non-empty sets. If HW
(2)
=1 can be realized (for σ, ρ), then EQ(k) can be

realized for any k ≥ 1 (for σ, ρ).

Proof. First, observe that we can easily realize EQ(1) by a graph that consists of a single portal
vertex.

Now suppose that k ≥ 2. We construct a graph with portals (H,U); write U = {u1, . . . , uk}. We

add a single {ρrmin , σsmin}-provider (G, {u}) from Lemma 7.1.15 Finally, we (separately) realize HW
(2)
=1

between u and each of u1, . . . , uk using some construction (which exists by assumption). Consult
Figure 10.4 for a visualization.

To see that H realizes EQ(k), �rst observe that if at least one portal vertex ui is selected, then

v is forced to be unselected by the HW
(2)
=1 relations. This forces the remaining portal vertices to be

selected. (Also recall that, by De�nition 10.1, neither v nor the k portals ui may have any selected

neighbors in the gadgets realizing the HW
(2)
=1 relations.)

Second, if no portal ui is selected, then we can get a valid solution by selecting v, which completes
the proof.

15Here it is not important that we use rmin and smin, that is, any pair of r ∈ ρ and s ∈ σ would su�ce.

86

Under the assumptions of Lemma 10.4, HW
(2)
=1 can be realized, and hence, we get the following

result.

Corollary 10.6. Let σ, ρ denote �nite non-empty sets with 0 /∈ ρ. Then, EQ(k) is realizable for any
k ≥ 1.

10.1.2 Realizing Arbitrary Relations

As promised, we proceed to realize arbitrary relations.

Lemma 10.7. There is a �xed non-decreasing function f : Z≥0
3 → Z≥0 that satis�es the following.

Let σ, ρ denote �nite non-empty sets with 0 /∈ ρ, and let Q ⊆ 2[1 . . d] denote an arbitrary relation
given as a truth table. Then, Q is realizable by a graph of size at most f(d, stop, rtop).

Proof. We intend to follow the construction from [18]. However, we need to modify their construc-
tion to account for the fact that we are selecting vertices rather than edges.

Write Q = {q1, . . . , q|Q|}, where qi ⊆ [1 . . d]. We construct a graph with portals H = (G,U)

with U = {u1, . . . , ud}. For each set qi, we add |[1 . . d]\qi| independent copies (P{ρrmin , σsmin}, s(i,j))
and an extra copy (P{ρrmin , σsmin}, t(i)) of a {ρrmin , σsmin}-provider from Lemma 7.1 to G. Next,
using Corollary 10.6, we realize an EQ(|[1 . . d]\qi|+1) relation between the vertices s(i,⋆) and ti. Using

Lemma 10.4, we realize a HW
(|Q|)
=1 relation between the vertices t⋆. Finally, using Lemma 10.4, for

each j ∈ [1 . . d], we realize a HW=1 relation between uj and all vertices s⋆,j . Consult Figure 10.5
for a visualization of an example.

Claim 10.8. The constructed graph H realizes Q.

Proof of Claim. We �rst de�ne a solution for a given qi ∈ Q. We select the portal vertices uj with
j ∈ qi. In addition, we select t(i) and all vertices s(i,⋆). We do no select any other vertices u⋆, s

(⋆,⋆)

or t(⋆). Observe that the {ρrmin , σsmin}-providers ensure that both selecting or not selecting a vertex
s(⋆,⋆) or t(⋆) satis�es the σ-constraints and ρ-constraints on these vertices. Hence, it remains to
convinces ourselves that our selection satis�es all relation constraints on the vertices of H that we
introduced.

To that end, observe that we selected exactly one vertex t(⋆), which satis�es the HW
(|Q|)
=1 relation

between the vertices t(⋆). Next, observe that we selected all vertices s(i,⋆) together with t(i), which
satis�es the EQ(⋆)-relation on these vertices; for all remaining EQ(⋆) relations, all corresponding
vertices are unselected (which in turn also satis�es said EQ(⋆) relations). Finally, for each j ∈ [1 . . d],
we select either uj (if j ∈ qi) or s

(i,j) (if j /∈ qi); as we select no other vertices u⋆ or s(⋆,⋆), the

remaining HW
(⋆)
=1 are also satis�ed. In total, we conclude that our selection is a valid partial solution

for H.
Now, assume that we are given a partial solution (and a corresponding set of selected vertices).

As the relations are satis�ed, there is exactly one vertex t(i) that is selected. By the EQ(⋆) relations,
we also get that all s(i,j) are selected for j ∈ [1 . . d]\qi, and that all remaining s(⋆,⋆) are unselected.
Finally, from the remaining HW=1 relations, we get that, for each j ∈ [1 . . d] \ qi, the portal uj is
unselected (as s(i,j) is already selected), and that, for each j ∈ qi, the portal uj is selected (as all
vertices s(i

′,j) are unselected in this case, as i′ ̸= i). In particular, the indices of the selected portals
correspond to qi, which completes the proof of the claim. ◁

For the bound on the size of H, observe that |Q| ≤ 2d, the size of a {ρrmin , σsmin}-provider is
upper-bounded by a function in rtop and stop (see Lemma 7.1), the size of a realization of HW

(k)
=1,

according to Lemma 10.4, is at most some function in rtop, stop, k, and the size of a realization

87

Q

U
u1

u2

u3

u4

u5

HW
(2)
=1

HW
(2)
=1

HW
(3)
=1

HW
(3)
=1

HW
(2)
=1

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

EQ(4)

EQ(2)

EQ(4)

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

HW
(3)
=1

Q

U
u1

u2

u3

u4

u5

HW
(2)
=1

HW
(2)
=1

HW
(3)
=1

HW
(3)
=1

HW
(2)
=1

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

EQ(4)

EQ(2)

EQ(4)

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

HW
(3)
=1

Q

U
u1

u2

u3

u4

u5

HW
(2)
=1

HW
(2)
=1

HW
(3)
=1

HW
(3)
=1

HW
(2)
=1

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

EQ(4)

EQ(2)

EQ(4)

P{ρr, σs}

P{ρr, σs}

P{ρr, σs}

HW
(3)
=1

Figure 10.5: The realization of Q = {{1, 2}, {1, 2, 3, 5}, {4, 5}} and its three partial solutions. For
providers, we depict only their portal vertices; also we write P{ρr, σs} for P{ρrmin , σsmin}. Further,
hexagons depict relations that are realized between vertices.

88

of EQ(k) is upper-bounded by a function in k, the size of an HW
(2)
=1-gadget, and the size of the

{ρrmin , σsmin}-provider. In total, this concludes the proof.

As the �nal step we have to prove Lemma 6.6.

Lemma 6.6 (Removing Relations in the Decision Version). Let σ, ρ denote �nite, non-empty sets
with 0 /∈ ρ. If all relations have arity at most O(1), then (σ, ρ)-DomSetRel ≤tw (σ, ρ)-DomSet.

Proof. Let G be an instance of (σ, ρ)-DomSetRel where all relations have arity at most O(1).
We use Lemma 10.7 to replace each relation by its realization. Let H be the resulting graph.

A given tree decomposition of G is modi�ed as follows. For each relation R, there is a bag XR

containing R and the neighborhood of R. We duplicate the bag XR and add all the vertices of the
realization to the copy of the bag.

As the arity of each relation is constant and we only add vertices of one realization to a bag, we
get tw(H) ≤ tw(G) +O(1). Hence, the reduction is treewidth-preserving.

10.2 Counting Problem

In this section, we show that if (σ, ρ)-#DomSet is not polynomial-time solvable, then it is suf-
�ciently expressive to realize arbitrary relations (unless σ is co�nite with ρ = Z≥0). In order to
formally state this result in Theorem 10.9, we �rst need some notation.

Let Ω0 be the set of all �nite and co�nite subsets of Z≥0, and let Ω := Ω0 \{∅}. Let (σ, ρ) ∈ Ω2.
For some non-negative integer k, let P be a set of pairs {(σ(i), ρ(i)) ∈ Ω2

0 | i ∈ [1 . . k]}. For ease of
notation, let (σ(0), ρ(0)) := (σ, ρ). We now de�ne a generalization of (σ, ρ)-#DomSet that allows us
to augment the problem with additional constraints speci�ed by P in order to obtain more modeling
power.

The problem (σ, ρ)-#DomSetP takes as input some graphG together with a mapping λ : V (G) →
[0 . . k], and outputs the number of sets S ⊆ V (G) with the following properties:

� For each v ∈ S, we have |N(v) ∩ S| ∈ σ(λ(v)).

� For each v /∈ S, we have |N(v) ∩ S| ∈ ρ(λ(v)).

If P is the empty set, then we also drop the superscript and simply write (σ, ρ)-#DomSet. In this
case, it also su�ces to take as input only the graph G and assume that λ is constant 0. We also
refer to S as a solution of (σ, ρ)-#DomSetP (on input G,λ). For a less formal but more convenient
speci�cation of λ, we say that a vertex v with λ(v) = i is a (σ(i), ρ(i))-vertex.

Sometimes we restrict the problem (σ, ρ)-#DomSetP to instances for which certain pairs from
P are used only a constant number of times (w.r.t. the number of vertices in G). To this end, for
some positive integer c, we say that a pair P ∈ P is c-bounded if we restrict (σ, ρ)-#DomSetP to
instances G,λ with |λ−1(P)| ≤ c.

When working with (σ, ρ)-#DomSetP , it is helpful to generalize some de�nitions from Section 3.
For a graph G with portals U and a mapping λ : V (G) → [0 . . k], the tuple G = (G,U, λ) is a gadget
for (σ, ρ)-#DomSetP . Again, we drop λ if P = ∅. Then, a partial solution of (G,U, λ) is a set
S ⊆ V (G) with:

� For each v ∈ S \ U , we have |N(v) ∩ S| ∈ σλ(v).

� For each v /∈ S ∪ U , we have |N(v) ∩ S| ∈ ρλ(v).

89

Let n = |V (G)|. Recall that An := {σ0, · · · , σn, ρ0, · · · , ρn}. Recall that a partial solution S
witnesses the string x ∈ AU

n if, for each u ∈ U , we have

x[u] =

{
σz if u ∈ S

ρz otherwise

where z := |N(u) ∩ S|.
Then, for x ∈ AU

n , extG(x) is the number of partial solutions of G that witness x. We also refer
to this as the number of extensions of x (to the gadget G).

With an eye to Fact 3.3, recall that a pair (σ, ρ) ∈ Ω2
0 is trivial if ρ = {0} or σ = ρ = Z≥0.

Otherwise, we say that (σ, ρ) is non-trivial. Sometimes the following notation is useful. For a set τ
of non-negative integers (think of σ or ρ) and an integer i, let τ − i := {k − i | k ∈ τ, k − i ≥ 0}.

Now we can state the main result of this section. Recall the de�nition of (σ, ρ)-#DomSetRel

as de�ned in Section 6.

Theorem 10.9. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ ̸= Z≥0 or σ is �nite, then (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSet.

We state some intermediate results. Recall Figure 2.4 from Section 2.2 for a more detailed
overview of the steps involved in order to reduce from the problem with relations to the one without.

Lemma 10.10. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ = Z≥0 and σ is �nite, then (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSet.

Lemma 10.11. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ ̸= Z≥0, then we have (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSet{(∅,ρ),(σ,∅)}.

Given a set of pairs P from Ω2
0 and a pair (σ′, ρ′) ∈ Ω2

0, we use the shorthand P + (σ′, ρ′) for
the set P ∪ {(σ′, ρ′)}.

Lemma 10.12. Let (σ, ρ) ∈ Ω2 be non-trivial with ρ ̸= Z≥0. Let P be some (possibly empty) set of
pairs from Ω2

0. Then, (σ, ρ)-#DomSet
P+(∅,ρ)+(σ,∅) ≤tw (σ, ρ)-#DomSetP .

Proof of Theorem 10.9. For the case ρ = Z≥0, the proof of Theorem 10.9 directly follows from
Lemma 10.10, which we prove in Section 10.2.2. Otherwise, it follows from Lemma 10.11 together
with Lemma 10.12 (applied to an empty set of pairs P), which we prove in Sections 10.2.1 and 10.2.3,
respectively.

10.2.1 Realizing Relations by Forcing Selection Status

The main result of this section is to prove Lemma 10.11 which shows that if we assume that we can
force (σ, ρ)-vertices to be selected, and if we additionally assume that we can force such vertices to
be unselected, then we can model arbitrary relations.

In this section, we use P to refer to a set of pairs from Ω2
0. We �rst start with an auxiliary result

that we use several times in the following.

Lemma 10.13. Let (σ, ρ) ∈ Ω2 with s ∈ σ, r ∈ ρ, and r ≥ 1. There is a graph G with a vertex
u such that there are disjoint (σ, ρ)-sets X and Y of G such that X ∪ Y = V (G), u ∈ X with
|N(u) ∩X| = s, and u /∈ Y with |N(u) ∩ Y | = r.

90

Proof. Let G consist of 2r cliques X1, . . . , Xr, Y1, . . . Yr, each of size s + 1. For i ∈ [1 . . r], let

x
(i)
0 , . . . , x

(i)
s be the vertices of Xi, and let y

(i)
0 , . . . , y

(i)
s be the vertices of Yi. These cliques are

connected in a way that they form bicliques indexwise, that is, for each i ∈ [1 . . r] and each

j ∈ [0 . . s], the vertex x
(i)
j is adjacent not only to the vertices in its clique Xi, but also to the

vertices y
(1)
j , . . . , y

(r)
j . Let u = x

(1)
1 . Note that both X =

⋃r
i=1Xi and Y =

⋃r
i=1 Yi are (σ, ρ)-sets

of G, where u ∈ X with |N(u) ∩X| = s, and u /∈ Y with |N(u) ∩ Y | = r.

Note that the requirements of Lemma 10.13 are always ful�lled if (σ, ρ) is a non-trivial pair in
Ω2. In this case, both σ and ρ are non-empty, and ρ ̸= {0}.

In a �rst step, we show how to remove arbitrary relations using only HW=1 relations. Recall
that (σ, ρ)-#DomSetRel allows arbitrary relations to appear. For some relation R, we write
(σ, ρ)-#DomSetR as the restricted problem where only the relation R might appear, that is, other
relations are not allowed.

Lemma 10.14. Let (σ, ρ) ∈ Ω2 be a non-trivial pair. Then, (σ, ρ)-#DomSetRel ≤tw (σ, ρ)-#Dom-
SetHW=1. If the arity of the relations is initially bounded by O(1), then the reduction preserves this
property.

Proof. Recall that in Lemma 10.5, we realize EQ(k) relations just using HW=1 relations and {σs, ρr}-
providers for some s ∈ σ and r ∈ ρ. Observe that this construction is actually parsimonious
whenever the {σs, ρr}-providers are parsimonious. In Lemma 10.7, this result is extended to realize
arbitrary relations. Once more this construction is parsimonious whenever the {σs, ρr}-providers
are parsimonious. To use this construction we claim that there is actually such a provider.

Claim 10.15. There are s ∈ σ and r ∈ ρ such that there is a parsimonious {σs, ρr}-provider that
uses HW=1 relations.

Proof of Claim. There are s ∈ σ and r ∈ ρ with s ≥ 0 and r ≥ 1 since both σ and ρ are non-empty,
and additionally ρ ̸= {0} because of non-triviality. Then, we can use Lemma 10.13 to get a graph
G with a vertex w such that there are two solutions S0 and S1 partitioning the vertex set of G
satisfying w /∈ S0, |N(w) ∩ S0| = r, w ∈ S1, and |N(w) ∩ S1| = s.

For each pair of vertices v ∈ S0 and u ∈ S1, we add a complex vertex with relation HW=1 that
is adjacent to v and u. The HW=1 relations ensure that in each partial solution either all vertices
from S0 are selected and none from S1, or all vertices from S1 are selected and none from S0. The
complex vertices are unselected by de�nition, and hence, do not give any neighbors to other vertices.
As the gadget does not contain any other vertices, it has precisely these two partial solutions. ◁

Using Claim 10.15, we can use the construction from Lemmas 10.5 and 10.7 to replace all relations
by appropriate gadgets. As the arity of each relation is constant, the size of the graph replacing the
relations is also constant.

In the following, we show how to remove the HW=1 relations. By doing so, we essentially are able
to remove arbitrary relations when applying Lemma 10.14 �rst.

We show for the following pairs in P that we can realize HW=1:

� (∅, {1}) in Lemma 10.16,

� (∅, {0, 1}) in Lemma 10.17,

� (∅,Z≥1) in Lemma 10.19,

� ({0},Z≥0) in Lemma 10.20,

91

Z

...

HW=1 ⇝

Z

...

(∅, {0, 1})

(∅, {0, 1})

(∅, {0, 1})

...
(∅, {0, 1})

(∅, {0, 1})

p

p

p...
p

p

J

J

J

J

J

x

Figure 10.6: The construction of instance I ′x from Lemma 10.17 to replace a HW=1 relation between
the vertices in Z.

� {(∅, ρ), (σ,∅)} in Lemma 10.11.

We start with the easiest case.

Lemma 10.16. Let (σ, ρ) ∈ Ω2 be non-trivial. If (∅, {1}) ∈ P, then (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSetP .

Proof. We use a simple reduction from (σ, ρ)-#DomSetHW=1 and apply Lemma 10.14. From an
instance I of (σ, ρ)-#DomSetHW=1 , we create an instance I ′ of (σ, ρ)-#DomSetP as follows. For
each complex vertex z with relation HW=1, we completely connect N(z) to a new (∅, {1})-vertex z′.
Then, we remove z. It is straightforward to see that the solutions of I and I ′ are in a one-to-one-
correspondence. Since the neighborhood of a complex vertex in I is considered as a clique, by the
de�nition of the treewidth of I, the treewidth of I ′ is at most that of I.

Lemma 10.17. Let (σ, ρ) ∈ Ω2 be non-trivial. If (∅, {0, 1}) ∈ P, then (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSetP .

Proof. We show the reduction (σ, ρ)-#DomSetHW=1 ≤tw (σ, ρ)-#DomSetP . Then, the statement
of the lemma follows from Lemma 10.14.

Let I be an instance of (σ, ρ)-#DomSetHW=1 . Let U be the set of (complex) HW=1-vertices in I,
and let Z = {N(u) | u ∈ U}. Let I ′ be the instance I without the vertices in U . I ′ can be cast as
an instance of (σ, ρ)-#DomSetP . Then, the number of solutions of I is identical to the number of
those solutions of I ′ that select precisely one vertex from each Z ∈ Z.

By Lemma 10.13, there is a graph J that contains a vertex p such that J has α ≥ 1 (σ, ρ)-sets
that contain p, and it has β ≥ 1 (σ, ρ)-sets that do not contain p. It is not clear whether or not
α = β. For a positive integer x, let I ′x be the instance of (σ, ρ)-#DomSetP obtained from I ′ by
attaching to each set Z ∈ Z a total of x (∅, {0, 1})-vertices vZ1 , . . . , vZx each of which is completely
connected to Z. In addition, there are x copies JZ

1 , . . . , J
Z
x of the graph J , where each vZi is adjacent

to the copy of p in JZ
i . Consult Figure 10.6 for a visualization of this construction (for a single set

Z).
Note that a solution S′ of I ′ for (σ, ρ)-#DomSetP can only be extended to a solution of I ′x if,

in each set Z ∈ Z, at most one vertex is selected (because of the attached (∅, {0, 1})-vertices). Let
us say that solutions of I ′ with this property are good. Suppose in a good solution S′, a set Z ∈ Z
is entirely unselected. Then, there are f0 := (α+ β)x feasible extensions to its attached copies of J
(α+ β for each graph Ji since the copy of p can be either selected or not). If in S′ exactly 1 vertex

92

of Z is selected, then there are f1 := βx extensions to the attached copies of J � this time we can
only use the selections of the Ji's for which the copy of p is unselected.

Let ai be the number of good solutions of I ′ in which precisely i of the sets in Z are entirely
unselected. (In the remaining sets from Z exactly one vertex is selected.) Let #S(I ′x) denote the
number of solutions of I ′x. Then,

#S(I ′x) =

|Z|∑
i=0

ai · f i0f |Z|−i
1

= f
|Z|
1 ·

|Z|∑
i=0

ai ·
(
f0
f1

)i

= (α+ β)x|Z| ·
|Z|∑
i=0

ai ·
((

α+ β

β

)x)i

.

Note that #S(I ′x)/(α+ β)x|Z| is a polynomial in ((α+ β)/β)x of degree |Z|. Since (α+ β)/β > 1,
it su�ces to choose |Z| di�erent values of x > 0 for the interpolation. This way we can recover the
coe�cients ai. In particular, we can recover a0, which corresponds to the number of good solutions
of I ′ in which none of the sets in Z are entirely unselected, i.e., in which all of these sets contain
precisely one selected vertex. This is exactly the sought-for number of solutions of I.

Since the neighborhood of a complex vertex u in I is considered as a clique in the de�nition
of the treewidth of I, for Z = N(u), we can add all vertices from JZ

1 , . . . , J
Z
x together with the

vertices vZ1 , . . . , v
Z
x one after another to a copy of the original bag containing the clique Z. Hence,

the treewidth of Ix is at most that of I plus an additive term in O(1).

We de�ne the relation HW≥1 to be the Hamming Weight at least One relation which requires that
not all portals are unselected, that is, at least one of the portals must be selected.

Lemma 10.18. Let (σ, ρ) ∈ Ω2 be non-trivial. Then, (σ, ρ)-#DomSetRel ≤tw (σ, ρ)-#DomSetHW≥1 .

Proof. The proof is similar to that of Lemma 10.17, but uses a di�erent gadget, which leads to di�er-
ent numbers of extensions that have to be considered. We show the reduction (σ, ρ)-#DomSetHW=1 ≤tw

(σ, ρ)-#DomSetHW≥1 . Then, the statement of the lemma follows from Lemma 10.14.
Let I be an instance of (σ, ρ)-#DomSetHW=1 . We de�ne U , Z, I ′, J , α, and β precisely as we

did in the proof of Lemma 10.17. When de�ning Ix, we divert from the proof of Lemma 10.17. For
a positive integer x, let I ′x be the instance of (σ, ρ)-#DomSetHW≥1 obtained from I ′ by attaching,
for each Z ∈ Z, a HW≥1-vertex v

Z . In addition, we attach to each subset Z ′ of Z with |Z ′| = |Z| − 1

a total of x HW≥1-vertices v
(Z,Z′)
1 , . . . , v

(Z,Z′)
x each of which is completely connected to Z ′. Again,

there are also x copies J
(Z,Z′)
1 , . . . , J

(Z,Z′)
x of the graph J , where each v

(Z,Z′)
i is adjacent to the copy

of p in J
(Z,Z′)
i . Note that some set Z ′ may receive multiple such attachments for di�erent supersets

Z.
Note that a solution S′ of I ′ for (σ, ρ)-#DomSetP can only be extended to a solution of I ′x if,

in each set Z ∈ Z, at least one vertex is selected (because of the attached HW≥1-vertex v
Z). Let

us say that solutions of I ′ with this property are good. If, in a good solution S′ of I ′, some Z ′

has at least one selected vertex, then there are f1 := (α + β)x feasible extensions to the graphs

J
(Z,Z′)
1 , . . . , J

(Z,Z′)
x (α+ β for each graph J

(Z,Z′)
i since the copy of p can either be selected or not).

If in S′ no vertex of Z ′ is selected, then there are only f0 := (α+ β)x − βx extensions (all copies of
p unselected is not possible). Continuing from this, we say that if a set Z ∈ Z contains at least 2

93

selected vertices (from S′), then it is undesired, and if it contains precisely 1 selected vertex, then
it is desired.

For an undesired set Z ∈ Z, there is at least one vertex selected in each of the |Z| corresponding
subsets Z ′ (this gives a total of f

|Z|
1 extensions to the graphs J

(Z,⋆)
⋆), whereas, for a desired set

Z, there is exactly one subset Z ′ that is entirely unselected (which gives a total of f
(|Z|−1)
1 · f0

extensions). Now, let ai be the number of good solutions of I ′ in which precisely i of the sets Z ∈ Z
are undesired. Let #S(I ′x) denote the number of solutions of I

′
x. Then,

#S(I ′x) =

|Z|∑
i=0

ai ·
[∏
undesired Z∈Z

f
|Z|
1 ·

∏
desired Z∈Z

f
(|Z|−1)
1 f0

]
= f

∑
Z∈Z(|Z|−1)

1 ·
|Z|∑
i=0

ai · f i1f |Z|−i
0

= f
∑

Z∈Z(|Z|−1)
1 f

|Z|
0︸ ︷︷ ︸

=:F

·
|Z|∑
i=0

ai ·
(

(α+ β)x

(α+ β)x − βx

)i

.

Note that #S(I ′x)/F is a polynomial in (α+ β)x/((α+ β)x − βx) of degree |Z|. Since α, β ≥ 1, the
values of (α+ β)x/((α+ β)x − βx) are de�ned and distinct for di�erent x > 0. It su�ces to choose
|Z| di�erent values of x > 0 for the interpolation. This way we can recover the coe�cients ai. In
particular, we can recover a0, which corresponds to the number of good solutions of I ′ in which all
of the sets in Z are desired, i.e., in which all of these sets contain precisely one selected vertex. This
is exactly the sought-for number of solutions of I.

As in the proof of Lemma 10.17, we can argue that the treewidth of Ix is at most that of I plus
an additive term in O(1).

As a next step, we replace the HW≥1 relations by some appropriate vertices as we did previously
for the HW=1 relations.

Lemma 10.19. Let (σ, ρ) ∈ Ω2 be non-trivial. If (∅,Z≥1) ∈ P, then (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSetP .

Proof. This is a straightforward reduction from (σ, ρ)-#DomSetHW≥1 to (σ, ρ)-#DomSetP . The
statement of the lemma then follows from Lemma 10.18.

From an instance I of (σ, ρ)-#DomSetHW≥1 , we create an instance I ′ of (σ, ρ)-#DomSetP by
completely connecting, for each (complex) HW=1-vertex z, the neighborhood N(z) to a new (∅,Z≥1)-
vertex z′. Then, we remove z.

It is straightforward to see that the solutions of I and I ′ are in a one-to-one correspondence.
Since the neighborhood of a complex vertex in I is considered as a clique in the de�nition of the
treewidth of I, the treewidth of I ′ is at most that of I.

Lemma 10.20. If ({0},Z≥0) ∈ P, then (σ, ρ)-#DomSetRel ≤tw (σ, ρ)-#DomSetP .

Proof. We show the reduction (σ, ρ)-#DomSetHW≥1 ≤tw (σ, ρ)-#DomSetP . Then, the statement
of the lemma follows from Lemma 10.18.

Let I be an instance of (σ, ρ)-#DomSetHW≥1 , and let VS be the simple vertices of I. Let U be
the set of (complex) HW≥1-vertices in G, and let Z = {N(u) | u ∈ U}. Let I ′ be the instance I
without the vertices in U . I ′ can be cast as an instance of (σ, ρ)-#DomSetP . Then, the number

94

of solutions of I is identical to the number of those solutions of I ′ that select at least one vertex
from each Z ∈ Z.

For a positive integer x, let I ′x be the instance of (σ, ρ)-#DomSet
P obtained from I ′ by attaching

to each set Z ∈ Z a total of x ({0},Z≥0)-vertices v
Z
1 , . . . , v

Z
x each of which is completely connected

to Z.
Let S′ be some subset of VS . Note that in order for S′ to be extended to a solution of I ′x, it is

required that all vertices in VS that are not in some Z ∈ Z already have a feasible number of selected
neighbors ((σ, ρ)-constraint) in S′. Let us say that subsets S′ with this property are good. Suppose
that in some good S′ a set Z ∈ Z is entirely unselected. Then, there are 2x feasible extensions to
the attached vertices vZ1 , . . . , v

Z
x (each of them can be selected or not). On the contrary, if at least

1 vertex of Z is selected, then, in a feasible extension of S′ to a solution of Ix, all of the vertices
vZ1 , . . . , v

Z
x have to be unselected.

Let ai be the number of good subsets of VS in which precisely i of the sets in Z are entirely
unselected. Let #S(I ′x) denote the number of solutions of I

′
x. Then,

#S(I ′x) =

|Z|∑
i=0

ai · 2xi.

Let n be the number of vertices in I. Then, for each i we have ai ≤ 2n. Thus, we can choose
x ∈ O(n) su�ciently large such that a0 < 2x. Then, a0 = #S(I ′x) mod 2x can be computed by a
single (σ, ρ)-#DomSetP -oracle call. Now note that a0 is the number of good subsets S′ of VS such
that each set Z ∈ Z contains at least one vertex from S′. In this case, all of the attached vertices
(vZ1 , . . . , v

Z
x for each Z ∈ Z) have to be unselected, which implies that all vertices in Z obtain a

feasible number of selected neighbors already from S′. Therefore, every set S′ that contributes to
a0 is actually a (σ, ρ)-set of I ′ with the additional property that each set Z in Z contains at least
one selected vertex. This shows that a0 is precisely the number of solutions of I.

It remains to argue that the treewidth does not change too much. For each clique Z, there is
a bag B containing Z. We duplicate this bag B a total of x ∈ O(n) times, and each vertex vZi is
added to exactly one of these copies. Hence, the treewidth of Ix is at most that of I plus an additive
term in O(1).

Now we have everything ready to prove the following lemma, which is the main result of this
section.

Lemma 10.11. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ ̸= Z≥0, then we have (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSet{(∅,ρ),(σ,∅)}.

Proof. First, suppose that ρ is �nite. Then, rtop is the maximum element of ρ. Because of non-
triviality, we have ρ ̸= {0}, and therefore, rtop ≥ 1. If rtop = 1, then ρ is one of {1} or {0, 1},
and the statement follows from Lemma 10.16 or Lemma 10.17, respectively. Otherwise, we have
rtop ≥ 2. Let smin be the minimum of σ. In this case, notice that a (smin + 1)-clique of (σ,∅)-
vertices gives a (σ′,∅)-vertex with 0 ∈ σ′, and a vertex p that is subject to (∅, ρ) and that is adjacent
to i ≥ 1 (σ′,∅)-vertices models a (∅, ρ − i)-vertex. Using this construction, we obtain, for P =
{(∅, ρ), (σ,∅)} and for each i ≥ 1, the reduction (σ, ρ)-#DomSetP+(∅,ρ−i) ≤tw (σ, ρ)-#DomSetP .
In particular, we obtain (σ, ρ)-#DomSetP+(∅,ρ−(rtop−1)) ≤tw (σ, ρ)-#DomSetP , where we use that
rtop ≥ 2. Now again, ρ − (rtop − 1) is one of {1} or {0, 1}, and we can conclude as before using
Lemma 10.16 or Lemma 10.17, respectively.

Second, suppose that ρ is co�nite. Then, rtop is the largest integer missing from ρ plus 1.
Note that rtop ≥ 1 as ρ ̸= Z≥0. If rtop = 1, then ρ = Z≥1, and the statement follows from

95

Lemma 10.19. Otherwise, suppose that rtop ≥ 2. As in the case with �nite ρ, there is a reduc-
tion (σ, ρ)-#DomSetP+(∅,ρ−i) ≤tw (σ, ρ)-#DomSetP for each i ≥ 1. In particular, we obtain
(σ, ρ)-#DomSetP+(∅,ρ−(rtop−1)) ≤tw (σ, ρ)-#DomSetP , where we use that rtop ≥ 2. Now again,
ρ− (rtop − 1) = Z≥1, and we can conclude as before using Lemma 10.19.

10.2.2 Realizing Relations if ρ = Z≥0

The goal of this section is to prove Lemma 10.10. We start with some intermediate results.

Lemma 10.21. Let (σ, ρ) ∈ Ω2 be non-trivial with ρ = Z≥0. If σ is �nite, then (σ, ρ)-#DomSet{(σ,∅)} ≤tw

(σ, ρ)-#DomSet.

Proof. Let I = (G,λ) be an instance of (σ, ρ)-#DomSet(σ,∅), and let U be the set of (σ,∅)-vertices
of I. For a positive integer x, we de�ne an instance Ix of (σ, ρ)-#DomSet. Let J = (J, {p}) be a
gadget for (σ, ρ)-#DomSet that consists of p together with x cliques, each of size smin + 1. The
portal p is adjacent to precisely one vertex from each clique. Then, we obtain Ix by making the
vertices in U (σ, ρ)-vertices, and attaching to each vertex u ∈ U a copy of J , where u is identi�ed
with the portal of J .

Let #S(Ix) be the number of solutions of (σ, ρ)-#DomSet for the instance Ix. Let p(x) :=
#S(Ix) mod 2x. We show that p(x) is a polynomial whose degree depends on σ, and whose constant
term is the number of solutions of I for which the vertices in U are selected, which is precisely what
we want. We recover the constant term by interpolation.

Consider a solution S of Ix and let SG = S∩V (G) be the corresponding selection of the original
vertices. If one of the vertices in U is unselected in SG, then consider the attached gadget J . Note
that in the solution S, each of the cliques in J can only be entirely selected or entirely unselected (as
selecting only a few vertices would give them less than smin selected neighbors). If u is unselected,
each combination of entirely selected or unselected cliques is feasible since ρ = Z≥0. This means
that the gadget J has 2x feasible extensions for the selection SG. Consequently, selections of the
vertices in G for which of the vertices in U is unselected do not contribute to p(x). So let#S′(Ix)
be the number of solutions of Ix for which all vertices in U are selected. We have p(x) = #S′(Ix)
mod 2x.

Suppose that U ⊆ SG for some selection SG of vertices from V (G). For each vertex u in
U , the number of feasible extensions to the attached gadget J now depends on the number of
selected neighbors of u. For i selected neighbors, there are fi(x) =

∑
s+i∈σ

(
x

s+i

)
feasible extensions

to the corresponding copy of J . Note that fi(x) is a polynomial of degree at most stop. Also
observe that the constant of fi(x) is 1 if i ∈ σ, and otherwise it is 0. As #S′(Ix) is a sum of
products of terms of the form fi(x) for di�erent i, #S

′(Ix) is a polynomial in x of degree at most
stop · |U |. Consequently, for su�ciently large x, p(x) = #S′(Ix). This means that we can recover
p(x) by polynomial interpolation using at most stop · |U | di�erent su�ciently large values of x and
corresponding oracle calls to (σ, ρ)-#DomSet on instance Ix.

Now note that a selection SG of vertices from V (G) contributes 1 to the constant term of
p(x) if and only for each vertex in U the corresponding number i of selected neighbors is in σ,
otherwise it contributes 0 to the constant. So, it contributes 1 if and only if SG is a solution of I in
which all vertices of U are selected. The constant of p(x) is the sought-for number of solutions of
(σ, ρ)-#DomSet(σ,∅) on instance I.

Lemma 10.22. Let (σ, ρ) ∈ Ω2 be non-trivial with ρ = Z≥0. If σ is �nite with stop − 1 /∈ σ, then
(σ, ρ)-#DomSet{({0},Z≥0)} ≤tw (σ, ρ)-#DomSet{(σ,∅)}.

96

Proof. Let I = (G,λ) be an instance of (σ, ρ)-#DomSet({0},Z≥0), and let U be the set of ({0},Z≥0)-
vertices of I. We de�ne a gadget J for (σ, ρ)-#DomSet{(σ,∅)}. J has a single portal p, which is
a (σ, ρ)-vertex. The portal p is fully adjacent to an stop-clique C of (σ,∅)-vertices. There is an
additional vertex v which is also adjacent to all vertices in C, but not to p. Note that there are
precisely two partial solutions for this gadget. The vertices of C are (σ,∅)-vertices, and therefore,
they are always selected. If p is selected, then the vertices in C cannot have another selected
neighbor, and therefore, v is unselected (which is �ne as ρ = Z≥0). If p is unselected, then the
vertices in C have stop − 1 selected neighbors within C. Since stop − 1 /∈ σ, the vertex v must be
selected (which is �ne as it now also has stop selected neighbors). In either case, p has stop selected
neighbors within J .

From I we de�ne an instance I ′ of (σ, ρ)-#DomSet{(σ,∅)} by making the vertices in U (σ, ρ)-
vertices, and attaching to each vertex u in U a copy of the gadget J , where u is identi�ed
with the portal p. It is straightforward to see that the number of solutions of instance I for
(σ, ρ)-#DomSet({0},Z≥0) is the same as the number of solutions of I ′ for (σ, ρ)-#DomSet{(σ,∅)}.

Lemma 10.23. Let (σ, ρ) ∈ Ω2 be non-trivial with ρ = Z≥0. If σ is �nite with stop − 1 ∈ σ, then
(σ, ρ)-#DomSet{({0},Z≥0)} ≤tw (σ, ρ)-#DomSet{(σ,∅)}.

Proof. We make a case distinction depending on stop. If stop = 0, then σ = {0} and we are
done. If stop = 1, then, as stop − 1 ∈ σ, we have σ = {0, 1}. In this case, a (σ, ρ)-vertex with an
attached (σ,∅)-vertex models a ({0}, ρ)-vertex. (Recall that ρ = Z≥0.) So, given some instance I
of (σ, ρ)-#DomSet({0},Z≥0), we replace every ({0},Z≥0)-vertex by a (σ, ρ)-vertex with an attached
(σ,∅)-vertex to obtain an instance I ′ of (σ, ρ)-#DomSet{(σ,∅)} with the same number of solutions.

Finally, consider the case stop ≥ 2. Let J be a gadget for (σ, ρ)-#DomSet{(σ,∅)} with a single
portal p (a (σ, ρ)-vertex) that is adjacent to two vertices v1, v2 of an stop + 1-clique C of (σ,∅)-
vertices from which the edge between v1 and v2 is removed. Note that v1 and v2 have degree stop−1
in C, whereas the remaining vertices of C have degree stop. Hence, selecting all vertices of C gives
a partial solution independently of the selection status of p. In either case, p obtains two selected
neighbors from J . Thus, a (σ, ρ)-vertex that acts as portal of ⌊stop/2⌋ attached copies of J models
a (σ′, ρ)-vertex, where σ′ is one of {0} (if stop is even) or {0, 1} (if stop is odd, and using the fact that

stop−1 ∈ σ). So we obtain a reduction (σ, ρ)-#DomSet{(σ′,Z≥0),(σ,∅)} ≤tw (σ, ρ)-#DomSet{(σ,∅)}.
If σ′ = {0}, then we are done, and if σ′ = {0, 1}, then we can proceed as in the case for stop = 1.

Lemma 10.10. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ = Z≥0 and σ is �nite, then (σ, ρ)-#DomSetRel ≤tw

(σ, ρ)-#DomSet.

Proof. From Lemma 10.21 together with Lemmas 10.22 and 10.23, it follows that (σ, ρ)-#DomSet{({0},Z≥0)} ≤tw

(σ, ρ)-#DomSet. Then, from Lemma 10.20, it follows that (σ, ρ)-#DomSetRel ≤tw (σ, ρ)-#DomSet.

10.2.3 Forcing Both Selected and Unselected Vertices for ρ ̸= Z≥0

Let (σ, ρ) ∈ Ω2 and let P be some possibly empty set of pairs from Ω2
0. Consider a gadget G

for (σ, ρ)-#DomSetP with a single portal. We say that G is a candidate if it has the following
properties:

(I) extG(ρ0), extG(σ0) ≥ 1,

(II) extG(ρ0) ̸= extG(σ0),

97

(III) extG(σi) = extG(ρi) = 0 for all i ≥ 2.

We say that a candidate G is a winner if additionally it holds that

(IV) extG(ρ1) = extG(σ1) = 0.

We say that a candidate G is a strong candidate if (instead of Item (IV)) it additionally holds that

(iv) extG(ρ1) ≥ 1.

(v) extG(ρ0) ̸= extG(σ0) + extG(σ1).

The properties of winner, candidate, and strong candidate gadgets are useful in the proof of
Lemma 10.25. We start by showing that such gadgets exist.

Lemma 10.24. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ ̸= Z≥0, then there is a gadget G = (G, {p}) for
(σ, ρ)-#DomSet that is either a winner or a strong candidate.

We defer the proof of Lemma 10.24 to Section 10.2.4.

Lemma 10.25. Let (σ, ρ) ∈ Ω2 be non-trivial, and let P be some (possibly empty) set of pairs from
Ω2
0. Suppose that there is a strong candidate J for (σ, ρ)-#DomSet. Then, (σ, ρ)-#DomSetP+(∅,{0}) ≤tw

(σ, ρ)-#DomSetP , where (∅, {0}) is 1-bounded in the source problem.

We defer the proof of Lemma 10.25 to Section 10.2.5, and �rst discuss how we use it to obtain
Lemma 10.12.

Lemma 10.26. Let (σ, ρ) ∈ Ω2 be non-trivial. Let P be some (possibly empty) set of pairs from Ω2
0.

Then, (σ, ρ)-#DomSetP+(∅,ρ) ≤tw (σ, ρ)-#DomSetP+(∅,{0}), even if (∅, {0}) is 1-bounded in the
target problem.

Proof. The construction is straightforward: it su�ces for all vertices that should be unselected (that
should be (∅, ρ)-vertices) to be adjacent to a single (∅, {0})-vertex p. The key observations are
that p forces its neighbors to be unselected, but since p itself is unselected, it does not otherwise
alter the original solutions.

Lemma 10.12. Let (σ, ρ) ∈ Ω2 be non-trivial with ρ ̸= Z≥0. Let P be some (possibly empty) set of
pairs from Ω2

0. Then, (σ, ρ)-#DomSet
P+(∅,ρ)+(σ,∅) ≤tw (σ, ρ)-#DomSetP .

Proof. Let J = (J, {v}) be the gadget given by Lemma 10.24 (using that ρ ̸= Z≥0). Then, J is
either a winner or a strong candidate.

We �rst give the reduction assuming that J is a winner, and consequently extJ (ρ1) = extJ (σ1) =
0. Afterward, we give a modi�ed reduction for the case where J is a strong candidate.

If J is a winner, then the only states of J with non-zero extensions are ρ0 and σ0. In particular, v
never receives any selected neighbors within J . We start by showing that (σ, ρ)-#DomSetP+(∅,ρ) ≤tw

(σ, ρ)-#DomSetP . Let I = (G,λ) be an instance of (σ, ρ)-#DomSetP+(∅,ρ), and let U =
{u1, . . . , uk} be the set of (∅, ρ)-vertices in G. For a positive integer x, we de�ne an instance
Ix = (Gx, λx) of (σ, ρ)-#DomSetP by attaching x new copies of the gadget J to each vertex
u ∈ U , where u is identi�ed with the portal of each attached copy. The function λx is identical to
λ on the vertices in V (G) \ U , and maps the remaining vertices to 0 (i.e., the vertices in U and in
their attached copies of J are (σ, ρ)-vertices).

Let #S(Ix) denote the number of solutions of (σ, ρ)-#DomSetP on input Ix. Further, let zi
be the number of solutions of (σ, ρ)-#DomSetP on instance I ′ = (G,λx|V (G)) for which precisely

98

i of the vertices in U are selected. Intuitively, the instance I ′ is obtained from I by replacing the
(∅, ρ)-vertices in U by (σ, ρ)-vertices. Then, our goal is to compute z0 since this is precisely the
number of solutions on instance I.

We recover z0 from #S(Ix) using interpolation. We observe that

#S(Ix) =

|U |∑
i=0

zi · extJ (σ0)xi extJ (ρ0)x(|U |−i)

= extJ (ρ0)
x|U | ·

|U |∑
i=0

zi · (extJ (σ0)/ extJ (ρ0))xi.

Hence, #S(Ix)/ extJ (ρ0)
x|U | is a polynomial of degree |U | with coe�cients z0, . . . , z|U | and in-

determinates (extJ (σ0)/ extJ (ρ0))
x. Since J is a winner, we have extJ (ρ0), extJ (σ0) ≥ 1, and

extJ (ρ0) ̸= extJ (σ0). Thus, we can recover the coe�cients using polynomial interpolation using
|U | distinct values of x, which give |U | distinct values of the indeterminates. In particular, we obtain
z0 as required.

Now, note that the coe�cient z|U | corresponds to the number of solutions for which all vertices in
U are selected. This is precisely what we need to model the vertices in U as (σ,∅)-vertices. Hence,
with the same proof we obtain the reduction (σ, ρ)-#DomSetP+(σ,∅) ≤tw (σ, ρ)-#DomSetP .
So applying this reduction to P ′ = P + (∅, ρ) and combining it with the established reduction
(σ, ρ)-#DomSetP+(∅,ρ) ≤tw (σ, ρ)-#DomSetP , we obtain the statement of the lemma.

Now, we revisit our assumption about the gadget J and consider the remaining case where J is
not a winner, but a strong candidate. In this case, J ful�lls the requirements of Lemma 10.25 with
which we obtain (σ, ρ)-#DomSetP+(∅,{0}) ≤tw (σ, ρ)-#DomSetP , where (∅, {0}) is 1-bounded in
the source problem. By Lemma 10.26, we obtain (σ, ρ)-#DomSetP+(∅,ρ) ≤tw (σ, ρ)-#DomSetP .

In order to show the sought-for (σ, ρ)-#DomSetP+(σ,∅)+(∅,ρ) ≤tw (σ, ρ)-#DomSetP , it now
su�ces to show (σ, ρ)-#DomSetP+(σ,∅)+(∅,ρ) ≤tw (σ, ρ)-#DomSetP+(∅,ρ). Note that if in the
gadget J we replace all neighbors of its portal by (∅, ρ)-vertices, then we obtain a gadget J ′

for (σ, ρ)-#DomSetP+(∅,ρ) that inherits the properties extJ ′(ρ0), extJ ′(σ0) ≥ 1, and extJ ′(ρ0) ̸=
extJ ′(σ0) from J . But now, since all neighbors of the portal have to be unselected, we also
have extJ ′(ρi) = extJ ′(σi) = 0 for all i ≥ 1. Thus, J ′ is now a winner. The same interpola-
tion as before, but using J ′ instead of J , yields the reduction (σ, ρ)-#DomSetP+(σ,∅)+(∅,ρ) ≤tw

(σ, ρ)-#DomSetP+(∅,ρ), which completes the proof.

10.2.4 Proof of Lemma 10.24: Constructing Strong Candidates and Winners

Let us restate Lemma 10.24.

Lemma 10.24. Let (σ, ρ) ∈ Ω2 be non-trivial. If ρ ̸= Z≥0, then there is a gadget G = (G, {p}) for
(σ, ρ)-#DomSet that is either a winner or a strong candidate.

Claim 10.27. Let (σ, ρ) ∈ Ω2. Then, there is a gadget J = (J, {p}) for (σ, ρ)-#DomSet such that
extJ (ρ0), extG(ρ1) ≥ 1, but extJ (ρi) = 0 for each i ≥ 2.

Proof of Claim. Let G and u be as given by Lemma 10.13. Then, J is obtained by attaching a new
vertex p to the vertex u in G. Note that each partial solution of the gadget (J, {p}) in which p is
unselected is a solution of (σ, ρ)-#DomSet on input G. Since such solutions exist independently of
the selection status of u (Lemma 10.13), both states ρ0 and ρ1 can be extended by (J, {p}). Since
p only has a single neighbor in J , there are no extensions for ρi if i ≥ 2. ◁

99

By Claim 10.27, the gadget J has fi := extJ (ρi) ≥ 1 if and only if i ∈ {0, 1}. For a yet to be
determined value x, let (J1, {u1}), . . . , (Jx, {ux}) be x copies of the gadget J . From this we obtain
a graph Z by identifying the vertices u1, . . . , ux to a single vertex u, which then is adjacent to the
portal p of Z = (Z, {p}).

Now, consider extensions of the states ρ0 and σ0 of Z depending on whether σ and ρ are �nite
or co�nite. Since in both cases u is unselected, each of the attached copies of J is in state ρ0 or ρ1.
Then, we obtain a solution whenever u obtains a feasible number of selected neighbors (from p and
its neighbors in the attached copies of J).

We have

extZ(ρ0) =

{ ∑
r∈ρ

(
x
r

)
f r1f

x−r
0 = fx0 ·∑r∈ρ

(
x
r

)
(f1/f0)

r if ρ is �nite.

(f0 + f1)
x −∑

r/∈ρ
(
x
r

)
f r1f

x−r
0 = (f0 + f1)

x − fx0 ·∑r/∈ρ,r≥0

(
x
r

)
(f1/f0)

r if ρ is co�nite.

and analogously

extZ(σ0) =

{
fx0 ·∑r∈ρ,r≥1

(
x

r−1

)
(f1/f0)

r−1 if ρ is �nite.

(f0 + f1)
x − fx0 ·∑r/∈ρ,r≥1

(
x

r−1

)
(f1/f0)

r−1 if ρ is co�nite.

Claim 10.28. There is an integer x0 (depending on ρ) such that, for all x ≥ x0, Z is a candidate.

Proof of Claim. First, consider the case where ρ is �nite. Then, extZ(ρ0)/f
x
0 is a polynomial in x of

degree rtop, whereas extZ(σ0)/f
x
0 is a polynomial of degree rtop − 1. Since rtop ≥ 1 by the fact that

(σ, ρ) is non-trivial, it follows that these polynomials are not constant 0. Hence, there is a value of
x that only depends on ρ for which extZ(ρ0) ̸= extZ(σ0) and extZ(ρ0), extZ(σ0) ≥ 1, as required.

Second, suppose that ρ is co�nite. Then,
∑

r/∈ρ
(
x
r

)
(f1/f0)

r is a polynomial in x. Its degree is
the largest non-negative integer r∗ that is missing from ρ. Since ρ ̸= Z≥0, such an integer exists
and the polynomial is not constant 0. Similarly,

∑
r/∈ρ,r≥1

(
x

r−1

)
(f1/f0)

r−1 is a polynomial in x with
degree r∗ − 1. In this case, the sum might be empty, but in any case the expressions for extZ(ρ0)
and extZ(σ0) are positive and distinct for all su�ciently large x.

Finally, since p only has a single neighbor in Z, there are no extensions in Z for states σi or ρi
if i ≥ 2. ◁

Now, we are in one of three cases.

Case 1: extZ(ρ1) = extZ(σ1) = 0.

Case 2: extZ(ρ1) ≥ 1.

Case 3: extZ(ρ1) = 0 and extZ(σ1) ≥ 1.

In case 1, the candidate Z is a winner, the statement of Lemma 10.24 holds, and we are done.
In case 2, the candidate Z has the property from Item (iv) and it remains to show extZ(ρ0) ̸=
extZ(σ0) + extZ(σ1) in order for Z to be a strong candidate. In case 3, Z is a candidate, but not a
strong candidate. In this case we need another gadget.

We de�ne a new gadget from Z as follows. Let Z ′ = (Z ′, {p′}) be another copy of Z. Then,
we attach to the vertex u in Z the gadget Z ′ by identifying u and p′. This forms the new gadget
Z∗ = (Z∗, {p}).

Claim 10.29. Suppose that extZ(ρ1) = 0 and extZ(σ1) ≥ 1. Then, Z∗ is a candidate with
extZ∗(ρ1) ≥ 1. Moreover, extZ∗(ρ0) = extZ(ρ0)

2 and extZ∗(σ0) = extZ(σ0) · extZ(ρ0).

100

Proof of Claim. As Z is a candidate with extZ(ρ1) = 0, we have extZ(ρi) = 0 for i ≥ 1. Note that
extZ∗(ρ0) = extZ(ρ0)

2 because if u is unselected, then Z ′ has to be in state ρ0 as Z ′ is a copy of
Z and extZ(ρi) = 0 for i ≥ 1. This does not a�ect the number of selected neighbors of u, so every
partial solution of Z that witnesses ρ0 can be extended by every such partial solution of the copy
Z ′ to a partial solution of Z∗ that witnesses ρ0. Analogously, extZ∗(σ0) = extZ(σ0) · extZ(ρ0).

Thus, we still have extZ∗(ρ0) ̸= extZ∗(σ0) and extZ∗(ρ0), extZ∗(σ0) ≥ 1. Also, as before, p only
has a single neighbor in Z∗ and consequently there are no extensions for states σi or ρi if i ≥ 2.

We now verify that extZ∗(ρ1) ≥ 1. Since extZ(σ1) ≥ 1 there is a partial solution S of Z that
witnesses σ1. Let S

′ be a copy of this set for the gadget Z ′. Then, S∗ := S′ ∪ S \ {p} is a partial
solution of Z∗ that witnesses ρ1. The key observation is that u has the same number of selected
neighbors as in the partial solution S (where now instead of p it has a single selected neighbor in
Z ′). ◁

In order to complete the proof of Lemma 10.24 for cases 2 and 3, we set

G :=

{
Z if extZ(ρ1) ≥ 1.

Z∗ if extZ(ρ1) = 0 and extZ(σ1) ≥ 1.

We have already established that G is a candidate with extG(ρ1) ≥ 1. It remains to show that
extG(ρ0) ̸= extG(σ0) + extG(σ1) (Item (v)) for G to be a strong candidate.

Claim 10.30. If ρ is co�nite, then there is an integer x0 (depending on ρ) such that, for all x ≥ x0,
G is a strong candidate.

Proof of Claim. It remains to show that extG(ρ0) ̸= extG(σ0) + extG(σ1). For co�nite ρ, recall that

extZ(ρ0) = (f0 + f1)
x − fx0 ·

∑
r/∈ρ,r≥0

(
x

r

)
(f1/f0)

r

and

extZ(σ0) = (f0 + f1)
x − fx0 ·

∑
r/∈ρ,r≥1

(
x

r − 1

)
(f1/f0)

r−1.

This shows that extZ(ρ0) < extZ(σ0) (using that x is su�ciently large) and consequently extZ(ρ0) ̸=
extZ(σ0) + extZ(σ1). This gives extG(ρ0) ̸= extG(σ0) + extG(σ1), as required, where we use
Claim 10.29 if G = Z∗. ◁

Now suppose that ρ is �nite and extG(ρ0) = extG(σ0) + extG(σ1), which means that G is not a
strong candidate. In this case, we make one last modi�cation and de�ne G′ = (G′, {q}) as follows.

For a yet to be determined value y, let (G1, {p1}), . . . , (Gy, {py}) be y copies of the gadget G.
We use the same trick as before. We obtain a graph G′ by identifying the vertices p1, . . . , py to a
single vertex p, which then is adjacent to the portal q of G′ = (G′, {q}). In order to complete the
proof of Lemma 10.24, we show the following claim.

Claim 10.31. If ρ is �nite and extG(ρ0) = extG(σ0) + extG(σ1), then, for su�ciently large y, G′ is
a strong candidate.

Proof of Claim. Using that extG(ρ0), extG(ρ1) ≥ 1, the proof that G′ is a candidate for large enough
y is analogous to the proof that Z is a candidate for su�ciently large x.

Since G is a candidate, we have extG(σ0) ≥ 1 and extG(ρ0) ̸= extG(σ0). From the fact that
extG(ρ0) = extG(σ0) + extG(σ1), it then follows that extG(σ1) ≥ 1. To shorten notation, let g0 :=

101

extG(ρ0), g1 := extG(ρ1), h0 := extG(σ0), and h1 := extG(σ1). From the properties of G, we have
g0, g1, h0, h1 ≥ 1, g0 ̸= h0, and g0 = h0 + h1.

Then, as before, using the fact that ρ is �nite, we have

extG′(ρ0) = gy0 ·
∑
r∈ρ

(
y

r

)
(g1/g0)

r and extG′(σ0) = gy0 ·
∑

r∈ρ,r≥1

(
y

r − 1

)
(g1/g0)

r−1.

If σ is �nite, then analogously

extG′(ρ1) = hy0 ·
∑
s∈σ

(
y

s

)
(h1/h0)

s and

extG′(σ1) = hy0 ·
∑

s∈σ,s≥1

(
y

s− 1

)
(g1/g0)

s−1.

So extG′(ρ1) ≥ 1 as h0, h1 ≥ 1, and the corresponding sum is not empty (G′ has property Item (iv)).
Note that extG′(ρ0) = gy0 ·p1(y), extG′(σ0) = gy0 ·p2(y), and extG′(σ1) = hy0 ·p3(y) for some polynomials
p1, p2, p3 in y, where p1(y) > p2(y) (for y su�ciently large) since ρ ̸= {0} as (σ, ρ) is non-trivial.
Thus, using the fact that g0 = h0 + h1 with h1 ≥ 1 and consequently g0 > h0, for su�ciently large
y we have

extG′(σ0) + extG′(σ1)

extG′(ρ0)
=
gy0 · p2(y) + hy0 · p3(y)

gy0 · p1(y)
=
p2(y)

p1(y)
+
hy0 · p3(y)
gy0 · p1(y)

< 1.

This shows that G′ is a strong candidate if σ is �nite.
It remains to consider the case where σ is co�nite. The expressions for extG′(ρ0) and extG′(σ0)

are the same as in the previous case, but

extG′(ρ1) = (h0+h1)
y−hy0·

∑
s/∈σ

(
y

s

)
(h1/h0)

s and extG′(σ1) = (h0+h1)
y−hy0·

∑
s/∈σ,s≥1

(
y

s− 1

)
(g1/g0)

s−1.

Clearly, extG′(ρ1) ≥ 1 (since y is su�ciently large). Moreover, extG′(σ1) < (h0 + h1)
y = gy0 . Hence,

for su�ciently large y,

extG′(σ0) + extG′(σ1)

extG′(ρ0)
≤ gy0 · p2(y) + gy0

gy0 · p1(y)
=
p2(y) + 1

p1(y)
< 1.

This shows that G′ is a strong candidate if σ is co�nite. ◁

10.2.5 Proof of Lemma 10.25: Forcing a Single Unselected Vertex with no Selected

Neighbors

Let us restate Lemma 10.25 for convenience.

Lemma 10.25. Let (σ, ρ) ∈ Ω2 be non-trivial, and let P be some (possibly empty) set of pairs from
Ω2
0. Suppose that there is a strong candidate J for (σ, ρ)-#DomSet. Then, (σ, ρ)-#DomSetP+(∅,{0}) ≤tw

(σ, ρ)-#DomSetP , where (∅, {0}) is 1-bounded in the source problem.

Let I = (G,λ) be an instance of (σ, ρ)-#DomSetP+(∅,{0}) and let n = |V (G)|. If G contains no
(∅, {0})-vertex, then we can directly call the (σ, ρ)-#DomSetP -oracle on I. So suppose that p is a
single (∅, {0})-vertex in G. In this proof, the usual de�nitions of rtop and stop are not convenient.

102

Instead, we use r∗ as the maximum element of ρ if ρ is �nite, and the maximum missing integer
from ρ if ρ is co�nite. Analogously, we de�ne s∗.

For a positive integer x, we de�ne an instance Ix = (Gx, λx) of (σ, ρ)-#DomSet
P . Intuitively,

in Ix the vertex p is replaced by a (σ, ρ)-vertex to which we attach x copies of the strong candidate
J , where p acts as portal for each of them. Note that J as a gadget for (σ, ρ)-#DomSet can also
be cast as a gadget for (σ, ρ)-#DomSetP that happens to use only (σ, ρ)-vertices.

More formally, for each i ∈ [1 . .x], let (Ji, {vi}) be a copy of J . The graph Gx is obtained
from G by identifying all vertices in {p, v1, . . . , vx} to a single vertex. Then, λx is identical to λ on
the vertices in V (G) \ {p}, and maps the remaining vertices to 0 (i.e., the vertices in

⋃x
i=1 V (Ji) are

(σ, ρ)-vertices).
Note that G = (G, {p}, λx |V (G)) can be interpreted as a gadget for (σ, ρ)-#DomSetP . Then,

our goal is to compute extG(ρ0) as this corresponds to the number of partial solutions of G for which p
is unselected and has no selected neighbors. These are precisely the solutions of (σ, ρ)-#DomSetP+(∅,{0})

on input I.
Let J (x) be the graph induced by the union of the x copies of J that are attached to p in Gx.

Then, J (x) := (J (x), {p}) can also be interpreted as a gadget for (σ, ρ)-#DomSetP . (Here we
dropped the λ-term since λx is constant 0 on J (x).)

For r, s ∈ [0 . .x], we have

extJ (x)(ρr) =

(
x

r

)
extJ (ρ1)

r extJ (ρ0)
x−r

= extJ (ρ0)
x−r∗ ·

(
x

r

)
extJ (ρ1)

r extJ (ρ0)
r∗−r︸ ︷︷ ︸

=:ar(x)

(10.1)

and analogously

extJ (x)(σs) =

(
x

s

)
extJ (σ1)

s extJ (σ0)
x−s

= extJ (σ0)
x−s∗ ·

(
x

s

)
extJ (σ1)

s extJ (σ0)
s∗−s︸ ︷︷ ︸

=:bs(x)

(10.2)

We later use the fact that ar(x) is a polynomial of degree r since extJ (ρ0) and extJ (ρ0) are positive
integers by our assumptions about the gadget J . Moreover, if x ≥ r and r∗ ≥ r, then ar(x) is a
positive integer. Note that an analogous statement for bs(x) does not necessarily hold as we may
have extJ (σ1) = 0.

Let k be the number of neighbors of p in G. Let S′ be some set of selected vertices in V (G)\{p}
such that p already has i ∈ [0 . . k] selected neighbors in S′. We de�ne fi(x) as the number of
possible partial solutions S′′ of J (x) that extend S′ to a solution of (σ, ρ)-#DomSetP on input
Ix in which p is unselected � gi(x) is the corresponding number of partial solutions in which p is
selected.

Now, depending on whether or not σ and ρ are �nite or co�nite, we obtain di�erent expressions
for fi(x) and gi(x). We assume that x ≥ max{s∗, r∗}. Setting α := extJ (ρ1) + extJ (ρ0) and using
that

x∑
r=0

extJ (x)(ρr) = (extJ (ρ1) + extJ (ρ0))
x = αx,

103

we obtain

fi(x) =

{ ∑
i+r∈ρ extJ (x)(ρr) if ρ is �nite

αx −∑
i+r/∈ρ extJ (x)(ρr) if ρ is co�nite.

(10.3)

Analogously, for β := extJ (σ1) + extJ (σ0), we have

gi(x) =

{ ∑
i+s∈σ extJ (x)(σs) if σ is �nite

βx −∑
i+s/∈σ extJ (x)(σs) if σ is co�nite.

(10.4)

For #S(Ix) denoting the number of solutions of (σ, ρ)-#DomSetP on input Ix, we have

#S(Ix) =
k∑

i=0

extG(ρi) · fi(x)︸ ︷︷ ︸
=:Ax

+
k∑

i=0

extG(σi) · gi(x).︸ ︷︷ ︸
=:Bx

(10.5)

Plugging Equations (10.1) and (10.2) into the expression for Ax we obtain

Ax = extJ (ρ0)
x−r∗ ·

k∑
i=0

extG(ρi) ·
[∑
i+r∈ρ

ar(x)
]

︸ ︷︷ ︸
a(x)

if ρ is �nite, (10.6)

and

Ax = αx ·
k∑

i=0

extG(ρi)− extJ (ρ0)
x−r∗ ·

k∑
i=0

extG(ρi) ·
[∑
i+r/∈ρ

ar(x)
]

︸ ︷︷ ︸
a(x)

if ρ is co�nite. (10.7)

In Equation (10.6) together with Equation (10.7), we de�ne an expression a(x) depending on whether
ρ is �nite or co�nite. We later use the crucial fact that a(x) is a polynomial in x because, for each
r, ar(x) is a polynomial in x.

Analogously, we obtain

Bx = extJ (σ0)
x−s∗ ·

k∑
i=0

extG(σi) ·
[∑
i+s∈σ

bs(x)
]

︸ ︷︷ ︸
b(x)

if σ is �nite (10.8)

and

Bx = βx ·
k∑

i=0

extG(σi)− extJ (σ0)
x−s∗ ·

k∑
i=0

extG(σi) ·
[∑
i+s/∈σ

bs(x)
]

︸ ︷︷ ︸
b(x)

if σ is co�nite. (10.9)

Again, b(x) is a polynomial in x.
At this point, let us recall that our goal is to compute extG(ρ0) which equals the number of

solutions of (σ, ρ)-#DomSetP+(∅,{0}) on input I. We aim to use polynomial interpolation by using
Ax to obtain a polynomial in x with extG(ρ0) as a coe�cient. Given the di�erent expressions for Ax

depending on whether σ and ρ are �nite or co�nite, we split the proof into two cases at this point.
We start with the substantially easier case where both sets are �nite.

104

Recovering extG(ρ0) if both σ and ρ are �nite

In order to do polynomial interpolation on Ax, we �rst show how to isolate the term Ax from the
value of #S(Ix), which we can compute by using an oracle call.

Claim 10.32. For su�ciently large x ∈ O(n) and given #S(Ix), the term Ax can be computed (in
time polynomial in n).

Proof of Claim. From the de�nition of a candidate, we know that extJ (σ0) and extJ (ρ0) are
distinct positive values. We show how to recover Ax from #S(Ix) if extJ (ρ0) > extJ (σ0). In the
case extJ (ρ0) < extJ (σ0), the term Bx can be recovered analogously, and then Ax = #S(Ix)−Bx.

Plugging Equations (10.6) and (10.8) into Equation (10.5), we obtain

#S(Ix) = extJ (ρ0)
x−r∗ ·

k∑
i=0

extG(ρi) ·
[∑
i+r∈ρ

ar(x)
]

︸ ︷︷ ︸
=Ax

+extJ (σ0)
x−s∗ ·

k∑
i=0

extG(σi) ·
[∑
i+s∈σ

bs(x)
]

︸ ︷︷ ︸
=Bx

Note that the terms bs(x) are polynomials in x, and that each of the terms extG(σi) is upper
bounded by 2n. Thus, we can choose x ∈ O(n) such that Bx/ extJ (ρ0)

x−r∗ < 1 (using the fact that
extJ (ρ0) > extJ (σ0)). Then, we observe that Ax/ extJ (ρ0)

x−r∗ is an integer.
Therefore, ⌊#S(Ix)/ extJ (ρ0)x−r∗⌋ = Ax/ extJ (ρ0)

x−r∗ , and thus, Ax can be recovered by com-
puting Ax = ⌊#S(Ix)/ extJ (ρ0)x−r∗⌋ · extJ (ρ0)x−r∗ . ◁

Recall that our ultimate goal is to compute extG(ρ0) using calls to a (σ, ρ)-#DomSetP -oracle.
With Claim 10.32 in hand, we can compute extG(ρ0) using standard interpolation. To this end, note
that p(x) := Ax/ extJ (ρ0)

x−r∗ is a polynomial in x whose highest degree term is extG(ρ0) extJ (ρ1)
r∗ ·

xr
∗
. Using polynomial interpolation, we can recover the coe�cients of p(x) by evaluating the

polynomial for r∗ distinct values of x. This can be done since, according to Claim 10.32, we
can compute Ax using a (σ, ρ)-#DomSetP -oracle call as long as x is su�ciently large in O(n);
and we can compute extJ (ρ0)

x−r∗ as extJ (ρ0) does not depend on n. This can be done in time
polynomial in x ∈ O(n), i.e., in time polynomial in n. Using the fact that extJ (ρ1) is non-zero by
assumption of the lemma, we can recover extG(ρ0) from the coe�cient of the highest degree term
xr

∗
. Summarizing, we have shown that we can solve (σ, ρ)-#DomSetP+(∅,{0}) on instance I using

r∗ oracle calls to (σ, ρ)-#DomSetP on instances of the form Ix.

Recovering extG(ρ0) if one of σ or ρ is co�nite

In the co�nite case, there is an additional obstacle to computing extG(ρ0) from Ax by polyno-
mial interpolation. If ρ is co�nite, then Ax contains the unwanted exponential expression αx, see
Equation (10.7). We eliminate the leading exponential terms by considering

ψ(x) := #S(Ix+2)− (α+ β)#S(Ix+1) + αβ#S(Ix) =

Ax+2 − (α+ β)Ax+1 + αβAx︸ ︷︷ ︸
=:A′

x

+Bx+2 − (α+ β)Bx+1 + αβBx.︸ ︷︷ ︸
=:B′

x

(10.10)

So we aim to recover extG(ρ0) from A′
x rather than from Ax directly. The following claim

establishes that we can isolate the term A′
x from the value of ψ(x), which we can compute using

oracle calls.

105

Claim 10.33. For su�ciently large x ∈ O(n) and given #S(Ix+2), #S(Ix+1), and #S(Ix), the
term A′

x can be computed (in time polynomial in n).

We postpone the proof of Claim 10.33 for now, and �rst show how to compute extG(ρ0) from
A′

x. To shorten notation, let us set

a′(x) := extJ (ρ0)
x+2−r∗ ·a(x+2)−(α+β) extJ (ρ0)

x+1−r∗ ·a(x+1)+αβ extJ (ρ0)
x−r∗ ·a(x). (10.11)

We use Equations (10.6) and (10.7) to expand the expression A′
x. If ρ is �nite, then

A′
x = a′(x). (10.12)

If ρ is co�nite, then

A′
x =

(
αx+2 − (α+ β)αx+1 + αβαx

)
·
(k∑
i=0

extG(ρi)
)
− a′(x)

= −a′(x). (10.13)

As noted previously, the terms a(x) are polynomials in x. Therefore, it is straightforward to verify
that p(x) := A′

x/ extJ (ρ0)
x−r∗ is also a polynomial in x (whether ρ is �nite or co�nite).

Recall that our ultimate goal is to compute extG(ρ0) using calls to a (σ, ρ)-#DomSetP -oracle.
With Claim 10.33 in hand, we can compute extG(ρ0) using standard interpolation.

Claim 10.34. extG(ρ0) can be computed from the coe�cients of p(x).

Proof of Claim 10.34. We are interested in the highest degree monomial of p(x). Let us �rst
investigate the polynomial a(x). Recall that ar(x) is a polynomial of degree r. Using this fact, we
observe the highest degree monomial of a(x) is extG(ρ0) extJ (ρ1)

r∗ · xr∗ , where r∗ has a di�erent
meaning depending on whether ρ is �nite or co�nite.

Therefore, using Equation (10.11), the highest degree monomial of p(x) is the same as the
highest-degree monomial of

extG(ρ0) extJ (ρ1)
r∗ ·

[
extJ (ρ0)

2(x+ 2)r
∗ − (α+ β) extJ (ρ0)(x+ 1)r

∗
+ αβxr

∗]
,

which is
extG(ρ0) extJ (ρ1)

r∗ ·
[
extJ (ρ0)

2 − (α+ β) extJ (ρ0) + αβ
]
· xr∗ .

So the coe�cient of xr
∗
in p(x) is c = extG(ρ0) extJ (ρ1)

r∗ ·c′, where c′ = (extJ (ρ0)−α)(extJ (ρ0)−
β). Recall that J is a strong candidate, and therefore, we have

� extJ (ρ1) ≥ 1, and consequently

� extJ (ρ0) ̸= extJ (ρ0) + extJ (ρ1) = α, and also

� extJ (ρ0) ̸= extJ (ρ0) + extJ (ρ1) = α by Item (v).

This shows that c′ ̸= 0 and extJ (ρ1)
r∗ ̸= 0, and consequently, by computing the coe�cient c, the

sought-for value extG(ρ0) can be computed as well. This �nishes the proof of Claim 10.34. ◁

Finally, the coe�cients of p(x) can be computed by polynomial interpolation by evaluating p(x)
for r∗ distinct values of x. This can be done since, according to Claim 10.33, we can compute A′

x

using three (σ, ρ)-#DomSetP -oracle calls as long as x is su�ciently large in O(n); and we can
e�ciently compute extJ (ρ0)

x−r∗ as extJ (ρ0) does not depend on n. So computing the coe�cients

106

can be done in time polynomial in x ∈ O(n), and from the coe�cients one can compute extG(ρ0)
according to Claim 10.34.

Summarizing, we have shown that we can solve (σ, ρ)-#DomSetP+(∅,{0}) on instance I using
3r∗ (three per A′

x) oracle calls to (σ, ρ)-#DomSetP on instances of the form Ix.
We �nish the proof of Lemma 10.25 by paying our debts and showing Claim 10.33.

Proof of Claim 10.33. By the fact that J is a candidate, we know that extJ (σ0) and extJ (ρ0) are
distinct positive values. We show how to recover A′

x from ψ(x) if extJ (ρ0) > extJ (σ0). In the case
extJ (ρ0) < extJ (σ0), the term B′

x can be recovered analogously, and then A′
x = ψ(x)−B′

x.
Recall that A′(x) = ±a′(x), where the sign depends on whether ρ is �nite or co�nite. If,

analogously to Equation (10.11), we de�ne

b′(x) := extJ (σ0)
x+2−s∗ · b(x+ 2)− (α+ β) extJ (σ0)

x+1−r∗ · b(x+ 1) + αβ extJ (σ0)
x−r∗ · b(x),

then again B′(x) = ±b′(x), where the sign depends on whether σ is �nite or co�nite. Then, we
recall that b(x) is a polynomial in x and that extG(σ0), which contributes to the coe�cients of b(x),
is upper bounded by 2n. Thus, we can choose x ∈ O(n) such that B′

x/ extJ (ρ0)
x−r∗ < 1, where

we use the crucial fact that extJ (ρ0) > extJ (σ0). Then, we observe that A′
x/ extJ (ρ0)

x−r∗ is an
integer as ar(x) is an integer for r ≤ r∗, and consequently, a(x) is an integer.

Therefore, ⌊ψ(x)/ extJ (ρ0)x−r∗⌋ = A′
x/ extJ (ρ0)

x−r∗ , and A′
x can be recovered by computing

A′
x = ⌊ψ(x)/ extJ (ρ0)x−r∗⌋ · extJ (ρ0)x−r∗ . ◁

107

References

[1] Jochen Alber and Rolf Niedermeier. Improved tree decomposition based algorithms for domination-like problems.
In Proceedings of the 5th Latin American Symposium on Theoretical Informatics (LATIN 2002), volume 2286 of
Lecture Notes in Computer Science, pages 613�628. Springer, 2002.

[2] Josh Alman and Virginia Vassilevska Williams. A re�ned laser method and faster matrix multiplication. In
Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021,
Virtual Conference, January 10 - 13, 2021, pages 522�539. SIAM, 2021. doi: 10.1137/1.9781611976465.32. URL
https://doi.org/10.1137/1.9781611976465.32.

[3] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard problems restricted to partial
k-trees. Discret. Appl. Math., 23(1):11�24, 1989. doi: 10.1016/0166-218X(89)90031-0. URL https://doi.org/

10.1016/0166-218X(89)90031-0.

[4] Sanjeev Arora, Michelangelo Grigni, David R. Karger, Philip N. Klein, and Andrzej Woloszyn. A polynomial-
time approximation scheme for weighted planar graph TSP. In Howard J. Karlo�, editor, Proceedings of the
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25-27 January 1998, San Francisco, California,
USA, pages 33�41. ACM/SIAM, 1998. URL http://dl.acm.org/citation.cfm?id=314613.314632.

[5] Michael A. Bennett, Greg Martin, Kevin O'Bryant, and Andrew Rechnitzer. Explicit bounds for primes in
arithmetic progressions. Illinois J. Math., 62(1-4):427�532, 2018. ISSN 0019-2082. doi: 10.1215/ijm/1552442669.
URL https://doi.org/10.1215/ijm/1552442669.

[6] Marshall W. Bern, Eugene L. Lawler, and A.L. Wong. Linear-time computation of optimal subgraphs of de-
composable graphs. Journal of Algorithms, 8(2):216�235, 1987. ISSN 0196-6774. doi: https://doi.org/10.1016/
0196-6774(87)90039-3. URL https://www.sciencedirect.com/science/article/pii/0196677487900393.

[7] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming. J. Comb. Theory, Ser. A, 14(2):
137�148, 1973. doi: 10.1016/0097-3165(73)90016-2. URL https://doi.org/10.1016/0097-3165(73)90016-2.

[8] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets Möbius: fast subset
convolution. In Proceedings of the 39th Annual ACM on Symposium on Theory of Computing (STOC 2007),
pages 67�74, 2007.

[9] Hans L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In Timo Lepistö and Arto
Salomaa, editors, Automata, Languages and Programming, 15th International Colloquium, ICALP88, Tampere,
Finland, July 11-15, 1988, Proceedings, volume 317 of Lecture Notes in Computer Science, pages 105�118.
Springer, 1988. doi: 10.1007/3-540-19488-6_110. URL https://doi.org/10.1007/3-540-19488-6_110.

[10] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic single exponential
time algorithms for connectivity problems parameterized by treewidth. Inf. Comput., 243:86�111, 2015. doi:
10.1016/j.ic.2014.12.008. URL https://doi.org/10.1016/j.ic.2014.12.008.

[11] Glencora Borradaile and Hung Le. Optimal dynamic program for r-domination problems over tree decom-
positions. In Jiong Guo and Danny Hermelin, editors, 11th International Symposium on Parameterized and
Exact Computation, IPEC 2016, August 24-26, 2016, Aarhus, Denmark, volume 63 of LIPIcs, pages 8:1�
8:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi: 10.4230/LIPIcs.IPEC.2016.8. URL
https://doi.org/10.4230/LIPIcs.IPEC.2016.8.

[12] Glencora Borradaile, Philip N. Klein, and Claire Mathieu. An O(n log n) approximation scheme for steiner
tree in planar graphs. ACM Trans. Algorithms, 5(3):31:1�31:31, 2009. doi: 10.1145/1541885.1541892. URL
https://doi.org/10.1145/1541885.1541892.

[13] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Boolean-width of graphs. Theor. Comput. Sci.,
412(39):5187�5204, 2011. doi: 10.1016/j.tcs.2011.05.022. URL https://doi.org/10.1016/j.tcs.2011.05.022.

[14] Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming for locally checkable
vertex subset and vertex partitioning problems. Theor. Comput. Sci., 511:66�76, 2013. doi: 10.1016/j.tcs.2013.
01.009. URL https://doi.org/10.1016/j.tcs.2013.01.009.

108

https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1016/0166-218X(89)90031-0
https://doi.org/10.1016/0166-218X(89)90031-0
http://dl.acm.org/citation.cfm?id=314613.314632
https://doi.org/10.1215/ijm/1552442669
https://www.sciencedirect.com/science/article/pii/0196677487900393
https://doi.org/10.1016/0097-3165(73)90016-2
https://doi.org/10.1007/3-540-19488-6_110
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.4230/LIPIcs.IPEC.2016.8
https://doi.org/10.1145/1541885.1541892
https://doi.org/10.1016/j.tcs.2011.05.022
https://doi.org/10.1016/j.tcs.2013.01.009

[15] Mathieu Chapelle. Parameterized complexity of generalized domination problems on bounded tree-width graphs.
CoRR, abs/1004.2642, 2010. URL http://arxiv.org/abs/1004.2642.

[16] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of �nite graphs. Information and
Computation, 85(1):12�75, 1990. ISSN 0890-5401. doi: https://doi.org/10.1016/0890-5401(90)90043-H. URL
https://www.sciencedirect.com/science/article/pii/089054019090043H.

[17] Radu Curticapean. Block interpolation: A framework for tight exponential-time counting complexity. Inf.
Comput., 261:265�280, 2018. doi: 10.1016/j.ic.2018.02.008. URL https://doi.org/10.1016/j.ic.2018.02.008.

[18] Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting perfect matchings on graphs of
bounded treewidth, cliquewidth, and genus. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 1650�1669. SIAM, 2016. doi: 10.1137/1.9781611974331.ch113. URL https://doi.org/10.1137/1.

9781611974331.ch113.

[19] Radu Curticapean, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting Hamiltonian cycles
via matrix rank. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 1080�1099. SIAM, 2018.
doi: 10.1137/1.9781611975031.70. URL https://doi.org/10.1137/1.9781611975031.70.

[20] Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk, Michal
Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015. ISBN 978-3-319-21274-6. doi: 10.
1007/978-3-319-21275-3. URL https://doi.org/10.1007/978-3-319-21275-3.

[21] Erik D. Demaine and Mohammad Taghi Hajiaghayi. The bidimensionality theory and its algorithmic applica-
tions. Comput. J., 51(3):292�302, 2008.

[22] Erik D. Demaine, Fedor V. Fomin, Mohammad Taghi Hajiaghayi, and Dimitrios M. Thilikos. Subexponential
parameterized algorithms on bounded-genus graphs and -minor-free graphs. J. ACM, 52(6):866�893, 2005.

[23] László Egri, Dániel Marx, and Paweª Rz¡»ewski. Finding list homomorphisms from bounded-treewidth graphs
to re�exive graphs: a complete complexity characterization. In Rolf Niedermeier and Brigitte Vallée, editors,
35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018,
Caen, France, volume 96 of LIPIcs, pages 27:1�27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi: 10.4230/LIPIcs.STACS.2018.27. URL https://doi.org/10.4230/LIPIcs.STACS.2018.27.

[24] Jacob Focke, Dániel Marx, and Paweª Rz¡»ewski. Counting list homomorphisms from graphs of bounded
treewidth: tight complexity bounds. In Joseph (Se�) Naor and Niv Buchbinder, editors, Proceedings of the
2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 431�458. SIAM, 2022. doi: 10.1137/1.9781611977073.22. URL https://doi.org/

10.1137/1.9781611977073.22.

[25] Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Dieter Kratsch, and Mathieu Liedlo�. Sort and search: Exact
algorithms for generalized domination. Inf. Process. Lett., 109(14):795�798, 2009. doi: 10.1016/j.ipl.2009.03.023.
URL https://doi.org/10.1016/j.ipl.2009.03.023.

[26] Fedor V. Fomin, Petr A. Golovach, Jan Kratochvíl, Dieter Kratsch, and Mathieu Liedlo�. Branch and
recharge: Exact algorithms for generalized domination. Algorithmica, 61(2):252�273, 2011. doi: 10.1007/
s00453-010-9418-9. URL https://doi.org/10.1007/s00453-010-9418-9.

[27] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. E�cient computation of representative
families with applications in parameterized and exact algorithms. J. ACM, 63(4):29:1�29:60, 2016. doi: 10.1145/
2886094. URL https://doi.org/10.1145/2886094.

[28] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative families of product
families. ACM Trans. Algorithms, 13(3):36:1�36:29, 2017. doi: 10.1145/3039243. URL https://doi.org/10.

1145/3039243.

[29] Petr A. Golovach, Jan Kratochvíl, and Ondrej Suchý. Parameterized complexity of generalized domination
problems. Discret. Appl. Math., 160(6):780�792, 2012. doi: 10.1016/j.dam.2010.11.012. URL https://doi.org/

10.1016/j.dam.2010.11.012.

109

http://arxiv.org/abs/1004.2642
https://www.sciencedirect.com/science/article/pii/089054019090043H
https://doi.org/10.1016/j.ic.2018.02.008
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1137/1.9781611974331.ch113
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.STACS.2018.27
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.1137/1.9781611977073.22
https://doi.org/10.1016/j.ipl.2009.03.023
https://doi.org/10.1007/s00453-010-9418-9
https://doi.org/10.1145/2886094
https://doi.org/10.1145/3039243
https://doi.org/10.1145/3039243
https://doi.org/10.1016/j.dam.2010.11.012
https://doi.org/10.1016/j.dam.2010.11.012

[30] Rudolf Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171�186, 1976.

[31] Magnús M. Halldórsson, Jan Kratochvíl, and Jan Arne Telle. Independent sets with domination constraints.
Discret. Appl. Math., 99(1-3):39�54, 2000. doi: 10.1016/S0166-218X(99)00124-9. URL https://doi.org/10.

1016/S0166-218X(99)00124-9.

[32] Lars Ja�ke, O joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. Generalized Distance Domination
Problems and Their Complexity on Graphs of Bounded mim-width. In Christophe Paul and Michal Pilipczuk,
editors, 13th International Symposium on Parameterized and Exact Computation (IPEC 2018), volume 115 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 6:1�6:14, Dagstuhl, Germany, 2019. Schloss
Dagstuhl�Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-084-2. doi: 10.4230/LIPIcs.IPEC.2018.6. URL
http://drops.dagstuhl.de/opus/volltexte/2019/10207.

[33] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structural parameters, tight bounds, and
approximation for (k, r)-center. Discret. Appl. Math., 264:90�117, 2019. doi: 10.1016/j.dam.2018.11.002. URL
https://doi.org/10.1016/j.dam.2018.11.002.

[34] Philip N. Klein. A linear-time approximation scheme for planar weighted TSP. In 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings,
pages 647�657. IEEE Computer Society, 2005. doi: 10.1109/SFCS.2005.7. URL https://doi.org/10.1109/

SFCS.2005.7.

[35] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools for kernelization.
J. ACM, 67(3):16:1�16:50, 2020. doi: 10.1145/3390887. URL https://doi.org/10.1145/3390887.

[36] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of bounded treewidth
are probably optimal. ACM Trans. Algorithms, 14(2):13:1�13:30, 2018. doi: 10.1145/3170442. URL https:

//doi.org/10.1145/3170442.

[37] Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight complexity results of general
factor problems parameterized by treewidth and cutwidth. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 95:1�95:20. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.ICALP.2021.95. URL https://doi.org/10.4230/

LIPIcs.ICALP.2021.95.

[38] Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-factor is FPT parameterized by treewidth and list
size (but counting is hard). CoRR, abs/2110.09369, 2021. URL https://arxiv.org/abs/2110.09369.

[39] Dániel Marx. A parameterized view on matroid optimization problems. Theoretical Computer Science,
410(44):4471�4479, 2009. ISSN 0304-3975. doi: https://doi.org/10.1016/j.tcs.2009.07.027. URL https:

//www.sciencedirect.com/science/article/pii/S030439750900512X. Automata, Languages and Program-
ming (ICALP 2006).

[40] Burkhard Monien. How to �nd long paths e�ciently. In Analysis and design of algorithms for combinatorial
problems (Udine, 1982), volume 109 of North-Holland Math. Stud., pages 239�254. North-Holland, Amsterdam,
1985.

[41] Karolina Okrasa and Paweª Rz¡»ewski. Fine-grained complexity of the graph homomorphism problem for
bounded-treewidth graphs. SIAM J. Comput., 50(2):487�508, 2021. doi: 10.1137/20M1320146. URL https:

//doi.org/10.1137/20M1320146.

[42] Karolina Okrasa, Marta Piecyk, and Paweª Rz¡»ewski. Full complexity classi�cation of the list homomorphism
problem for bounded-treewidth graphs. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th
Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference),
volume 173 of LIPIcs, pages 74:1�74:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/
LIPIcs.ESA.2020.74. URL https://doi.org/10.4230/LIPIcs.ESA.2020.74.

[43] Jürgen Plehn and Bernd Voigt. Finding minimally weighted subgraphs. In Rolf H. Möhring, editor, Graph-
Theoretic Concepts in Computer Science, 16rd International Workshop, WG '90, Berlin, Germany, June 20-
22, 1990, Proceedings, volume 484 of Lecture Notes in Computer Science, pages 18�29. Springer, 1990. doi:
10.1007/3-540-53832-1_28. URL https://doi.org/10.1007/3-540-53832-1_28.

110

https://doi.org/10.1016/S0166-218X(99)00124-9
https://doi.org/10.1016/S0166-218X(99)00124-9
http://drops.dagstuhl.de/opus/volltexte/2019/10207
https://doi.org/10.1016/j.dam.2018.11.002
https://doi.org/10.1109/SFCS.2005.7
https://doi.org/10.1109/SFCS.2005.7
https://doi.org/10.1145/3390887
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://doi.org/10.4230/LIPIcs.ICALP.2021.95
https://arxiv.org/abs/2110.09369
https://www.sciencedirect.com/science/article/pii/S030439750900512X
https://www.sciencedirect.com/science/article/pii/S030439750900512X
https://doi.org/10.1137/20M1320146
https://doi.org/10.1137/20M1320146
https://doi.org/10.4230/LIPIcs.ESA.2020.74
https://doi.org/10.1007/3-540-53832-1_28

[44] Neil Robertson and Paul D. Seymour. Graph minors. III. planar tree-width. J. Comb. Theory, Ser. B, 36(1):
49�64, 1984. doi: 10.1016/0095-8956(84)90013-3. URL https://doi.org/10.1016/0095-8956(84)90013-3.

[45] Jan Arne Telle. Complexity of domination-type problems in graphs. Nordic J. of Computing, 1(1):157�171, mar
1994. ISSN 1236-6064.

[46] Jan Arne Telle and Andrzej Proskurowski. Practical algorithms on partial k-trees with an application to
domination-like problems. In Proceedings of the 3rd Workshopon Algorithms and Data Structures (WADS 1993),
volume 709 of Lecture Notes in Computer Science, pages 610�621. Springer, 1993.

[47] Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning problems on partial k -trees.
SIAM J. Discret. Math., 10(4):529�550, 1997. doi: 10.1137/S0895480194275825. URL https://doi.org/10.

1137/S0895480194275825.

[48] Johan M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In Fedor V. Fomin,
Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms - Essays Dedicated
to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer
Science, pages 262�297. Springer, 2020. doi: 10.1007/978-3-030-42071-0_18. URL https://doi.org/10.

1007/978-3-030-42071-0_18.

[49] Johan M. M. van Rooij. A generic convolution algorithm for join operations on tree decompositions. In Rahul
Santhanam and Daniil Musatov, editors, Computer Science - Theory and Applications - 16th International
Computer Science Symposium in Russia, CSR 2021, Sochi, Russia, June 28 - July 2, 2021, Proceedings, volume
12730 of Lecture Notes in Computer Science, pages 435�459. Springer, 2021. doi: 10.1007/978-3-030-79416-3\
_27. URL https://doi.org/10.1007/978-3-030-79416-3_27.

[50] Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming on tree decom-
positions using generalised fast subset convolution. In Proceedings of the 17th Annual European Symposium on
Algorithms (ESA 2009), volume 5757 of Lecture Notes in Computer Science, pages 566�577. Springer, 2009.

111

https://doi.org/10.1016/0095-8956(84)90013-3
https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1007/978-3-030-42071-0_18
https://doi.org/10.1007/978-3-030-42071-0_18
https://doi.org/10.1007/978-3-030-79416-3_27

	Introduction
	Technical Overview
	Faster Algorithms
	Lower Bounds

	Preliminaries
	Basics
	Generalized Dominating Sets

	I Faster Algorithms
	Faster Algorithms for Structured Pairs
	Structural Insights into the m-Structured Case
	Exploiting Structure: Fast Join Operations
	Faster Algorithms for Generalized Dominating Set Problems

	Faster Algorithms via Representative Sets

	II Lower Bounds
	High-level Constructions for Proving Lower Bounds for GenDomSet
	Decision Problem
	Counting Problem

	Constructing Providers
	Providers Having Either Sigma-States or Rho-States
	Providers Having Sigma-States Together with Rho-States

	Constructing Managers
	Proof of Lemma 8.4: A Blueprint for Managers

	Lower Bound for the Problem with Relations
	Decision Problem
	Counting Problem

	Realizing Relations
	Decision Problem
	Counting Problem

